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In this paper we study a three-dimensional fluid–structure interaction problem. The motion of the

fluid is modeled by the Navier–Stokes equations and we consider for the elastic structure a finite-

dimensional approximation of the equation of linear elasticity. The time variation of the fluid domain

is not known a priori, so we deal with a free boundary value problem. Our main result yields the local

in time existence and uniqueness of strong solutions for this system.
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1. Introduction

We consider the interaction between a viscous incompressible fluid and an elastic structure

immersed in the fluid. We aim to study the coupled system of equations modeling the motions

of the fluid and of the structure. A classical model for the fluid is the Navier–Stokes equations (see

system (7)); for the elastic structure, assuming that the deformation remains small, we can consider

the model of linear elasticity. When we couple these two systems of partial differential equations,

we obtain a complex system and the study of its well-posedness contains several difficulties. One of

them is coming from the fact that we gather two systems of different natures. This could be observed

by linearizing the system: we obtain a system coupling a parabolic system with an hyperbolic

system. Another general difficulty to study this fluid-structure interaction problem comes from the

fact that the fluid domain is moving and unknown (it is a free boundary problem). In particular, to

apply “classical” procedures on cylindrical domain, it is convenient to use a change of variables
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for the fluid equations (the structure equations are already written in Lagrangian coordinates). But

such a change of variables is constructed from the solution and thus the solution needs to be regular

enough to get a convenient change of variables.

The well-posedness for the coupling of these two systems is studied in [8] (for the linear case)

and in [5] (for the general case). The combination of the two difficulties presented above leads the

authors of [5] to consider the existence of regular solutions for the linearized problem (the velocity

of the fluid is L2 in time with value in H 3 in space). In that case, they need more regularity for

the initial data: the initial condition is for instance H 5 in space. This loss of regularity is not very

satisfactory but is inherent to this coupling between two systems of different natures.

In order to avoid this loss of regularity, one can choose to consider an approximation of the

previous system. Some approximations were already tackled in the literature in particular to obtain

existence of weak solutions. In that case, it is very important to obtain some regularity on the elastic

deformations which define the fluid domain, at least to give a sense to the equations of the fluid.

Two strategies have been considered: one could add a regularizing term in the equations of linear

elasticity (see [1]) or one could approximate the equations of linear elasticity by a finite dimensional

system (see [7]). In each case, the authors of [1] and of [7] have obtained the existence of weak

solutions (up to a contact).

In this article, our main result is the existence and uniqueness of strong solution for a system

coupling the Navier-Stokes system with a finite dimensional approximation of the linear elasticity

(i.e., a system similar to the one considered in [7]).

Let us present here the system we consider. We denote by u and p the velocity and the pressure

of the fluid, and by � the elastic deformation of the structure. We also denote by ˝ the domain

containing the fluid and the structure, by ˝F .t/ the fluid domain and by ˝S .t/ the structure domain

at time t . These three domains are assumed to be bounded, open and connected subsets of R3. We

also suppose that @˝ is of class C 2 and that at initial time, @˝S .0/ is of class C 3. Finally, we

assume that the elastic body is immersed into the fluid: ˝S .t/ � ˝ and ˝F .t/ D ˝ n ˝S .t/.

Let us first introduce the usual equation of linear elasticity which is valid for small deformations:

@2�

@t2
� div

�
�.�/

�
D 0 in ˝S .0/: (1)

The stress tensor is given by (see [3])

�.�/ D �tr
�
".�/

�
I C 2�".�/

where ".�/ D 1
2
.r� C .r�/t / and Lamé constants � and � are such that � > 0 and � > 0.

Through the fixed interface @˝S .0/ between the fluid and the structure, it is assumed that the normal

component of the stress tensors is continuous:
�
�.�/

�
.t;y/ ny D � .u; p/

�
t;'.t;y/

�
Cof.r'/ nx on @˝S .0/: (2)

Here ny is the outward-pointing unit normal vector along @˝S .0/, nx is the outward-pointing unit

normal vector along @˝S .t/ and

� .u; p/ D �p Id C 2� ".u/:

is the Cauchy stress tensor associated to the fluid. We have also denoted by ' the elastic

displacement defined by

'.t;y/ WD y C �.t;y/
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˝S .0/

˝S .t/

y C �.t; y/ D '.t; y/

y

�
�

FIG. 1. Elastic deformation

(see Figure 1). To simplify, we assume that at initial time, there is no deformation, thus we have

'.0;y/ D y.

In this paper, we do not consider the complete equation of linear elasticity written above, but

only a finite approximation of Galerkin type: we assume that � can be written as a linear combination

of a family of N0 functions. Let us note that we do not choose here a particular family as it is done

in [7] where the authors use a family of eigenmodes associated to the elasticity equation.

We can notice that the incompressibility of the fluid enforces the deformation � to satisfy

some compatibility conditions. Indeed, at the interface between the fluid and the structure, the

normal components of the velocity of the fluid and of the structure are equal. Combined with the

incompressibility of the fluid, it yields

div.u/ D 0 in ˝S .t/;
@�

@t

�
t;'�1.t;x/

�
� nx D u.t;x/ � nx on @˝S .t/:

Thus, if we assume that u D 0 on @˝ , it implies the following non linear condition on �:
Z

@˝S .t/

@�

@t

�
t;'�1.t;x/

�
� nx dx D 0: (3)

By this way, the Galerkin approximation of � has to satisfy this condition. Let �1; : : : ; �N0
(N0 > 1)

be a given orthonormal family in L2.˝S .0// which satisfies

�i 2 H 3
�
˝S .0/

�
;

Z

@˝S .0/

�i � ny dy D 0 i D 1; 2; : : : ; N0: (4)

If � is a linear combination of �1; : : : ; �N0
, it satisfies (3) at initial time, but there is no reason that it

should be true for t > 0. A remedy to this problem is to add an extra function �0 in order to satisfy

(3). More precisely, let �0 2 H 3.˝S .0// be a lifting of the unit outward normal on @˝S .0/. Then,

it can been proved (see Lemma 2.1 below) that there exists a ball B.0; r1/ of RN0 and a function

� W B.0; r1/ ! R such that for any function (regular enough) .˛1.t/; : : : ; ˛N0
.t// 2 B.0; r1/, the

associated deformation

�.t;y/ WD

N0X

iD0

˛i .t/�i .y/; with ˛0.t/ D �
�
˛1.t/; : : : ; ˛N0

.t/
�
; (5)
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satisfies (3). Using this construction, we can also define a family
�
b�1.t/; : : : ;b�N0

.t/
�

where for all

i , b�i is a linear combination of �i and �0 (see (19)) so that if we write

@�

@t
.t;y/ D

N0X

iD1

ˇi .t/b�i .t;y/; with ˇi D ˛0
i ; (6)

then (3) is always satisfied.

We are now in position to introduce the system we study in this article: the system of equations

for the fluid is the classical Navier–Stokes system

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

@u

@t
� ��uC rp C .u � r/u D 0 in ˝F .t/

div.u/ D 0 in ˝F .t/

u D 0 on @˝

@�

@t
.t;y/ D u

�
t;'.t;y/

�
on @˝S .0/

(7)

and the equations for the structure are a Galerkin approximation of (1)–(2)

Z

˝S .0/

@2�

@t2
�b�i dyC2�

Z

˝S .0/

".�/ W ".b�i / dy C �

Z

˝S .0/

div.�/div.b�i / dy

D

Z

@˝S .t/

� .u; p/.t;x/nx �b�i .t;'
�1.t;x// dx; i D 1; : : : ; N0:

(8)

with � satisfying (5) and thus with
@�
@t

satisfying (6). We recall that '.t;y/ WD y C �.t;y/ and we

assume that '.t/ is invertible (which is the case for r1 small enough). This system is completed by

the initial conditions

ujtD0
D u0 in ˝F .0/; � jtD0

D 0 in ˝S .0/;
@�

@t

ˇ̌
ˇ̌
tD0

D �1 in ˝S .0/; (9)

with

�1 D

N0X

iD1

ˇ0
i �i ; (10)

where ˇ0
i D ˇi .0/. Note that

b�i .0;y/ D �i .y/ for all i 2 f1; : : : ; N0g:

For simplicity of notation, in what follows, we set

˝F WD ˝F .0/;

˝S WD ˝S .0/:

Now, we define the function spaces L2.0; T IH 2.˝F .t///, C .Œ0; T �IH 1.˝F .t/// and

H 1.0; T IL2.˝F .t///, which will be extensively used in the sequel. Suppose there exists a function
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 2 H 2.0; T IH 3.˝F // such that  .t; �/ W ˝F ! ˝F .t/ is a diffeomorphism. For all functions

w.t; �/ W ˝F .t/ ! R3, we denote W .t;y/ D w.t; .t;y//. Then the function spaces introduced

above are defined by

L2
�
0; T IH 2

�
˝F .t/

��
D
n
w W W 2 L2

�
0; T IH 2.˝F /

�o
;

C
�
Œ0; T �IH 1

�
˝F .t/

��
D
n
w W W 2 C

�
Œ0; T �IH 1.˝F /

�o
;

H 1
�
0; T IL2

�
˝F .t/

��
D
n
w W W 2 H 1

�
0; T IL2.˝F /

�o
:

Set

D.t/ WD L2
�
0; T IH 2

�
˝F .t/

��
\ C

�
Œ0; T �IH 1

�
˝F .t/

��
\H 1

�
0; T IL2

�
˝F .t/

��
;

and

D D D.0/:

Our main result is the following:

THEOREM 1.1 Assume that u0 2 H 1.˝F / and fˇ0
i g

N0

iD1 � R satisfy the following conditions:

