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A nested variational time discretization for parametric Willmore flow
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A novel variational time discretization of isotropic and anisotropic Willmore flow combined with a

spatial parametric finite element discretization is applied to the evolution of polygonal curves and

triangulated surfaces. In the underlying natural approach for the discretization of gradient flows a

nested optimization problem has to be solved at each time step. Thereby, an outer variational problem

reflects the time discretization of the actual Willmore flow and involves an approximate L2-distance

between two consecutive time steps and a fully implicit approximation of the Willmore energy. The

mean curvature needed to evaluate the integrant of the latter energy is replaced by the time discrete,

approximate speed from an inner, fully implicit variational scheme for mean curvature motion. To

solve the resulting PDE constrained optimization problem at every time step duality techniques from

PDE optimization are applied. Computational results underline the robustness of the new scheme, in

particular with respect to large time steps, and show applications to surface restoration and blending.
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1. Introduction

This paper presents a new variational scheme for the time and space discretization of parametric

isotropic and anisotropic Willmore flow.

Willmore flow is defined as the geometric gradient flow of the Willmore energy with respect to

the L2-metric, where the Willmore energy for a d -dimensional surface M embedded in R
m with

m > d C 1 is defined as

wŒx� WD 1

2

Z

MŒx�

h2 da;

with x denoting a parametrization of M D MŒx�, h the mean curvature, and the L2-metric

gx.v1; v2/ D
Z

MŒx�

v1v2 da

is defined on variations xC vin of the surface M in the direction of the surface normal n. Here, the

mean curvature h itself represents the L2-gradient of the area functional aŒx� D
R

M
da and equals
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the sum of the principal curvatures. In the hyper-surface case (m D d C 1) Willmore flow leads to

the fourth order parabolic evolution problem

@tx D �MhnC h
�
jS j22 � 1

2
h2
�
n ; (1.1)

which defines, for a given initial surface M0, a family of surfaces M.t/ for t > 0with M.0/ D M0

[31, 49, 51]. Here, �M is the Laplace Beltrami operator on a surface M, S denotes the shape

operator or Weingarten map on M encoding the variation of the normal as an endomorphism on

the tangent space, and j � j2 the Frobenius norm on the space of endomorphisms on the tangent

bundle T M. Applications of a minimization of Willmore energy and of Willmore flow evolution as

the corresponding gradient flow include the modeling of edge sets in imaging [10, 36, 38, 53],

surface modeling [5, 6, 50, 52] and extending the Willmore energy to the Helfrich energy in

the mathematical treatment of biological membranes [20, 29, 48]. The analytic treatment of the

Willmore flow was investigated by Polden [43, 44]. Sharp estimates on long time existence and

regularity were obtained by Kuwert and Schätzle [31, 32]. Willmore flow of curves has been studied

by Dziuk, Kuwert, and Schätzle in [26]. Recently, Rivière [46] extended results of Kuwert and

Schätzle [33] from co-dimension 3 to arbitrary co-dimensions. He proved a weak compactness

result for Willmore surfaces with energy less than 16� and a strong compactness of Willmore tori

below the energy level 16� . He also provided a new formulation for the weak Euler–Lagrange

equation of the Willmore functional for immersed surfaces in R
m. The numerical results of Mayer

and Simonett [35] suggest that the above estimate is optimal in the sense that the flow develops a

singularity if the initial surface has energy greater than 16� .

In Finsler geometry the focus is on anisotropic area measurement encoded in the functional

a Œx� D
R

M
.n/ da where the local area weight .n/ depends on the surface orientation via a

positive 1–homogeneous anisotropy function  . Now, in analogy to the isotropic case the anisotropic

mean curvature h is defined as the L2-gradient of the anisotropic area a Œ�� and can be evaluated as

h D divM .z.n//. Hence, the anisotropic Willmore functional is given by w Œx� D 1
2

R
M

h2
 da .

Clarenz [12] has shown that Wulff shapes are the only minimizers in the class of immersions of two-

dimensional surface M into R
3. Recently, Bellettini & Mugnai [3] investigated the first variation of

this functional in the smooth case. Clarenz [11] and Palmer [41, 42] studied variational problems

involving anisotropic bending energies for surfaces with and without boundaries. Anisotropic

Willmore flow of hyper-surfaces can be rephrased as the following parabolic fourth order PDE

@tx D � h nC h

�
jS j2 � 1

2
h h

�
n ;

where � WD divM.zz.n/ rM/ is the generalized Laplace–Beltrami operator with divM and rM

being the tangential divergence and gradient, respectively. Furthermore, jS j2 D tr.zz.n/S
2/ is the

weighted, squared Frobenius norm of the shape operator, and zz D D2 the second derivatives of

the anisotropy function  .

Concerning the numerical approximation of Willmore flow in the isotropic case, Rusu [47]

proposed a mixed method for the surface parametrization x and the mean curvature vector hn as

independent variables, see also [13] for an application to surface restoration. A level set formulation

in the hyper-surface case was presented in [19]. Deckelnick and Dziuk [14] investigated the

convergence of a space discrete related scheme in the case of graph surfaces and Deckelnick

and Schieweck demonstrated convergence of a conforming finite element approximation for axial
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symmetric surfaces [16]. An error analysis in the case of the elastic flow of curves was recently

presented by Dziuk and Deckelnick in [15]. Furthermore, we refer to Barrett, Garcke and Nürnberg

[1], Bobenko and Schröder [7] and Dziuk [25] for alternative numerical methods for Willmore flow

on triangulation surfaces. Diewald [17] has extended the approach of Rusu [47] to the parametric

anisotropic Willmore flow for closed surfaces and Droske [18] and Nemitz [37] investigated a level

set discretization. In [45] Pozzi discussed the Willmore flow of curves in higher co-dimension. The

time discretization of the anisotropic mean curvature flow has been considered by Dziuk already

in [23, 24] and he gave convergence results for curves.

