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In this paper we study a three-dimensional fluid—structure interaction problem. The motion of the
fluid is modeled by the Navier—Stokes equations and we consider for the elastic structure a finite-
dimensional approximation of the equation of linear elasticity. The time variation of the fluid domain
is not known a priori, so we deal with a free boundary value problem. Our main result yields the local
in time existence and uniqueness of strong solutions for this system.
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1. Introduction

We consider the interaction between a viscous incompressible fluid and an elastic structure
immersed in the fluid. We aim to study the coupled system of equations modeling the motions
of the fluid and of the structure. A classical model for the fluid is the Navier—Stokes equations (see
system (7)); for the elastic structure, assuming that the deformation remains small, we can consider
the model of linear elasticity. When we couple these two systems of partial differential equations,
we obtain a complex system and the study of its well-posedness contains several difficulties. One of
them is coming from the fact that we gather two systems of different natures. This could be observed
by linearizing the system: we obtain a system coupling a parabolic system with an hyperbolic
system. Another general difficulty to study this fluid-structure interaction problem comes from the
fact that the fluid domain is moving and unknown (it is a free boundary problem). In particular, to
apply “classical” procedures on cylindrical domain, it is convenient to use a change of variables
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for the fluid equations (the structure equations are already written in Lagrangian coordinates). But
such a change of variables is constructed from the solution and thus the solution needs to be regular
enough to get a convenient change of variables.

The well-posedness for the coupling of these two systems is studied in [8] (for the linear case)
and in [5] (for the general case). The combination of the two difficulties presented above leads the
authors of [5] to consider the existence of regular solutions for the linearized problem (the velocity
of the fluid is L? in time with value in H? in space). In that case, they need more regularity for
the initial data: the initial condition is for instance H° in space. This loss of regularity is not very
satisfactory but is inherent to this coupling between two systems of different natures.

In order to avoid this loss of regularity, one can choose to consider an approximation of the
previous system. Some approximations were already tackled in the literature in particular to obtain
existence of weak solutions. In that case, it is very important to obtain some regularity on the elastic
deformations which define the fluid domain, at least to give a sense to the equations of the fluid.
Two strategies have been considered: one could add a regularizing term in the equations of linear
elasticity (see [1]) or one could approximate the equations of linear elasticity by a finite dimensional
system (see [7]). In each case, the authors of [1] and of [7] have obtained the existence of weak
solutions (up to a contact).

In this article, our main result is the existence and uniqueness of strong solution for a system
coupling the Navier-Stokes system with a finite dimensional approximation of the linear elasticity
(i.e., a system similar to the one considered in [7]).

Let us present here the system we consider. We denote by # and p the velocity and the pressure
of the fluid, and by £ the elastic deformation of the structure. We also denote by §2 the domain
containing the fluid and the structure, by §2f (¢) the fluid domain and by £25(¢) the structure domain
at time ¢. These three domains are assumed to be bounded, open and connected subsets of R3. We
also suppose that 382 is of class C? and that at initial time, 3£25(0) is of class C>. Finally, we
assume that the elastic body is immersed into the fluid: 25(¢) C 2 and 2F(t) = 2 \ 25(¢).

Let us first introduce the usual equation of linear elasticity which is valid for small deformations:

¢ di =0 in £25(0 1
55 —div(r(®) =0 in 250). M

The stress tensor is given by (see [3])
7(8) = Atr(e (€)1 + 2ue &)

where ¢(§) = %(V‘;’ + (V&)") and Lamé constants A and u are such that 4 > 0 and A = 0.
Through the fixed interface 0§25 (0) between the fluid and the structure, it is assumed that the normal
component of the stress tensors is continuous:

(m(®)(t, y)ny =0 (u, p)(t,0(t.y))Cof(Vp) ny on 3525(0). 2)

Here ny is the outward-pointing unit normal vector along 9§25 (0), ny is the outward-pointing unit
normal vector along 02 (¢) and

o(u,p)=—plId+2v e(u).

is the Cauchy stress tensor associated to the fluid. We have also denoted by ¢ the elastic
displacement defined by

o, y):=y+E&@ty)
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25(0)

\

y+E@y) =o(t,y)

F1G. 1. Elastic deformation

(see Figure 1). To simplify, we assume that at initial time, there is no deformation, thus we have
@0,y) =y.

In this paper, we do not consider the complete equation of linear elasticity written above, but
only a finite approximation of Galerkin type: we assume that £ can be written as a linear combination
of a family of Ny functions. Let us note that we do not choose here a particular family as it is done
in [7] where the authors use a family of eigenmodes associated to the elasticity equation.

We can notice that the incompressibility of the fluid enforces the deformation £ to satisfy
some compatibility conditions. Indeed, at the interface between the fluid and the structure, the
normal components of the velocity of the fluid and of the structure are equal. Combined with the
incompressibility of the fluid, it yields

%3

diviu) =0 in $£5(1), E(t,¢7l(t,x)) -ny =u(t,x)-ny on 02s(1).
Thus, if we assume that # = 0 on 952, it implies the following non linear condition on &:
0& _
[ e ) s dye =0 3)
925 (0) o1
By this way, the Galerkin approximation of & has to satisfy this condition. Let &, ..., & 5, (No = 1)
be a given orthonormal family in L?(£25(0)) which satisfies
& € H*(225(0)), / £ -nydy,=0 i=12,...No. “)
025(0)

If § is a linear combinationof §, ..., § v, it satisfies (3) at initial time, but there is no reason that it

should be true for # > 0. A remedy to this problem is to add an extra function &, in order to satisfy
(3). More precisely, let &, € H?>(£5(0)) be a lifting of the unit outward normal on 32 (0). Then,
it can been proved (see Lemma 2.1 below) that there exists a ball B(0, r;) of RYo and a function
¢ : B(0,r1) — R such that for any function (regular enough) (a1 (), ..., an,(t)) € B(0,r;), the
associated deformation

No
E(t.y) =Y ai(E;(y). with ao(t) =¢(er1(0).....an, (1)), )

i=0
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satisfies (3). Using this construction, we can also define a family (5\1 ®),... ,ENO (t)) where for all
i, é\l is a linear combination of &; and &, (see (19)) so that if we write

0% Yoo o
Sy =) Bi0E (), with B =], 6)

i=1

then (3) is always satisfied.
We are now in position to introduce the system we study in this article: the system of equations
for the fluid is the classical Navier—Stokes system

0
a—’;—vAu+Vp+(u.V)u —0 in 2r0)
div(u) =0 in Q2r()
(7N
u=20 on 0d8
0§
5, ) =u(te@.y) on 9L5(0)
and the equations for the structure are a Galerkin approximation of (1)-(2)
28 - - P
a2 Eidy+apn e§):ei)dy +A div(§)div(§;) d y
2s(0) 0t 25(0) 25(0) (8)

=/ o (. p)(t.X)ny - Ei(t.97 (0. X)) dyy. i =1.....No.
0825(1)

with & satisfying (5) and thus with %—f satisfying (6). We recall that ¢ (¢, y) := y + &(¢, y) and we
assume that ¢(¢) is invertible (which is the case for r; small enough). This system is completed by
the initial conditions

]
w,_o=u’ in 2r0), &,_, =0 in 25(0), a—f =& in 250, (9
t=0
with
No
=Y pl%,. (10)

i=1
where B2 = B, (0). Note that
£,(0,y)=&,(y) forall ief{l,... No}.
For simplicity of notation, in what follows, we set
2F = 2r(0),
s = 2s5(0).