8
ˆ̂̂
<̂
ˆ̂̂
:̂

div.u0/ D 0 in ˝F ;

u0 D 0 on @˝;

u0 D �1 on @˝S ;

dist.˝S ; @˝/ > 0:

(11)

Then, there exists a time T > 0 such that the system (7), (8), (9) and (10) admits a unique solution

(up to a constant for p)

.u; p/ 2 D.t/ � L2
�
0; T I H 1

�
˝F .t/

��
;

˛1; : : : ; ˛N0
2 H 2.0; T /:

Let us give some remarks on the main result. First, one can see that the existence of the pressure

is obtained up to a constant as in the case of a fluid alone or a fluid coupled with a rigid body. In

the case of a deformable structure, the pressure of the fluid may be defined uniquely. This comes

from the incompressibility of the fluid and the boundary condition (see, for instance, [11] for more

details). Here, the choice of our decomposition of the elastic deformation and elastic velocity (see

(5) and (6)) leads to the fact that the pressure is still defined up to a constant. Second, as already

mentioned above, there are few results concerning the well-posedness of a system modeling the

motion of an elastic structure in a viscous incompressible fluid. The existence of weak solutions for

our system was obtained by [7] whereas the existence of weak solutions when adding a regularizing

term in the equation of elasticity was proved in [1]. Concerning strong solutions, we only know

the result of [5] (and [8] for the linear case). In [5], a local in time result is obtained for strong

solution. They also obtained uniqueness by considering more regular solutions. In this latter paper,

the hypotheses on the initial data to get existence are quite strong: the initial velocity of the fluid

must be in H 5.˝F .0// and the initial velocity of the elastic structure must be in H 2.˝S .0//.



278 M. BOULAKIA, E. SCHWINDT AND T. TAKAHASHI

This implies in particular many compatibility conditions at t D 0. Moreover, to obtain also the

uniqueness, the authors have to add more hypotheses on the regularity of the initial conditions: the

initial velocity of the fluid must be in H 7.˝F .0// and the initial velocity of the elastic structure

must be in H 4.˝S .0//. In the case where we consider a rigid body instead of an elastic structure,

the corresponding system was studied in many papers: see, for instance, [4, 6, 8, 10, 12, 13, 15, 16].

The existence of weak and strong solutions was proved with similar regularity hypotheses as in the

case of the Navier-Stokes system. Here as in the case of a rigid body, the velocity of the deformation

is assumed to be finite-dimensional, but at the contrary to the case of a rigid body, the generators

of the velocity of deformation depends on time (the family .b�i .t//16i6N0
). Moreover, the change

of variables used to transform the problem on a cylindrical domain is more technical: in the case of

a rigid body, the idea was only to extend (and truncate) the translation and the rotation of the rigid

body.

Our strategy is to construct a change of variables to transform ˝F .t/ onto ˝F (Section 2) and

to use this change of variables to write the system (7), (8), (9) and (10) on a cylindrical domain

(Section 3). We obtain a nonlinear coupled system with variable coefficients. The idea is to write it

in the form

Z0 D AZ C R.Z/;

where Z is .u;ˇ/, with ˇ D .ˇ1; : : : ; ˇN0
/. In R.Z/, we put all the coefficients coming from the

change of variables and the nonlinear terms coming from the Navier-Stokes system. Then as in other

proofs of existence of strong solutions (see [5, 6, 16]), we study a linear system associated to our

problem (Section 4):

Z0 D AZ C F:

We use a semi-group approach in this step as in [16] but we could also have used a Galerkin method

as in [5]. Then we use the Banach fixed point theorem to prove the main result in Section 5. In

order to do this, we need two technical results: estimates on R.Z/ (Section 6) and estimates on the

difference R1.Z1/ � R2.Z2/ (Section 7).

2. Preliminaries and change of variables

Let us first begin by introducing some notations and an important identity for the change of variables

of surface integrals.

For a tensorM .x/ D .mij .x//i;j 2f1;2;3g we use the notation

ŒdivM �i D

3X

j D1

@mij

@xj

;

and we denote by M t the transpose of M , CofM the cofactor matrix of the matrix M and recall

that ifM is invertible then

Cof.M / D .detM /M�t : (12)

A deformation ' is a smooth vector field

' W ˝ ! ˝
'

� R
3

such that ' W ˝ ! ˝' is one-to-one, and orientation-preserving, i.e

det r'.x/ > 0; 8x 2 ˝:



STRONG SOLUTIONS FOR THE MOTION OF AN ELASTIC STRUCTURE 279

Assume ' is a deformation and assume f W ˝ ! R is an integrable function, then we have

Z

@˝'

.f ı '�1/n' d� ' D

Z

@˝

.det r'/f .r'/�tn d�; (13)

where n' denotes the unit outer normal vector along the boundary of ˝' and n is the outward-

pointing unit normal vector along @˝ (see [3, p.40] for details).

Let us prove the existence a ball B.0; r1/ of R
N0 and a function � W B.0; r1/ ! R such that

for any function (regular enough) .˛1.t/; : : : ; ˛N0
.t// 2 B.0; r1/, any function � defined by (5)

satisfies (3). More precisely, let us consider

�.t;y/ WD

N0X

iD0

˛i .t/�i .y/;

we search ˛0.t/ D �.˛1.t/; : : : ; ˛N0
.t// such that

Z

˝S

det.r'.t;y// dy D

Z

˝S

det
�

Id C

N0X

iD1

˛i .t/r�i .y/ C ˛0.t/r�0.y/
�

dy

D L3.˝S /

(14)

where Ln denotes the n-dimensional Lebesgue measure (n 2 N). The above condition is equivalent

to the fact that the deformation of the structure does not modify its volume which is compatible

with the incompressibility of the fluid. Using the theorem of implicit functions, we can prove the

following result.

LEMMA 2.1 There exist r1 > 0 and r2 > 0 and a mapping of class C 1

� W B.0; r1/ � R
N0 ! B.0; r2/ � R;

such that, for all .˛1; : : : ; ˛N0
/ 2 B.0; r1/; there exists a unique ˛0 D �.˛1; : : : ; ˛N0

/ 2 B.0; r2/

satisfying
Z

˝S

det
�

Id C

N0X

iD1

˛i r�i .y/ C ˛0r�0.y/
�

dy D L3.˝S /:

For the proof, see [1] Lemma 4.1 (see also [7] for a similar result). '.t;y/ D y C �.t;y/. Let

us remark that taking r1 small enough, we also have '.t/ and r'.t/ invertible.

REMARK 2.2 Let us remark that, from the fact that �.0/ D 0, and from the fact that � is Lipschitz

continuous, there exists a positive constant � such that

j˛0j 6 �k˛k:

Here and in what follows, we write ˛ WD .˛1; : : : ; ˛N0
/.

From (14) some calculations give

N0X

iD1

&i .t/ˇi .t/ C &0.t/ˇ0.t/ D 0 (15)
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with

ˇi .t/ D ˛0
i .t/

for any 0 6 i 6 N0, and

&i .t/ D

Z

@˝S

.det r'/.r'/�1�i .y/ � ny dy

D

Z

@˝S .t/

�i .'
�1.t;x// � nx dx

(16)

where the last equality is obtained thanks to (13).

Up to reducing the constant r1 in Lemma 2.1, we can assume

k Cof.r'/ � IdkL1.@˝S / <
1

2
(17)

and thus we can prove that

&0.t/ >
1

2
L2

�
@˝S .0/

�
> 0: (18)

Then we can define

b�i .t;y/ D �i .y/ �
&i .t/

&0.t/
�0.y/ (19)

which satisfies (from (16))

Z

@˝S .t/

b�i

�
t;'�1.t;x/

�
� nx dx D 0: (20)

Then, (5) and (15) imply that the velocity of deformation is spanned by the family
˚b�1; : : : ;b�N0

	
:

@�

@t
.t;y/ D

N0X

iD1

ˇi .t/
�
�i .y/ �

&i .t/

&0.t/
�0.y/

�
DW

N0X

iD1

ˇi .t/b�i .t;y/: (21)

REMARK 2.3 Let us remark that the family f�i g
N0

iD0 and, for all t , the family
˚b�i .t/

	N0

iD1
defined as

above, are linearly independent families.

In what follows, let us consider the elastic deformation '

'.t; �/ W ˝S ! ˝S .t/

y 7! y C �.t;y/

associated with � which is the elastic displacement of the structure defined by (5) and which is the

solution of (8). We will always assume that

.˛1.t/; : : : ; ˛N0
.t// 2 B.0; r1/; (22)

where r1 is small enough to apply Lemma 2.1 and to have '.t/ and r'.t/ invertible for all t and

(17). Recall that the latter condition implies (18).



STRONG SOLUTIONS FOR THE MOTION OF AN ELASTIC STRUCTURE 281

We construct a change of variables X W ˝ ! ˝ which transforms ˝S onto ˝S .t/ and ˝F

onto ˝F .t/. We will use this change of variables to transform systems (7)–(8) into a system written

in fixed domains. The idea is to extend the elastic deformation defined above on the domain of the

fluid. Thus, we consider a linear extension operator E:

E W H 3.˝S / ! H 3.˝/ \H 1
0.˝/

such that for any w 2 H 3.˝S /:

(i) E.w/ D w a.e in ˝S ,

(ii) E.w/ has support within Œ˝S �� WD fy 2 ˝ W dist.y; ˝S / < �g, with 0 < � < dist.˝S ; @˝/,

(iii) kE.w/k
H 3.˝/

6 C kwk
H 3.˝S /

.