Contrasting with fully explicit time discretizations – not mentioned here – the above numerical

approaches are all characterized by some type of semi-implicit time discretization and require the

solution of linear systems of equations at each time step. Roughly speaking geometric differential

operators are assembled at the previous time step. Even though discrete energy estimates exist in

many cases one observes practical restrictions on the time step size. This shortcoming motivated the

development of a new concept for the time discretization of Willmore flow leveraging the variational

time discretization of general gradient flows (first preliminary results on this approach have been

presented in the proceedings article [40]). Given an energy eŒ�� on a (in general infinite dimensional)

manifold with metric g and the gradient flow Px D �gradgeŒx� with initial data x0 one defines a

sequence of time discrete solutions .xk/kD0;��� with xk � x.k�/ for the time step size � via a

variational problem, to be solved in each time step, i.e.,

xkC1 D arg minx dist.x; xk/2 C 2� eŒx� ;

where dist.x; xk/ D inf
2� Œxk ;x�

R 1

0

p
g.s/. P.s/; P.s// ds is the Riemannian distance on the manifold

from x to xk defined as the length of the shortest path, � Œxk ; x� denotes the set of smooth curves

 with .0/ D xk and .1/ D x. As an immediate consequence, one obtains the energy estimate

eŒxkC1� C 1
2�

dist.xkC1; xk/2 6 eŒxk � : For geometric problems, this approach has already been

considered by Luckhaus and Sturzenhecker [34] in the case of mean curvature motion via a fully

implicit variational time discretization in BV . Chambolle [8] investigated a reformulation of this

approach in terms of a level set method. A related method for anisotropic mean curvature motion is

discussed in [2, 9].

Here, we build upon this concept and proceed as follows in the case of Willmore flow. We aim at

balancing the squared distance of the unknown surface at time tkC1 D tkC� from the current surface

at time tk and a suitable approximation of the Willmore energy at time tkC1 scaled by twice the time

step size. Solving a fully implicit time discrete problem for mean curvature motion for the unknown

surface at time tkC1, we can regard the resulting discrete speed of evolution as a time discrete, fully

implicit approximation of the mean curvature vector. This approximate mean curvature vector is

then used to approximate the Willmore functional. Thus, we resort a nested minimization problem

within each time step, where an inner problem solves for an implicit mean curvature vector, while

an outer problem reflects an actual implicit, variational formulation for a time step of Willmore flow.

As it will be discussed in detail the resulting nested time discretization experimentally turns out to

be unconditionally stable and effectively allows for time steps of the order of the spatial grid size.

Furthermore, the approach can be generalized to anisotropic Willmore flow.

The paper is organized as follows. In Section 2 we derive time discretizations for isotropic

Willmore flow of compact surfaces and for surfaces with boundaries on which C 1 boundary

conditions are prescribed. Furthermore, we generalize the approach to anisotropic Willmore flow.
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Then in Section 3 we discuss a fully discrete numerical scheme based on piecewise affine finite

elements on simplicial surface meshes. In Section 4 the duality technique from PDE constraint

optimization is revisited to develop suitable minimization algorithms for the optimization problems

to be solved in each time step. Finally, in Section 5 computational results are presented. An appendix

collects essential ingredients of the corresponding algorithms to facilitate the implementation.

2. Nested time discretization of Willmore flow

In this section we will apply the concept of natural time discretization to Willmore flow and derive a

nested (but still spatially continuous) variational problem for each time step. To begin with, we recall

the corresponding time discretization of mean curvature motion. Let us consider a surface M D
MŒx�, where x indicates a parametrization of M and can also be considered as the identity map on

M parametrizing M over itself. Following the above abstract approach, we ask for the next time

step MŒy� with a corresponding parametrization y D yŒx� given as the minimizer of the functional

dist.MŒy�;MŒx�/2 C 2 Q�
R

MŒy�
da, where Q� denotes the time step size. Here, we restrict ourselves

to surfaces pairs MŒy�, MŒx� which allow a unique graph representation x 7! x C f .x/n.x/,

y 7! y C Qf .y/n.y/ of MŒy� over MŒx� and of MŒx� over MŒy�, respectively. Furthermore,

we define dist.MŒy�;MŒx�/ D .
R

MŒx�
f .x/2 da C

R
MŒy�

Qf .y/2 da/
1
2 as the L2-distance between

surfaces, and
R

MŒy�
da is the surface area of MŒy�. To define theL2 distance between such surfaces,

we take into account the straightforward linearization argument

2

Z

MŒy�

da D .2 � d/
Z

MŒx�

daC
Z

MŒx�

jrMŒx�yj2 daCO
�
ky�xk2

C 1.MŒx�/

�
(2.1)

for a parametrization y which are C 1 close to x (here rMŒx�y is defined as the tangential gradient

of y with respect to the surface MŒx�, and kf kC 1.MŒx�/ denotes the C 1 norm of f on MŒx�.

For the proof of (2.1) we refer to Appendix A. Furthermore, observing that the minimization can

be restricted to surface parametrizations y for which y � x ? MŒx� we obtain the following

approximate variational problem for a single time step of mean curvature motion:

Given a surface MŒx� parameterized by a mapping x we ask for a mapping y D yŒx� which

minimizes the functional

eŒx; y� WD
Z

MŒx�

.y � x/2 C Q� jrMŒx�yj2 da: (2.2)

The resulting weak form of the corresponding Euler–Lagrange equation is

0 D
Z

MŒx�

.y � x/ � � C Q�rMŒx�y W rMŒx�� da (2.3)

for smooth test functions � defined on MŒx�, where A W B D tr.ATB/. Obviously, this equation

coincides with the classical scheme for a single semi-implicit time step of mean curvature motion

proposed by Dziuk in [22].
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2.1 Willmore flow on closed surfaces

The abstract variational time discretization of isotropic Willmore flow reads as follows

dist.MŒx�;MŒxk �/2 C �

Z

MŒx�

h2 da ! min :

For the first term we consider the same approximation as above for mean curvature motion. To verify

that this natural discretization is consistent for smooth surfaces with the well-known fourth order

parabolic equation (1.1) we combine the above insight for mean curvature motion on the derivation

of the parabolic term with the derivation of the PDE from the variational principle in [19]. For the

Willmore energy, we now make use of the following observation. By definition the mean curvature

h D hŒx� is the L2-gradient of the area functional on a surface MŒx� and mean curvature motion is

the corresponding gradient flow. Hence, the mean curvature vector hŒx�nŒx� with n D nŒx� denoting

the normal on MŒx� can be approximated by the difference quotient in time
yŒx��x

Q�
, where yŒx� is the

minimizer of eŒx; �� in (2.2) for time step size Q� . Thus, for small Q� the functional 1
2

R
MŒx�

.yŒx��x/2

Q�2 da

is an approximation the Willmore functional on MŒx�.

