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In this paper, we study the motion of spirals by mean curvature type motion in the (two dimensional)

plane. Our motivation comes from dislocation dynamics; in this context, spirals appear when a screw

dislocation line reaches the surface of a crystal. The first main result of this paper is a comparison

principle for the corresponding parabolic quasi-linear equation. As far as motion of spirals are

concerned, the novelty and originality of our setting and results come from the fact that, first, the

singularity generated by the attached end point of spirals is taken into account for the first time,

and second, spirals are studied in the whole space. Our second main result states that the Cauchy

problem is well-posed in the class of sub-linear weak (viscosity) solutions. We also explain how to

get the existence of smooth solutions when initial data satisfy an additional compatibility condition.
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1. Introduction

In this paper we are interested in curves .�t /t>0 in R2 which are half lines with an end point

attached at the origin. These lines are assumed to move with normal velocity

Vn D c C � (1.1)

where � is the curvature of the line and c 2 R is a given constant. We assume that these curves �t
can be parametrized (in the complex plane) as follows (see Figure 1)

�t D fre�iU.t;r/ W r > 0g:

With such a parametrization in hand, we will see later (see Remark 1.2 below) that the Geometric
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Vn

θ > −U θ < −U

FIG. 1. Motion of the spiral. Here � is the angle in polar coordinates.

Law (1.1) holds true if the opposite of the angle of the spiral �U.t; r/ satisfies the following quasi-

linear parabolic equation in non-divergence form

rUt D c

q
1C r2U 2r C Ur

�
2C r2U 2r
1C r2U 2r

�
C rUrr

1C r2U 2r
; t > 0; r > 0: (1.2)

This paper is devoted to the proof of a comparison principle in the class of sub-linear weak

(viscosity) solutions and to the study of the associated Cauchy problem.

1.1 Motivations and known results

Motivations. The question of defining mathematically the motion of spirals appears in several

applications. Our main motivation comes from continuum mechanics. In a two dimensional space,

the seminal paper of Burton, Cabrera and Frank [6] studies the growth of crystals with vapor. When

a screw dislocation line reaches the boundary of the material, atoms are adsorbed on the surface

in such a way that a spiral is generated; moreover, under appropriate physical assumptions, these

authors prove that the geometric law governing the dynamics of the growth of the spiral is precisely

given by (1.1) where �c denotes a critical value of the curvature. We mention that there is an

extensive literature in physics dealing with crystal growth in spiral patterns.

Motion of spirals appear also in applied problems coming from Life sciences. The interested

reader is referred to, e.g., [25] or [21] for further details.

Different mathematical approaches. First and foremost, defining geometric flows by studying non-

linear parabolic equations is an important topic both in analysis and geometry. As far as motion of

spirals are concerned and as far as we know, it appeared first in geometry in [1]. It was also used

in order to study singularity formation [2, 3] (note that in these papers, the spiral corresponds to

the case Vn D � with a positive curvature. This implies that the origin of the spiral cannot be

fixed as in our case). In analysis, the study of the dynamics of spirals have been attracting a lot of

attention for more than ten years. Different methods have been proposed and developed in order to

define solutions of the geometric law (1.1). A brief list is given here. A phase-field approach was

proposed in [20] and the reader is also referred to [26, 27]. Other approaches have been used; for

instance, “self-similar” spirals are constructed in [19] by studying an ordinary differential equation.

In [15], spirals moving in (compact) annuli with homogeneous Neumann boundary condition are

constructed. From a technical point of view, the classical parabolic theory is used to construct

smooth solutions of the associated partial differential equation; in particular, gradient estimates are

derived. We point out that in [15], the geometric law is anisotropic, and is thus more general than

(1.1). In [17, 28, 32], the geometric flow is studied by using the level-set approach [8, 12, 29]. As
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in [15], the author of [28] considers spirals that typically move into a (compact) annulus and reaches

the boundary perpendicularly.

The starting point of this paper is the following fact: to the best of our knowledge, no geometric

flows were constructed to describe the dynamics of spirals by mean curvature by taking into account

both the singularity of the pinned point and the unboundedness of the domain.

The equation of interest. We would like next to explain with more details the main aims of our

study. By parametrizing spirals, we will see (cf. Subsection 1.2) that the geometric law (1.1) is

translated into the quasi-linear parabolic equation (1.2). We note that the coefficients are unbounded

(they explode linearly with respect to r) and that the equation is singular: indeed, as r ! 0,

either rut ! 0 or first order terms explode. Moreover, initial data are also unbounded. In such

a framework, we would like to achieve: uniqueness of weak (viscosity) solutions for the Cauchy

problem for a large class of initial data, to construct a unique steady state (i.e. a solution of the

form �t C '.r/ which will turn around the origin without changing form), and finally to show the

convergence of general solutions of the Cauchy problem to the steady state as time goes to infinity.

This paper is mainly concerned with proving a uniqueness result and constructing a weak (viscosity)

solution; the study of large time asymptotic will be achieved in [14].

Classical parabolic theory. Classical parabolic theory [13, 22] could help us to construct solutions

but there are major difficulties to overcome. For instance, Giga, Ishimura and Kohsaka [15] studied

a generalization of (1.2) in domains of the form Ra;b D fa < r < bg with a > 0 and b > 0,

with Neumann boundary conditions at r D a; b. Roughly speaking, we can say that our goal is

to see what happens when a ! 0 and b ! 1. First, we mentioned above that the equation is

not (uniformly) parabolic in the whole domain R0;1 D f0 < r < C1g. Second, in such analysis,

the key step is to obtain gradient estimates. Unfortunately, the estimates from [15] in the case of

(1.2) explode as a goes to 0. Third, once a solution is constructed, it is natural to study uniqueness

but even in the setting of classical solutions there are substantial difficulties. To conclude, classical

parabolic theory can be useful in order to get existence results, keeping in mind that getting gradient

estimates for (1.2) is not so easy, but such techniques will not help in proving uniqueness.

Recently, several authors studied uniqueness of quasilinear equations with unbounded

coefficients (see for instance [5, 9]) by using viscosity solution techniques for instance. But

unfortunately, Eq. (1.2) does not satisfy the assumptions of these papers.

Main new ideas. New ideas are thus necessary to handle these difficulties, both for existence and

uniqueness. As far as uniqueness is concerned, one has to figure out what is the relevant boundary

condition at r D 0. We remark that solutions of (1.2) satisfy at least formally a Neumann boundary

condition at the origin

0 D c C 2Ur for r D 0: (1.3)

In some sense, we thus can say that the boundary condition is embedded into the equation.

Second, taking advantage of the fact that the Neumann condition is compatible with the comparison

principle, viscosity solution techniques (also used in [5]) permit us to get uniqueness even if the

equation is degenerate and also in a very large class of weak (sub- and super-) solutions.

But there are remaining difficulties to be overcome. First, the Boundary Condition (1.3) is only

true asymptotically (as r ! 0) and the fact that it is embedded into the equation does not help so

much. We will overcome this difficulty by making a proper change of variables (namely x D ln r ,
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see below for further details) and proving a comparison principle (whose proof is rather involved;

in particular many new arguments are needed in compare with the classical case) in this framework.

Second, classical viscosity solution techniques for parabolic equations do not apply directly to (1.2)

because of polar coordinates. More precisely, the equation do not satisfy the fundamental structure

conditions as presented in [10, Eq. (3.14)] when polar coordinates are used. But the mean curvature

equation has been extensively studied in Cartesian coordinates [8, 12]. Hence this set of coordinates

should be used, at least far from the origin.

Perron’s method and smooth solutions. We hope we convinced the reader that it is really useful, if

not mandatory, to use viscosity solution techniques to prove uniqueness. It turns out that it can also

be used to construct solutions by using Perron’s method [18]. This technique requires to construct

appropriate barriers and we do so for a large class of initial data. The next step is to prove that

these weak solutions are smooth if additional growth assumptions on derivatives of initial data are

imposed; we get such a result by deriving non-standard gradient estimates (with viscosity solution

techniques too).

We would like also to shed some light on the fact that this notion of solution is also very useful

when studying large time asymptotic (and more generally to pass to the limit in such non-linear

equations). Indeed, convergence can be proved by using the half-relaxed limit techniques if one can

prove a comparison principle. See [14] for more details.

1.2 The geometric formulation

In this section, we make precise the way spirals are defined. We will first define them as parametrized

curves.

Parametrization of spirals. We look for interfaces � parametrized as follows: � D fre�iU.r/ W
r > 0g � C for some function U W Œ0;C1/ ! R. If now the spiral moves, i.e. evolves with a time

variable t > 0, then the function U also depends on t > 0.

DEFINITION 1.1 (Spirals) A moving spiral is a family of curves .�t /t>0 of the following form

�t D frei� W r > 0; � 2 R; � C U.t; r/ D 0g (1.4)

for some functionU W Œ0;C1/�Œ0;C1/ ! R. This curve is oriented in the direction of increasing

r .

With the previous definition in hand, the geometric law (1.1) implies that U satisfies (1.2) with

the initial condition

U.0; r/ D U0.r/ for r 2 .0;C1/ : (1.5)

Link with the level-set approach. In view of (1.4), we see that our approach is closely related to

the level-set one. We recall that the level-set approach was introduced in [8, 12, 29] in order to

construct, in particular, an interface moving by mean curvature type motion, that is to say satisfying

the geometric law (1.1). It consists in defining the interface �t as the 0-level set of a function Qu.t; �/
and in remarking that the geometric law is verified only if Qu satisfies a non-linear evolution equation

of parabolic type. In an informal way, we can say that the quasi-linear evolution equation (1.2) is a

“graph” equation associated with the classical mean curvature equation (MCE), but written in polar

coordinates.
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More precisely, if Qu.t; X/ D � C U.t; r/ with XD .r cos �; r sin �/ 2 R2, then U will satisfy

(1.2) as long as Qu solves the following level-set equation

Qut D cjDX Quj C bDX Qu? �D2
XX Qu bDX Qu? for X 6D 0 (1.6)

(where Op D p=jpj and p? D .�p2; p1/ for p D .p1; p2/ 2 R2). Notice that the angle � is

multivalued, i.e. only defined modulo 2� . Such an approach is for instance systematically developed

in [28].

REMARK 1.2 (Justification of equation (1.2)) Writing equation (1.6) in polar coordinates for a

general function U.t; r; �/, we get

@tU D cjDU j C 1

jDU j2A

with jDU j2 D U 2r C r�2U 2
�

and

A D U 2�
Urr

r2
� 2

UrU�Ur�

r2
C 2Ur

U 2
�

r3
C U 2r

U��

r2
C U 3r

r
:

Taking U� D �1 and Ur� D U�� D 0 as in our case, we recover equation (1.2).