Now, we define the function spaces L*(0,7T;H?*(2r(t))), C([0,T]; H'(2Fr(t))) and
H'(0,T; L*(2F(t))), which will be extensively used in the sequel. Suppose there exists a function
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¥ € H*(0,T; H*(2F)) such that ¥ (r,-) : 2F — 2 (7) is a diffeomorphism. For all functions
w(t,-) : 2F () — R3, we denote W (¢, y) = w(t, ¥ (¢, y)). Then the function spaces introduced
above are defined by

L2<O, T: H2(2F (z)))
C([O, T];HI(QF(Z))) - {w W e C([0.T]; HI(QF))},

H! (o, T LZ(QF(t)))

lw:weL?(0.7:H22r)},

{w W e Hl(O,T;Lz(.QF))}.
Set
D) = LZ(O, T; H2(QF(z))) N C([o, Tl: Hl(QF(z))) N H1<O, T;L2(QF(z))),

and
D = 9(0).

Our main result is the following:

THEOREM 1.1 Assume that u® € H'(2F) and {ﬂ?}NO C R satisfy the following conditions:

i=1

div(u®) =0 in Qp,
u =0 on 082, an
ul = §1 on 0825,

dist(2s, 082) > 0.

Then, there exists a time 7" > 0 such that the system (7), (8), (9) and (10) admits a unique solution
(up to a constant for p)

(1, p) € D(t) x LZ(O, T:H' (.Qp(l‘))),
ap,...,an, € H*(0,T).

Let us give some remarks on the main result. First, one can see that the existence of the pressure
is obtained up to a constant as in the case of a fluid alone or a fluid coupled with a rigid body. In
the case of a deformable structure, the pressure of the fluid may be defined uniquely. This comes
from the incompressibility of the fluid and the boundary condition (see, for instance, [1 1] for more
details). Here, the choice of our decomposition of the elastic deformation and elastic velocity (see
(5) and (6)) leads to the fact that the pressure is still defined up to a constant. Second, as already
mentioned above, there are few results concerning the well-posedness of a system modeling the
motion of an elastic structure in a viscous incompressible fluid. The existence of weak solutions for
our system was obtained by [7] whereas the existence of weak solutions when adding a regularizing
term in the equation of elasticity was proved in [1]. Concerning strong solutions, we only know
the result of [5] (and [8] for the linear case). In [5], a local in time result is obtained for strong
solution. They also obtained uniqueness by considering more regular solutions. In this latter paper,
the hypotheses on the initial data to get existence are quite strong: the initial velocity of the fluid
must be in H>(£27(0)) and the initial velocity of the elastic structure must be in H?(£25(0)).
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This implies in particular many compatibility conditions at # = 0. Moreover, to obtain also the
uniqueness, the authors have to add more hypotheses on the regularity of the initial conditions: the
initial velocity of the fluid must be in H’ (£ (0)) and the initial velocity of the elastic structure
must be in H*(£25(0)). In the case where we consider a rigid body instead of an elastic structure,
the corresponding system was studied in many papers: see, for instance, [4, 0, 8, 10, 12, 13, 15, 16].
The existence of weak and strong solutions was proved with similar regularity hypotheses as in the
case of the Navier-Stokes system. Here as in the case of a rigid body, the velocity of the deformation
is assumed to be finite-dimensional, but at the contrary to the case of a rigid body, the generators
of the velocity of deformation depends on time (the family (:S\i (t))1<i<N,)- Moreover, the change
of variables used to transform the problem on a cylindrical domain is more technical: in the case of
a rigid body, the idea was only to extend (and truncate) the translation and the rotation of the rigid
body.

Our strategy is to construct a change of variables to transform £2f (¢) onto £2F (Section 2) and
to use this change of variables to write the system (7), (8), (9) and (10) on a cylindrical domain
(Section 3). We obtain a nonlinear coupled system with variable coefficients. The idea is to write it

in the form
7 = AZ + R(Z),

where Z is (u, B), with B = (B1.,..., Bn,). In R(Z), we put all the coefficients coming from the
change of variables and the nonlinear terms coming from the Navier-Stokes system. Then as in other
proofs of existence of strong solutions (see [5, 6, 16]), we study a linear system associated to our
problem (Section 4):

7' = AZ +F.

We use a semi-group approach in this step as in [16] but we could also have used a Galerkin method
as in [5]. Then we use the Banach fixed point theorem to prove the main result in Section 5. In
order to do this, we need two technical results: estimates on R(Z) (Section 6) and estimates on the
difference R!(Z') — R?(Z?) (Section 7).

2. Preliminaries and change of variables

Let us first begin by introducing some notations and an important identity for the change of variables
of surface integrals.
For a tensor M (x) = (m;;(x));, jef1,2,3; We use the notation

> omy;
[divM]; = Y —2,
T 3)6_,'
Jj=1

and we denote by M’ the transpose of M, CofM the cofactor matrix of the matrix M and recall
that if M is invertible then
Cof(M) = (det M)M ", (12)

A deformation ¢ is a smooth vector field
0. 2> cR?
such that ¢ : 2 — £2? is one-to-one, and orientation-preserving, i.e

detVe(x) >0, Vxef.
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Assume ¢ is a deformation and assume f : 2 — R is an integrable function, then we have

/ (fop YHn? dre = / (detVo) (Vo) 'ndr, (13)
129 a2

where n? denotes the unit outer normal vector along the boundary of £2¢ and n is the outward-
pointing unit normal vector along 052 (see [3, p.40] for details).

Let us prove the existence a ball B(0, ;) of RN0 and a function ¢ : B(0,7;) — R such that
for any function (regular enough) («1(2),...,an,()) € B(0,r1), any function & defined by (5)
satisfies (3). More precisely, let us consider

No

E(ty) =) ai(DE;(¥).

i=0

we search oo () = ¢ (a1(?), ..., an,(t)) such that

No
[, detvot.yydy = [ der(1d+ 3 on)9E,0) + o) VE0(r)) dy

i=1

(14)
= £3(25)

where £,, denotes the n-dimensional Lebesgue measure (n € N). The above condition is equivalent
to the fact that the deformation of the structure does not modify its volume which is compatible
with the incompressibility of the fluid. Using the theorem of implicit functions, we can prove the
following result.

LEMMA 2.1 There exist r; > 0 and r, > 0 and a mapping of class C*°
¢ : B(0,r) C RN — B(0,r,) C R,

such that, for all (a1, ...,an,) € B(0,r1), there exists a unique ag = ¢(x1,...,an,) € B(0,r2)
satisfying

No
/ det (Id +) e VE(p) + oeoV‘;'O(y)) dy = £3(2s).
2s i=1

For the proof, see [1] Lemma 4.1 (see also [7] for a similar result). ¢ (¢, y) = y + (¢, y). Let
us remark that taking r; small enough, we also have ¢(¢) and Vg(¢) invertible.

REMARK 2.2 Let us remark that, from the fact that ¢(0) = 0, and from the fact that ¢ is Lipschitz
continuous, there exists a positive constant x such that

oo < «[lee]].
Here and in what follows, we write o 1= (oq, ..., 0n).

From (14) some calculations give

No
> si)Bi (1) + so()Bo(t) =0 (15)

i=1
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with
Bi(1) = (1)

for any 0 <i < Ny, and

Gi(1) = /a Vo)) () my dy,

(16)
— [ s x) nedy,
025 (@)
where the last equality is obtained thanks to (13).
Up to reducing the constant ; in Lemma 2.1, we can assume
1
[ Cof(Ve) — Id| L=pag) < 3 (17)
and thus we can prove that
1
co(t) = 5422(895(0)) > 0. (18)
Then we can define ©
~ Gill
(t,y) = &; — (19)
£;(1.y)=§&:(y) go(t)«So(y)
which satisfies (from (16))
/ E(t.o7 (t,x)) -nx dy, = 0. (20)
125 (t)

Then, (5) and (15) imply that the velocity of deformation is spanned by the family {,E\l, e ,/‘;'\NO }:

% N si(0)
S0 =2 A0 (80 -5

i=1

No
£o») = Y Bi(OE (. y). 21

i=1
N

l=01 defined as

REMARK 2.3 Let us remark that the family {&; }IN=°0 and, for all ¢, the family {{, (t)}
above, are linearly independent families.