This enables us to derive an approximate variational time discretization of Willmore flow, which

does not require the explicit evaluation of the mean curvature on the unknown surface MŒy� at the

next time step. In fact, for a given surface parametrization xk of the surface MŒxk � at a time step k

we define the functional

wŒxk ; x; y� WD
Z

MŒxk �

.x � xk/2 daC �

Q�2

Z

MŒx�

.y � x/2 da;

where we select y D yŒx� as the minimizer of (2.2) with time step size Q� . Finally, we obtain the

following time discretization of Willmore flow:

Given an initial surface MŒx0� with parametrization x0 we define a sequence of surfaces MŒxk �

with parametrizations xk for k D 1; : : : via the solution of the following sequence of nested

variational problem

xkC1 D arg minx w
�
xk ; x; yŒx�

�
, where (2.4)

yŒx� D arg miny eŒx; y� : (2.5)

Thereby, the inner variational problem (2.5) is quadratic. Thus, the resulting Euler–Lagrange

equation (2.3) is a linear elliptic PDE and we end up with a PDE constrained optimization problem

for each time step.

To be more explicit, let us examine circles in the plane. Under Willmore flow circles expand

according to the ODE PR.t/ D 1
2
R.t/�3 for the radius. In comparison to this we obtain for the

nested variational time discretization with a slight misuse of notation

wŒRk ; R; QR� D 2�Rk.R � QR/2 C 2�R�
.R � QR/2

Q�2
; eŒR; QR� D 2�R

 
.R � QR/2 C Q�

QR2

R2

!
;
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for a time discrete radii Rk , R, and QR. Thus, by a straightforward computation we deduce the

nonlinear equation
R�Rk

�
D 1

2
R4�3R2 Q�

.R2CQ�/3 Rk
to be solved for R as the radius at the next time step.

This is indeed an implicit first order scheme for the above ODE. For a discussion of the consistency

of this variational approach in the general case we also refer to [27], where the scheme is applied in

the context of phase fields.

2.2 Willmore flow with boundary conditions

Next, with the application to surface restoration in mind let us consider the case of surfaces MŒx�

with boundary � Œx� D @MŒx� and aim at prescribing boundary conditions both for x and for

the normal nŒx� – at least in an approximate sense – on � Œx�. Therefore, we modify the inner

minimization problem and consider an energy

e@Œx; y� D
Z

MŒx�

.y � x/2 C Q� jrMŒx�yj2 da � 2 Q�
Z

� Œx�

nco � y ds (2.6)

for given x and nco, where nco is the co-normal perpendicular to n and to the boundary @M.

Indeed, for smooth surface M and smooth boundary � Œx� prescribing the co-normal is up to

the direction equivalent to prescribing the surface normal. The resulting weak form of the Euler

Lagrange equation for fixed x and a minimizer yŒx� of e@Œx; �� in (2.6) is

0 D
Z

MŒx�

y � x

Q� �  C rMŒx� y W rMŒx�  da �
Z

@MŒx�

nco �  ds

for all test functions  2 C1.MŒx�/. Hence, we obtain the time discrete mean curvature motion

equation y�x
Q�

D �MŒx� y on MŒx� and the boundary condition @ncoŒx�y D nco on � Œx�, where

ncoŒx� denotes the actual co-normal of MŒx�. If we assume that yŒx� � x converges to 0 in C 1 for

Q� ! 0 where x is the minimizer of the energy wŒxk ; x; y� and yŒx� minimizes e@Œx; y�, then we

observe that

@ncoŒx�y D rMŒx�y � ncoŒx� ! rMŒx�x � ncoŒx� D ncoŒx�

for Q� ! 0. Therefore, we obtain the approximate boundary condition ncoŒx� D nco C o.1/ on � Œx�

with the usual Landau symbol o.1/ ! 0 for � ! 0.

Alternatively, in particular in the context of surface restoration, we may assume that MŒx� is

the varying part of a larger surface fMŒx� with an outer part M
ext being fixed. Correspondingly,

the parametrization x is extended to some parametrization xext outside of MŒx�. As before � Œx�

is supposed to denote the boundary of MŒx�. Then, we again reformulate the inner minimization

problem and take into account the energy

Qe@Œx; y� D
Z

eMŒx�

.y � x/2 C Q� jrMŒx�yj2 da ;

which coincides with the original energy eŒx; y� except that it is now integrated over the whole

surface fMŒx� and y is allowed to vary on fMŒx�. In this case we obtain as an Euler Lagrange
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condition @ncoŒx�yŒx� � @ncoŒxext�yŒx� D 0 on � Œx�. Here, ncoŒxext� is the outer co-normal of M
ext

on � Œx�. If, we assume as above that yŒx� � x ! 0 for Q� ! 0, then

@ncoŒx�yŒx� ! @ncoŒx�x D ncoŒx� , and

@ncoŒxext�yŒx� ! @ncoŒext�x
ext D ncoŒxext� :

Hence, once again, ncoŒx� D ncoŒxext�Co.1/ on � Œx� with o.1/ ! 0 for � ! 0, where in this case

the co-normal ncoŒxext� is induced by the prescribed outer surface MŒxext�.

2.3 Anisotropic Willmore flow of closed surfaces

Finally, let us investigate the time discretization of anisotropic Willmore flow in co-dimension 1

with m D d C 1. The corresponding abstract variational time discretization reads as follows

dist.MŒx�;MŒxk �/2 C �

Z

MŒx�

h2
 da ! min ;

where h D divM.n / D divM.z ı n/ denotes the generalized mean curvature. This time we

again replace the L2-distance between the two manifolds MŒx� and MŒxk � by
R

MŒx� jy � xj2 da

under the assumption of sufficient regularity of x and y. Moreover, as in the isotropic case, we

make use of the fact that the L2-gradient of the anisotropic area functional is the generalized mean

curvature and hence, the time discrete speed yŒx��x
Q�

extracted from a variational time discretization

of anisotropic curvature motion approximates the generalized curvature vector h Œx�nŒx� and can

be used to approximate the anisotropic Willmore energy. In the anisotropic case we do not consider

a linearization of the variational approach for generalized curvature motion as in the isotropic

approach, but we define yŒx� to be the minimizer of the nonlinear functional

e Œx; y� D
Z

MŒx�

.y � x/2 daC 2 Q�
Z

MŒy�

.nŒy�/ da

in y for given parametrization x. Then, collecting the different building blocks we end up with the

following fully nonlinear variational time discretization of anisotropic Willmore flow:

xkC1 D arg minx w
�
xk; x; yŒx�

�
; where

yŒx� D arg miny e Œx; y� :

Let us remark that this variational time discretization does not involve derivatives of the anisotropy.