1.3 Main results

Comparison principle. Our first main result is a comparison principle: it says that all sub-solutions

lie below all super-solutions, provided they are ordered at initial time.

THEOREM 1.3 (Comparison principle for (1.2)) Assume that U0 W .0;C1/ ! R is a globally

Lipschitz continuous function. Consider a sub-solution U and a super-solution V of (1.2), (1.5) (in

the sense of Definition 2.1) such that there exist C1 > 0 and for all t 2 Œ0; T / and r > 0,

U.t; r/ � U0.r/ 6 C1 and V.t; r/ � U0.r/ > �C1: (1.7)

If U.0; r/ 6 U0.r/ 6 V.0; r/ for all r > 0, then U 6 V in Œ0; T / � .0;C1/.

REMARK 1.4 The growth of the sub-solution U and the super-solution V is made precise by

assuming Condition (1.7). Such a condition is motivated by the large time asymptotic study carried

out in [14]; indeed, we construct in [14] a global solution, for a particular initial dataU0, of the form

�t C '.r/.

The proof of Theorem 1.3 is rather involved and we will first state and prove a comparison

principle in the set of bounded functions for a larger class of equations (see Theorem 3.1). We do so

in order to exhibit the structure of the equation that makes the proof work. We then turn to the proof

of Theorem 1.3.

Both proofs are based on the doubling of variable method, which consists in regularizing the

sub- and super-solutions. Obviously, this is a difficulty here because one end point of the curve is

attached at the origin and the doubling of variables at the origin is not well defined. To overcome

this difficulty, we work with logarithmic coordinates x D ln r for r close to 0. But then the equation

becomes

ut D ce�x
q
1C u2x C e�2xux C e�2x uxx

1C u2x
:
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We then apply the doubling of variables in the x coordinates. There is a persistence of the difficulty,

because we have now to bound terms like

A WD ce�x
q
1C u2x � ce�y

q
1C v2y

that can blow up as x; y ! �1. We are lucky enough to be able to show roughly speaking that

A can be controlled by the doubling of variable of the term e�2xux which appears to be the main

term (in a certain sense) as x goes to �1.

In view of the study from [14], U0 has to be chosen sub-linear in Cartesian coordinates and

thus so are the sub- and super-solutions to be compared. The second difficulty arises when passing

to logarithmic coordinates for large r’s; indeed, the sub-solution and the super-solution then grow

exponentially in x D ln r at infinity and we did not manage to adapt the previous reasoning in this

setting. There is for instance a similar difficulty when dealing with the mean curvature equation.

Indeed, in this framework, for super-linear initial data, the uniqueness of the solution is not known

in full generality (see [5, 9]). In other words, the change of variables does not seem to work far from

the origin. We thus have to stick to Cartesian coordinates for large r’s (using a level-set formulation)

and see the equation in different coordinates when r is either small or large (see Section 4).

Existence theorem. In order to get an existence theorem, we have to restrict the growth of

derivatives of the initial condition. We make the following assumptions: the initial condition is

globally Lipschitz continuous and its mean curvature is bounded. We recall that the mean curvature

of a spiral parametrized by U is defined by

�U .r/ D Ur

 
2C .rUr/

2

.1C .rUr/2/
3
2

!
C rUrr

.1C .rUr/2/
3
2

:

We can now state our second main result.

THEOREM 1.5 (The general Cauchy problem) Consider U0 2 W
2;1
loc

.0;C1/. Assume that U0 is

globally Lipschitz continuous and that �U0 2 L1.0;C1/. Then there exists a unique solution U

of (1.2), (1.5) on Œ0;C1/ � .0;C1/ (in the sense of Definition 2.1) such that for all T > 0, there

exists NCT > 0 such that for all t 2 Œ0; T / and r > 0,

ˇ̌
U.t; r/ � U0.r/

ˇ̌
6 NCT : (1.8)

Moreover,U is Lipschitz continuous with respect to space and 1
2

-Hölder continuous with respect to

time. More precisely, there exists a constant C depending only on j.U0/r j1 and j�U0j1 such that

ˇ̌
U.t; r C �/ � U.t; r/

ˇ̌
6 C j�j

and ˇ̌
U.t C h; r/ � U.t; r/

ˇ̌
6 C

p
jhj: (1.9)

REMARK 1.6 Notice that Theorem 1.5 allows us to consider an initial data U0 which does not

satisfy the compatibility condition (1.3), like for instance U0 � 0 with c D 1. Notice also that we

do not know if the solution constructed in Theorem 1.5 is smooth (i.e. belongs to C1..0;C1/2/).

To get such a result, we first construct smooth solutions requiring that the compatibility

condition (1.3) is satisfied by the initial datum, like in the following result.
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THEOREM 1.7 (Existence and uniqueness of smooth solutions for the Cauchy problem) Assume

that U0 2 W 2;1
loc

.0;C1/ with

.U0/r 2 W 1;1.0;C1/ or �U0 2 L1.0;C1/

and that it satisfies the following compatibility condition for some r0 > 0:

jc C �U0 j 6 Cr for 0 6 r 6 r0: (1.10)

Then there exists a unique continuous function:U W Œ0;C1/�Œ0;C1/ which is C1 in .0;C1/�
.0;C1/, which satisfies (1.2), (1.5) (in the sense of Definition 2.1), and such that there exists
NC > 0 such that ˇ̌

U.t; r C �/ � U.t; r/
ˇ̌

6 NC j�j
and ˇ̌

U.t C h; r/ � U.t; r/
ˇ̌

6 NC jhj: (1.11)

REMARK 1.8 Condition (1.10) allows us also to improve the Hölder estimate (1.9) and to replace

it by the Lipschitz estimate (1.11). With the help of this Lipschitz estimate (1.11), we can conclude

that the solution constructed in Theorem 1.7 is smooth. Notice also that our space-time Lipschitz

estimates on the solution allow us to conclude that U.t; �/ satisfies (1.10) with the constant C

replaced by some possible higher constant. This implies in particular that U.t; �/ satisfies the

compatibility condition (1.3) for all time t > 0.

Open questions.

A. Weaker conditions on the initial data

It would be interesting to investigate the existence/non-existence and uniqueness/non-

uniqueness of solutions when we allow the initial data U0 to be less than globally Lipschitz.

For instance what happens when the initial data describes an infinite spiral close to the origin

r D 0, with either U0.0
C/ D C1 or U0.0

C/ D �1? On the other hand, what happens if the

growth of U0 is super-linear as r goes to C1?

B. More general shapes than spiral

One of our main limitation to study only the evolution of spirals in this paper is that we were

not able to prove a comparison principle in the case of the general level-set equation (1.6). The

difficulty is the fact that the gradient of the level-set function Qu may degenerate exactly at the

origin where the curve is attached. The fact that a spiral-like solution is a graph � D �U.t; r/
prevents the vanishing of the gradient of Qu at the origin r D 0. If now we consider more general

curves attached at the origin, it would be interesting to study the existence and uniqueness/non-

uniqueness of solutions with general initial data, like the curves on Figure 2.

EXAMPLE 1.9 Note that the uniqueness is not true in general for evolution law such as (1.1). For

example, we can consider as initial data a curve formed by a circle tangent to a V -shape curve, see

Figure 3(a). The V -shape curve can be a traveling curve solution in dimension 2, like Theorem 1.2

in [24] (for N D 2 and ��.x/ D �jxj cot˛). For this initial data, there is at least two evolutions.

For the first solution, the circle will not move and the V -shape curve propagates to the right (see

Figure 3(b)). For the second solution, we can apply a variant of Theorem 1.5 (allowing less regular

initial data) to both parts (upper part and lower part) of the initial curve and get the evolution given

by Figure 3(b0) which are two graphs � D ˙U.t; r/. This shows that the uniqueness in Theorem
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FIG. 2. Examples of non spiral initial data

(a) (b) (b0)

FIG. 3. Different evolutions for non spiral initial data

1.5 comes from the fact that we force the curve to stay a graph (in the coordinates � as a function of

the radius r).

Organization of the article. In Section 2, we recall the definition of viscosity solutions for the

quasi-linear evolution equation of interest in this paper. The change of variables that will be used

in the proof of the comparison principle is also introduced. In Section 3, we give the proof of

Theorem 1.3 in the case of bounded solutions. The proof in the general case is given in Section 4.

In Section 5, a classical solution is constructed under an additional compatibility condition on

the initial datum (see Theorem 1.7). First, we construct a viscosity solution by Perron’s method

(Subsection 5.1); second, we derive gradient estimates (Subsection 5.2); third, we explain how to

prove that the viscosity solution is in fact a classical one (Subsection 5.3). The construction of the

solution without compatibility assumption (Theorem 1.5) is made in Section 6. Finally, proofs of

technical lemmas are gathered in Appendix A.

Notation. If a is a real number, aC denotes max.0; a/ and a� denotes max.0;�a/ If p D
.p1; p2/ 2 R2, p ¤ 0, then Op denotes p=jpj and p? denotes .�p2; p1/.

2. Preliminaries

2.1 Viscosity solutions for the main equation

In view of (1.2), it is convenient to introduce the following notation

NF .r; q; Y / D c
p
1C r2q2 C q

�
2C r2q2

1C r2q2

�
C rY

1C r2q2
: (2.12)

We first recall the notion of viscosity solution for an equation such as (1.2).
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DEFINITION 2.1 (Viscosity solutions for (1.2), (1.5))

Let T 2 .0;C1�. A lower semi-continuous (resp. upper semi-continuous) function U W Œ0; T / �
.0;C1/ ! R is a (viscosity) super-solution (resp. sub-solution) of (1.2), (1.5) on Œ0; T /�.0;C1/

if for any C 2 test function � such that U � � reaches a local minimum (resp. maximum) at .t; r/ 2
Œ0; T / � .0;C1/, we have

(i) If t > 0:

r�t > NF .r; �r ; �rr /
�
resp. r�t 6 NF .r; �r ; �rr /

�
:

(ii) If t D 0:

U.0; r/ > U0.r/
�
resp: u.0; r/ 6 U0.r/

�
:

A continuous function U W Œ0; T / � .0;C1/ ! R is a (viscosity) solution of (1.2), (1.5) on

Œ0; T / � .0;C1/ if it is both a super-solution and a sub-solution.

REMARK 2.2 We do not impose any condition at r D 0; in other words, it is not necessary to

impose a condition on the whole parabolic boundary of the domain. This is due to the “singularity”

of our equation at r D 0.

Since we only deal with this weak notion of solution, (sub-/super-)solutions will always refer to

(sub-/super-)solutions in the viscosity sense.

When constructing solutions by Perron’s method, it is necessary to use the following classical

discontinuous stability result. The reader is referred to [8] for a proof.