Using this operator, we can define an extension of ' on ˝ as follows: for each t 2 Œ0; T � we set

X.t;y/ WD y C E.'.t;y/ � y/ D y C E.�.t;y//; 8y 2 ˝: (23)

In what follows, we assume .˛1; : : : ; ˛N0
/ 2 ŒH 2.0; T /�N0 . Using the Sobolev embedding theorem,

we will consider the following norms for H 2.0; T / and H 1.0; T / (which are equivalent to the usual

norms):

kf kH2.0;T / WD kf kL1.0;T / C kf 0kL1.0;T / C kf 00kL2.0;T /;
�
f 2 H 2.0; T /

�

and

kf kH1.0;T / WD kf kL1.0;T / C kf 0kL2.0;T /;
�
f 2 H 1.0; T /

�
:

Let us note, that, since � 2 C 1.B.0; r1//, we have ˛0 D �.˛1; : : : ; ˛N0
/ 2 H 2.0; T /. Hence, we

deduce that � 2 H 2.0; T IH 3.˝S // and by using Sobolev embedding theorems, we obtain

E.�/ 2 C 1
�
Œ0; T �IW 1;1.˝/

�

and

kE.�/k
L1.0;T IW 1;1.˝//

6 CEk�k
L1.0;T IW 1;1.˝S //

6 CECSk�k
L1.0;T IH 3.˝S //

6 CECSC k˛kŒL1.0;T /�N0 :

From the above estimates, we deduce that if .˛1; : : : ; ˛N0
/ satisfies for all t the condition (22) with

r1 small enough (depending on the geometry and on the family f�ig), then X.t; �/ is bijective from

˝ onto ˝ .

Moreover its inverse Y .t; �/ W ˝ ! ˝ satisfies

kY .t;x1/ � Y .t;x2/k 6
1

1 � kE.�/k
L1.0;T IW 1;1.˝//

kx1 � x2k: (24)

As a consequence, (see, for instance, [9, p.279]) Y 2 L1.0; T IW 1;1.˝//. We can improve this

regularity:

LEMMA 2.4 Assume ˛i 2 H 2.0; T /, �i 2 H 3.˝S / for all i 2 f0; 1; : : : ; N0g and assume (22)

with r1 small enough. ThenX 2 H 2.0; T IH 3.˝//, .rX/�1 2 H 2.0; T IH 2.˝// and

Y 2 L1
�
0; T IH 3.˝/

�
\W 1;1

�
0; T IH 2.˝/

�
\H 2

�
0; T IH 1.˝/

�
:
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Proof. From (23) and from the regularity of ˛i and �i , we have X 2 H 2.0; T IH 3.˝//.

Using the fact thatH 2.0; T IH 2.˝// is an algebra, we deduce that

det rX 2 H 2
�
0; T I H 2.˝/

�
and Cof.rX/ 2 H 2

�
0; T IH 2.˝/

�
:

As Y 2 L1.0; T IW 1;1.˝//, we have det rX ¤ 0 and thus the above equation implies

1

det rX
2 H 2

�
0; T I H 2.˝/

�
:

Therefore, from (12) we have .rX/�1 2 H 2.0; T IH 2.˝//. If we denote by A D .rX/�1, we

have rY D A ı Y . Since rY 2 L1..0; T / � ˝/,

r
2Y D .rA/.Y /.rY / 2 L1

�
0; T IL6.˝/

�
; (25)

r
3Y D .r2A/.Y /.rY /2 C .rA/.Y /.r2Y / 2 L1

�
0; T IL2.˝/

�
: (26)

Hence,

Y 2 L1
�
0; T IH 3.˝/

�
:

Differentiating the identityX.t;Y .t;x// D x with respect to time, we have

@Y

@t
.t;x/ D �rY .t;x/

@X

@t

�
t;Y .t;x/

�
: (27)

Let us show that

B.t;x/ WD
@X

@t

�
t;Y .t;x/

�
2 L1

�
0; T IH 2.˝/

�
: (28)

From the regularity of X , we already know that @X
@t

2 C .Œ0; T �IH 3.˝// and from the first part of

the proof we have that Y 2 L1.0; T IH 3.˝//. Differentiating (28) with respect to x, we obtain

@2Bi

@xk@xj

D

3X

l;pD1

@3Xi

@t@yl @yp

.Y /
@Yp

@xk

@Yl

@xj

C

3X

lD1

@2Xi

@t@yl

.Y /
@2Yl

@xj @xk

2 L1
�
0; T I L2.˝/

�
:

Therefore (28) holds true and, combined with (27), it implies

Y 2 W 1;1
�
0; T IH 2.˝/

�
:

Differentiating (27) with respect to time, we have

@2Y

@t2
D �

@

@t
.rY /

@X

@t
.Y / � rY

�
@2X

@t2
.Y / C

@.rX/

@t
.Y /

@Y

@t

�
2 L2

�
0; T IH 1.˝/

�
:

Consequently,

Y 2 H 2
�
0; T IH 1.˝/

�
:

This concludes the proof.

Let us also give the regularity of the b�i defined by (19):
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LEMMA 2.5 Assume f�ig
N0

iD0 � H 3.˝S /, f˛i g
N0

iD0 � H 2.0; T / and (22) holds with r1 small

enough. Then

b�i 2 H 2
�
0; T IH 3.˝S /

�
:

Proof. From the regularity of �i and ˛i it follows that ' 2 H 2.0; T IH 3.˝S // and consequently,

&i 2 H 2.0; T /. From (18), we deduce that 1
&0

2 H 2.0; T /. This allows to deduce the desired

regularity ofb�i .

3. Writing the equations in fixed domains

In this section, we use the change of variables constructed in Section 2 to write our system of

equations (7)-(8) in fixed domains. We set

v.t;y/ D det
�
rX.t;y/

� �
rX.t;y/

��1
u
�
t;X.t;y/

�
(29)

q.t;y/ D det
�
rX.t;y/

�
p
�
t;X.t;y/

�
(30)

V .t;y/ D det
�
rX.t;y/

� �
rX.t;y/

��1 @�

@t
.t;y/: (31)

Let us remark that we do not use the change of variables

v.t;y/ D u
�
t;X.t;y/

�

because of the divergence equation in (7). More precisely we have the following result:

LEMMA 3.1 Let v be defined by (29). Then

.div v/.t;y/ D det rX.t;y/.divu/
�
t;X.t;y/

�
:

Proof. To simplify the notation, we do not write in the proof the dependence in time of the variables.

We have

div v.y/ D div
h

det
�
rX.y/

�
rY

�
X.y/

�
u
�
X.y/

�i

D

3X

i;j D1

�
@

@yi

�
det rX.y/

�@Yi

@xj

�
X.y/

�
uj

�
X.y/

�

C det rX.y/

3X

lD1

@2Yi

@xj @xl

�
X.y/

�@Xl

@yi

�
y/uj .X.y/

�

C det rX.y/

3X

lD1

@Yi

@xj

�
X.y/

�@uj

@xl

�
X.y/

�@Xl

@yi

.y/

�
:

Using that

det.rX/ D
1

det
�
rY .X/

� ;
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we have

@

@yi

.det rX / D �
1

�
det rY .X/

�2
@

@yi

�
det rY .X/

�

D �
1

�
det rY .X/

�2

 
3X

p;qD1

Cof.rY .X//pq

@

@yi

�
rY .X/

�
pq

!

D � det rX.y/

 
3X

p;q;lD1

@Xq

@yp

.y/
@2Yp

@xq@xl

�
X.y/

�@Xl

@yi

.y/

!
:

Then

div v.y/ D det rX.y/

3X

i;j;lD1

@Yi

@xj

.X.y//
@uj

@xl

.X.y//
@Xl

@yi

.y/

D det rX.y/

3X

j D1

@uj

@xj

�
X.y/

�
D det.rX.y//.divu/

�
X.y/

�
:

Now, we write the transformation of the derivative in time of u. From (29) we have that for

i 2 f1; 2; 3g:

@ui

@t
D

3X

kD1

@

@t

�
.det rY /

@Xi

@yk

.Y /

�
vk.Y / C

3X

k;lD1

.det rY /
@Xi

@yk

.Y /
@vk

@yl

.Y /
@Yl

@t

C .det rY /
@vi

@t
.Y / C

3X

kD1

det rY

�
@Xi

@yk

.Y / � ıi;k

�
@vk

@t
.Y /:

(32)

We calculate the transformation of the gradient of u. As in the proof of Lemma 3.1, we do not write

the dependence in time of the variables.