Nevertheless, as we will see below, differentiation is indispensable to set up a descent algorithm for

this functional.

3. Finite element discretization in space

In this section we introduce a suitable space discretization based on piecewise linear finite elements.

Here, we follow the guideline for finite elements on surfaces introduced by Dziuk [21]. Thus, we

consider simplicial meshes MŒX� – polygonal curves for d D 1 and triangulation surfaces for

d D 2 – as approximations of the d dimensional surfaces MŒx�. Thereby,X is a parametrization of
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the simplicial mesh MŒX� which is, for a fixed mesh topology, uniquely described by a vector NX of

vertex positions of the mesh. To clarify the notation we will always denote discrete quantities with

upper case letters to distinguish them from the corresponding continuous quantities in lower case

letters. Furthermore, a bar on top of a discrete function indicates the corresponding nodal vector,

i.e., NX D . NXi /i2I , where NXi D .X1
i ; � � � ; Xm

i / is the coordinate vector of the i th vertex of the mesh

and I denotes the index set of vertices. For d D 1 each element T of a polygonal curve is a line

segment with nodes X1 and X2 (using local indices) and for d D 2 elements T of a triangulation

are planar triangles with vertices X0, X1, and X2 and edge vectors F0 D X2 �X1, F1 D X0 �X2,

and F2 D X1 � X0.

Given a simplicial surface MŒX� we denote by

V
�
MŒX�

�
WD
˚
U 2 C 0

�
MŒX�

�
jU jT 2 P1 8T 2 MŒX�

	

the associated piecewise affine finite element space. With a slight misuse of notation the mapping

X itself is considered as an element in V.MŒX�/m. Let f˚igi2I be the nodal basis of V.MŒX�/.

For U 2 V.MŒX�/ we obtain U D
P

i2I U.Xi /˚i and NU D .U.Xi //i2I – in agreement with our

previous definition as we recover NX D .Xi /i2I .

Next, let us introduce the mass matrixMŒX� and the stiffness matrixLŒX� of the discrete surface

MŒX�, whose entries are given by Mij ŒX� D
R

MŒX�
˚i j̊ da and Lij ŒX� D

R
MŒX�

rMŒX�˚i �
rMŒX� j̊ da. The corresponding block structured matrices, which act in an identical way

simultaneously on the m coordinates of a vector with m components for each node, are denoted

by MŒX� and LŒX�, respectively. As usual all matrices are assembled from corresponding local

matrices computed on the simplices T of MŒX�.

3.1 Willmore flow of closed surfaces

Now, we have all the ingredients at hand to derive the fully discrete nested time discretization of

Willmore flow, as the spatially discrete counterpart of (2.4) and (2.5):

Given an discrete initial surface MŒX0� with discrete parametrization X0 we compute a sequence

of surfaces MŒXk � with parametrizations Xk by solving the following nested finite dimensional

variational problem:

XkC1 D arg minX2V.MŒXk �/m W
�
Xk; X; Y ŒX�

�
; where (3.1)

Y ŒX� D arg minY 2V.MŒX�/m EŒX; Y � : (3.2)

Here, the discrete functionals are given by

EŒX; Y � WD
Z

MŒX�

.Y �X/2 C Q� jrMŒX�Y j2 da

D MŒX�. NY � NX/ � . NY � NX/C Q�LŒX� NY � NY ;

W ŒXk ; X; Y � WD
Z

MŒXk �

.X �Xk/2 daC �

Q�2

Z

MŒX�

.Y �X/2 da

D MŒXk �. NX� NXk/ � . NX� NXk/C �

Q�2
MŒX�. NY � NX/ � . NY � NX/
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FIG. 1. Discrete isotropic Willmore flow is applied to a curve segment and a surface patch (plotted in red on the left at the

initial time) with boundary conditions for the position and the co-normal. From left to right the solution together with the

underlying triangulation is shown at time 0:0, 0:02, 0:45, and 1:12, where the underlying sphere radius is 1 and we have

applied the time step size � D h D 0:02.

as straightforward spatially discrete counterpart of the functionals eŒx; y� and wŒxk ; x; y�,

respectively. Analogously to the spatially continuous case in (2.3), for a given X , the nodal vector
NY ŒX� solves the linear system of equation

.MŒX�C Q�LŒX�/ NY ŒX� D MŒX� NX :

Appendix B provides explicit formulas for the entries of the mass and stiffness matrices.

3.2 Willmore flow with boundary conditions

In the case of a discrete surface restoration application we consider a discrete simplicial surface
fMŒX� consisting of the actual surface patch MŒX� – to be modified for instance in a surface

restoration application – and a polygonal ring M
extŒX� consisting of one layer of simplices around

the discrete boundary � ŒX� D @MŒx� on which X has a given fixed parametrization X ext. We

split the set of nodes N of MŒX� into the set of interior nodes N
int of MŒX�, and boundary nodes

N
@; and denote the corresponding index sets by I , I int , and I @, respectively. Let us emphasize

that the nodal vectors for functions in V0.fM/ and in V.M/ can be identified because of the single

layer assumption on M
extŒX�. Furthermore, V

int .MŒX�/ denotes the subspace of V.MŒX�/ of

functions vanishing on � ŒX� and we introduce the obvious restriction operator R W R
jI j ! R

jI int j

and a corresponding extension operators E W R
jI int j ! R

jI j with .E NU/i D 0 for i 2 I @. The

corresponding block operators acting on nodal vectors are denoted by R and E, respectively. Hence,

a valid nodal vector in R
3jI j can be written as E NXC NXext , where NXext is the vector with prescribed

vertex positions at boundary nodes and zero entries for all interior nodes.