PROPOSITION 2.3 (Discontinuous stability) Consider a family .U˛/˛2A of sub-solutions of (1.2),

(1.5) which is uniformly bounded from above. Then the upper semi-continuous envelope of

sup˛2A U˛ is a sub-solution of (1.2), (1.5).

2.2 A change of unknown function

We will make use of the following change of unknown function: u.t; x/ D U.t; r/ with x D ln r

satisfies for all t > 0 and x 2 R

ut D ce�x
q
1C u2x C e�2xux C e�2x uxx

1C u2x
(2.13)

submitted to the initial condition: for all x 2 R,

u.0; x/ D u0.x/; (2.14)

where u0.x/ D U0.e
x/. Eq. (2.13) can be rewritten ut D F.x; ux ; uxx/ with

F.x; p;X/ D ce�xp1C p2 C e�2xp C e�2x X

1C p2
: (2.15)

Remark that functions F and NF are related by the following formula

F.x; ux ; uxx/ D 1

r
NF .r; Ur ; Urr/ : (2.16)

Since the function ln is increasing and maps .0;C1/ onto R, we have the following elementary

lemma which will be used repeatedly throughout the paper.
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LEMMA 2.4 (Change of variables) A function U is a solution of (1.2), (1.5) if and only if the

corresponding function u is a solution of (2.13)-(2.14) with u0.x/ D U0.e
x/.

The reader is referred to [10] (for instance) for a proof of such a result. When proving the

comparison principle in the general case, we will also have to use Cartesian coordinates. From a

technical point of view, the following lemma is needed.

LEMMA 2.5 (Coming back to the Cartesian coordinates) We consider a sub-solution u (resp. super-

solution v) of (2.13)-(2.14) and we define the function Qu (resp. Qv) W .0;C1/ � R2 ! R by

Qu.t; X/ D �.X/C u
�
t; x.X/

�
(resp. Qv.t; Y / D �.Y /C u

�
t; x.Y /

�
)

where .�.Z/; x.Z// is defined such that Z D ex.Z/Ci�.Z/ ¤ 0. Then Qu (resp. Qv) is sub-solution

(resp. super-solution) of 8
ˆ̂<
ˆ̂:

wt D cjDwj C Dw?

jDwj �D2w
Dw?

jDwj

w.0; x/ D �.X/C U0
�
x.X/

�
:

(2.17)

REMARK 2.6 In Lemma 2.5, for Z 6D 0, the angle �.Z/ is only defined modulo 2� , but is locally

uniquely defined by continuity. Then D�;D2� are always uniquely defined.

3. A comparison principle for bounded solutions

As explained in the introduction, we first prove a comparison principle for (1.2) in the class of

bounded weak (viscosity) solutions. In comparison with classical comparison results for geometric

equations (see for instance [8, 12, 16, 30]), the difficulty is to handle the singularity at the origin

(r D 0).

In order to clarify why a comparison principle holds true for such a singular equation, we

consider the following generalized case

Ut D
Nb.Ur ; rUr /

r
C �2.rUr/Urr (3.18)

which can be written, with x D ln r ,

ut D e�xb.e�xux; ux/C e�2x�2.ux/uxx (3.19)

where b.q; p/ D Nb.q; p/ � �2.p/q.

Assumption on .b; �/.

� � 2 W 1;1.R/;
� There exists ı1; ı2; ı3; ı4 > 0 such that

– for all q 2 R and p1; p2 2 R,

jb.q; p1/ � b.q; p2/j 6 ı1jp1 � p2jI

– for all p 2 R and q1 6 q2,

ı2.q2 � q1/ 6 b.q2; p/ � b.q1; p/I
jb.q1; p/ � b.q2; p/j 6 ı3jq1 � q2jI
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– for all p 2 R

jb.0; p/j 6 ı4
p
1C jpj2

– we have k�k21 < 2ı2.

In our special case, �.p/ D .1 C p2/�
1
2 and b.q; p/ D c

p
1C p2 C q, and the assumption on

.b; �/ is satisfied.

THEOREM 3.1 (Comparison principle for (3.19)–(2.14)) Assume that u0 W R ! R is Lipschitz

continuous. Consider a bounded sub-solution u and a bounded super-solution v of (3.19), (2.14) in

the sense of Definition 2.1 with F given by the right hand side of (3.19). Then u 6 v in R � R.

REMARK 3.2 For radial solutions of the heat equation ut D �u on Rnn f0g, we get b.q; p/ D
.n� 1/q and �.p/ D 1. Therefore the assumption on .b; �/ is satisfied if and only if 1 < 2.n� 2/.
Notice that in particular for n D 2 this assumption is not satisfied.

Proof of Theorem 3.1. We classically fix T > 0 and argue by contradiction by assuming that

M D sup
0<t<T;x2R

�
u.t; x/ � v.t; x/

�
> 0:

LEMMA 3.3 (Penalization) For ˛; "; � > 0 small enough, and any K > 0, the supremum

M";˛ D sup
0<t<T;x;y2R

(
u.t; x/ � v.t; y/ � eKt

.x � y/2
2"

� �

T � t
� ˛x

2

2

)

is attained at .t; x; y/ with t > 0, M";˛ > M=3 > 0, jx � yj 6 C0
p
" and ˛jxj 6 C0

p
˛ for some

C0 > 0 only depending on kuk1 and kvk1.

Proof of Lemma 3.3. The fact that M > 0 means that there exist t� > 0 and x� 2 R such that

u.t�; x�/ � v.t�; x�/ > M=2 > 0:

Since u and v are bounded functions,M";˛ is attained at a point .t; x; y/. By optimality of .t; x; y/,

we have in particular

u.t; x/ � v.t; y/ � eKt
.x � y/2
2"

� �

T � t
� ˛x

2

2

> u.t�; x�/ � v.t�; x�/ � �

T � t�
� ˛

.x�/2

2
> M=3

for ˛ and � small enough (only depending on M ). In particular,

.x � y/2

2"
C ˛

x2

2
6 kuk1 C kvk1 :

Hence, there exists a constant C0 only depending on kuk1 and kvk1 such that

jx � yj 6 C0
p
" and ˛jxj 6 C0

p
˛ : (3.20)

Assume that t D 0. In this case, we use the fact that u0 is Lipschitz continuous and (3.20) in order

to get
M

3
6 u0.x/ � u0.y/ 6 kDu0k1jx � yj 6 C0kDu0k1

p
"
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which is absurd for " small enough (depending only on M;C0 and kDu0k1). Hence t > 0 and the

proof of the lemma is complete.

In the remaining of the proof, " is fixed (even if we will choose it small enough) and ˛ goes to

0 (even if it is not necessary to pass to the limit). In view of the previous discussion, we can assume

that, for " small enough, we have t > 0 for all ˛ > 0 small enough (independent on "). We thus

can write two viscosity inequalities. It is then classical to use Jensen-Ishii’s Lemma and combine

viscosity inequalities in order to get the following result.

LEMMA 3.4 (Consequence of viscosity inequalities)

�

.T � t/2 CKeKt
.x � y/2

2"
6 e�xb.e�x.p C ˛x/; p C ˛x/ � e�yb.e�yp; p/

C e�2xk�k21˛ C eKt

"
.e�x�.p C ˛x/ � e�y�.p//2 (3.21)

where p D eKt .x�y/
"

.

Proof of Lemma 3.4. Jensen-Ishii ’s Lemma [10] implies that for all 
1 > 0, there exist four real

numbers a; b; A;B such that

a 6 e�xb.e�x.p C ˛x/; p C ˛x/C e�2x�2.p C ˛x/.AC ˛/ (3.22)

b > e�yb.e�yp; p/C e�2y�2.p/B (3.23)

Moreover a; b satisfy the following inequality

a � b >
�

.T � t/2
CKeKt

.x � y/2
2"

(3.24)

(it is in fact an equality) and for any 
1 > 0 small enough, there exist two real numbers A;B

satisfying the following matrix inequality

�
A 0

0 �B

�
6
eKt

"
.1C 
1/

�
1 �1

�1 1

�
:

This matrix inequality implies

A�21 6 B�22 C eKt

"
.1C 
1/.�1 � �2/

2 (3.25)

for all �1; �2 2 R. Use this inequality with �1 D e�x�.p C ˛x/ and �2 D e�y�.p/ and let 
1 ! 0

in order to get the desired inequality.

We can next make appear which error terms depend on ˛ and which ones depend on ". For all


2 > 0,

�

T 2
CKeKt

.x � y/2

2"
6 T˛ C T" (3.26)
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where

T˛ D e�xb.e�x.p C ˛x/; p C ˛x/ � e�xb.e�xp; p/

C k�k21e�2x˛ C .1C 
�1
2 /

eKt�2x

"
k� 0k21.˛x/2

and T" D T 1" C T 2" with

T 1" D e�xb.e�xp; p/ � e�yb.e�yp; p/ and T 2" D .1C 
2/k�k21
eKt�2x

"
.1 � ex�y/2:

We next estimate T".

LEMMA 3.5 (Estimate for T") For all 
3 > 0,

T" 6
�
.C � 2ı2/e

�2x C 
3
�
eKt

.x � y/2
"

C 
3" (3.27)

where C D ı2
4

4
3
C .1C 
2/k�k21 C o".1/.

Proof. Through a Taylor expansion, we obtain

T 1" D � e�y� b.e�y�p; p/.x � y/ � e�2y� @qb.e
�y�p; p/p.x � y/

6 � "e�Ktb.e�y�p; p/e�y�p � ı2eKt�2y�
.x � y/2

"

where y� D �y C .1 � �/x for some � 2 Œ0; 1�, and we have used the fact that for all q 2 R,

q
�
b.q; p/ � b.0; p/

�
> ı2q

2:

We get for any 
3 > 0

T 1" 6ı4e
�y� jx � yjp

"

p
"
p
1C p2 � 2ı2e

Kt�2y� .x � y/2

"

6
ı24
4
3

.1C o".1//e
Kt�2x .x � y/2

"
C e�Kt
3"C 
3e

Kt .x � y/2
"

� 2ı2.1C o".1//e
Kt�2x .x � y/2

"
;

where we have used that y� D x C o".1/. Now, since y D x CO.
p
"/, we also have

T 2" D .1C 
2/
�
1C o".1/

�
k�k21

eKt�2x

"
.x � y/2

and we can conclude.

Combining (3.26) and (3.27) finally yields

�

T 2
C
�
K

2
� 
3 C .2ı2 � C/e�2x

�
eKt

.x � y/2

"
6 T˛ C 
3":
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It suffices now to choose 
i , i D 1; 2; 3, such that C 6 2ı2 and then choose K D 2
3 and " small

enough to get: �

2T 2
6 T˛.