In what follows, let us consider the elastic deformation ¢
o) 2s — 2s(1)
yey+E&@y)

associated with & which is the elastic displacement of the structure defined by (5) and which is the
solution of (8). We will always assume that

(@1(t),....0ny (1)) € B(0,r1), (22)

where r; is small enough to apply Lemma 2.1 and to have ¢(¢) and Ve(¢) invertible for all ¢ and
(17). Recall that the latter condition implies (18).
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We construct a change of variables X : £ — £2 which transforms §2g onto 25 (¢) and £2f
onto £2F (t). We will use this change of variables to transform systems (7)—(8) into a system written
in fixed domains. The idea is to extend the elastic deformation defined above on the domain of the
fluid. Thus, we consider a linear extension operator &:

8: H*(Rs) - H*(2)N H{(R)

such that for any w € H3(2s):
(i) 8&(w)=waeinS2g,
(ii) &(w) has support within [25]€ := {y € §2 : dist(y, 25) < €}, with0 < € < dist(§2g, 052),

(iii) ||8(w)||H3(g) < C||w||H3(QS)'
Using this operator, we can define an extension of ¢ on £2 as follows: for each z € [0, T'] we set

X(t,y)=y+8ty)—y) =y +8E&(y), Vy e 2. (23)

In what follows, we assume (a1, ..., an,) € [H2(0, T)]No. Using the Sobolev embedding theorem,
we will consider the following norms for H2(0, T') and H (0, T') (which are equivalent to the usual
norms):

1 w20,y := IS Lo,y + 1L/ Lo,y + I f " NL2orys  (f € H?(0,T))

and
I flleio.ry = 1 f leeso.ry + 1 f 20y (f € H'(0.T)).

Let us note, that, since ¢ € C*°(B(0,r1)), we have ag = ¢(a1,...,an,) € H?(0,T). Hence, we
deduce that £ € H?(0, T; H?(25)) and by using Sobolev embedding theorems, we obtain

8(&) € C'([0,T; Wh>(R2))

and
IBE L0,y < CellélLoraw <@g
< CeCsliéll Lo (o, 7;m3025))
< CeCsClle|[ oo (0,70 -
From the above estimates, we deduce that if (a1, ..., an,) satisfies for all 7 the condition (22) with

r1 small enough (depending on the geometry and on the family {£;}), then X (¢, -) is bijective from
£2 onto S2.
Moreover its inverse Y (¢, ) : £2 — 2 satisfies

1
1Y (2, x1) =Y (1, x2)|| < l[x1 —x2]. (24)

1— ||8(§)||L°°(()’T;W1<°°(Q))

As a consequence, (see, for instance, [9, p.279]) Y € L0, T; W 1""’(.Q)). We can improve this
regularity:

LEMMA 2.4 Assume o; € H?(0,T), &; € H*(25) foralli € {0,1,..., No} and assume (22)
with 7, small enough. Then X € H?(0,T; H3(2)),(VX)™! € H*(0,T; H*(£2)) and

Y € L®(0.T: H*(2)) N WH®(0,T; H*(2)) N H*(0,T: H'(2)).
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Proof. From (23) and from the regularity of «; and &;, we have X € H?(0, T; H*(R2)).
Using the fact that H?(0, T; H?(£2)) is an algebra, we deduce that

detVX € H*(0,T; H*(2)) and Cof(VX) € H*(0,T; H*(£2)).

AsY € L®(0,T; W1(£2)), we have det VX # 0 and thus the above equation implies

2 g2
vy € HPO.T:HA(@2).

Therefore, from (12) we have (VX)™' € H?(0,T; H?*(£2)). If we denote by A = (VX)!, we
have VY = A o Y. Since VY € L*((0,T) x £2),

’Y = (VA)(Y)(VY) € L=(0,T; L%(£2)). (25)
Y = (VZA)(Y)(VY)? + (VA)(Y)(V?Y) € L=(0,T; L*(R2)). (26)

Hence,
Y € L®(0,T; H*(2)).

Differentiating the identity X (¢, Y (¢, x)) = x with respect to time, we have
Y X
W(Z,x):—VY(I,X)W(I,Y(I,X)). (27)

Let us show that X
B(t,x) := a—(z, Y(t,x)) € L™(0,T: H*(2)). (28)
From the regularity of X, we already know that € C ([0, T]; H?(£2)) and from the first part of
the proof we have that Y € L>(0, T; H>(£2)). leferentlatlng (28) with respect to x, we obtain
3

8xk8x] 8t8yl 8y 8xk 8x 8t8yl 8x 8xk

€ L®(0,T; L*(R2)).

Therefore (28) holds true and, combined with (27), it implies
Y e Whe(0,T; H*(2)).

Differentiating (27) with respect to time, we have

2Y 9 9X P2X a(VX)
— =———(VY)—(Y)-VY Y Y— 0,T; H (2
=N - vy (SEm + SR m ) e 0. i @),
Consequently,
Y € H*(0.T; H'()).
This concludes the proof. |

Let us also give the regularity of the 5, defined by (19):
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LEMMA 2.5 Assume {£;}1°, C H*(R2s), {0:}0, C H?(0,T) and (22) holds with r; small
enough. Then

E, e H?(0,T; H(2s)).

Proof. From the regularity of &; and o; it follows that ¢ € H?(0,T; H>(£2s)) and consequently,
¢i € H?*(0,T). From (18), we deduce that % € H?(0,T). This allows to deduce the desired

regularity of /‘;'\i . O

3. Writing the equations in fixed domains

In this section, we use the change of variables constructed in Section 2 to write our system of
equations (7)-(8) in fixed domains. We set

v(t,y) =det(VX (1. y)) (VX (. y))f1 u(t,X(t.y)) (29)
q(t.y) =det (VX (1. y))p(t. X (1, y)) (30)
V(t,y) = det (VX (. y)) (VX (1. y))” l—g(z ). (31)

Let us remark that we do not use the change of variables

v(t,y) =u(t,X(t,y))

because of the divergence equation in (7). More precisely we have the following result:

LEMMA 3.1 Let v be defined by (29). Then
(divo)(t, y) = det VX (¢, y)(div u)(t, X (t, y))

Proof. To simplify the notation, we do not write in the proof the dependence in time of the variables.
We have

dive(y) = div [det (VX (y)) VY(X(y))u(X(y))]

—2[ (1Y X () 3 (X0 (X))

i,j=1

82
+detVX(y)Za gx( ()) (y)u,(X(y))
a
+detVX(y)ZaY ) (X( ))ﬁ(y)}
Using that
det(VX) = !

det (VY (X))’
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we have
d 1 0
— (detVX) = ——— detVY (X
ayr etV X) @@y g, (detvY ()
1
= Cof(VY (X VY (X
(detVY(X))2 (1;;1 ofvre ))Pq ( ( )) )
3 aX,
:—detVX(y)( Z E( )ax ox; ( (y )) )
p,q,l=1
Then
> F) )
dive(y) =detVX(y) Z u] (X(.V))—l( )
ijl—l

= det VX (y) Z X(y)) = det(VX (»))(diva) (X ().