To prescribe a discrete co-normal we proceed as follows. On simplicial faces of � ŒX� we

compute N co as the (piecewise constant) co-normal lying in the plane of the boundary elements
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of M
extŒX� and define a corresponding (non unit length) nodal vector

NN coŒX� WD

0
B@

Z

@MŒX�

N co˚i ds

1
CA

i2I

in R
d jI j. Then discrete counterpartE@Œ�; �� on V

int .MŒXk�/� V.MŒX�/ of the functional e@Œ�; �� is

given by

E@ŒX; Y � WD
Z

MŒX�

.Y �X/2 C Q� jrMŒX�Y j2 da � 2 Q�
Z

@MŒX�

N co � Y ds

D MŒX�. NY � E NX � NXext / � . NY � E NX � NXext /

C Q�LŒX� NY � NY � 2 Q� NN co � NY

with NX 2 R
mjI int j and NXext ; NY 2 R

mjI j, whereas the corresponding functional W ŒXk ; �; �� on the

finite element space V
int .MŒXk�/ � V.MŒX�/ can be rephrased as

W @ŒXk ; X; Y � WD
Z

MŒXk �

.X � Xk/2 daC �

Q�2

Z

MŒX�

.Y � X/2 da

D MŒXk �.E NX � NXk/ � .E NX � NXk/

C �

Q�2
MŒX�. NY � E NX � NXext / � . NY � E NX � NXext /:

Hence, to compute NY ŒX� we have to solve the linear system of equation

.MŒX�C Q�LŒX�/ NY ŒX� D MŒX� .E NX � NXext /C Q� NN co:

In the case of the alternative approach, one defines the discrete functionaleE@Œ�; �� on V
int .MŒXk�/�

V0.fMŒX�/ by

eE@ŒX; Y � WD
Z

eMŒX�

.Y � X/2 C Q� jrMŒX�Y j2 da

D eMŒX�. NY � E NX � NXext / � . NY � E NX � NXext /C Q�eLŒX� NY � NY ;

where eMŒX� and eLŒX� are the block mass and stiffness matrices on V.fMŒX�/. Hence, now the

nodal vector NY ŒX� is still in R
mjI j and solves

�eMŒX�C Q�eLŒX�
� NY ŒX� D eMŒX� .E NX � NXext /:

3.3 Anisotropic Willmore flow of closed surfaces

The spatial discretization of the anisotropic Willmore flow of hyper-surfaces is based on the discrete

functional

E ŒX; Y � WD
Z

MŒX�

.Y � X/2 da C 2 Q�
Z

MŒY �

.N ŒY �/ da (3.3)

D MŒX�. NY � NX/ � . NY � NX/C 2 Q� A ŒY � ;
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with A ŒY � D
R

MŒY �

.N ŒY �/ da being the anisotropic area functional. Here, .N ŒY �/ is piecewise

constant on MŒY � and thus can be integrated exactly. Furthermore, the functional W ŒXk; �; ��
remains the same as in the isotropic case. Now, for fixed X the discrete Euler Lagrange equation

with respect to Y is obviously nonlinear and we obtain that NY solves

0 D MŒX�. NY � NX/C Q�gradA ŒY �; (3.4)

where the gradient is assembled via the evaluating of

@YA ŒY �.�/ D
Z

MŒY �


�
NŒY �

�
rMŒY �Y W rMŒY �� da �

Z

MŒY �

dC1X

lD1

z

�
NŒY �

�
� rMŒY ��l Nl ŒY � da

for all basis functions � D ˚iej . Here, NŒY � is the piecewise constant normal field on MŒY � and

the first integral on the right hand side represents the variation of the anisotropic area functional with

respect to the integration domain taking into account the linearization argument from Appendix A.

Furthermore, the second integral reflects the variation of the integrant making use of the observation

d

d�

�
NŒY C ���

�
j�D0 D �

dC1X

lD1

z

�
NŒY �

�
� rMŒY ��lNl ŒY � :

For a given X; equation (3.4) can be solved by a Newton method.

4. Optimization algorithm for the time steps

In Section 2 we have derived a variational time discretization for different Willmore flow

models leading to a constrained optimization problem, where the constraint is associated with

the approximation of the isotropic or anisotropic mean curvature via the time discrete speed of a

corresponding curvature motion model. Through spatial discretization we formulated in Section 3 a

finite dimensional constrained optimization problem to be solved in each time step of Willmore flow.

Here, we now use classical duality techniques from optimization to solve the resulting time step

problem efficiently. For a general overview on these techniques we refer to Nocedal & Wright [39]

or [4, 28, 30].

4.1 Duality approach and gradient descent

To simplify the exposition we first restrict ourselves to the isotropic Willmore flow model for closed

surfaces. Afterwards, we will generalize this approach for surfaces with boundaries and anisotropic

Willmore flow. Slightly rephrasing (3.1) and (3.2) we aim at minimizing the functional

bW ŒX� D W
�
Xk; X; Y ŒX�

�

with Y ŒX� being a solution of the inner minimization problem (3.2). By @X we denote the

differentiation with respect to vector NX of grid nodes. A straightforward differentiation leads to

@X
bW ŒX�.�/ D @XW

�
Xk ; X; Y ŒX�

�
.�/C

�
@YW

��
Xk ; X; Y ŒX�

� �
@XY ŒX�.�/

�
:
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Hence, computing the full gradient of bW in this way requires the evaluation of @XY ŒX�.˚i ej /

for every finite element basis function ˚i and any canonical basis vector ej in R
m. To derive

a computational efficient representation of the gradient as an essential ingredient of any descent

algorithm, we apply the following duality argument. From the optimality of Y ŒX� in the inner

problem, we deduce the equation 0 D @YEŒX; Y ŒX��.	/ for any test function 	 2 V.MŒX�/m.

Differentiating with respect to X we obtain

0 D @X

�
@YE

�
X; Y ŒX�

�
.	/

�
.�/

D @X@YEŒX; Y �.	;�/C @2
YE

�
X; Y ŒX�

��
	; @XY ŒX�.�/

�
: (4.1)

Now, one defines P 2 V.MŒXk �/m as the solution of the dual problem

@2
YE

�
X; Y ŒX�

�
.P; 	/ D @YW

�
Xk ; X; Y ŒX�

�
.	/ (4.2)

for all test functions 	 2 V.MŒXk �/m. Choosing 	 D @XY ŒX�.�/ in (4.2) and 	 D P in (4.1)

yields

.@YW /
�
Xk ; X; Y ŒX�

��
@XY ŒX�.�/

�
D �@X@YEŒX; Y �.P;�/ :

Thus, we can finally rewrite the variation of bW as

@X
bW ŒX�.�/ D @XW

�
Xk; X; Y ŒX�

�
.�/ � @X@YEŒX; Y �.P;�/: (4.3)

In the case of our basic Willmore flow model (3.1) and (3.2) the solution P of the dual problem

(4.2) solves the linear system of equations

�
MŒX�C Q�LŒX�

� NP D �

Q�2
MŒX�. NY � NX/ :