The following lemma permits to estimate T˛.

LEMMA 3.6 (Estimate for T˛) For D > 0 large enough, we have

T˛

D
6 e�2x.�˛x� C ˛xC/C e�xj˛xj C e�2x˛ C eKt�2x

p
˛

"
j˛xj: (3.28)

Proof. Using assumptions on b immediately yields

T˛ 6 e�2x.�ı2˛x� C ı3˛xC/C ı1e
�xj˛xj C k�k21e�2x˛C .1C 
�1

2 /
eKt�2x

p
˛

"
k� 0k21C0j˛xj

where we used that j˛xj 6 C0
p
˛.

We next consider a > 0 such that for all x 6 �a, we have

�jxje�2x C 2jxje�x C e�2x
6 0:

We now distinguish cases.

Case 1: xn 6 �a for some ˛n ! 0. We choose n large enough so that eKt
p
˛n
"

6 1 and we get

�

2T 2
6 D˛.�jxje�2x C 2jxje�x C e�2x/ 6 0

which implies � 6 0. Contradiction.

Case 2: x > �a for all ˛ small enough. We use (3.20) and get

�

2T 2
6 De2a.2˛jxj C ˛ C eKt

p
˛

"
j˛xj/ 6 D.2C0

p
˛ C ˛ C eKt

C0˛

"
/

and we let ˛ ! 0 to get � 6 0 in this case too. The proof is now complete.

4. Comparison principle for sub-linear solutions

Proof of Theorem 1.3. Thanks to the change of unknown function described in Subsection 2.2, we

can consider the functions u and v defined on .0;C1/ � R which are sub- and super-solutions of

(2.13). We can either prove that U 6 V in .0;C1/ � .0;C1/ or that u 6 v in .0;C1/ � R.

For � 2 R, we define

Nu.t; x; �/ D � C u.t; x/ and Nv.t; x; �/ D � C v.t; x/:

Note that Nu and Nv are respectively sub and super-solution of

Wt .t; x; �/ D ce�x jDW j C e�2xDW � e1 C e�2xDW
?

jDW j �D2W
DW ?

jDW j : (4.29)

We fix T > 0 and we argue by contradiction by assuming that

M D sup
t2Œ0;T �;x;�2R

˚
Nu.t; x; �/ � Nv.t; x; �/

	
> 0:

In order to use the doubling variable technique, we need a smooth interpolation function 	 between

polar coordinates for small r’s and Cartesian coordinates for large r’s. Precisely, we choose 	 as

follows.
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LEMMA 4.1 (Interpolation between logarithmic and Cartesian coordinates) There exists a smooth

(C1) function  W R2 7! R3 such that

8
<
:

 .x; � C 2�/ D  .x; �/

 .x; �/ D .x; ei� / if x 6 0

 .x; �/ D .0; exei�/ if x > 1

(4.30)

and such that there exists two constants ı0 > 0 andm > 0 such that for x 6 1 and � 2 R,

if  .x; �/ D .a; b/ then jbj 6 e (4.31)

and such that for all x; y; �; � , if j .x; �/ �  .y; �/j 6 ı0 and j� � � j 6
�
2

, then

j .x; �/ �  .y; �/j > m j.x; �/ � .y; �/j; (4.32)ˇ̌
ˇD .x; �/T ˇ . .x; �/ �  .y; �//

ˇ̌
ˇ > m j.x; �/ � .y; �/j (4.33)

where ˇ is the tensor contraction defined for a p-tensor A D .Ai1;:::;ip/ and a q-tensor B D
.Bj1;:::;jq / by

.Aˇ B/i1;:::;ip�1;j2;:::;jq D
X

k

Ai1;:::;ip�1;kBk;j2;:::;jq :

The proof of this lemma is given in Appendix A.

Penalization. We consider the following approximation of M

M";˛ D sup
t2Œ0;T �;x;�;y;�2R

�
Nu.t; x; �/ � Nv.t; y; �/

� eKt
j .x; �/ �  .y; �/j2

2"
� 1

"

�
j� � � j � �

3

�2
C

� ˛

2
j .x; �/j2 � �

T � t

�
(4.34)

where "; ˛; � are small parameters andK > 0 is a large constant to be fixed later. For ˛ and � small

enough we remark that M";˛ >
M
2
> 0. In order to prove that the maximum M";˛ is attained, we

need the following lemma whose proof is postponed until Appendix A.

LEMMA 4.2 (A priori estimates) There exists a constant C2 > 0 such that the following estimate

holds true for any x; y; �; � 2 R

ˇ̌
u0.x/ � u0.y/

ˇ̌
6 C2 C eKt

j .x; �/ �  .y; �/j2
4"

j� � � j 6 C2 C 1

2"

�
j� � � j � �

3

�2
C
:
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Using this lemma, we then deduce that

Nu.t; x; �/ � Nv.t; y; �/ � eKt j .x; �/ �  .y; �/j2
2"

� 1

"

�
j� � � j � �

3

�2
C

6 u.t; x/ � u0.x/ � v.t; y/C u0.y/C j� � � j C ju0.x/ � u0.y/j

� eKt
j .x; �/ �  .y; �/j2

2"
� 1

"

�
j� � � j � �

3

�2
C

6 2C1 C 2C2 � eKt
j .x; �/ �  .y; �/j2

4"
� 1

2"

�
j� � � j � �

3

�2
C
: (4.35)

Using the 2�-periodicity of  , the maximum is achieved for � 2 Œ0; 2��. Then, using the previous

estimate and the fact that �˛. .x; �//2 ! �1 as jxj ! 1, we deduce that the maximum is

reached at some point that we still denote .t; x; �; y; �/.

Penalization estimates. Using Estimate (4.35) and the fact that M";˛ > 0, we deduce that there

exists a constant C0 D 4.C1 C C2/ such that

˛. .x; �//2 C 1

"

�
j� � � j � �

3

�2
C

C eKt
j .x; �/ �  .y; �/j2

2"
6 C0: (4.36)

On the one hand, an immediate consequence of this estimate is that

j� � � j 6
�

2

for " small enough. On the other hand, we deduce from (4.36) and (4.32)

m 
j� � � j2 C jx � yj2

2"
6 C0:

Hence, we have j� � � j 6
�
4

for " small enough so that the constraint j� � � j 6
�
3

is not saturated.

We can also choose " small enough so that

jx � yj 6
1

2
:

In the sequel of the proof, we will also need a better estimate on the term ˛. .x//2; precisely, we

need to know that ˛. .x//2 ! 0 as ˛ ! 0. Even if such a result is classical (see [10]), we give

details for the reader’s convenience. To prove this, we introduce

M";0 D sup
t2Œ0;T �;x;�;y;�2R

�
Nu.t; x; �/ � Nv.t; y; �/ � eKt

j .x; �/ �  .y; �/j2
2"

� 1

"

�
j� � � j � �

3

�2
C

� �

T � t

�

which is finite thanks to (4.35).

We remark that M";˛ 6 M";0 and that M";˛ is non-decreasing when ˛ decreases to zero. We

then deduce that there exists L such that M";˛ ! L as ˛ ! 0. A simple computation then gives

that
˛

4
. .x; �//2 6 M";˛2

�M";˛ ! 0 as ˛ ! 0
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and then
˛

2
. .x; �//2 ! 0 as ˛ ! 0: (4.37)

Initial condition. We now prove the following lemma.

LEMMA 4.3 (Avoiding t D 0) For " small enough, we have t > 0 for all ˛ > 0 small enough.

Proof. We argue by contradiction. Assume that t D 0. We then distinguish two cases.

If the corresponding x and y are small (x 6 2 and y 6 2) then, since u0 is Lipschitz continuous

and (4.32) holds true, there exists a constant L0 > 0 such that

0 <
M

2
6 M";˛ 6 Nu.0; x; �/ � Nv.0; y; �/ � j .x; �/ �  .y; �/j2

2"

6L0j.x; �/ � .y; �/j �m 
j.x; �/ � .y; �/j2

2"

6
L20
2m 

"

which is absurd for " small enough.

The other case corresponds to large x and y (x > 1 and y > 1). In this case, since U0 is

Lipschitz continuous, we know that there exists a constant L1 > 0 such that

0 6
M

2
6 M";˛ 6 j Nu.0; x; �/ � Nv.0; y; �/j 6 j� � � j C L1jex � ey j:

Using the fact

j� � � j CL1jex � ey j 6

�
1

m 
C L1

�
j .x; �/ �  .y; �/j 6

�
1

m 
C L1

�p
2C0

p
"

we get a contradiction for " small enough.

Thanks to Lemma 4.3, we will now write two viscosity inequalities, combine them and exhibit

a contradiction. We recall that we have to distinguish cases in order to determine properly in which

coordinates viscosity inequalities must be written (see the Introduction).

Case 1: There exists ˛n ! 0 such that x >
3
2

and y >
3
2

. We set X D exCi� and Y D
eyCi� . Consider Qu and Qv defined in Lemma 2.5. Remark that, even if �.X/ is defined modulo 2� ,

the quantity �.X/ � �.Y / is well defined (for jX j; jY j > e and jX � Y j 6
1
2

) and thus so is

Qu.t; X/ � Qv.t; Y /. Recall also that Qu; Qv are respectively sub and super-solutions of the following

equation

wt D cjDwj C bDw? �D2wbDw?:

Moreover, using the explicit form of  , we get that

M";˛ D sup

t2Œ0;T �;X;Y2R
2nB1.0/

�
Qu.t; X/ � Qv.t; Y / � eKt

2"
jX � Y j2 � ˛

2
jX j2 � �

T � t

�
:
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Moreover, �jDX Quj 6 � 1
jX j (in the viscosity sense). We set

p D X � Y

"
eKt

in order to get two real numbers a; b and two 2 � 2 real matrices A;B such that such that

a 6 cjp C ˛X j C .p C ˛X/?

jp C ˛X j � .AC ˛I/
.p C ˛X/?

jp C ˛X j ;

b > cjpj C p?

jpj � B p
?

jpj :

Moreover, p satisfies the following estimate

jp C ˛X j >
1

jX j ; jpj >
1

jY j ; (4.38)

a; b satisfy the following equality

a � b D �

.T � t/2 CKeKt
jX � Y j2

2"

and A;B satisfy the following matrix inequality

�
A 0

0 �B

�
6
2eKt

"

�
I �I

�I I

�
:

This matrix inequality implies

�1 � A�1 6 �2 � B�2 C 2eKt

"
j�1 � �2j2 (4.39)

for all �1; �2 2 R2. Subtracting the two viscosity inequalities, we then get

�

T 2
6 cjp C ˛X j � cjpj C ˛ C .p C ˛X/?

jp C ˛X j �A.p C ˛X/?

jp C ˛X j � p?