O

Now, we write the transformation of the derivative in time of #. From (29) we have that for
ief{l,2,3}:

aul é (

8vk 8Y1

) oY) +

k=1 (32)

dv; > )¢ v
+ (det VY) L (Y) + Y det VY [ -=2(¥) — 6 —k(Y)
at Yk ’
k=1
We calculate the transformation of the gradient of u. As in the proof of Lemma 3.1, we do not write
the dependence in time of the variables.

= (detV Y

(33)

ij

with,

Eij[v] = 23: [ai, (

k=1

aX; 9
) e (Y) + det VY ( - i,k) Uk (v)
Ak

(34)

—(Y) (vt - 5,5) ]
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Then,

2

2 YY) + (detVY) Z (Y) ((VX), LY) -6 ,)

\RN

8 .

8
— (E;i[v]) .
an ( l][ ])
For the nonlinear term we have:

(- Vyul; = Z(detw)z v (Y)Z—(Y)vm(Y)

ji=1
+ Z(detVY)E,, [v] Z —(Y)vm(Y)
ji=1

Finally, from (30) we have:

p 0 9
P _ 7 (detVY)q(Y) + (detVY) L (v)
0x; 0x; dyi

3
0
+@UVY) 320 (VO — 1)
=1

Thereby, we can rewrite (7) as follows

a

a—" 4 [Mo]—v[Lv] +[Nv]+[Ggl=0 in  Qr, te(0,T),

div(v) =0 in QF,t€(0,T),

v=20 on 02,1t €(0,7),

v=V on 02s, t € (0,7),

where [Lv], [Mv], [Nv], [G¢], are defined by

)(X)vk + Z 3X 8vk 3Y1 (X)

3
9
Mv]; :=detVX —
[Mv]; :=de kg;»( Oy dyr o0

+ i (% _Si,k)aa%,

k=1

3

3 .
[Lv]; ;:Z[ Gl ((VX)Z} —51,,)

= 8)’] oy

@V g (£ ) (0 |

Wi o
(Vo] = detVXZ v Zai m+ZEl,[v1(X)Z—vm,

285

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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3
3
[Gqli == (detVX)—(detVY) (X)q + —aq +3 —yql (VX)) = 514)
=1

From (31) and thanks to (21) and (12), V' can be written as

No No
V.y) =Y Bifi(t.y) =Y _ Bi&; + [HP]
i=1 i=1
where
Ai(t.y) = (Cof VX)'&;(t,y) and [HP]= Zﬂ @i —&,).
Using (4), (13) and (20) we can prove that the function [H ] satisfies

/BQS[Hﬂ]-nzo.

Consequently, foreachi = 1,2,..., Ny, we can consider the following Stokes problem

—VvAW; +Vma; =0 in QF

diV(Wl') =0 in .QF
W;=0 on 052
W; =7 —§ on 0025,

and we can write

No
w=v-) BiW,
i=1

and
No
m=q-) Bimi.
i=1
Then, from (38), we deduce that (w, i) satisfies
w .
W—i—[Mw]—v[Lw]—i—[Gn]:K in QFr,t€(0,7)
div(w) =0 in QFr,t€(0,7)
w=20 on 2,1t €(0,T)
wzle:Ol,BiEi on 02s,t€(0,T)
with

No No

No
ZﬂW Z,B,W’ Z[M(,BiWi)]+VZ[L(,BiWi)]
i=1

i=1 i=1

_ [N<w " %ﬁiwi)} - % (G (Bimi)].

i=1 i=1

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)



STRONG SOLUTIONS FOR THE MOTION OF AN ELASTIC STRUCTURE 287

Now, we transform also the equation for the structure in order to have fixed domains in the integrals
coming from the fluid and in order to decompose the elastic displacement only by using &;, i =
1,..., No.

From (6) we have

82§ N & / o 4 3
/ﬂsw"éi dy Zj;ﬁjfﬂs’éj"éi dy +j§:3j/95(51'_§j)'5i dy

No 9 . No R
DN RETCICEIES 3178 RERCE YT
j=1 7/%s j=1 7/%s
On the other hand, from (13), (33) and (46)
[ owpncE@ar, = [ owmm, gy, + [ owmm,EG-g)dy,
025 (t) 0R2s 0R2s

+/ Golw.7]-E: dy,
925

with

No
Golw, 7] = o(w, ) ((VX)_’ - Id) ny + Z,Bia(Wi,m)(VX)_tny
i=1 N
+2v(E[w] + (E[w])")(X) Cof(VX)ny +2v ) B (E[W,]

i=1
+ (E[W ) )(X) Cof(VX)ny (50)

and with E [w] defined by (34).
Thus, we can write (8) as follows

No
S8 [ gty = [ owmm, g ar,+ s
j=1 s s

where f € [L?(0, T)]™o is given by

No R No 0 ~ ~
f=-x [NGRRY tr-38) [, 5@ Ear

NO =N - R R
_;ﬂ} /9 §i-(Gi=8)dy =2p /Q e():e(E) dy —A/QS div(e)divE:) dy
+/8950(w,n)ny-(gi —&)dy, +/895 Go[w,7]-& dy,, ie€{l,2,...,No}.

(52)

Then we have the following proposition:
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PROPOSITION 3.2 Assume (w, ) is defined by (29)—(30) and (46)—(47). Then
(u, p. B) € D(1) x L2<0, T Hl(.QF(t))) « [H'0.1T)]™ (53)

if and only if
(w, 7, B) € D x L>(0,T; H' (2F)) x [H' (0, T)]". (54)
Moreover, if (u, p, B) satisfies (53) then (u, p, B) is solution of (7)-(8) along with the initial

conditions (9) if and only if (w, 7, B) is solution of (48), (51) with (39)-(42), (49), (50) and (52)
and with the initial conditions

No
w,_,=w’=u"-) BW, in 2 (55)
i=1
and B = B; (0).

In the remaining part of the article, we study the problem (48), (51). To prove the local in time
existence of such a system we use a similar approach as in [16]. More precisely we write (48), (51)
as

9
8—';)—vAw+Vn:F in Qp, 1€(0,T)

div(iw) =0 in 2F,t€(0,7)

w=20 on 82,1 €(0,7)

w=Y"N g, on 0382s.t€(0,T)
and

4B = [ otwmm & dy, + i
02g
with A defined by
(M) = / £, -8 dy, (56)
25

with f; given by (52) and with

F =K —[Mw]+v[(L-Aw]+[(V-GC)x]. (57)

4. Linear problem associated to (48), (51)

In this section, we consider the following linear problem

9
a—';’—qu+Vﬁ=F in Qp, te(0,T)

div(w) = in Qp,te(,T7) (58)
W= on 92,1€(0,7)
b =Y Bik; on 0d82g,1€(0,7)

and

(ABY, = /a _o@ Pyt dyy + 1 (59)
S
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along with the initial conditions
w(0) =w’, and B(0) = p°, (60)
where F, f; are given functions, and ,3;’ are given real numbers. Recall that A is defined by (56).
In order to study (58)—(59), we use a semigroup approach. More precisely, let us set
H= {(w,ﬁ) e L2(Q2p) x R : div(w) = 0in  QF
w-n=00n 0982
No
w-n= (Z,Bi’gi) -non 8.(25},

i=1

D(A) = {(w,ﬁ) cH:we HX2r)
w=0on 082

No
w=) B on 395},

i=1
@ : D(A) — L*(2F) x RNo
(w, B) > (— vAw, (A’IB(w))),

and
A:DA)—- H
(w, B) — P(Q(w,B))

where B (w) = jaQS 2ve(w)n-§;dy,andP: L*(2rp)xRNo — H is the orthogonal projection.
Here we have used the following scalar product for L2(22F) x RNo:
((w,ﬁ),(u,ot)) = / w-udy+AB-a.
2F