Here MŒX� and LŒX� arem�m block diagonal matrices, those diagonal blocks are the usual jI j�jI j
mass matrices MŒX� and stiffness matrices LŒX�, respectively. Furthermore, the terms on the right

hand side of (4.3) are evaluated as follows

.@XW / ŒX
k ; X; Y �.�/ D 2MŒXk �. NX � NXk/ � N� C 2

�

Q�2
MŒX�. NX � NY / � N�

C �

Q�2
.@X MŒX�.�//. NY � NX/ � . NY � NX/; (4.4)

@X@YEŒX; Y �.P;�/ D 2
�
@X MŒX�.�/

�
. NY � NX/ � NP � 2MŒX� N� � NP

C 2 Q�
�
@X LŒX�.�/

� NY � NP : (4.5)

Hence, we need to compute the variation @X MŒX�.�/ and @X LŒX�.�/ of the block matrices M

and L, respectively, where � represents a variation of the simplicial mesh. The variation of these

block matrices composes of diagonal blocks of the variations of the corresponding matrices from the

scalar case defined as @XMŒX�.�/ D d
d�
MŒX C ���j�D0 and @XLŒX�.�/ D d

d�
LŒX C ���j�D0.

They are computed using a standard finite element assembly. We refer to Appendix B for the actual

differentiation of the corresponding local matrix entries. With these ingredients at hand we can

finally compute the descent direction in R
mjI j of the energy bW for a given simplicit mesh MŒX�

described by the nodal vector NX to obtain

gradX
bW ŒX� D

�
@X
bW ŒX�.˚res/

�
r2I;sD1;��� ;m

;
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where es denotes the sth coordinate direction in R
m.

With this gradient evaluation at hand we can already apply a gradient descent scheme with the

Amijo step size control, choosing as initial data the nodal vector NXk from the previous time step.

In the case of Willmore flow with boundary conditions, we investigate the functional bW @ŒX� WD
W @ŒXk ; X; Y ŒX��. Using the same duality argument P solves

�
MŒX�C Q�LŒX�

� NP D �

Q�2
MŒX�. NY � E NX � NXext / ;

or in the alternative approach

�eMŒX�C Q�eLŒX�
� NP D �

Q�2
MŒX�. NY � E NX � NXext / :

Furthermore, in this case given @X
bW @ŒX�.�/ D @XW

@ŒXk ; X; Y ŒX��.�/ � @X@YE
@ŒX; Y �.P;�/

the gradient components on the right hand side are evaluated as follows

@XW
@ŒXk ; X; Y �.�/ D 2MŒXk�.E NX � NXk/ � E N� C 2

�

Q�2
MŒX�.E NX C NXext � NY / � E N�

C �

Q�2

�
@X MŒX�.�/

�
. NY � E NX � NXext / � . NY � E NX � NXext / ;

@X@YE
@ŒX; Y �.P;�/ D 2

�
@X MŒX�.�/

�
. NY � E NX � NXext / � NP � 2MŒX�E N� � NP

C 2 Q�
�
@X LŒX�.�/

� NY � NP ;

whereas in the alternative approach the mass matrix MŒX� and the stiffness matrix LŒX� are replaced

by eMŒX� andeLŒX�, respectively.

Let us finally investigate the fully nonlinear, anisotropic model. Now, the dual solution P solves

�
MŒx�C Q�HessA .Y /

� NP D �

Q�MŒX�. NY � NX/ :

Here, as in the gradient case, the Hessian is assembled via evaluation of @2
YA ŒY �.˚iej ; ˚kel/ for

all vector valued basis functions ˚iej and ˚kel , respectively. In the Appendix C we give formulas

for the computation of the local entries HessA ŒY � on single elements in the case of polygonal

curves (d D 1 and m D 2). Finally, for the second term in the gradient formula @X
bW @ŒX�.�/ D

@XW
@ŒXk ; X; Y ŒX��.�/ � @X@YE ŒX; Y �.P;�/ we obtain

@X@YE ŒX; Y �.P;�/ D 2
�
@X MŒX�.�/

�
. NY � NX/ � NP � 2MŒX� N� � NP :

4.2 Lagrangian and SQP method

A more efficient strategy to solve the constrained optimization problem in each time step is to apply

a Newton method for the corresponding Lagrangian, which can also be phrased as a sequential

quadratic programming (SQP) approach. For an introduction to the SQP method and the basic

convergence theory we refer to Nocedal & Wright [39]. In our context we consider the following

Lagrangian function for problem (3.1), (3.2)

LŒ NX; NY ; NP � D W ŒXk ; X; Y � � @YEŒX; Y �.P /
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for the now independent unknowns NX; NY 2 R
mjI j and the Lagrange multiplier NP 2 R

mjI j.

Here, with a slight misuse of notation, we either use a finite element function notation with Z

in V.MŒXk�/m andV.MŒX�/m, respectively, or the corresponding nodal vector notation with
NZ 2 R

mjI j. Now, we ask for critical points . NX; NY ; NP / of L. Indeed, 0 D @ NPLŒ
NX; NY ; NP �. N�/ D

@YEŒX; Y �. N�/ is the Euler Lagrange equation of the inner minimization problem with respect to NY
for givenX and 0 D @ NYLŒ

NX; NY ; NP �. N�/ D @YW ŒX
k ; X; Y �.�/� @2

YEŒX; Y �.P;�/ is the defining

equation for the dual solution P given Y as the solution of the above Euler Lagrange equation.

Finally, 0 D @ NXLŒ
NX; NY ; NP �. N�/ D @XW.X

k; X; Y /.�/ � @X@YEŒX; Y �.P;�/ D @X
bW .X/

coincides with the Euler Lagrange equation for the actual constraint optimization problem. The

Hessian of L, which is required to implement a Newton scheme, is given (in abbreviated form) by

HessL D

0
@

@2
XW � @2

X@YE.P / @X@YW � @X@
2
YE.P / �@X@YE

@X@YW � @X@
2
YE.P / @2

YW � @3
YE.P / �@2

YE

�@X@YE �@2
YE 0

1
A :

By a straightforward Lagrangian multiplier argument a Newton step coincides with the solution of

the quadratic program

�1
2

Hess . NX; NY /L
� NXk;l ; NY k;l ; NP k;l

�
.� NX;� NY /C grad . NX; NY /W

� NXk;l ; NY k;l
��

� .� NX;� NY / ! min

subject to the linearized constraint @ NYEŒ
NXk;l ; NY k;l �C grad . NX; NY /@ NYEŒ

NXk;l ; NY k;l � � .� NX;� NY / D 0,

where the index l indicates the l th Newton step with NXk;lC1 D NXk;l C� NX , NY k;lC1 D NY k;l C� NY
and NP k;lC1 appears as the Lagrangian multiplier with respect to the linear constraint.