@ui

@xj

D .det rY /
@vi

@yj

.Y / C Eij Œv� (33)

with,

Eij Œv� D

3X

kD1

�
@

@xj

�
.det rY /

@Xi

@yk

.Y /

�
vk.Y / C det rY

�
@Xi

@yk

.Y / � ıi;k

�
@vk

@yj

.Y /

C .det rY /
@Xi

@yk

.Y /

3X

lD1

@vk

@yl

.Y /
�
.rX /�1

l;j .Y / � ıl;j

� �
:

(34)
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Then,

@2ui

@x2
j

D.det rY /
@2vi

@y2
j

.Y / C .det rY /

3X

lD1

@2vi

@yj @yl

.Y /
�
.rX/�1

l;j .Y / � ıl;j

�

C
@

@xj

.det rY /
@vi

@yj

.Y / C
@

@xj

�
Eij Œv�

�
:

(35)

For the nonlinear term we have:

Œ.u � r/u�i D

3X

j D1

.det rY /2 @vi

@yj

.Y /

3X

mD1

@Xj

@ym

.Y /vm.Y /

C

3X

j D1

.det rY /Eij Œv�

3X

mD1

@Xj

@ym

.Y /vm.Y /:

(36)

Finally, from (30) we have:

@p

@xi

D
@

@xi

.det rY / q.Y / C .det rY /
@q

@yi

.Y /

C .det rY /

3X

lD1

@q

@yl

.Y /
�
.rX/�1

l;i .Y / � ıl;i

�
:

(37)

Thereby, we can rewrite (7) as follows

8
ˆ̂̂
<
ˆ̂̂
:

@v

@t
C ŒMv� � �ŒLv� C ŒNv� C ŒGq� D 0 in ˝F ; t 2 .0; T /;

div.v/ D 0 in ˝F ; t 2 .0; T /;

v D 0 on @˝; t 2 .0; T /;

v D V on @˝S ; t 2 .0; T /;

(38)

where ŒLv�, ŒMv�, ŒNv�, ŒGq�, are defined by

ŒMv�i WD det rX

3X

kD1

@

@t

�
det rY

@Xi

@yk

.Y /
�
.X/vk C

3X

k;lD1

@Xi

@yk

@vk

@yl

@Yl

@t
.X/

C

3X

kD1

�@Xi

@yk

� ıi;k

�@vk

@t
;

(39)

ŒLv�i WD

3X

j D1

�
@2vi

@y2
j

C

3X

lD1

@2vi

@yj @yl

�
.rX/�1

l;j � ıl;j

�

C .det rX/
@

@xj

.det rY / .X/
@vi

@yj

C .det rX/
@

@xj

�
Eij Œv�

�
.X/

�
;

(40)

ŒNv�i WD
1

det rX

X

j D1

@vi

@yj

3X

mD1

@Xj

@ym

vm C

3X

j D1

Eij Œv�.X/
X

m

@Xj

@ym

vm; (41)
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ŒGq�i WD .det rX/
@

@xi

.det rY / .X/q C
@q

@yi

C

3X

lD1

@q

@yl

�
.rX/�1

l;i � ıl;i

�
: (42)

From (31) and thanks to (21) and (12), V can be written as

V .t;y/ D

N0X

iD1

ˇi .t/b�i .t;y/ WD

N0X

iD1

ˇi�i C ŒHˇ� (43)

where

b�i .t;y/ D .Cof rX/tb�i .t;y/ and ŒHˇ� D

N0X

iD1

ˇi .b�i � �i /: (44)

Using (4), (13) and (20) we can prove that the function ŒHˇ� satisfies
Z

@˝S

ŒHˇ� � n D 0:

Consequently, for each i D 1; 2; : : : ; N0, we can consider the following Stokes problem
8
ˆ̂<
ˆ̂:

���W i C r�i D 0 in ˝F

div.W i / D 0 in ˝F

W i D 0 on @˝

W i Db�i � �i on @˝S ;

(45)

and we can write

w D v �

N0X

iD1

ˇiW i (46)

and

� D q �

N0X

iD1

ˇi�i : (47)

Then, from (38), we deduce that .w; �/ satisfies

8
ˆ̂̂
<
ˆ̂̂
:

@w

@t
C ŒMw� � �ŒLw� C ŒG�� D K in ˝F ; t 2 .0; T /

div.w/ D 0 in ˝F ; t 2 .0; T /

w D 0 on @˝; t 2 .0; T /

w D
PN0

iD1 ˇi�i on @˝S ; t 2 .0; T /

(48)

with

K D �

N0X

iD1

ˇ0
iW i �

N0X

iD1

ˇiW
0
i �

N0X

iD1

�
M .ˇiW i /

�
C �

N0X

iD1

�
L.ˇiW i /

�

�

"
N
�
wC

N0X

iD1

ˇiW i

�#
�

N0X

iD1

�
G .ˇi�i /

�
: (49)
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Now, we transform also the equation for the structure in order to have fixed domains in the integrals

coming from the fluid and in order to decompose the elastic displacement only by using �i , i D

1; : : : ; N0.

From (6) we have

Z

˝S

@2�

@t2
�b�i dy D

N0X

j D1

ˇ0
j

Z

˝S

�j � �i dy C

N0X

j D1

ˇ0
j

Z

˝S

.b�j � �j / � �i dy

C

N0X

j D1

ǰ

Z

˝S

@

@t
.b�j / �b�i dy C

N0X

j D1

ˇ0
j

Z

˝S

b�j � .b�i � �i / dy :

On the other hand, from (13), (33) and (46)

Z

@˝S .t/

� .u; p/nx � b�i .Y / dx D

Z

@˝S

� .w; �/ny ��i dy C

Z

@˝S

� .w; �/ny � .b�i ��i / dy

C

Z

@˝S

G0Œw; �� �b�i dy

with

G0Œw; �� D � .w; �/
�
.rX/�t � Id

�
ny C

N0X

iD1

ˇi� .W i ; �i /.rX/�tny

C 2�
�
E Œw� C .E Œw�

�t
/.X/ Cof.rX /ny C 2�

N0X

iD1

ˇi .E ŒW i �

C
�
E ŒW i �

�t
/.X/ Cof.rX/ny (50)

and with E Œw� defined by (34).

Thus, we can write (8) as follows

N0X

j D1

ˇ0
j

Z

˝S

�j � �i dy D

Z

@˝S

� .w; �/ny � �i dy C fi ; (51)

where f 2 ŒL2.0; T /�N0 is given by

fi D �

N0X

j D1

ˇ0
j

Z

˝S

.b�j � �j / � �i dy �

N0X

j D1

ǰ

Z

˝S

@

@t
.b�j / �b�i dy

�

N0X

j D1

ˇ0
j

Z

˝S

b�j � .b�i � �i / dy � 2�

Z

˝S

".�/ W ".b�i / dy � �

Z

˝S

div.�/div.b�i / dy

C

Z

@˝S

� .w; �/ny � .b�i � �i / dy C

Z

@˝S

G0Œw; �� �b�i dy ; i 2 f1; 2; : : : ; N0g:

(52)

Then we have the following proposition:
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PROPOSITION 3.2 Assume .w; �/ is defined by (29)–(30) and (46)–(47). Then

.u; p;ˇ/ 2 D.t/ � L2
�
0; T I H 1

�
˝F .t/

��
�
�
H 1.0; T /

�N0 (53)

if and only if

.w; �;ˇ/ 2 D � L2
�
0; T I H 1.˝F /

�
�
�
H 1.0; T /

�N0 : (54)

Moreover, if .u; p;ˇ/ satisfies (53) then .u; p;ˇ/ is solution of (7)-(8) along with the initial

conditions (9) if and only if .w; �;ˇ/ is solution of (48), (51) with (39)-(42), (49), (50) and (52)

and with the initial conditions

wjtD0
D w0 D u0 �

N0X

iD1

ˇ0
i W i in ˝F (55)

and ˇ0
i D ˇi .0/.

In the remaining part of the article, we study the problem (48), (51). To prove the local in time

existence of such a system we use a similar approach as in [16]. More precisely we write (48), (51)

as 8
ˆ̂̂
<
ˆ̂̂
:

@w

@t
� ��wC r� D F in ˝F ; t 2 .0; T /

div.w/ D 0 in ˝F ; t 2 .0; T /

w D 0 on @˝; t 2 .0; T /

w D
PN0

iD1 ˇi�i on @˝S ; t 2 .0; T /

and

ŒAˇ�0i D

Z

@˝S

� .w; �/ny � �i dy C fi ;

with A defined by

.A/i;j D

Z

˝S

�i � �j dy; (56)

with fi given by (52) and with

F D K � ŒMw� C �
�
.L ��/w

�
C
�
.r �G /�

�
: (57)

4. Linear problem associated to (48), (51)

In this section, we consider the following linear problem

8
ˆ̂̂
<
ˆ̂̂
:

@ Qw

@t
� �� QwC r Q� D F in ˝F ; t 2 .0; T /

div. Qw/ D 0 in ˝F ; t 2 .0; T /

Qw D 0 on @˝; t 2 .0; T /

Qw D
PN0

iD1
ě

i�i on @˝S ; t 2 .0; T /

(58)

and

ŒAě�0j D

Z

@˝S

� .ew;e�/ny � �j dy C fj ; (59)
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along with the initial conditions

ew.0/ D w0; and ě.0/ D ˇ0; (60)

where F , fj are given functions, and ˇ0
j are given real numbers. Recall that A is defined by (56).

In order to study (58)–(59), we use a semigroup approach. More precisely, let us set

H D
n
.w;ˇ/ 2 L2.˝F / � R

N0 W div.w/ D 0 in ˝F

w � n D 0 on @˝

w � n D
� N0X

iD1

ˇi�i

�
� n on @˝S

o
;

D.A/ D
n
.w;ˇ/ 2 H W w 2 H 2.˝F /

w D 0 on @˝

w D

N0X

iD1

ˇi�i on @˝S

o
;

A W D.A/ ! L2.˝F / � R
N0

.w;ˇ/ 7!
�

� ��w;
�
A

�1
B.w/

��
;

and

A W D.A/ ! H

.w;ˇ/ 7! P
�
A.w;ˇ/

�

where Bj .w/ D
R

@˝S
2� ".w/n��j dy and P W L2.˝F /�R

N0 ! H is the orthogonal projection.

Here we have used the following scalar product for L2.˝F / � RN0 :

�
.w;ˇ/; .u;˛/

�
WD

Z

˝F

w � u dy C Aˇ � ˛:

Its associated norm is equivalent to the usual one. Let us also remark thatH is a closed subspace of

the Hilbert space L2.˝F / � RN0 .