jpj � B p
?

jpj

6 ˛jcjjX j C ˛ C 2eKt

"






p C ˛X

jp C ˛X j � p

jpj






2

6 jcj
p
C0

p
˛ C ˛ C 2eKt

"

0
@2







˛X
1

jX j








2

C 2






˛X

jp C ˛X j






2
1
A

6 jcj
p
C0

p
˛ C ˛ C 8eKt

"

�
˛jX j2

�2

where we have used successively (4.39), (4.36) and (4.38). Recalling, by (4.37) that ˛jX j2 D o˛.1/,

we get a contradiction for ˛ small enough.
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Case 2: There exists ˛n ! 0 such that x 6 �1
2

and y 6 �1
2

. Using the explicit form of  and the

fact that Nu.t; x; �/ D � C u.t; x/ and Nv.t; y; �/ D � C v.t; y/ with u and v respectively sub and

super-solution of (2.13), we remark that

M";˛ D sup
t 0;x0;y0

n
u.t 0; x0/�v.t 0; y0/�eKt 0 j .x0; �/ �  .y0; �/j2

2"
� ˛

2
jx0j2� �

T � t 0 C� �� � ˛

2

o
:

Moreover, the maximum is reached at .t; x; y/, where we recall that .t; x; �; y; �/ is the point of

maximum in (4.34). Using the Jensen-Ishii Lemma [10], we then deduce the existence, for all 
1 >

0, of four real numbers a; b; A;B such that

a 6 ce�xp1C .p C ˛x/2 C e�2x.p C ˛x/C e�2x AC ˛

1C .p C ˛x/2
;

b > ce�yp1C p2 C e�2yp C e�2y B

1C p2
;

where

p D x � y
"

eKt :

These inequalities are exactly (3.22) and (3.23). Moreover a; b satisfy the following inequality

a � b D �

.T � t/2
CKeKt

ˇ̌
 .x; �/ �  .y; �/

ˇ̌2

2"
>

�

.T � t/2
CKeKt

jx � yj2
2"

;

and we obtain (3.24). Moreover,A;B satisfy the following matrix inequality

�
A 0

0 �B

�
6
eKt

"
.1C 
1/

�
1 �1

�1 1

�

which implies (3.25). On the one hand, from (3.22), (3.23), (3.24) and (3.25), we can derive (3.21).

On the other hand, (4.36), the fact that x 6 0, y 6 0 and Lemma 4.1 imply (3.20) (with a different

constant). We thus can apply Lemmas 3.5, 3.6 and deduce the desired contradiction.

Case 3: There exists ˛n ! 0 such that �1 6 x; y 6 2. Since  2 C1, there then existsM > 0

(only depending on the function  ) such that for all x 2 Œ�1; 2� and � 2 Œ��; 3��,
ˇ̌
 .x; �/

ˇ̌
C
ˇ̌
D .x; �/

ˇ̌
C
ˇ̌
D2 .x; �/

ˇ̌
C
ˇ̌
D3 .x; �/

ˇ̌
6 M : (4.40)

For simplicity of notation, we denote .x; �/ by Nx and .y; �/ by Ny. We next define

p Nx D eKt

"
D . Nx/T ˇ

�
 . Nx/ �  . Ny/

�
and p Ny D eKt

"
D . Ny/T ˇ

�
 . Nx/ �  . Ny/

�
:

We have p Nx; p Ny 2 R2 and we set .e1; e2/ a basis of R2.

LEMMA 4.4 (Combining viscosity inequalities for ˛ D 0) We have for ˛ D 0

�

T 2
CKm2 e

Kt j Nx � Nyj2
2"

6 ce�x jp Nxj � ce�y jp Ny j C e�2xp Nx � e1 � e�2yp Ny � e1 C 2eKt

"
.I 1 C I 2/ (4.41)
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where

I 1 D . . Nx/ �  . Ny//ˇ
�
D2 . Nx/e�xcp?

Nx � e�xcp?
Nx �D2 . Ny/e�ycp?

Ny � e�ycp?
y

�
;

I 2 D
ˇ̌
ˇD . Nx/e�xcp?

Nx �D . Ny/e�ycp?
Ny

ˇ̌
ˇ
2

:

Proof. Recall that Nu and Nv are respectively sub and super-solution of (4.29) and use the Jensen–Ishii

Lemma [10] in order to deduce that there exist two real numbers a; b and two 2 � 2 real matrices

A;B such that

a 6 ce�x j Qp Nxj C e�2x Qp Nx � e1

C e�2x Qp?
Nx

j Qp Nxj �
�
AC ˛. . Nx/ˇD2 . Nx/CD . Nx/T ˇD . Nx//

� Qp?
Nx

j Qp Nxj ;

b > ce�y jp Ny j C e�2yp Ny � e1 C e�2y p
?
Ny

jp Ny j � B
p?

Ny
jp Ny j ;

where

Qp Nx D p Nx C ˛D . Nx/T ˇ  . Nx/:

Remark that , since D� Nu D D� Nv D 1, there exists ı0 > 0 such that

Qp Nx > ı0 > 0 and p Ny > ı0 > 0:

Moreover a; b satisfy the following equality

a � b D �

.T � t/2
CKeKt

j . Nx/ �  . Ny/j2
2"

and A;B satisfy the following matrix inequality

�
A 0

0 �B

�
6
2eKt

"

� � �
 . Nx/ �  . Ny/

�
ˇD2 . Nx/ 0

0 �
�
 . Nx/ �  . Ny/

�
ˇD2 . Ny/

�

C
�

D . Nx/T ˇD . Nx/ �D . Ny/T ˇD . Nx/
�D . Ny/T ˇD . Nx/ D . Ny/T ˇD . Ny/

� �
:

This implies

A� � � 6 B� � � C 2eKt

"

��
 . Nx/ �  . Ny/

�
ˇD2 . Nx/� � � �

�
 . Nx/ �  . Ny/

�
ˇD2 . Ny/� � �

C jD . Nx/� �D . Ny/�j2
�

for all �; � 2 R2. Combining the two viscosity inequalities and using the fact that j . Nx/� . Ny/j >
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m j Nx � Nyj, we obtain

�

T 2
CKm2 e

Kt j Nx � Nyj2
2"

6 ce�x j Qp Nxj � ce�y jp Nyj C e�2x Qp Nx � e1 � e�2yp Ny � e1

C ˛e�2x :cQp?
Nx
�
 . Nx/ˇD2 . Nx/CD . Nx/TD . Nx/

� cQp?
Nx

C 2eKt

"
. QI 1 C QI 2/

where QI 1 and QI 2 are defined respectively as I 1 and I 2 with p Nx replaced by Qp Nx . Remarking that

there exists a constant C > 0 such that

ce�x j Qp Nxj C e�2x Qp Nx � e1 C
ˇ̌
ˇ̌
ˇ˛e

�2x Qp?
Nx

j Qp Nxj
�
 . Nx/ˇD2 . Nx/CD . Nx/TD . Nx/

� Qp?
Nx

j Qp Nxj

ˇ̌
ˇ̌
ˇ

6 ce�x jp Nxj C e�2xp Nx � e1 C C˛
�
jD2 . Nx/j2 C jD . Nx/j2 C j . Nx/j2

�

6 ce�x jp Nxj C e�2xp Nx � e1 C 3M 2
 C˛

and

j QI1 � I 1j C j QI 2 � I 2j 6 C
ˇ̌
ˇcQp?

Nx � cp?
Nx

ˇ̌
ˇ

6 C

ˇ̌
ˇ̌ Qp Nx � p Nx

j Qp Nxj

ˇ̌
ˇ̌C jp Nxj

ˇ̌
ˇ̌ 1
j Qp Nxj � 1

jp Nxj

ˇ̌
ˇ̌

6 C

ˇ̌
ˇ̌ Qp Nx � p Nx

ı0

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ jp Nxj � j Qp Nxj

ı0

ˇ̌
ˇ̌

6 2C

ˇ̌
ˇ̌ Qp Nx � p Nx

ı0

ˇ̌
ˇ̌

6
2C 2˛

ı0

and sending ˛ ! 0 (recall that Nx; Ny lie in a compact domain), we get (4.41).

LEMMA 4.5 (Estimate on I1) There exists a constant C 1 such that

jI 1j 6 C 1jx � yj2: (4.42)

Proof. In order to prove (4.42), we write

jI 1j
j . Nx/ �  . Ny//j 6

ˇ̌�
D2 . Nx/ �D2 . Ny/

�
e�xcp?

Nx � e�xcp?
Nx
ˇ̌

C
ˇ̌
D2 . Ny/.e�x � e�y/cp?

Nx � e�xcp?
Nx
ˇ̌

C
ˇ̌
D2 . Ny/e�y

�c
p?

Nx � c
p?
y

�
� e�xcp?

Nx
ˇ̌

C
ˇ̌
D2 . Ny/e�ycp?

y � .e�x � e�y/cp?
Nx
ˇ̌

C
ˇ̌
D2 . Ny/e�ycp?

Ny � e�y
�cp?

Nx � cp?
y

� ˇ̌
:
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Thanks to (4.40) and max.jxj; jyj/ 6 2, we have

jD2 . Nx/ �D2 . Ny/j 6 M j Nx � Nyj;
je�x � e�y j 6 e2j Nx � Nyj:

We also have the following important estimate

ˇ̌
ˇcp?

Nx � cp?
Ny

ˇ̌
ˇ 6

ˇ̌
ˇ̌p Nx � p Ny

jp Nxj

ˇ̌
ˇ̌C jp Nyj

ˇ̌
ˇ̌ 1
jp Nxj � 1

jp Ny j

ˇ̌
ˇ̌

6

ˇ̌
ˇ̌p Nx � p Ny

jp Nxj

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ jp Nyj � jp Nxj

jp Nxj

ˇ̌
ˇ̌

6 2

ˇ̌
ˇ̌p Nx � p Ny

jp Nxj

ˇ̌
ˇ̌

6 2

eKt

"
jD . Nx/ �D . Ny/jj . Nx/ �  . Ny/j

eKt

"
m j Nx � Nyj

6
2M 2

 

m 
j Nx � Nyj

where we have used the fact that jp Nxj >
eKt

"
m j Nx � Nyj (see (4.33)). This finally gives that there

exists a constant C 1 (depending on m andM ) such that (4.42) holds true.

Using the fact that jp Nxj; jp Ny j 6 C eKt

"
j Nx � Nyj, we can prove in a similar way the following

lemma.