For the Willmore flow of closed surfaces leading to the optimization problem (3.1), (3.2) the

different terms in HessL are evaluated as follows:

@2
XW.�;	/ D 2

�
M
�
Xk
�

C �

Q�2
MŒX�

� N	 � N� C �

Q�2

�
@2

X MŒX�.�;	/. NY � NX/ � . NY � NX/

C 2@X MŒX�.�/. NX � NY / � N	 C 2@X MŒX�.	/. NX � NY / � N�
�
;

@X@YW.�;	/ D 2
�

Q�2

�
@X MŒX�.	/. NY � NX/ � N� � MŒX� N� � N	

�
;

@2
YW.�;	/ D 2

�

Q�2
MŒX� N� � N	 ;

@2
X@YE.�;	;�/ D 2

�
@2

X MŒX�.	;�/. NY � NX/ � N� � @X MŒX�.	/ N� � N�
� @X MŒX�.�/ N	 � N� C Q�@2

X LŒX�.	;�/ NY � N�
�
;

@X@
2
YE.�;	;�/ D 2.@X MŒX�.�/C Q�@X LŒX�.�// N� � N	 ;
@X@YE.�;	/ D 2

�
@X MŒX�.	/. NY � NX/ � N� � MŒX� N	 � N� C Q�@X LŒX�.	/ NY � N�

�
;

@3
YE D 0 ;

@2
YE.�;	/ D 2

�
MŒX�C Q�LŒX�

� N� � N	 ;

where @X@YE has already been given in (4.5). The different sub blocks of the block structured

Hessian HessL are again assembled in the usual way from local contribution on single elements of

the polygonal mesh. Detailed formulas for the local derivatives are given in Appendix B.

The adaptation in the case of Willmore flow with boundary conditions is obvious, whereas for

anisotropic Willmore flow we obtain for the derivatives of the energy E from (3.3) appearing in
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FIG. 2. The evolution of a circle under Willmore flow is displayed. On the left, the initial circle of radius R.0/ D 2 (red)

and the discrete solution (green) are plotted at times t D 0:01; 0:05; 0:1. The computation is based on a polygonal

approximation with 200 vertices and � D Q� D h. Furthermore on the right, the evolution of the average radius (green) is

compared with the radius of the exact solution (blue) over time.

HessL

@2
X@YE .�;	;�/ D 2

�
@2

X MŒX�.	;�/. NY � NX/ � N�
� @X MŒX�.	/ N� � N� � @X MŒX�.�/ N	 � N�

�
;

@X@
2
YE .�;	;�/ D 2@X MŒX�.�/ N	 � N�;
@X@YE.�;	/ D 2

�
@X MŒX�.	/. NY � NX/ � N� � MŒX� N	 � N�

�
;

@3
YE .�;	;�/ D 2 Q�@Y HessA ŒY �.�/ N	 � N�;
@2

YE.�;	/ D 2
�
MŒX�C Q�HessA ŒY �

� N	 � N�:

For the (now necessary) third derivatives of the local anisotropic area functional A we refer to

Appendix C.

5. Numerical results

We have applied our numerical algorithm for Willmore flow to the evolution of curves in R
2 and

in R
3, and to two dimensional surfaces in R

3. We study curve and surface blending problems and

investigate the numerical solution of anisotropic Willmore of curves. A particular emphasis is on

the robustness and stability of the proposed approach in particular for large time steps � up to the

order the spatial grid size h.

5.1 Willmore flow of closed curves and surfaces

At first, we numerical solve the Willmore flow problem for curves in 2D and simulate the evolution

of circles, where the explicit solution has already been discussed in Section 2.1. The continuous and

discrete evolution is compared in Fig. 2 and an experimental study of convergence in the L2 norm

is presented in Table 1 in agreement with the consistency error of our model O.h2 C � C Q�/. For
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TABLE 1. The L2 error between the exact solution R.t/ for t D 0:01 and the corresponding discrete radius function

Rh.Xk/ WD jXk j with � D t
k

is computed on MŒXk�, where � D Q� D h2 (left column) and � D Q� D h (right column)

for a varying grid size h resulting form a initial polygon MŒX0� with 2n edges of equal length with n D 4; 5; 6; 7; 8.

n L2 error (� D Q� D h2) L2 error (� D Q� D h)

4 0.1255 0.1632

5 0.0425 0.0697

6 0.0098 0.0294

7 0.0032 0.0137

8 0.0006 0.0057

the actual numerical solution of the discrete variational problem to be solved at each time step we

have used the Newton scheme for the Lagrangian.

Furthermore, we investigate spheres in R
3, which are known to be stationary solutions of

Willmore flow. The Willmore energy is invariant with respect to Möbius transformation. These

invariants might lead to degeneracies of the numerical grid in long time simulations as observed

for the semi-implicit algorithm of Rusu [47]. On the same time-scale and with the same underlying

time step size the nested time discretization turned out to be more robust as depicted in Fig. 3. Even

for significantly larger times the new scheme remains stable.

Next, we consider an example already proposed by Dziuk and Deckelnick in [15], where a

hypocycloid is considered as initial data. Here, the parametrization of the initial curve is given by

X0.t/ D
�
� 5

2
cos.t/C 4 cos.5t/;� 5

2
sin.t/C 4 sin.5t/; ı sin.3t/

�
: In R

2 for ı D 0 the initial

curve evolves to a fivefold covering of a circle (cf. Figure 4) since multiple coverings of a circle are

stable stationary solutions in the co-dimension one case [44]. This is not true in the case of higher

FIG. 3. Results of the semi-implicit scheme [47] (top row) are compared with the proposed algorithm using a Newton method

(bottom row). The mesh size of the discrete spheres is h D 0:02, and as time step size we consider � D 16 � 10�8 in both

methods (Q� D � in the our scheme). From left to right the triangulations are rendered at times t D 0:0, t D 2381:9,

t D 2442; 2, t D 2472; 4.



A NESTED VARIATIONAL TIME DISCRETIZATION 447

FIG. 4. The evolution of a planar hypocycloid towards a fivefold covering of a circle is shown at times t D 0:0, t D 685:7,

t D 2987:4, t D 4850:1, t D 7965:8, t D 10630:6. The curves are graphically rescaled to have similar size. The

computational parameters were � D 0:025, and � D h D 0:5493 and a gradient descent method was used.