Its associated norm is equivalent to the usual one. Let us also remark that H is a closed subspace of

the Hilbert space L2(22F) x RNo.
To study the operator A, we also need the following function space

V= {(w,ﬁ) eH:we HY(2F)
w=0o0n 052
No
w= Z,Bi’gi on 8.(25}.
i=1

PROPOSITION 4.1 The operator A : D(A) — H is positive and self-adjoint. In particular, —A4 is
the generator of a contraction semigroup on H.
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Proof. Assume (u,a), (w, B) € D(A). Then

(A(w. B). (u,0)) = (Q(w. B). (u.))
= / —vAw-udy + AA"'B(w) -«
2F

:21)/;2F€(w):e(u)a’y—2v/mse(w)n'udyy

No

+ E 21)/ e(wn-§;dy, o
~ a
j=1

2s
= 21)/ e(w):e(m)dy.
2F

Thus
(A(w,B), (u,@)) = 2v/ e(w):e(m)dy, Y(u,a),(w,p)e D(A). 61)

2F

In particular, A is symmetric. Moreover, Id + A is onto: let us take (v, y) € H. The equation

(Id+ A)(w.B) = (v.y)

is equivalent to

(w.B). (u,)) + (A(w, B), (w,0)) = ((v.y), (w.@)), V(u,&) € H. (62)

If (u,a) € V, then, (62) can be transformed in

((w,ﬁ), (u,ot)) + 21)/9 e(w):e(u)dy = ((v, 7), (u,oc)), V(u,a) V. (63)
F
Using the Korn inequality (see [14, Theorem 2.4-2, p. 51]) and the Riesz theorem we deduce the
existence and uniqueness of (w, B) € V satisfying (63).
Taking & = 0 in (63), it is not difficult to see that w is solution of a Stokes-type system

w—vAw +Va =F in 2F
div(w) =0 in QF
w=20 on 052
w= va=01 Bi&; on  082g.

(64)

Since {Ei}f\;ol C H?(2s) and 382 € C?, we obtain w € H?(2F). Therefore Id 4 A is onto.
This concludes that the operator A is self-adjoint (see, for instance [17, Proposition 3.2.4,
p. 74]). Furthermore, A is non-negative, since from (61) we have

(A(w.B).(w.B)) = 2v/9 le(w)|> dy = 0.

Hence, thanks to Lumer—Phillips theorem, A4 is the generator of a contraction semigroup on H (see
Proposition 3.3.5 and Proposition 3.8.4 in [17]). O
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Using Proposition 4.1 and classical results on parabolic equations (see, for instance, [16]) we
deduce the following result on (58)—(59):

PROPOSITION 4.2 Forany (w®, %) € V,forany (F, f) € L? (O, T;:L*(2r) x RNO) there exists
a unique solution of (58)—(60) such that

WeD, VFelL 0,T:L*(Qr)). B € [H'(0,T))".
Moreover, we have the following estimate
[wllg + ”Vfﬁ”Lz((),T;Lz(.QF)) + ”ﬂH %10,T)]Yo
0 0
< C(IF 20 riz2carn + 1 lizornvo + 190 g + 18 [ano )

where C is a constant depending of 7" in a non-decreasing way.

5. Proof of the main result

This section is devoted to the proof of Theorem 1.1. More precisely, we prove this theorem by using
two technical results (Theorem 5.1 and Theorem 5.2) which will be proved in the next sections.
First let us fix (w, 7, ) with

[wllo + ”Vn”Lz((),T;Lz(QF)) + ”ﬂ”[}el(o,T)]NO <R, (65)

where R > 0 is a fixed positive constant.
Then we definea; (i = 1,..., Ny) by

o (1) = /0 Bi(s) ds.

In particular, if we take

T =2t (66)
~ 2R’
we have for all ¢, (a1 (2),...,an,(t)) € B(0,r), with r; such that we can apply Lemmata 2.1 and

2.4 and so that (17) holds true. By using these functions, we can define &, é\i, X, n;, (Wi, m) by
the formulas (5), (19), (23), (44), and (45). Finally we can define F and f; by (57) and (52). Then
we have the two following results.

THEOREM 5.1 Assume that (w, , §) satisfies (65) and assume (66). Then there exists a positive
constant C(R) such that

IF Nl 2002220 + 1 2o mve < CRTYA. (67)

THEOREM 5.2 Assume that (w(l), 7, ﬂ(l)) , (w(z), n(z),ﬂ(z)) satisfies (65) and assume (66).
For k = 1,2, we can construct F® and f(k) as above from (57) and (52) with (w(k), 7, ﬂ(k))
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instead of (w, 7z, B). Then there exists a positive constant C(R) such that

HF(I)_F(Z)‘

D _ @ H
L?(0,T;L*(2F)) + Hf f

w® — @ H + HV (nu) _ n(z)))
k)

[L2(0,T)]No

< C(R)TV4
(R) L2(0,T;L*(2r))

1 )

w(o,T)]No) '

These two results are technical and will be proved in the next two sections. Admitting these
results, we are in position to prove the main result. The proof is based on the Banach fixed point
theorem. More precisely, let T > 0, R > 0, and let us define

K =9 x L20.T: H'(2r)) x [H'(0. T)]™,
endowed with the norm

l(w. 7. B)llx := lwllo + I7llL200,7:m1 2y T 1Bllper 0.5 »

and
C={(w,m,pB)eX:|(wmpB)lx <R}

Clearly, C is a closed subset of K. Let us define the mapping

Z: ¢ - X
(w.7.p) — (0.7 B)

where (W, 7, F) is the solution of (58)—(60), with F and f defined by (57) and (52) from (w, 7, B)
(as in the beginning of this section). The fact that Z maps € into X comes from Proposition 4.2 and
Theorem 5.1. More precisely, applying Proposition 4.2, we obtain

(69)

H ('15%75) ”x < C(||F||L2(O,T;L2(QF)) + ||f||[L2(0,T)]’V0 + H“’OHHI(.QF) + HﬂOHRNO)' (70)

Combining the above estimate with (67), we deduce

|Z(w. . B)llx < C(RIT* + € (“"’OHH‘(.QF) + ||ﬁ0“RNO)‘ (71

With the constant C and C(R) of the above inequality, we take R big enough so that

R
0 0
[w®] g1y + 18%amvo < el (72)
and 7" small enough so that (in addition to (66))
R
C(R)TV* < > (73)

Gathering (71), (72) and (73), we deduce Z(C) C C.
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Lastly, we prove that Z : € — C is a contraction.
Let (w(l), a®, ﬁ(l)), (w(z), @, ﬁ(z)) € C. Then, according to Proposition 4.2

|z (w(l), ﬂtl),ﬁ(l)) _z (w(z), ﬂ(z),ﬁ(z)) e
= (w(l)’;(n,gm) _ (;,;(zg;(zgg@) e

< HFa) _F(z)) + Hf(l) _f<2>H

L2(0,T;L2(2F)) [L2(0,T)]No

where, for k = 1,2, F® and f(k) are defined by (57) and (52) with (w(k), 7 ﬂ(k)). Thus,
according to Theorem 5.2, we have

HZ (w(l)’ 7, ﬂ(l)) _7 (w(z)’ e ﬂ(z)) H
K
<C(R)TV* H (w(l)’n(l)’ﬁ(l)) _ (w(Z)’”(z)’ﬂ(Z))H .
K

Thus for T small enough, Z is a contraction on € and we deduce the local in time existence of a
solution of (48), (51) and thus of a solution of (7)—(8) by using Proposition 3.2. This completes the
proof.