To study the operatorA, we also need the following function space

V D
n
.w;ˇ/ 2 H W w 2 H 1.˝F /

w D 0 on @˝

w D

N0X

iD1

ˇi�i on @˝S

o
:

PROPOSITION 4.1 The operator A W D.A/ ! H is positive and self-adjoint. In particular, �A is

the generator of a contraction semigroup onH .
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Proof. Assume .u;˛/; .w;ˇ/ 2 D.A/. Then

�
A.w;ˇ/; .u;˛/

�
D
�
A.w;ˇ/; .u;˛/

�

D

Z

˝F

���w � u dy C AA
�1

B.w/ � ˛

D 2�

Z

˝F

".w/ W ".u/ dy � 2�

Z

@˝S

".w/n � u dy

C

N0X

j D1

2�

Z

@˝S

".w/n � �j dy j̨

D 2�

Z

˝F

".w/ W ".u/ dy:

Thus �
A.w;ˇ/; .u;˛/

�
D 2�

Z

˝F

".w/ W ".u/ dy; 8.u;˛/; .w;ˇ/ 2 D.A/: (61)

In particular,A is symmetric. Moreover, Id CA is onto: let us take .v;/ 2 H . The equation

.Id CA/.w;ˇ/ D .v;/

is equivalent to

�
.w;ˇ/; .u;˛/

�
C
�
A.w;ˇ/; .u;˛/

�
D
�
.v;/; .u;˛/

�
; 8.u;˛/ 2 H : (62)

If .u;˛/ 2 V , then, (62) can be transformed in

�
.w;ˇ/; .u;˛/

�
C 2�

Z

˝F

".w/ W ".u/ dy D
�
.v;/; .u;˛/

�
; 8.u;˛/ 2 V : (63)

Using the Korn inequality (see [14, Theorem 2.4-2, p. 51]) and the Riesz theorem we deduce the

existence and uniqueness of .w;ˇ/ 2 V satisfying (63).

Taking ˛ D 0 in (63), it is not difficult to see that w is solution of a Stokes-type system

8
ˆ̂<
ˆ̂:

w � ��wC r� D F in ˝F

div.w/ D 0 in ˝F

w D 0 on @˝

w D
PN0

iD1 ˇi�i on @˝S :

(64)

Since f�i g
N0

iD1 � H 3.˝S / and @˝ 2 C 2, we obtain w 2 H 2.˝F /. Therefore Id CA is onto.

This concludes that the operator A is self-adjoint (see, for instance [17, Proposition 3.2.4,

p. 74]). Furthermore,A is non-negative, since from (61) we have

�
A.w;ˇ/; .w;ˇ/

�
D 2�

Z

˝F

k".w/k2 dy > 0:

Hence, thanks to Lumer–Phillips theorem,A is the generator of a contraction semigroup onH (see

Proposition 3.3.5 and Proposition 3.8.4 in [17]).
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Using Proposition 4.1 and classical results on parabolic equations (see, for instance, [16]) we

deduce the following result on (58)–(59):

PROPOSITION 4.2 For any .w0;ˇ0/ 2 V , for any .F ;f / 2 L2
�
0; T IL2.˝F / � RN0

�
there exists

a unique solution of (58)–(60) such that

ew 2 D; re� 2 L2.0; T IL2.˝F //; ě 2 ŒH 1.0; T /�N0 :

Moreover, we have the following estimate

kewkD C kre�kL2.0;T IL2.˝F //
C
ě

ŒH1.0;T /�N0

6 C
�
kF k

L2.0;T IL2.˝F //
C kf kŒL2.0;T /�N0 C

w0


H 1.˝F /
C
ˇ0


R

N0

�

where C is a constant depending of T in a non-decreasing way.

5. Proof of the main result

This section is devoted to the proof of Theorem 1.1. More precisely, we prove this theorem by using

two technical results (Theorem 5.1 and Theorem 5.2) which will be proved in the next sections.

First let us fix .w; �;ˇ/ with

kwkD C kr�k
L2.0;T IL2.˝F //

C kˇkŒH1.0;T /�N0 6 R; (65)

where R > 0 is a fixed positive constant.

Then we define ˛i .i D 1; : : : ; N0/ by

˛i .t/ D

Z t

0

ˇi .s/ ds:

In particular, if we take

T D
r1

2R
; (66)

we have for all t , .˛1.t/; : : : ; ˛N0
.t// 2 B.0; r1/; with r1 such that we can apply Lemmata 2.1 and

2.4 and so that (17) holds true. By using these functions, we can define �, b�i , X , b�i , .W i ; �i / by

the formulas (5), (19), (23), (44), and (45). Finally we can define F and fi by (57) and (52). Then

we have the two following results.

THEOREM 5.1 Assume that .w; �;ˇ/ satisfies (65) and assume (66). Then there exists a positive

constant C.R/ such that

kF kL2.0;T IL2.˝F //
C kf kŒL2.0;T /�N0 6 C.R/T 1=4: (67)

THEOREM 5.2 Assume that
�
w.1/; �.1/;ˇ.1/

�
;
�
w.2/; �.2/;ˇ.2/

�
satisfies (65) and assume (66).

For k D 1; 2, we can construct F .k/ and f .k/ as above from (57) and (52) with
�
w.k/; �.k/;ˇ.k/

�
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instead of .w; �;ˇ/. Then there exists a positive constant C.R/ such that

F .1/ � F .2/


L2.0;T IL2.˝F //
C
f .1/ � f .2/


ŒL2.0;T /�N0

6 C.R/T 1=4

�w.1/ �w.2/


D

C
r

�
�.1/ � �.2/

�
L2.0;T IL2.˝F //

C
ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0

�
: (68)

These two results are technical and will be proved in the next two sections. Admitting these

results, we are in position to prove the main result. The proof is based on the Banach fixed point

theorem. More precisely, let T > 0, R > 0, and let us define

K D D � L2.0; T I H 1.˝F // �
�
H 1.0; T /

�N0
;

endowed with the norm

k.w; �;ˇ/kK WD kwkD C k�kL2.0;T IH 1.˝F // C kˇkŒH1.0;T /�N0 ;

and

C D f.w; �;ˇ/ 2 K W k.w; �;ˇ/kK 6 Rg :

Clearly, C is a closed subset of K. Let us define the mapping

Z W C ! K

.w; �;ˇ/ 7!
�
ew;e�; ě

� (69)

where
�
ew;e�; ě

�
is the solution of (58)–(60), with F and f defined by (57) and (52) from .w; �;ˇ/

(as in the beginning of this section). The fact that Z maps C into K comes from Proposition 4.2 and

Theorem 5.1. More precisely, applying Proposition 4.2, we obtain

�ew;e�; ě
�

K
6 C

�
kF k

L2.0;T IL2.˝F //
C kf kŒL2.0;T /�N0 C

w0


H 1.˝F /
C
ˇ0


R

N0

�
: (70)

Combining the above estimate with (67), we deduce

kZ.w; �;ˇ/kK 6 C.R/T 1=4 C C
�w0


H 1.˝F /

C
ˇ0


R

N0

�
: (71)

With the constant C and C.R/ of the above inequality, we take R big enough so that

w0


H 1.˝F /
C
ˇ0


R

N0
6

R

2C
(72)

and T small enough so that (in addition to (66))

C.R/T 1=4
6

R

2
: (73)

Gathering (71), (72) and (73), we deduce Z.C/ � C.
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Lastly, we prove that Z W C ! C is a contraction.

Let
�
w.1/; �.1/;ˇ.1/

�
,
�
w.2/; �.2/;ˇ.2/

�
2 C. Then, according to Proposition 4.2

Z

�
w.1/; �.1/;ˇ.1/

�
� Z

�
w.2/; �.2/;ˇ.2/

� 
K

D

�
ew.1/;e� .1/; ě.1/

�
�
�
ew.2/;e� .2/; ě.2/

� 
K

6

F .1/ � F .2/


L2.0;T IL2.˝F //
C
f .1/ � f .2/


ŒL2.0;T /�N0

where, for k D 1; 2, F .k/ and f .k/ are defined by (57) and (52) with
�
w.k/; �.k/;ˇ.k/

�
. Thus,

according to Theorem 5.2, we have

Z

�
w.1/; �.1/;ˇ.1/

�
� Z

�
w.2/; �.2/;ˇ.2/

�
K

6 C.R/T 1=4

�
w.1/; �.1/;ˇ.1/

�
�
�
w.2/; �.2/;ˇ.2/

�
K

:

Thus for T small enough, Z is a contraction on C and we deduce the local in time existence of a

solution of (48), (51) and thus of a solution of (7)–(8) by using Proposition 3.2. This completes the

proof.

6. Estimates on the coefficients

This section is devoted to the proof of Theorem 5.1; more precisely, we estimate here f and F

defined by (52) and (57). Throughout this section, we fix .w; �;ˇ/ with

kwkD C kr�k
L2.0;T IL2.˝F //

C kˇkŒH1.0;T /�N0 6 R; (74)

where R is a fixed positive constant (see Section 5). We assume (66) and we define ˛i , .i D

0; : : : ; N0/, �, b�i ,X , b�i , .W i ; �i / by the formulas (5), (19), (23), (44), and (45) as in the beginning

of Section 5.

In the estimates below, the constants C.R/ at stake may depend on R, the geometry, �, N0,

f�i g
N0

iD0, and on T . If they depend on T , it is in a nondecreasing way. Similarly the constants C

at stake are independent on R but may depend on the geometry, �, N0, f�ig
N0

iD0, and on T . If they

depend on T , it is in a nondecreasing way.

We recall that from the above assumptions and from Lemma 2.4, X 2 H 2.0; T IH 3.˝//,

Y 2 L1.0; T IH 3.˝// \ W 1;1.0; T IH 2.˝// \ H 2.0; T IH 1.˝// and .rX/�1 2 H 2.0; T W

H 2.˝//.