LEMMA 4.6 (Remaining estimates) There exist three positive constants C 2; C 3 and C 4 such that

jI 2j 6 C 2j Nx � Nyj2;

ce�x jp Nxj � ce�y jp Ny j 6 C 3
eKt

"
j Nx � Nyj2;

e�2xp Nx � e1 � e�2yp Ny � e1 6 C 4
eKt

"
j Nx � Nyj2:

Use now Lemmas 4.5 and 4.6 in order to derive from (4.41) the following inequality

�

T 2
CKm e

Kt j Nx � Nyj2
2"

6 C
eKt

"
j Nx � Nyj2

with C D C 1 C C 2 C C 3 C C 4. ChoosingK >
2C
m 

, we get a contradiction.

5. Construction of a classical solution

In this section, our main goal is to prove Theorem 1.7 which claims the existence and uniqueness of

classical solutions under suitable assumptions on the initial data U0. Notice that assumptions (1.10)

on the initial data imply in particular that

c C 2.U0/r.0/ D 0: (5.43)
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To prove Theorem 1.7, we first construct a unique weak (viscosity) solution. We then prove

gradient estimates from which it is not difficult to derive that the weak (viscosity) solution is in fact

smooth; in particular, it thus satisfies the equation in a classical sense.

5.1 Barriers and Perron’s method

Before constructing solutions of (1.2) submitted to the initial condition (1.5), we first construct

appropriate barrier functions.

PROPOSITION 5.1 (Barriers for the Cauchy problem) Assume that U0 2 W 2;1
loc

.0;C1/ and

.U0/r 2 W 1;1.0;C1/ or �U0 2 L1.0;C1/

with U0 such that (1.10) holds true. Then there exists a constant NC > 0 such that U˙.t; r/ D
U0.r/˙ NC t are respectively a super- and a sub-solution of (1.2), (1.5).

Proof. It is enough to prove that the following quantity is finite

NC D sup
r>0

1

r

ˇ̌
ˇ NF
�
r; .U0/r .r/; .U0/rr .r/

�ˇ̌
ˇ D max. NC1; NC2/

with

NC1 D sup
r2Œ0;r0�

ˇ̌ NF
�
r; .U0/r .r/; .U0/rr .r/

�ˇ̌

r
; NC2 D sup

r2Œr0;C1/

ˇ̌ NF
�
r; .U0/r .r/.x/; .U0/rr .r/

�ˇ̌

r
:

On the one hand, thanks to (1.10) and the Lipschitz regularity of U0, we have NC1 is finite. On the

other hand, thanks to Lipschitz regularity and .U0/r 2 W 1;1 or �U0 2 L1, NC2 is also finite. The

proof is now complete.

We now construct a viscosity solution for (1.2), (1.5); this is very classical with the results we

have in hand, namely the strong comparison principle and the existence of barriers. However, we

give a precise statement and a sketch of proof for the sake of completeness.

PROPOSITION 5.2 (Existence by Perron’s method) Assume that U0 2 C.0;C1/ and that there

exists

UC.t; r/ WD U0.r/C f .t/ .resp. U�.t; r/ WD U0.r/ � f .t/ /

for some continuous function f satisfying f .0/ D 0, which are respectively a super- and a sub-

solution of (1.2), (1.5). Then, there exists a (continuous) viscosity solution U of (1.2), (1.5) such

that (1.8) holds true for some constant NCT depending on f . Moreover U is the unique viscosity

solution of (1.2), (1.5) such that (1.8) holds true.

Proof. In view of Lemma 2.4, it is enough to construct a solution u of (2.13) satisfying (2.14) with

u0.x/ D U0.e
x/.

Consider the set

S D
˚
v W .0;C1/ � R ! R; sub-solution of .2:13/ s.t. v 6 uC	 :
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Remark that it is not empty since u� 2 S (where u˙.t; x/ D U˙.t; r/ with x D ln r). We now

consider the upper envelope u of .t; r/ 7! supv2S v.t; r/. By Proposition 2.3, it is a sub-solution

of (2.13). The following lemma derives from the general theory of viscosity solutions as presented

in [10] for instance.

LEMMA 5.3 The lower envelope u� of u is a super-solution of (2.13).

We recall that the proof of this lemma proceeds by contradiction and consists in constructing a

so-called bump function around a point where the functionu� is not a super-solution of the equation.

The contradiction comes from the maximality of u in S.

Since for all v 2 S,

u0.x/ � f .t/ 6 v 6 u0.x/C f .t/;

with f .0/ D 0 we conclude that

u0.x/ D u�.0; x/ D u.0; x/ :

If U satisfies (1.8), we use the comparison principle and get u 6 u� in .0; T / � R for all T > 0.

Since u� 6 u by construction, we deduce that u D u� is a solution of (2.13). The comparison

principle also ensures that the solution we constructed is unique. The proof of Proposition 5.2 is

now complete.

5.2 Gradient estimates

In this subsection, we derive gradient estimates for a viscosity solution U of (1.2) satisfying (1.8).

PROPOSITION 5.4 (Lipschitz estimates) Consider a globally Lipschitz continuous function U0. We

denote by L0 > 0 and L1 > 0 such that for all r > 0,

�L0 6 .U0/r .r/ 6 L1:

Let U be a viscosity solution of (1.2), (1.5) satisfying (1.8). Then U is also Lipschitz continuous in

space: 8t > 0, 8r > 0,

8
<
:

� max.1; L0/ 6 Ur.t; r/ 6 L1 if c > 0

�L0 6 Ur.t; r/ 6 max.1; L1/ if c 6 0

: (5.44)

Moreover, if U0 2 W 2;1
loc

.0;C1/ with

.U0/r 2 W 1;1.0;C1/ and �U0 2 L1.0;C1/

and (1.10) holds true, then U is NC -Lipschitz continuous with respect to t for all r > 0 where NC
denotes the constant appearing in Proposition 5.1.

Proof.

Step 1: Gradient estimates

Proving (5.44) for c > 0 is equivalent to prove that the solution u of (2.13) satisfies the following

gradient estimate: 8t > 0, 8x 2 R,

� NL0ex 6 ux.t; x/ 6 L1e
x (5.45)
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where NL0 D max.1; L0/. We will prove each inequality separately. SinceU is sublinear, there exists

Cu > 0 such that for all x 2 R

ju.t; x/j 6 Cu.1C ex/:

Eq. (5.44) is equivalent to prove

M 0 D sup
t2.0;T /;x6y2R

˚
u.t; x/C NL0ex � u.t; y/ � NL0ey

	
6 0;

M 1 D sup
t2.0;T /;x>y2R

fu.t; x/ �L1ex � u.t; y/C L1e
yg 6 0:

We first prove that M 0
6 0. We argue by contradiction by assuming that M 0 > 0 and we

exhibit a contradiction. The following supremum

M 0
˛ D sup

t2.0;T /;x6y2R

n
u.t; x/ � u.t; y/C NL0ex � NL0ey � ˛

2
x2 � ˛

2
y2 � �

T � t

o

is also positive for ˛ and � small enough.

Using the fact that, by assumption on U0,

u.t; x/ � u.t; y/C NL0ex � NL0ey

6 u.t; x/ � u0.x/C u0.x/ � u0.y/C u0.y/ � u.t; y/C NL0ex � NL0ey

6 2C1
(5.46)

and the fact that �˛
2
x2 � ˛

2
y2 ! �1 as x ! ˙1 or y ! ˙1, we deduce that the supremum is

achieved at a point .t; x; y/ such that t 2 .0; T / and x > y.

Moreover, we deduce using (5.46) and the fact that M˛ > 0, that there exists a constant C0 WD
4C1 such that x and y satisfy the following inequality

˛x2 C ˛y2 6 C0:

Thanks to Jensen–Ishii’s Lemma (see, e.g., [10]), we conclude that there exist a; b;X; Y 2 R such

that

a 6 ce�x
q
1C .� NL0ex C ˛x/2 C e�2x.� NL0ex C ˛x/C e�2x X � NL0ex C ˛

1C .� NL0ex C ˛x/2
;

b > ce�y
q
1C . NL0ey C ˛y/2 � e�2y. NL0ey C ˛y/C e�2y Y � NL0ey � ˛

1C . NL0ex C ˛y/2
;

a � b D �

.T � t/2
;

�
X 0

0 �Y

�
6 0:

Subtracting the viscosity inequalities and using the previous line yields

�

T 2
6 ce�x

q
1C . NL0ex � ˛x/2 � ce�y

q
1C . NL0ey C ˛y/2 C˛e�2x.xC 1/C˛e�2y .yC 1/

� NL0e�x C NL0e�y �
NL0e�x

1C . NL0ex � ˛x/2
C

NL0ey

1C . NL0ex C ˛y/2
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Using the fact that the functions z 7!
p
1C z2 and z 7! 1

1Cz2 are 1-Lipschitz, we deduce that

�

T 2
6 ce�x

q
1C NL20e2x � ce�y

q
1C NL20e2y C e�x˛..jcj C NL0/jxj C xe�x C e�x/

C ˛e�y�.jcj C NL0/jyj C ye�y C e�y� � NL0e�x C NL0e�y

�
NL0e�x

1C . NL0ex/2
C

NL0ey

1C . NL0ex/2
:

Remarking that the function z 7! e�z..jcj C NL0/jzj C ze�z C e�z/ is bounded from above by a

constant C3, we have
�

T 2
6 2C3˛ C g.x/ � g.y/ (5.47)

where

g.x/ D e�xc
q
1C NL20e2x � NL0e�x �

NL0e�x

1C NL20e2x
:

Case A: c > 0

We now rewrite g in the following way

g.x/ D c

q
e�2x C NL20 � NL0e�x �

NL0
ex C NL20e3x

D c2e�2x.1 � NL20/ � NL20e�2x

c

q
e�2x C NL20 C NL0e�x

�
NL0

ex C NL20e3x

D c2.1 � NL20/

c

q
e2x C NL20e4x C NL0ex

�
NL20q

e2x C NL20e4x C NL0ex
�

NL0
ex C NL20e3x

and use the fact that NL0 > 1 to deduce that g is non-decreasing. Hence, we finally get

�

T 2
6 2C3˛

which is absurd for ˛ small enough.

In order to prove that M 1
6 0, we proceed as before and we obtain (5.47) where

g.x/ D c

q
e�2x C L21 C L1e

�x C L1

ex C L21e
3x
:

Remarking that g is decreasing permits us to conclude in this case.

Case B: c 6 0

We simply notice that the equation is not changed if we change .w; c/ in .�w;�c/.

Step 2: Lipschitz in time estimates

It remains to prove that U is NC -Lipschitz continuous with respect to t under the additional

compatibility condition (1.10). To do so, we fix h > 0 and we consider the following functions:

Uh.t; r/ D U.t C h; r/ � NCh and U h.t; r/ D U.t C h; r/C NCh:
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Remark that Uh and U h satisfy (1.2). Moreover, Proposition 5.1 implies that

Uh.0; r/ 6 U0.r/ 6 U h.0; r/:

Thanks to the comparison principle, we conclude that Uh 6 U 6 U h in Œ0;C1/� .0;C1/; since

h is arbitrary, we thus conclude that U is NC -Lipschitz continuous with respect to t . The proof of

Proposition 5.4 is now complete.