6. Estimates on the coefficients

This section is devoted to the proof of Theorem 5.1; more precisely, we estimate here f and F
defined by (52) and (57). Throughout this section, we fix (w, 7, ) with

lwlo + ”V””LZ(O,T;LZ(QF)) + 1Bl 0,710 < R, 74

where R is a fixed positive constant (see Section 5). We assume (66) and we define «;, (i =
0,...,Np),é&, é\i, X, 7;, (W;, m;) by the formulas (5), (19), (23), (44), and (45) as in the beginning
of Section 5.

In the estimates below, the constants C(R) at stake may depend on R, the geometry, v, Ny,
{&; }IN=°0, and on 7. If they depend on T, it is in a nondecreasing way. Similarly the constants C

?]:00, and on T. If they

at stake are independent on R but may depend on the geometry, v, No, {&;}
depend on T, it is in a nondecreasing way.

We recall that from the above assumptions and from Lemma 2.4, X € H?*(0,T; H*(2)),
Y € L0, T: H*(2)) N W20, T; H*(2)) N H*>(0,T; H'(2)) and (VX)~' € H*(0,T :

H?(R)).

LEMMA 6.1 With the above assumptions, Cof (VX) € H?(0,T: H*(2)) and forall 1 <i < No,
Wi € H?(0,T; H*(25)). Moreover, we have the following estimates

IX —id]l Loo o713 2y < C(R)T. (75)
I Cof (VX) — M|l oo 0. . 522y < C(R)TV?, ||Cof (VX g20.1:m22) < C(R).  (76)

1
detVX

1

-1 < C(R)TY?, 77
detVX (R) 77

Lo°(0,T;H?(£25))

<cw. |

Lo°(0,T;H?(£25))
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H (vx)™ ||L°°(0,T;H2(A’25)) SCR), [(vX)™' - IdHLOO(o,T;HZ(.QS)) S C(R)Tm’
Y
WX g2 753 + 1Y ly0000 7573 +H—
H~(0,T;H”(£2)) L°°(0,T;H"(£2)) ot Lo (0.T:H2(2))
%Y
+ ‘ -7 < C(R).
2 i L20,1:1" (2))

”77\1 - §i||L°°(0’T;H2(,QS)) < C(R)Tl/zv ||37\z - §i||W1~°°(()’T;H2(QS)) < C(R)-
Proof. First, we remark that since the entries of Cof (VX)) are of the form

0X; 90X 0Xpm 0X,

(78)

(79)

(80)

(81)

with i, j,k,I,m,n, p,q € {1,2,3}, the regularity of Cof (VX) is a consequence of the fact that

H?(0,T; H?(R)) is an algebra. On the other hand, by using the definitions (19) and (44),
~ t Si
i = Cof VXY (8- S5, ).
So
with (see (16))
si= [ (CotvXYE; ny dy,.
02s
These two last relations imply 7; € H*(0,T; H?*(2s)).
By using the definition (23) of X, we have
”X - id||L°°((),T;H3(Q)) < “8(5)||LOO(O,T;H3(Q)) <C ”“”[LOO(O,T)]NO < C(R)T7

which yields (75).
Similarly,

0X
2 .

e (3
H'(0,T;H>($2)) )it o.r:m% @)
This implies
||X||H2(0,T;H3(g)) < C(R).
Combining (81) with (75) and (84), we deduce (76).
Let us prove (77). From (24), there exists a positive constant C such that

[det(VY) || oo (0.7 1002y < C-

and thus
|t
det(VX) L50(0,T5L°°(£2))
Combining the above estimate with (85) yields
1
— SCIVXIP oy 2o + 1) < C(R).
det(VX) || oo (0. 1:H2(2)) L(0,T;H(£2))

(82)

(83)

(84)

(85)
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On the other hand, from (75) and from the above estimate, we obtain

This proves (77).
From (12), (76) and (77) we deduce (78).

1
—1
detVX

Lo°(0,T;H2(£2))

SCR)[VX — 1| oo o 7.2y < C(R)T'/?.
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Let us prove (79). To obtain the estimates on Y, we follow the proof of Lemma 2.4. More

precisely, from (24), there exists a positive constant C such that
IVYl[Looo.m:L0(2)) < C-
From (25), (77) and (78) we have
2
HV Y(X)HL"O(O,T;L‘S(.Q)) < C(R).
Analogously, from (26), (77) and (78) we deduce
3
“V Y(X)“L"O(O,T;Lz(ﬂ)) < C(R).

Thus, we obtain
||Y ||LOO(O,T;H3(Q)) S C(R)

Then using (27) and the previous estimates on X and Y, we obtain the estimates on %—f. We use the

same kind of reasoning for the second derivative in time of Y .
Lastly, we show (80), from (82) we deduce that

I —&; ||H2(_QS)

< [ (Cof VX)' — Id||H2(QS) 1€ 1 g2 gy + I (CofVX)tHHz(QS) 1€oll g2y

From (83) and (4), we have foralli € {1, ..., Ny},
G = /m [(CofVX)' — 1d]&; -ny dy,.
and thus, by using (76), we have foralli € {1,..., Np},
lsi ()] < C(RT'.
Combining the above estimate with (18), (76), we conclude

> 1/2
||77i - Si”LOO(O,T;HZ(QS)) < C(R)T / .
To obtain the estimates on the time derivative, we write

Si

8 ~ a t a t t a
5(n,-) = 5(( CofVX)')§; — 5(( CofVX)')22&, — (CofVX) o (

S0
and we use (76), (83) to deduce the result.

Si

0

g)so

ci(1)

So(?)

(86)
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LEMMA 6.2 Assume (74) and (66). Then for all i € {1, ..., Ny}, the solution of (45) satisfies
(Wi,mi)e H'(0,T; H*(2r)) x H'(0,T; H' (22F))

and there exists a constant C(R) > 0 such that

. . 1/2
”Wl”%l(O,T;Hz(.QF)) + ”nl ”RI(O,T;HI(.QF)) s C(R)T . (87)
Proof. Using classical results (see [2]), we deduce that
”Wi”HZ(_qF) + || ”H'(QF)/]R <Clni — §i||H3/2(3_qS) <Clyi - Si”HZ(gS)- (88)
According to (80), this yields
IWill pooo.r:m2 2,y + ITillLooo,rsm (@) m) < C(RITY2. (89)

Differentiating (45) with respect to time

oW ; om; .
—vA v =0 2
1% ( By )+ (GZ) in F
oW ;
di =0 i 2
1v( o ) in F o0
oW
( Wl) =0 on 052
ot
oW ; on;
=|— 0925,
( ot ) ( ot on §
Using again the result of [2], we deduce
[ P £ W - I L & P
at Hz(.QF) 8Z HI(QF)/]R at H3/2(a.95) 8Z Hz(QS)
Thus, thanks to (80), we have
IWillyr.ooo.rm2@py) + ITilwicoorm1 @) S CR). 91
This inequality implies (87). O

Using Lemma 6.1 the following result can be proved. We skip the proof since it is similar to the
proof of next lemma.