LEMMA 6.1 With the above assumptions, Cof .rX / 2 H 2.0; T IH 2.˝// and for all 1 6 i 6 N0,

b�i 2 H 2.0; T IH 2.˝S //. Moreover, we have the following estimates

kX � idkL1.0;T IH 3.˝//
6 C.R/T: (75)

k Cof .rX/ � Idk
L1.0;T IH 2.˝//

6 C.R/T 1=2; kCof .rX/k
H 2.0;T IH 2.˝//

6 C.R/; (76)


1

det rX


L1.0;T IH 2.˝S //

6 C.R/;


1

det rX
� 1


L1.0;T IH 2.˝S //

6 C.R/T 1=2; (77)
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.rX/�1


L1.0;T IH 2.˝S //
6 C.R/;

.rX/�1 � Id


L1.0;T IH 2.˝S //
6 C.R/T 1=2; (78)

kXkH 2.0;T IH 3.˝//
C kY kL1.0;T IH 3.˝//

C


@Y

@t


L1.0;T IH 2.˝//

C


@2Y

@t2


L2.0;T IH 1.˝//

6 C.R/:

(79)

kb�i � �ikL1.0;T IH 2.˝S //
6 C.R/T 1=2; kb�i � �i kW 1;1.0;T IH 2.˝S //

6 C.R/: (80)

Proof. First, we remark that since the entries of Cof .rX/ are of the form

@Xi

@yj

@Xk

@yl

�
@Xm

@yn

@Xp

@yq

(81)

with i; j; k; l; m; n; p; q 2 f1; 2; 3g, the regularity of Cof .rX/ is a consequence of the fact that

H 2.0; T IH 2.˝// is an algebra. On the other hand, by using the definitions (19) and (44),

b�i D .Cof rX/t

�
�i �

&i

&0

�0

�
; (82)

with (see (16))

&i D

Z

@˝S

. CofrX/t�i � ny dy : (83)

These two last relations implyb�i 2 H 2.0; T IH 2.˝S //.

By using the definition (23) of X , we have

kX � idkL1.0;T IH 3.˝//
6
E.�/


L1.0;T IH 3.˝//

6 C k˛kŒL1.0;T /�N0 6 C.R/T;

which yields (75).

Similarly, 
@X

@t


H 1.0;T IH 3.˝//

D

E

�
@�

@t

�
H 1.0;T IH 3.˝//

6 C.R/: (84)

This implies

kXkH 2.0;T IH 3.˝//
6 C.R/: (85)

Combining (81) with (75) and (84), we deduce (76).

Let us prove (77). From (24), there exists a positive constant C such that

kdet.rY /kL1.0;T IL1.˝// 6 C;

and thus 
1

det.rX/


L1.0;T IL1.˝//

6 C:

Combining the above estimate with (85) yields


1

det.rX/


L1.0;T IH 2.˝//

6 C
�
krXk2

L1.0;T IH 2.˝//
C 1

�
6 C.R/:
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On the other hand, from (75) and from the above estimate, we obtain


1

det rX
� 1


L1.0;T IH 2.˝//

6 C.R/krX � Idk
L1.0;T IH 2.˝//

6 C.R/T 1=2:

This proves (77).

From (12), (76) and (77) we deduce (78).

Let us prove (79). To obtain the estimates on Y , we follow the proof of Lemma 2.4. More

precisely, from (24), there exists a positive constant C such that

krY kL1.0;T IL1.˝// 6 C:

From (25), (77) and (78) we have

r
2Y .X/


L1.0;T IL6.˝//

6 C.R/:

Analogously, from (26), (77) and (78) we deduce

r
3Y .X/


L1.0;T IL2.˝//

6 C.R/:

Thus, we obtain

kY kL1.0;T IH 3.˝//
6 C.R/:

Then using (27) and the previous estimates onX and Y , we obtain the estimates on @Y
@t

. We use the

same kind of reasoning for the second derivative in time of Y .

Lastly, we show (80), from (82) we deduce that

kb�i � �ikH 2.˝S /

6
.Cof rX/t � Id


H 2.˝S /

k�i kH 2.˝S /
C
.Cof rX/t


H 2.˝S /

k�0k
H 2.˝S /

ˇ̌
ˇ̌ &i .t/

&0.t/

ˇ̌
ˇ̌ :

From (83) and (4), we have for all i 2 f1; : : : ; N0g;

&i D

Z

@˝S

�
. CofrX/t � Id

�
�i � ny dy ;

and thus, by using (76), we have for all i 2 f1; : : : ; N0g;

j&i .t/j 6 C.R/T 1=2: (86)

Combining the above estimate with (18), (76), we conclude

kb�i � �ikL1.0;T IH 2.˝S //
6 C.R/T 1=2:

To obtain the estimates on the time derivative, we write

@

@t
.b�i / D

@

@t

�
. CofrX/t

�
�i �

@

@t

�
. CofrX/t

� &i

&0

�0 � . CofrX/t @

@t

�
&i

&0

�
�0

and we use (76), (83) to deduce the result.
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LEMMA 6.2 Assume (74) and (66). Then for all i 2 f1; : : : ; N0g, the solution of (45) satisfies

.W i ; �i / 2 H 1
�
0; T IH 2.˝F /

�
� H 1

�
0; T I H 1.˝F /

�

and there exists a constant C.R/ > 0 such that

kW i k
H1
�

0;T IH 2.˝F /
� C k�i k

H1
�

0;T IH 1.˝F /
� 6 C.R/T 1=2: (87)

Proof. Using classical results (see [2]), we deduce that

kW i kH 2.˝F /
C k�i kH 1.˝F /=R

6 C kb�i � �ikH 3=2.@˝S /
6 C kb�i � �i kH 2.˝S /

: (88)

According to (80), this yields

kW ikL1.0;T IH 2.˝F //
C k�i kL1.0;T IH 1.˝F /=R/ 6 C.R/T 1=2: (89)

Differentiating (45) with respect to time

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

���

�
@W i

@t

�
C r

�
@�i

@t

�
D 0 in ˝F

div

�
@W i

@t

�
D 0 in ˝F

�
@W i

@t

�
D 0 on @˝

�
@W i

@t

�
D

�
@b�i

@t

�
on @˝S ;

(90)

Using again the result of [2], we deduce


@W i

@t


H 2.˝F /

C


@�i

@t


H 1.˝F /=R

6 C


@b�i

@t


H 3=2.@˝S /

6 C


@b�i

@t


H 2.˝S /

:

Thus, thanks to (80), we have

kW ikW 1;1.0;T IH 2.˝F //
C k�i kW 1;1.0;T IH 1.˝F // 6 C.R/: (91)

This inequality implies (87).

Using Lemma 6.1 the following result can be proved. We skip the proof since it is similar to the

proof of next lemma.

LEMMA 6.3 Let v 2 D and Eij Œv� defined by (34). Then there exists a positive constant C.R/ such

that Eij Œv�


L2.0;T IH 1.˝F //
6 C.R/T 1=2kvkD:

LEMMA 6.4 Suppose that v 2 D and q 2 L2.0; T I H 1.˝F //. Then there exists a positive constant

C.R/ such that

(i)
ŒMv�


L2.0;T IL2.˝F //

6 C.R/T 1=2kvkD,
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(ii)
�.ŒLv� ��v/


L2.0;T IL2.˝F //

6 C.R/T 1=2kvkD,

(iii)
ŒNv�


L2.0;T IL2.˝F //

6 C.R/T 1=4kvk2
D

,

(iv)
ŒGq� � rq


L2.0;T IL2.˝F //

6 C.R/T 1=2kqkL2.0;T IH 1.˝F //,

(v)
ŒG 0.v; q/�


L2.0;T IH 1.˝F //

6 C.R/T 1=2
�
1 C kvkD C kqkL2.0;T IH 1.˝F //

�
.

Proof. By using the definition (39) and by performing some calculations, we have

ŒMv�i D � tr

�
.rX/�1

�
@rX

@t
C .r2X/

@Y

@t
.X/

��
@Xi

@yk

vk C

3X

kD1

@2Xi

@t@yk

vk

C

3X

k;lD1

@2Xi

@yl@yk

@Yl

@t
.X/vk

C

3X

k;lD1

@Xi

@yk

@vk

@yl

@Yl

@t
.X/ C

3X

kD1

�
@Xi

@yk

� ıi;k

�
@vk

@t
(92)

where tr.A/ denotes the trace of the matrixA.

We estimate the first term in the above expression of ŒMv�i :

tr

�
.rX/�1

�
@rX

@t
C .r2X/

@Y

@t
.X/

��
@Xi

@yk

vk


L2.0;T IL2.˝F //

6 T 1=2

.rX/�1

�
@rX

@t
C .r2X/

@Y

@t
.X/

�
L1.0;T IL1.˝F //

@Xi

@yk


L1.0;T IL1.˝F //

kvkkL1.0;T IH 1.˝F //:

The above inequality combined with Lemma 6.1 yields
tr

�
.rX/�1

�
@rX

@t
C .r2X/

@Y

@t
.X/

��
@Xi

@yk

vk


L2.0;T IL2.˝F //

6 C.R/T 1=2kvkD:

The three next terms in (92) are estimated in a similar way. For the last term, we write

�

@Xi

@yk

� ıi;k

�
@vk

@t


L2.0;T IL2.˝F //

6 krX � IdkL1.0;T IL1.˝F //


@vk

@t


L2.0;T IL2.˝F //

6 C.R/T kvkD;

where the last inequality is obtained thanks to Lemma 6.1. All these estimates imply (i).