5.3 Proof of Theorem 1.7

It is now easy to derive Theorem 1.7 from Propositions 5.2 and 5.4.

Proof of Theorem 1.7. Consider the viscosity solution U given by Proposition 5.2 with f .t/ D NCt
where the constant NC is given in the barrier presented in Proposition 5.1.

This function is continuous. Moreover, thanks to Proposition 5.4, Ut and Ur are bounded in the

viscosity sense; hence u is Lipschitz continuous. In particular, there exists a set QN � .0;C1/ �
.0;C1/ of null measure such that for all .t; r/ … QN , U is differentiable at .t; r/.

Thanks to the equation

Ut � a.r; Ur /Urr D f .r; Ur / for .t; r/ 2 .0;C1/ � .0;C1/ (5.48)

with

a.r; Ur / D 1

1C r2U 2r
; f .r; Ur/ D 1

r

�
c

q
1C r2U 2r C Ur

�
2C r2U 2r
1C r2U 2r

��

we also have that for all fixed t , the function x 7! Urr.t; x/ is locally bounded in the viscosity

sense (the proof is similar as [23, Proposition 4.6]). Using [4, Lemma 1, p.268], we deduce that U

is locally semi-concave and semi-convex. This implies (see for example [7, Corollary 3.3.8, p. 61])

that U is locally C 1;1 with respect to r . In particular, Ur is Lipschitz continuous and we deduce

from Alexandrov’s theorem that Ut � Urr D Qf 2 L1
loc

holds true almost everywhere, and thus in

the sense of distributions. From the standard interior estimates for parabolic equations, we get that

U 2 W
2;1Ip
loc

for any 1 < p < C1. Then from the Sobolev embedding (see Lemma 3.3 in [22]),

we get that for p > 3, and ˛ D 1 � 3=p, we have Ur 2 C ˛;˛=2
loc

.

We now use that (5.48) holds almost everywhere. Therefore we can apply the standard interior

Schauder theory (in Hölder spaces) for parabolic equations. This shows that U 2 C
2C˛;1C˛=2
loc

.

Bootstrapping, we finally get that U 2 C1
loc

, which ends the proof of the theorem.

6. Construction of a general weak (viscosity) solution

The main goal of this section is to prove Theorem 1.5. We start with general barriers, Hölder

estimates in time and finally an approximation argument.

PROPOSITION 6.1 (Barriers for the Cauchy problem without the Compatibility Condition) LetU0 2
W
2;1
loc

.0;C1/ be such that there exists C0 such that

j.U0/r j 6 C0 and j�U0j 6 C0: (6.49)

Then, there exists a constant NC > 0 (depending only on C0) such that for any functionB W Œ0; T � !
R with B.0/ D 0 and B 0

> NC.1C NC t/, U˙.t; r/ D U0.r/˙ NCt
r

˙ B.t/ are respectively a super-

and a sub-solution of (1.2), (1.5).
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Proof. We only do the proof for the super-solution since it is similar (and even simpler) for the

sub-solution. We also do the proof only in the case c > 0, noticing that the equation is unchanged

if we replace .w; c/ with .�w;�c/.
It is convenient to write A for NCt and do the computations with this function. Since j�U0 j 6 C0,

we have ˇ̌
ˇ̌
ˇ

r.U0/rr

.1C .r.U0/r/2/
3
2

C .U0/r

 
2C .r.U0/r/

2

.1C .r.U0/r/2/
3
2

!ˇ̌
ˇ̌
ˇ 6 C0:

Since jur j 6 C0, there exists c1 > 0 such that

jr.U0/rr j 6 c1.1C .r.U0/r/
2/
3
2 :

We then have

NF .r; UC
r ; U

C
rr / D c

q
1C .rUC

r /2 C Ur

�
2C .rUC

r /
2

1C .rUC
r /2

�
C rUC

rr

1C .rUC
r /2

D c

s
1C

��A
r

C r.U0/r

�2
C
��A
r2

C .U0/r

� 
2C

��A
r

C r.U0/r
�2

1C
��A
r

C r.U0/r
�2

!

C
2A
r2

C r.U0/rr

1C
��A
r

C r.U0/r
�2

6 c.1C A

r
C r j.U0/r j/C .U0/r

 
2C

��A
r

C r.U0/r
�2

1C
��A
r

C r.U0/r
�2

!

� A

r2

 ��A
r

C r.U0/r
�2

1C
��A
r

C r.U0/r
�2

!
C c1

.1C .r.U0/r /
2/
3
2

1C
��A
r

C r.U0/r
�2 :

Using (6.49), we can write

.U0/r
2C

��A
r

C r.U0/r
�2

1C
��A
r

C r.U0/r
�2 6 2C0:

We get

NF .r; UC
r ; U

C
rr / 6 c.1C A

r
C C0r/C 2C0 � A

r2

 ��A
r

C r.U0/r
�2

1C
��A
r

C r.U0/r
�2

!

C c1
.1C .r.U0/r/

2/
3
2

1C
��A
r

C r.U0/r
�2

6 c.1C A

r
C C0r/C 2C0 � A

r2

 ��A
r

C r.U0/r
�2

1C
��A
r

C r.U0/r
�2

!

C c1
.1C r j.U0/r j/3

1C
��A
r

C r.U0/r
�2 :
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We now set � such that r.U0/r D �A
r

and distinguish two cases:

Case 1: 1
2
< � < 2. In this case,

NF .r; UC
r ; U

C
rr / 6 c.1C 2C0r C C0r/C 2C0 C c1 .1C r j.U0/r j/3

6 c C 3cC0r C 2C0 C 4c1 C 4c1r
3j.U0/r j3

6 c C 3cC0r C 2C0 C 4c1 C 4c1�
A

r
r2C 20

6 .c C 2C0 C 4c1/C r.3cC0 C 8c1C
2
0A/

where for the second line, we have used the fact that for a; b > 0, .a C b/3 6 4.a3 C b3/. On the

other hand, we have rUC
t D A0 C rB 0. Choosing NC > max.c C 2C0 C 4c1; 3C0 C 8c1C

2
0 / we get

the desired result in this case.

Case 2: � 6
1
2

or � > 2. In this case

.1C r j.U0/r j/3

1C
��A
r

C r.U0/r
�2 6

4C 4r3j.U0/r j3

1C .� � 1/2 A
2

r2

6 4C 4
�2r j.U0/r j
.� � 1/2 6 4C 16C0r:

Then

NF .r; UC
r ; U

C
rr / 6 c C c

A

r
C 2C0 C 4c1 C cC0r C 16c1C0r � A

r2

.� � 1/2
�
A
r

�2

1C .� � 1/2
�
A
r

�2

We distinguish two sub-cases:

Subcase 2.1: A
r

6 2. In this sub-case, we get

NF .r; UC
r ; U

C
rr / 6 .3c C 2C0 C 4c1/C r.cC0 C 16c1C0/

and we obtain the desired result taking NC > max.3c C 2C0 C 4c1; cC0 C 16c1C0/.

Subcase 2.2: A
r

> 2. In this subcase, j� � 1jA
r

> 1 and

.� � 1/2
�
A
r

�2

1C .� � 1/2
�
A
r

�2 >
1

2

and thus

NF .r; UC
r ; U

C
rr / 6 .c C 2C0 C 4c1/C A.

c

r
� 1

2r2
/C cC0r C 16c1C0r

6 .c C 2C0 C 4c1/C .dAC cC0 C 16c1C0/r

where for the last line we have used the fact that we can find d > 0 (only depending on c) such that
c
r

� 1
2r2

6 dr for all r > 0. We finally get the desired result taking NC > max.cC2C0C4c1; cC0C
16c1C0; d /. The proof is now complete.
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PROPOSITION 6.2 (Time Hölder estimate – (I)) Let U0 2 W
2;1
loc

.0;C1/ satisfying (6.49). Let U

be a solution of (1.2), (1.5) satisfying (1.8). If U is L0-Lipschitz continuous with respect to the

variable r , then there exists a constant C , depending only on C0 and L0, such that

ˇ̌
U.t; r/ � U0.r/

ˇ̌
6 C

p
t CB.t/

where B is defined in Proposition 6.1.

REMARK 6.3 Let us note that in Proposition 6.1, we can choose B.t/ D NC t.1 C NC
2
t/. Hence, we

deduce from Proposition 6.2 that there exists C > 0 such that for all t 2 Œ0; 1�,
ˇ̌
U.t; r/ � U0.r/

ˇ̌
6 C

p
t : (6.50)

Proof. Let r0 > 0. Using Proposition 6.1 and the comparison principle, we deduce that there exists

a constant NC and a function B such that

ˇ̌
U.t; r0/ � U0.r0/

ˇ̌
6 NC t

r0
CB.t/:

Since U is L0-Lipschitz continuous in r , we also have

ˇ̌
U.t; 0/� U.t; r0/

ˇ̌
6 L0r0 and

ˇ̌
U0.0/� U0.r0/

ˇ̌
6 C0r0:

Combining the previous inequalities, we get that

ˇ̌
U.t; 0/� U0.0/

ˇ̌
6 .L0 C C0/r0 C NC t

r0
C B.t/:

Taking the minimum over r0 in the right hand side, we get that

ˇ̌
U.t; 0/� U0.0/

ˇ̌
6 C1

p
t C B.t/

with C1 WD 2
p
.C0 C L0/ NC .

We finally deduce that

ˇ̌
U.t; r/ � U0.r/

ˇ̌
6 min

n
NC t
r

C B.t/; C1
p
t C B.t/C .L0 C C0/r

o
:

The desired result is obtained by remarking that, if r 6
p
t , then C1

p
t C B.t/ C .L0 C C0/r 6

.C1 C L0 C C0/
p
t C B.t/, while if r >

p
t , then NC t

r
C B.t/ 6 NC

p
t C B.t/.

The next proposition asserts that the previous proposition is still true if we do not assume that

U is Lipschitz continuous with respect to r .

PROPOSITION 6.4 (Existence and time Hölder estimate – (II)) Let U0 2 W 2;1
loc

.0;C1/ satisfying

(6.49). Then there exists a solutionU of (1.2), (1.5) satisfying (1.8). Moreover there exists a constant

C , depending only on C0 such that

ˇ̌
U.t; r/ � U0.r/

ˇ̌
6 C

p
t CB.t/

where B is defined in Proposition 6.1, and there exists a constant L0 (only depending on C0) such

that ˇ̌
U.t; r C �/ � U.t; r/

ˇ̌
6 L0j�j:
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Proof. The initial datum is approximated with a sequence of initial data satisfying (6.49) and the

compatibility condition (1.10); passing to the limit will give the desired result.