LEMMA 6.3 Letv € O and E;;[v] defined by (34). Then there exists a positive constant C(R) such
that

1Es ol 20,1 2y < CROT 0]l
LEMMA 6.4 Supposethatv € ® andg € L2(0, T; H'(£2F)). Then there exists a positive constant
C(R) such that
@ M) 20 71200y < CROT 2[00,
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@) (Lol = A0)| 2o 1320y < CRIT o]0,

Qi) [NV 20 rz 22y < CROTY40]3,

@) 1691 = Vel 207020m < CROT214l20,101 @00,

™ |Go@. D 20111 2y < C(R)T'2[1+ |vllo + IgllL20.7:1 27 )-

Proof. By using the definition (39) and by performing some calculations, we have

[leiz—tr((vxrl(w + 0 (x )))

2

3
Zl 3tayk

Py aylayk at
3 3
0X; dvg 0Y; 0X; vk
vk 911 b ) 2 (92
+le; Bye dyr o1\ H};(ay ") a7

where tr(A) denotes the trace of the matrix A.
We estimate the first term in the above expression of [M v];:

tr ((VX)—1 (aax +(V2X )—(X))) gX" vk
Vi

L2(0,T;L2(22F))

IvVX
<T'? (VX)I( 5 +(V2X)—(X))
L®(0,T;L>(2F))
aX;
vk [l oo 0,T;H' (R2F))"
Ik || oo (0,731 (21)) ( (@)

The above inequality combined with Lemma 6.1 yields

tr ((VX)—1 (avx (V2X)—(X))) oXi Uk

< C(R)T'? .
o e C(R)T"|vllo

L2(0,T;L2(82F))

The three next terms in (92) are estimated in a similar way. For the last term, we write
8vk
8yk Sik ) 5

where the last inequality is obtained thanks to Lemma 6.1. All these estimates imply (i).
Now, we estimate the terms appearing in the expression (40) of [Lv]. First,

” 821),'
dy;jdy1

Vg
ot

< VX — Hd|| g, ;22

L2(0,T;L2(2F)) L2(0,T;L2(82F))

S CR)T|vlle.

((V )Z_} - 51,]‘)||L2(0,T;L2(9F))

< IVX)™ = W]z, [Vi ]l L200.7:1202,)
< CRT ],
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For the second term of [L v], a short calculation shows that

(det VX)i (det VY) (X)% = —uw ((VX)"(V2X) (VX)) v
dx; dy; dy;

and then we estimate this term as the first term of [M v]. Using Lemmata 6.1 and 6.3 we obtain the
following estimate for the last term of [Lv]:

0
H (et VX) 2 (Ey o) (%) < CRTulls. ©3)
J

L2(0,T;L2(2F))

These estimates allow to obtain (ii).
Next, we estimate each term in the expression (41) of [N v]. Since 3”’ € L>®(0,T;L*(2F)) N

L?(0,T; H'(2F)) and since

av i
ayj

avi

|5
ay;

dy;

HY2(2F) H(2F) Lz(QF)7

we deduce that 3"’ e L*(0,T:H Y 2(.Q)) and thus, using the Sobolev embedding theorem, that
Ju; .
ij e L*0,T; L3(.QF)) with

< Clvle.

H 8v,-
L4(0,T;L3(22F))

dy;

Hence, using the Holder inequality and Lemma 6.1, we deduce

3 3

1 v; X
m; dy; mZ_l mvm L2(0,T;L2(2F))

3 3
<TGV 2 iy e
detVX 0y; “~— 0ym
J=1 70 m=1 L4(0,T;L2(2F))
3 Jv;
< ) T om0 0, 732623
jm=1 YillL4o,1:L3(2F)

< CRT|v]l3.
Applying Lemmata 6.1 and 6.3, it can be shown that

3
> Eijlo)(X) Z —vm < CRT|ul3,.

J=1 L2(0,T;L2(2F))

Hence, we have proved (iii).
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Now, we estimate ||[Gg] — Vq||L2(0 T:L2(2p) (see (42). Some calculations give us the
following inequalities

H (det VX)% (det VY) (X)q

L2(0,T;L2(2F))

94
= [ (VX)) VX)X ) 4 120 720220y .

< CRT2Ngl 20,01 (25
Finally, using Lemma 6.1 again
3

>k (07! )

=1

L2(0,T;L2(2F))

—1
< Jvx)Tt - Id||L°°(0,T;L°°(.QF)) 91l 20,781 (2 1))
< CRTY2\qll 20,711 (2

Therefore,
Ga) = Val 1201122,y < CROTNallL20.r:11 (210
Lastly, let us prove inequality (v) (see (50)). We estimate the first term, from Lemma 6.1 we deduce
lo@.a)(VX)™ ~ 1d) HLz(O,T;H'(QF))
—t

< vx)™ - IdHLO"(O,T;HZ(.QF)) lo(@. ‘1)HL2(0,T;H1(.QF))

< CRTY*(Ivllo + gl 20,1 210)-
For the second term, from Lemma 6.2 and (91), we have:

low;, i C(R)T'.

)”Lz(O,T;Hl(.QF)) <
In a similar way to the estimates of the terms of [L v] and thanks to Lemma 6.1 and (93), we deduce
120(E o] + (E[0))(X) Cof(VX) 120 111 @2y < CRIT V2 0]l

Applying Lemma 6.2, using (74) and similar calculations as in the term above, we obtain
No

20 ) BUE[Wil + (E[Wi])')(X) Cof(VX)

i=1

< C(R)T'?.
L2(0,T;H (2F))

This completes the proof of Lemma 6.4. O

We are now in position to prove Theorem 5.1.
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Proof. We recall that

No

No No
F==3"BWi=Y BW;—Y [MBW))

i=1 i=1 i=1

No No No
+v Y ILBW)] - Y G (Bim)] — [N (w + Zﬂiwi)]
i=1 i=1 i=1

— [Mw]+v[(L — A)w]+ [(V-G)x].

First, we notice that

No No
AL < 1Bl o.rv0 D IWill o2y < CRT2,
i=1 L>(0,T;L2(2F)) i=1

according to (74) and (87). The second term of F is bounded in the same way:

No No
Y BiW; < Bllzoso.ryvo D IWillgi o102y < CROT2.
i=1 L2(0,T;L*(2F)) i=1

Thanks to Lemma 6.4 (i), (74) and (87), we have

No No
Y MW SCRT> | W,
i=1 L%(0,T;L2(22F)) i=1 9
No
< C(R)TI/ZHﬁH[RI(o,T)]No Z ||Wz ||H1(0,T;H2(_QF))
i=1

< C(R)T.
According to Lemma 6.4 (ii) and (iv), (74) and (87), we have
No No

v ILBW)] =) [G(Bimi)]

i=1 =1

L2(0,T;L?(22F))

No
v (LBiW)] - Bi AW )

i=1

<

L2(0,T;L?(22F))

No
> (V(Bimi) — [G (Bimi)])

i=1

No
D BiWi

i=1

+

L2(0,T;L2(22F))

No
Y Bimi

i=1

< C(R)T'/? + C(R)T'/?

»

< C(RT.
L2(0,T;H(2F)))
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Using Lemma 6.4 (iii), (74) and (87)

[ (- e 20

L2(0,T;L?(22F))

2

No
w+ Y AW,

i=1

< C(R)TV*

»

No
<CR®TV <||w||§) + ”ﬂ”[z;el(o’T)]NO Z ”Wi“ill(o’T;Hz(QF)))

i=1

< C(R)TV*,
Moreover, using again Lemma 6.4 (i), (ii) and (iv), we have
I~[Mw] + v[(L — A)w] + [(V — G)xlll .20 712221

S CRTY? (lwllo + 7l L20.m:11 2p))
< C(R)T'2.

All these inequalities imply that
”F”LZ(O,T;LZ(QF)) < C(R)T1/4- (95)

On the other hand, f is defined by (52). First, note that by (19), Lemma 2.5 and (86) we have

E -, < C(R)T'2.
HE’ i L®(0,T;H3(2s)) C(R)
Thereby, we deduce
No
> B /ﬂ (Ej—&)-& dy < CRT2NIB || 20,7y < C(RITY2,
— s
L2(0,T)

No
>5[ & G-gdy < CRTY2| 20,7y < CRIT'?,
j=1 S L2(0 T)

and

/ o(w.omy -G — &) dy,
925

S CRT?|low. 7) 200 7.1 2,y < CRIT.