Now, we estimate the terms appearing in the expression (40) of ŒLv�. First,

 @2vi

@yj @yl

�
.rX/�1

l;j � ıl;j

�
L2.0;T IL2.˝F //

6 k.rX/�1 � IdkL1.0;T IL1.˝F //

vi


L2.0;T IH 2.˝F //

6 C.R/T 1=2
v


D
:
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For the second term of ŒLv�, a short calculation shows that

.det rX/
@

@xj

.det rY / .X/
@vi

@yj

D � tr
�
.rX/�1.r2X/.rX/�1

� @vi

@yj

;

and then we estimate this term as the first term of ŒMv�. Using Lemmata 6.1 and 6.3 we obtain the

following estimate for the last term of ŒLv�:

.det rX/
@

@xj

�
Eij Œv�

�
.X/


L2.0;T IL2.˝F //

6 C.R/T 1=2kvkD: (93)

These estimates allow to obtain (ii).

Next, we estimate each term in the expression (41) of ŒNv�. Since
@vi

@yj
2 L1.0; T I L2.˝F // \

L2.0; T I H 1.˝F // and since


@vi

@yj


H 1=2.˝F /

6 C


@vi

@yj


1=2

H 1.˝F /


@vi

@yj


1=2

L2.˝F /

;

we deduce that
@vi

@yj
2 L4.0; T I H 1=2.˝// and thus, using the Sobolev embedding theorem, that

@vi

@yj
2 L4.0; T I L3.˝F // with


@vi

@yj


L4.0;T IL3.˝F //

6 C kvkD:

Hence, using the Hölder inequality and Lemma 6.1, we deduce


1

det rX

3X

j D1

@vi

@yj

3X

mD1

@Xj

@ym

vm

L2.0;T IL2.˝F //

6 T 1=4


1

det rX

3X

j D1

@vi

@yj

3X

mD1

@Xj

@ym

vm


L4.0;T IL2.˝F //

6

3X

j;mD1

T 1=4


@vi

@yj


L4.0;T IL3.˝F //

kvmkL1.0;T IL6.˝F //

6 C.R/T 1=4kvk2
D

:

Applying Lemmata 6.1 and 6.3, it can be shown that



3X

j D1

Eij Œv�.X/

3X

mD1

@Xj

@ym

vm


L2.0;T IL2.˝F //

6 C.R/T 1=2kvk2
D

:

Hence, we have proved (iii).



STRONG SOLUTIONS FOR THE MOTION OF AN ELASTIC STRUCTURE 299

Now, we estimate kŒGq� � rqk
L2.0;T IL2.˝F //

(see (42)). Some calculations give us the

following inequalities

.det rX /
@

@xi

.det rY / .X/q

L2.0;T IL2.˝F //

D
tr
�
.rX/�1.r2X/.rX/�1

�
q


L2.0;T IL2.˝F //

6 C.R/T 1=2kqkL2.0;T IH 1.˝F //:

(94)

Finally, using Lemma 6.1 again



3X

lD1

@q

@yl

�
.rX/�1

l;i � ıl;i

�L2.0;T IL2.˝F //

6
.rX/�1 � Id


L1.0;T IL1.˝F //

kqkL2.0;T IH 1.˝F //

6 C.R/T 1=2kqkL2.0;T IH 1.˝F //:

Therefore, ŒGq� � rq


L2.0;T IL2.˝F //
6 C.R/T 1=2kqkL2.0;T IH 1.˝F //:

Lastly, let us prove inequality (v) (see (50)). We estimate the first term, from Lemma 6.1 we deduce

� .v; q/..rX/�t � Id/


L2.0;T IH 1.˝F //

6
.rX/�t � Id


L1.0;T IH 2.˝F //

� .v; q/


L2.0;T IH 1.˝F //

6 C.R/T 1=2
�
kvkD C kqkL2.0;T IH 1.˝F //

�
:

For the second term, from Lemma 6.2 and (91), we have:

� .W i ; �i /


L2.0;T IH 1.˝F //
6 C.R/T 1=2:

In a similar way to the estimates of the terms of ŒLv� and thanks to Lemma 6.1 and (93), we deduce

k2�.E Œv� C .E Œv�/t /.X/ Cof.rX/k
L2.0;T IH 1.˝F //

6 C.R/T 1=2kvkD:

Applying Lemma 6.2, using (74) and similar calculations as in the term above, we obtain

2�

N0X

iD1

ˇi .E ŒW i � C .E ŒW i �/
t /.X/ Cof.rX/


L2.0;T IH 1.˝F //

6 C.R/T 1=2:

This completes the proof of Lemma 6.4.

We are now in position to prove Theorem 5.1.
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Proof. We recall that

F D �

N0X

iD1

ˇ0
iW i �

N0X

iD1

ˇiW
0
i �

N0X

iD1

ŒM .ˇiW i /�

C �

N0X

iD1

ŒL.ˇiW i /� �

N0X

iD1

ŒG .ˇi �i /� �

"
N

 
wC

N0X

iD1

ˇiW i

!#

� ŒMw� C �Œ.L ��/w� C Œ.r �G /��:

First, we notice that



N0X

iD1

ˇ0
iW i


L2.0;T IL2.˝F //

6 kˇkŒH 1.0;T /�N0

N0X

iD1

kW ikL1.0;T IL2.˝F //
6 C.R/T 1=2;

according to (74) and (87). The second term of F is bounded in the same way:



N0X

iD1

ˇiW
0
i


L2.0;T IL2.˝F //

6 kˇkŒL1.0;T /�N0

N0X

iD1

kW i kH 1.0;T IL2.˝F //
6 C.R/T 1=2:

Thanks to Lemma 6.4 (i), (74) and (87), we have



N0X

iD1

ŒM .ˇiW i /�


L2.0;T IL2.˝F //

6 C.R/T 1=2



N0X

iD1

ˇiW i


D

6 C.R/T 1=2kˇkŒH1.0;T /�N0

N0X

iD1

kW i kH 1.0;T IH 2.˝F //

6 C.R/T:

According to Lemma 6.4 (ii) and (iv), (74) and (87), we have

�

N0X

iD1

ŒL.ˇiW i /� �

N0X

iD1

ŒG .ˇi �i /�


L2.0;T IL2.˝F //

6

�

N0X

iD1

.ŒL.ˇiW i /� � ˇi�W i /


L2.0;T IL2.˝F //

C



N0X

iD1

.r.ˇi �i / � ŒG .ˇi�i /�/


L2.0;T IL2.˝F //

6 C.R/T 1=2



N0X

iD1

ˇiW i


D

C C.R/T 1=2



N0X

iD1

ˇi �i


L2.0;T IH 1.˝F ///

6 C.R/T:
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Using Lemma 6.4 (iii), (74) and (87)



"
N

 
wC

N0X

iD1

ˇiW i

!#L2.0;T IL2.˝F //

6 C.R/T 1=4

wC

N0X

iD1

ˇiW i



2

D

6 C.R/T 1=4

 
kwk2

D
C kˇk2

ŒH1.0;T /�N0

N0X

iD1

kW ik
2

H 1.0;T IH 2.˝F //

!

6 C.R/T 1=4:

Moreover, using again Lemma 6.4 (i), (ii) and (iv), we have

k�ŒMw� C �Œ.L ��/w� C Œ.r �G /��kL2.0;T IL2.˝F //

6 C.R/T 1=2
�
kwkD C k�kL2.0;T IH 1.˝F //

�

6 C.R/T 1=2:

All these inequalities imply that

kF kL2.0;T IL2.˝F //
6 C.R/T 1=4: (95)

On the other hand, f is defined by (52). First, note that by (19), Lemma 2.5 and (86) we have

b�i � �i


L1.0;T IH 3.˝S //

6 C.R/T 1=2:

Thereby, we deduce



N0X

j D1

ˇ0
j

Z

˝S

.b�j � �j / � �i dy


L2.0;T /

6 C.R/T 1=2kˇ0k
L2.0;T /

6 C.R/T 1=2;



N0X

j D1

ˇ0
j

Z

˝S

b�j � .b�i � �i / dy


L2.0;T /

6 C.R/T 1=2kˇ0k
L2.0;T /

6 C.R/T 1=2;

and

Z

@˝S

� .w; �/ny � .b�i � �i / dy


L2.0;T /

6 C.R/T 1=2k� .w; �/k
L2.0;T IH 1.˝F //

6 C.R/T 1=2:

For the second term, we have



N0X

j D1

ǰ

Z

˝S

@

@t
.b�j / �b�i dy


L2.0;T /

6 C.R/kˇk
L2.0;T /

6 C.R/T 1=2:
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On the other hand, using (19) and (86)

2�


Z

˝S

".�/ W ".b�i / dy


L2.0;T /

C �


Z

˝S

div.�/div.b�i / dy


L2.0;T /

6 C.R/.1 C T 1=2/k˛k
L2.0;T /

6 C.R/T 3=2:

Finally, using Lemma 6.4 (v)


Z

@˝S

G0Œw; �� �b�i dy


L2.0;T /

6 C.R/T 1=2;

and thus

kf kŒL2.0;T /�N0 6 C.R/T 1=2:

The proof of Theorem 5.1 concludes by combining the above equation and (95).

7. Estimates on the differences of the operators

This section is devoted to the proof of Theorem 5.2; more precisely, we estimate the differences

F .1/ �F .2/ and f .1/ �f .2/. Throughout this section, for k 2 f1; 2g we fix
�
w.k/; �.k/;ˇ.k/

�
with

w.k/


D

C
r�.k/


L2.0;T IL2.˝F //

C
ˇ.k/


ŒH1.0;T /�N0

6 R; (96)

where R is a fixed positive constant (see Section 5). Here f .k/ and F .k/ are defined by (52) and

(57). More precisely, we assume (66) and by using these families of functions we can define ˛
.k/
i ,

.i D 0; : : : ; N0/, �.k/, b�i
.k/, X .k/, b�i

.k/,
�
W

.k/
i ; �

.k/
i

�
by the formulas (5), (19), (23), (44), and

(45) as in the beginning of Section 5.