We can assume without loss of generality that C0 >
c
2

. Then we consider

U "0 D 	" Nu0 C .1 � 	"/U0

where Nu0 2 C1 is such that

Nu0.0/ D U0.0/; . Nu0/r.0/ D �c
2
; j. Nu0/r j 6 C0; r j. Nu0/rr j 6 C0 for r 6 2 (6.51)

and

	".r/ D 	1

�r
"

�

where the non-increasing function 	1 2 C1 satisfies

	1 D
�
1 if r 6 1;

0 if r > 2:

CLAIM 6.5 The initial conditionU "0 satisfies the compatibility condition (1.10) and (6.49) for some

constant C0 which does not depend on ".

Let u" denote the unique solution of (1.2) with initial condition U "0 given by Proposition 5.2,

using the barrier (Proposition 6.1) provided by the Claim 6.5. In particular,u" satisfies (1.8) for some

constant NC " depending on ". Using Proposition 5.4, we deduce that U " is L0-Lipschitz continuous

with L0 WD max.1; C0/. Then Proposition 6.2 can be applied to obtain the existence of a constant

C (depending only on C0, because L0 now depends on C0) such that for all "

ˇ̌
U ".t; r/ � U "0 .r/

ˇ̌
6 C

p
t C B.t/:

Taking " ! 0 and using the stability of the solution and the uniqueness of (1.2), (1.5), we finally

deduce the desired result.

We now prove the claim.

Proof of Claim 6.5. We have

.U "0 /r D .	"/r . Nu0 � U0/C 	". Nu0/r C .1 � 	"/.u0/r :

Hence, since .	"/r .0/ D 0 and 	".0/ D 1, we get

.U "0 /r .0/ D . Nu0/r.0/ D �c
2

which means that U "0 satisfies (5.43). Using the fact that U "0 2 W 2;1
loc

and (6.51), we get (1.10).

Since Nu0.0/ D U0.0/ and Nu0 and U0 are C0-Lipschitz continuous, we have

ˇ̌
Nu0.r/ � U0.r/

ˇ̌
6 2C0r:

Let c1 denote sup�>0 �j.	1/r.�/j < C1. We then have

ˇ̌
.	"/r . Nu0 � U0/

ˇ̌
6 2C0

r

"

ˇ̌
ˇ.	1/r

�r
"

�ˇ̌
ˇ 6 2C0c1:
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Hence ˇ̌
.U "0 /r

ˇ̌
6 2C0.c1 C 1/:

Let us now obtain an estimate on �U "
0

. Using the previous bound, we only have to estimate

r.U "0 /rr
�
1C .r.U "0 /r/

2
� 3
2

:

If r > 2, then U "0 D U0 and the estimate follows from (6.49). If r 6 2, it is enough to estimate

r.U "0 /rr . We have

r.U "0 /rr D r.	"/rr . Nu0 � U0/C 2r.	"/r
�
. Nu0/r � .U0/r

�
C r	". Nu0/rr C r.1 � 	"/.U0/rr :

Moreover there exists a constant c2 (depending only on C0) such that for all r 6 2, r j.U0/rr j 6 c2.

Let c3 denote sup�>0 �
2j.	1/rr .�/j < C1. We then have

r
ˇ̌
.	"/rr . Nu0 � U0/

ˇ̌
6 2C0

r2

"2

ˇ̌
.	1/rr

�r
"

� ˇ̌
6 2C0c3:

We finally deduce that for r 6 2,
ˇ̌
r.U "0 /rr

ˇ̌
6 2C0c3 C 4C0c1 C C0 C c2

which proves that U "0 satisfies (6.49) with a constant NC0 D 2C0c3 C 4C0c1 C C0 C c2 depending

only on C0.

We now turn to the proof of Theorem 1.5.

Proof of Theorem 1.5. The existence of U and its Lipschitz continuity with respect to r follows

from Proposition 6.4. The uniqueness (and continuity) of U follows from the comparison principle

(Theorem 1.3). Let us now prove that U is 1
2

-Hölder continuous with respect to time. By Remark

6.3, there exists a constant C such that for h 6 1
ˇ̌
U.h; r/ � U0.r/

ˇ̌
6 C

p
h:

with C given in (6.50). Proceeding as in Step 2 of the proof of Proposition 5.4, we get for 0 6 h 6 1:

U.t C h; r/ � U.t; r/ 6 C
p
h:

The reverse inequality is obtained in the same way. This implies (1.9). The proof is now complete.

Appendix A. Proofs of technical lemmas

Proof of Lemma 4.1. We look for  under the following form: for x; � 2 R,

 .x; �/ D
�
1� �.x/

�
.x; ei� /C �.x/.0; exCi�/

where � W R ! R is non-decreasing, smooth (C1) and such that �.x/ D 0 if x 6 0 and �.x/ D 1 if

x > 1. Remark that (4.30) and (4.31) are readily satisfied.

It remains to prove (4.32) and (4.33). Let us first find " > 0 and m > 0 such that for all

x; y; �; � such that j.x; �/ � .y; �/j 6 ", we have (4.32) and (4.33).
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Study of (4.32). It is convenient to use the following notation:  .x; �/ D .�1.x/; �2.x/e
i�/. We

first write (4.32) in terms of �i :
ˇ̌
�1.x/ � �1.y/

ˇ̌
C j�2.x/ � �2.y/ cos.� � �/j C �2.y/

ˇ̌
sin.� � �/

ˇ̌
> m 

�
jx � yj C j� � � j

�

(we used a different norm in R3 andm is changed accordingly). It is enough to prove

ˇ̌
�1.x/ � �1.y/

ˇ̌
C
ˇ̌
�2.x/ � �2.y/

ˇ̌
C �2.y/

�
j sin j � 1C cos

�
.� � �/

> m 
�
jx � yj C j� � � j

�
:

We choose " 6 1 and we remark that such an inequality is clear if x 6 �1 or x > 2. Through a

Taylor expansion and using the fact that �2.y/ > 1, this reduces to check that

min
�

inf
x2.�1;2/

�ˇ̌
�0
1.x/

ˇ̌
C
ˇ̌
�0
2.x/

ˇ̌�
; 1
�

> 2m 

which reduces to

inf
x2.�1;2/

fj�0
1.x/j C j�0

2.x/jg > 0:

For x far from 0, a simple computation shows that �0
2.x/ > �.x/ex (for x > 0) and this permits

us to conclude. For x in a neighborhood of 0, �0
1.x/ D 1 C o.1/ and �0

2.x/ D O.x/ and we can

conclude in this case too. In Œ�1; 2�nŒ0; 1�, the conclusion is straightforward.

Study of (4.33). We next write (4.33) in terms of �i

j˚.x; y/C �0
2.x/�2.y/.1 � cos.� � �//j C j�2.x/�2.y/jj sin.� � �/j

> m .jx � yj C j� � � j/ (A.1)

where

˚.x; y/ D �0
1.x/

�
�1.x/ � �1.y/

�
C �0

2.x/
�
�2.x/ � �2.y/

�
:

Once again, the previous inequality is true for x … .�1; 2/ and for x 2 .�1; 2/, we choosem such

that

inf
x2.0;1/

n�
�0
1.x/

�2 C
�
�0
2.x/

�2o
> 2m :

The same reasoning as above applies here too.

Reduction to the case: j.x; �/ � .y; �/j 6 ". It remains to prove that for " > 0 given, we can find

ı0 > 0 such that, as soon as j .x; �/ �  .y; �/j 6 ı0 and j� � � j 6
�
2

, then j.x; �/ � .y; �/j 6 ".

We argue by contradiction by assuming that there exists "0 > 0 and two sequences .xn; �n/ and

.yn; �n/ such that

j�n � �nj 6
�

2
;

jxn � ynj C j�n � �nj > "0;

�1.xn/ � �1.yn/ ! 0;

cos.�n � �n/�2.xn/ � �2.yn/ ! 0;

�2.xn/ sin.�n � �n/ ! 0;
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as n ! 1. Since �2 is bounded from below by 1, we deduce that sin.�n � �n/ ! 0. Up to a

subsequence, we can assume that �n��n ! ı and we thus deduce that ı D 0. Hence, jxn�ynj >
"0
2

for large n’s. Thanks to a Taylor expansion in �n � �n, we can also get that �2.xn/ � �2.yn/ ! 0.

Because jxn � ynj >
"0
2

, we then get that xn and yn remain in a bounded interval. We can thus

assume that xn ! x� and yn ! y�. Finally, we have �i .x�/ D �i .y�/ for i D 1; 2 and jx� �y�j >
"0
2

which is impossible. The proof of the lemma is now complete.

Proof of Lemma 4.2. The second estimate is satisfied if C2 is chosen such that

C2 > sup
r>0

�
r �

�
r � �

3

�2
C

�
:

We now prove the first estimate. We distinguish three cases:

Case 1: x 6 1 and y 6 1. In this case, ex and ey are bounded and the definition of u0 in terms of

the Lipschitz continuous function U0 implies

ˇ̌
u0.x/ � u0.y/

ˇ̌
6 C

for some constant C > 0.

Case 2: (x 6 1 and y > 1) or (x > 1 and y 6 1). The two cases can be treated similarly and

we assume here that x 6 1 and y > 1. In that case  .x; �/ D .a; b/ with a 2 R and b 2 C with

jbj 6 e (see (4.31)) and  .y; �/ D .0; eyCi� /: Moreover, there exists a constant C such that

ˇ̌
u0.x/ � u0.y/

ˇ̌
6 C.1C ey/:

We also have

j .x; �/ �  .y; �/j D
q
a2 C jeyCi� � bj2

> jeyCi� � bj
> ey � jbj
> ey � e:

Hence,

ju0.x/ � u0.y/j 6 C.1C e/C C.ey � e/

6 C.1C e/C C 2"e�Kt C eKt

4"
.ey � e/2

6 C.1C e C C/C eKt

4"
j .x; �/ �  .y; �/j2

which gives the desired estimate.

Case 3: x > 1 and y > 1. In this case,

ˇ̌
 .x; �/ �  .y; �/

ˇ̌
D jexCi� � eyCi� j > jex � ey j



SPIRALS MOVING BY FORCED MEAN CURVATURE MOTION 399

and ˇ̌
u0.x/ � u0.y/

ˇ̌
6 Lu0 jex � ey j;

where Lu0 is the Lipschitz constant of U0. Hence, C2 is chosen such that

C2 > sup
r>0

�
Lu0r � 1

4"
r2
�
:

The proof is now complete.
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