L2(0,T)
For the second term, we have
No 9
S8 [ @) Edy < CR)IBl 2007 < CR)T'2.
j=1 s

L2(0,T)
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On the other hand, using (19) and (86)

+ A
L2(0,T)

o H /ﬂ e(®)  e(E) dy

| av@ainE ay
25

L2(0,T)
< CRYA+ T ell 20,7
< C(R)T??.

Finally, using Lemma 6.4 (v)

< C(R)TY?,

/ GO[wJT]'Eidyy
02g

L2(0,T)
and thus
L 22 0.0ym0 < C(RYT2.
The proof of Theorem 5.1 concludes by combining the above equation and (95). O

7. Estimates on the differences of the operators

This section is devoted to the proof of Theorem 5.2; more precisely, we estimate the differences
FO_F® and f(l) - f(2). Throughout this section, for k € {1,2} we fix (w(k), x®, ﬂ(k)) with

],
D

T S

L2(0,T;L2(2F)) (%! 0,7)V

where R is a fixed positive constant (see Section 5). Here f ® and F® are defined by (52) and

(57). More precisely, we assume (66) and by using these families of functions we can define a( )

(i =0,... No) &® g® x® 76 (W(k) l.(")) by the formulas (5), (19), (23), (44), and
(45) as in the beginning of Section 5.

In the estimates below, the constants C(R) at stake may depend on R, the geometry, v, Ny,
{&; }lN o» and on T. If they depend on T, it is in a nondecreasing way. Similarly the constants C

at stake are independent on R but may depend on the geometry, v, No, {&; } and on 7. If they

depend on T, it is in a nondecreasing way.
We recall that from the above assumptions and from Lemma 2.4, for n € {1,2}, X ® ¢
H2(0,T:H3*(2)), Y® e L>®0,T;: H*(2)) N WL, T; H*(2)) N H*(0,T; H'($2)) and
-1
(VX(k)) e H2(0,T : H*(2)).
We first estimate the differences of the functions X and Y:

i=0’

LEMMA 7.1 Assume {,6(”)} , (n € {1,2}) satisfy the above conditions. Then we have the
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following estimates

HX(I) _X(z)H + Hy(l) _y® H

w1°°(0,T;H3(2)) L°°(0,T; H3(£2))

9 (YU) - Y<2>) 52 (y(l) _ Y<2>)
- =7 + -~ =7

ot 0t2
L>°(0,T;H%(2)) L2(0,T;:H'(22))

+

<CRT2 (B0 - | ©7)

[H'(0,7)1No

Proof. The proof is quite similar to the proof of Lemma 6.1 so we only precise the main changes.
First using that the mapping ¢ in Lemma 2.1 is of class C°°, there exists a positive constant C such

that
668, o=

H2(0,T) [H2(0,T)]No

Consequently, since (P (0) = «®(0)

le(s7) -2 (e®)] <C o -a®]
L (0.T:L(2)) [L(0.T)] M

<CTY? H M _ (2)” _
BB g oo

Therefore, by writing

Y™ (x) = -8 (,s(”)) (Y(”)(x)) +x,
forn = 1, 2, we can estimate Y —y®:.

Hy(l) _y® H - HS <$(1)) -8 (S(Z)) HLOO(O,T;LOO(.Q))

LROTLT@) T HS (g(Z))HLW(o ;W 120 (2))

cr s 9]
A A (' ,mNo

- HS (8(2))”L°°(0,T;W1‘°°(A’2))'

The other estimates on Y are proved by using the above estimate. O

Finally, using the above lemma, we can prove the following results. Since their proofs are similar
to the proofs of Lemma 6.1 and Lemma 6.4 (see also [16]), we skip them.

LEMMA 7.2 With the above assumptions, we have the following regularity results: there exist a
positive constant C(R) such that

HCOf (VX®) - Cot (VX(Z))H < C(R)TV? Hﬂm

_ (2)H
w0, T;H2(2) B [%1 0,10
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and forall 1 <i < Ny we have

) 70 H C(R\T/? H M _ g®@ H
i w1 (0,T; H3(95)) CR) B8 [%1(0,7)]"0 "
and 1) _ ~(2)
~(1 (2 < C(R T1/2 H 1 _ (2)H
‘ i i HW""O(O,T;HZ(SZS)) SC® B B [ (0,7)] 0

LEMMA 7.3 Suppose thatv € 9 and ¢ € L2(0, T; H'(£2F)). Then there exists a positive constant
C(R) such that

. .1 _ )

) [M v] [M v]‘ L2(0,T;L*(2F))
) |v([LP0] - [LPv])]
M, _[a?

(iii) [G C]] [G C]]‘ L2(0,T;L%(2F))

< CRTY2\qll20,7:11 @5 Hﬁ(l) - 8% H

@) |G, -G,

< CRT|olls |8 - 8|

(%! 0.7y’
< CRIT ]9 |8V~ 82|

L2(0,T:L2(2F)) [®1(0,7)No’

®!(,m"o

L>(0,T;H" (2F))
< CRTY2 (0l + lall20.rsm @y + 18D = B2 s 0.0 )-

We also have the following consequence of Lemma 7.1:

LEMMA 7.4 Suppose vV, v@® € 9. Then there exists a positive constant C (R) such that

oM _[nv®,?
[N v ] [N v ]

L2(0,T;L*(2F))

<CRT ([0 o + 22 o)

(€] @ ¢ @ 1 @
(1215 + 1v@10) 18 = B lpes g.rypmo + 0@ = 5).
Now we will prove Theorem 5.2.
Proof. Let (w(l), a®, ﬂ(l)), (w(z), 7@, ﬁ(z)) satisfying (96). For k = 1,2, we define F® and
f(k) by (57) and (52) respectively. Then, we have:

No

FO_F® — -3 (50— g@)yw® 25(2) W _w)
i=1 i=1
No No
S AP S R )
i=1 i=1

3O W] W )
i=1
—fz[MQ)(ﬁi(l)ng) —ﬂ,'(Z)W,@ ”Z L ﬂ(”W“))]

i=1 i=1
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1—1

— [NOw® + Zﬂ(l) [N®w® + Z'B(Z)

i=1 i=1
No

- Z ([G(l)(ﬁi(l)”i(l))] - [G(Z) (:Bi(l)”i(l))]) - % [G(Z) (,31'(1)”1'(1) - :31'(2)”1'(2))]

i=1 i=1
— ([MDw®] — [MPw®]) — [M® (D — @]

_ v([L(l)w(l)] _ [L(Z)w(l)]) _ U([L(Z) (w(l) _ w(Z))] _ A(w(l) _ w(Z)))
_ ([G(l)ﬁ(l)] _ [G(z)ﬂ(l)]) _ ([G(Z) (”(1) _ ”(2))] _ V(”(l) _ ”(2)))’ (98)

and

W52 = 6 =) [ @V -g)-gidy e [ @0 -E) 6y
0 ~ 0 ~ ~
c0 -8 [ @Ry p? [ LE-E)E ay
+ﬂ]<.2>/ at((z) ). ED _F@) dy+2u/9 et ). cEW)a

N

+/\/ div(§@)div(E" —-£?) dy+/ [0 (0., 7D) — o (w®, )]y - EV —&,) dy,
s

25
@ _ 7@ ) @ ~
+ /ms a(w(z) (2) (\1 —&; 2 )dy, + /ms (GOI _ G02 )[w(l)JT(])] ‘51-1 dy,

+ [ Gl ) =@ )] E ay, + [ G]G0 -ED) .
s 02s

From the above equalities and Lemmata 6.1-6.2, 6.4, 7.1-7.4, we deduce (68). This concludes the
proof of Theorem 5.2. O
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