In the estimates below, the constants C.R/ at stake may depend on R, the geometry, �, N0,

f�i g
N0

iD0, and on T . If they depend on T , it is in a nondecreasing way. Similarly the constants C

at stake are independent on R but may depend on the geometry, �, N0, f�ig
N0

iD0, and on T . If they

depend on T , it is in a nondecreasing way.

We recall that from the above assumptions and from Lemma 2.4, for n 2 f1; 2g, X .k/ 2

H 2.0; T IH 3.˝//, Y .k/ 2 L1.0; T IH 3.˝// \ W 1;1.0; T IH 2.˝// \ H 2.0; T IH 1.˝// and�
rX .k/

��1

2 H 2.0; T W H 2.˝//.

We first estimate the differences of the functionsX and Y :

LEMMA 7.1 Assume
n
ˇ

.n/
i

oN0

iD1
, .n 2 f1; 2g/ satisfy the above conditions. Then we have the
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following estimates

X .1/ �X .2/


W 1;1.0;T IH 3.˝//
C
Y .1/ � Y .2/


L1.0;T IH 3.˝//

C



@
�
Y .1/ � Y .2/

�

@t


L1.0;T IH 2.˝//

C



@2
�
Y .1/ � Y .2/

�

@t2


L2.0;T IH 1.˝//

6 C.R/T 1=2
ˇ.1/ � ˇ.2/


ŒH 1.0;T /�N0

: (97)

Proof. The proof is quite similar to the proof of Lemma 6.1 so we only precise the main changes.

First using that the mapping � in Lemma 2.1 is of class C 1, there exists a positive constant C such

that ˛
.1/
0 � ˛

.2/
0


H 2.0;T /

6 C
˛.1/ � ˛.2/


ŒH 2.0;T /�N0

:

Consequently, since ˛.1/.0/ D ˛.2/.0/

E

�
�.1/

�
� E

�
�.2/

�
L1.0;T IL1.˝//

6 C
˛.1/ � ˛.2/


ŒL1.0;T /�N0

6 C T 1=2
ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0

:

Therefore, by writing

Y .n/.x/ D �E

�
�.n/

� �
Y .n/.x/

�
C x;

for n D 1; 2, we can estimate Y .1/ � Y .2/:

Y .1/ � Y .2/


L1.0;T IL1.˝//
6

E

�
�.1/

�
� E

�
�.2/

�
L1.0;T IL1.˝//

1 �
E

�
�.2/

�
L1.0;T IW 1;1.˝//

6

C T
ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0

1 �
E

�
�.2/

�
L1.0;T IW 1;1.˝//

:

The other estimates on Y are proved by using the above estimate.

Finally, using the above lemma, we can prove the following results. Since their proofs are similar

to the proofs of Lemma 6.1 and Lemma 6.4 (see also [16]), we skip them.

LEMMA 7.2 With the above assumptions, we have the following regularity results: there exist a

positive constant C.R/ such that

Cof
�
rX .1/

�
� Cof

�
rX .2/

�
W 1;1.0;T IH 2.˝//

6 C.R/T 1=2
ˇ.1/ � ˇ.2/


ŒH1.0;T /�

N0
;
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and for all 1 6 i 6 N0 we have
b�.1/

i �b�.2/
i


W 1;1.0;T IH 3.˝S //

6 C.R/T 1=2
ˇ.1/ � ˇ.2/


ŒH1.0;T /�

N0
;

and b�.1/
i �b�.2/

i


W 1;1.0;T IH 2.˝S //

6 C.R/T 1=2
ˇ.1/ � ˇ.2/


ŒH1.0;T /�

N0
:

LEMMA 7.3 Suppose that v 2 D and q 2 L2.0; T I H 1.˝F //. Then there exists a positive constant

C.R/ such that

(i)


�
M .1/v

�
�
�
M .2/v

�
L2.0;T IL2.˝F //

6 C.R/T 1=2kvkD

ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0
,

(ii)

�
��
L.1/v

�
�
�
L.2/v

��
L2.0;T IL2.˝F //

6 C.R/T 1=2kvkD

ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0
,

(iii)


�
G .1/q

�
�
�
G .2/q

�
L2.0;T IL2.˝F //

6 C.R/T 1=2kqkL2.0;T IH 1.˝F //

ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0
,

(iv)

G .1/
0 Œv; q� �G

.2/
0 Œv; q�


L2.0;T IH 1.˝F //

6 C.R/T 1=2
�
kvkD C kqkL2.0;T IH 1.˝F // C

ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0

�
.

We also have the following consequence of Lemma 7.1:

LEMMA 7.4 Suppose v.1/, v.2/ 2 D. Then there exists a positive constant C.R/ such that


�
N .1/v.1/

�
�
�
N .2/v.2/

�
L2.0;T IL2.˝F //

6 C.R/T 1=4
�v.1/


D

C
v.2/


D

�

��v.1/


D
C
v.2/


D

� ˇ.1/ � ˇ.2/


ŒH1.0;T /�N0
C
v.1/ � v.2/


D

�
:

Now we will prove Theorem 5.2.

Proof. Let
�
w.1/; �.1/;ˇ.1/

�
,
�
w.2/; �.2/;ˇ.2/

�
satisfying (96). For k D 1; 2, we define F .k/ and

f .k/ by (57) and (52) respectively. Then, we have:

F .1/ � F .2/ D �

N0X

iD1

�
ˇ

.1/0

i � ˇ
.2/0

i

�
W

.1/
i �

N0X

iD1

ˇ
.2/0

i

�
W

.1/
i �W

.2/
i

�

�

N0X

iD1

�
ˇ

.1/
i � ˇ

.2/
i

�
W

.1/0

i �

N0X

iD1

ˇ
.2/
i

�
W

.1/0

i �W
.2/0

i

�

�

N0X

iD1

��
M .1/

�
ˇ

.1/
i W

.1/
i

��
�
�
M .2/

�
ˇ

.1/
i W

.1/
i

���

�

N0X

iD1

�
M .2/

�
ˇ

.1/
i W

.1/
i � ˇ

.2/
i W

.2/
i

��
� �

N0X

iD1

��
L.1/

�
ˇ

.1/
i W

.1/
i

��
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�
�
L.2/

�
ˇ

.1/
i W

.1/
i

���
� �

N0X

iD1

�
L.2/

�
ˇ

.1/
i W

.1/
i � ˇ

.2/
i W

.2/
i

��

�
�
N .1/

�
w.1/ C

N0X

iD1

ˇ
.1/
i

��
C
�
N .2/

�
w.2/ C

N0X

iD1

ˇ
.2/
i

��

�

N0X

iD1

��
G .1/

�
ˇ

.1/
i �

.1/
i

��
�
�
G .2/

�
ˇ

.1/
i �

.1/
i

���
�

N0X

iD1

�
G .2/

�
ˇ

.1/
i �

.1/
i � ˇ

.2/
i �

.2/
i

��

�
��
M .1/w.1/

�
�
�
M .2/w.1/

��
�
�
M .2/

�
w.1/ �w.2/

��

� �
��
L.1/w.1/

�
�
�
L.2/w.1/

��
� �

��
L.2/

�
w.1/ �w.2/

��
��

�
w.1/ �w.2/

��

�
��
G .1/�.1/

�
�
�
G .2/�.1/

��
�
��
G .2/

�
�.1/ � �.2/

��
� r

�
�.1/ � �.2/

��
; (98)

and

f
.1/

i � f
.2/

i D
�
ˇ

.1/0

i � ˇ
.2/0

i

� Z

˝S

�b�.1/
j � �j

�
� �i dy C ˇ

.2/0

j

Z

˝S

�b�.1/
j �b�.2/

j

�
� �i dy

C
�
ˇ

.1/
i � ˇ

.2/
i

� Z

˝S

@

@t

�b�.1/
j

�
�b�.1/

i dy C ˇ
.2/
j

Z

˝S

@

@t

�b�.1/
j �b�.2/

j

�
�b�.1/

i dy

C ˇ
.2/
j

Z

˝S

@

@t

�b�.2/
j

�
�
�b�.1/

i �b�.2/
i

�
dy C 2�

Z

˝S

"
�
�.1/ � �.2/

�
W "
�b�.1/

i

�
dy

C 2�

Z

˝S

"
�
�.2/

�
W "
�b�.1/

i �b�.2/
i

�
dy C �

Z

˝S

div
�
�.1/ � �.2/

�
div
�b�.1/

i

�
dy

C�

Z

˝S

div
�
�.2/

�
div
�b�.1/

i �b�.2/
i

�
dyC

Z

@˝S

�
�
�
w.1/; �.1/

�
��

�
w.2/; �.2/

��
ny �

�b�.1/
i ��i

�
dy

C

Z

@˝S

�
�
w.2/; �.2/

�
ny �

�b�.1/
i �b�.2/

i

�
dy C

Z

@˝S

�
G

.1/
0 �G

.2/
0

��
w.1/; �.1/

�
�b�.1/

i dy

C

Z

@˝S

G0

��
w.1/; �.1/

�
�
�
w.2/; �.2/

��
�b�.1/

i dy C

Z

@˝S

G
.2/
0

�
w.2/; �.2/

�
�
�b�.1/

i �b�.2/
i

�
dy :

From the above equalities and Lemmata 6.1–6.2, 6.4, 7.1–7.4, we deduce (68). This concludes the

proof of Theorem 5.2.
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