FIG. 5. The evolution of a vertically perturbed hypocycloid towards a circle under Willmore flow with ı D 0:1, h D 0:005
at t D 0, and � D 0:005 is shown at times t D 0:0, t D 1348:9, t D 4467:1, t D 5511:4, t D 6555:7, t D 7406:6,

t D 8257:2, t D 9108:4, t D 9297:0, t D 9361:3, t D 9426:8, t D 9489:1.

co-dimension for m > 3. If we start with an initial curve slightly perturbed in vertical direction, we

have chosen ı D 0:1, the curve begins to unfold and evolves to a single circle (cf. Figure 5). Here,

we use a gradient descent method to solve the optimization problem for each time step.

Furthermore, we depict in Figure 6 the evolution of a coarse polygonal approximation of a torus

towards the Clifford torus M D fx 2 R
3j.1 �

q
x2

1 C x2
2/

2 C x2
3 D 1

2
g. In Figure 7 we compare

the discrete evolution at a fixed time for different choices of the time step � ( Q� D �).

5.2 Curve and surface blending

Figure 8 shows different solutions of a curve blending problem. The Willmore energy for a circular

segment with an opening angle ˛ and radius r is given by ˛
r

. Thus, for two given curve segments

which have to be blended we can continue these segments by straight line segments and connect

them by a circular arc. As the length of the straight line segments tends to infinity the Willmore
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FIG. 6. Different Willmore flow time steps are depicted from the evolution of a coarse polygonal torus model towards the

Clifford torus. The Newton scheme for the Lagrangian is applied, where h D 0:0977 (1st row), h D 0:0745 (2nd row),

and h D 0:0089 (3rd row), respectively. From left to right the surfaces are rendered at times t D 0:0, t D 0:09, t D 0:15,

and t D 0:97.

FIG. 7. For the Willmore flow evolution in Figure 6) we render the triangulated discrete surfaces at time t D 0:3735
resulting from computations with different time step sizes � D h4, � D h2, and � D h, where the initial grid size is

h D 0:0745.

 0.4

 0.45

 0.5

 0.55

 0.6

-0.05 -0.025  0  0.025  0.05

FIG. 8. Discrete stationary solutions of different curve blending problem are shown. Here, � D h D 0:01386, Q� D
1:386 � 10�5, and � D 1:0. The initial curve is plotted as a dotted line. On the right we compare the scheme with

prescribed co-normal N co (red) and the alternative approach with an additional ring of triangles (blue) in an enlargement of

the previous plot.

energy of the whole blending construction tends to zero. To avoid this modeling artifact we consider

a slight generalization of the above Willmore flow model. We add � aŒx� to the Willmore energy,

where � is a fixed constant and aŒx� denotes the length of the curve. Here, � can be regarded

as a Lagrangian multiplier with respect to a length constraint. Hence, for proper choices of � the

generalized model avoids expansion. IfX represents a discrete closed curve as above, we obtain for
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FIG. 9. For the solution of a surface blending problem with a blending region marked in red (left) we compare the semi-

implicit scheme from [13] (middle block) and the new method using a SQP approach (right block) with a blow-up zoomed

view onto the corresponding triangulation. Here, the (almost stationary) solution is rendered at time t D 1:4 and the

computational parameters are h D � D 0:14, Q� D 0:002 (first blow-up in on the right) and � D Q� D 0:0004 (second

blow-up on the right).

FIG. 10. Results of the second variant of the new method for Willmore flow are shown for a higher genus blending problem

and two different surface restoration applications using the SQP approach.

the discrete length functional AŒX� D
P

i2I Qi . Furthermore, its gradient vector in R
mjI j is given

by gradXAŒX� D LŒX� NX . Figure 9 shows a blending surface generated by the proposed method

and a comparison with the restoration method by Clarenz et al. [13] based on the semi-implicit

discretization of Willmore flow.

In curve and surface restoration the two variants of our approach give very similar results and

differ only slightly in the corresponding parameterization. The second variant appears to more

natural for surface restoration with a given outer triangular mesh, whereas the first variation is more

suitable for blending problems with explicitly given co-normal.

Finally, in Figure 10 we address further blending and surface restoration problems using the

second variant of our method. For a comparison with the semi-implicit approach and a discrete

geometry approach we refer to Clarenz et al. [13] and Bobenko & Schröder [7], respectively.

5.3 Simulation of anisotropic Willmore flow of curves

We have implemented our numerical algorithm for the anisotropic Willmore flow of polygonal

curves in R
2. Here, we present results for three different types of Wulff shapes and corresponding

anisotropies 0.z/ D jzj , 1.z/ D
q
z2

1 C 4 z2
2 , and 2.z/ D

P2
lD1

q
10�7jzj2 C z2

l
for z D

.z1; z2/ 2 R
2. In addition, we take into account a length energy as in Section 5.2. The results

underline that time steps up to the order the spatial grid size h are feasible also in the anisotropic

case. Figure 11 shows the evolution of a bunny shaped model towards a circle, an ellipse and a

square with slightly rounded corners. We used the Newton method for the Lagrangian to solve the

optimization problem at each time step.
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FIG. 11. Different time steps of the evolution of a bunny shape with 436 nodes towards a circle (first row), an ellipse (second

row) In all three cases we have chosen � D h D 0:00865 (h being the initial grid size), � D 0:025, and Q� D 7:5 � 10�5.

Appendix

A. Linearization of surface area

Here, we show that for two d -dimensional surfaces MŒx� and MŒy� in R
m with smooth

parametrizations x and y which are close in C 1; the approximation result (2.1) holds. To see

this, let us consider x and y as two charts defined on a parameter domain ! � R
d of

MŒx� and MŒy�, respectively. Then,
R

y.!/
da D

R
!

p
det.DyTDy/ d�. Taking into account that

d
ds

p
d .1C s/jsD0 D 1

2

p
d and using Taylor expansion we obtain

q
det.DyTDy/ D

q
det.DxTDx/ det

�
1I C .DxTDx/�1.DyTDy �DxTDx/

�

D
q

det.DxTDx/

 
1C

tr.
�
DxTDx/�1.DyTDy �DxTDx/

�

2

!

CO.ky � xk2
C 1.!/

/

D
q

det.DxTDx/
�
1 � d

2
C 1

2
tr.Dy.DxTDx/�1DyT /

�
CO.ky � xk2

C 1.!/
/ ;

where kf kC 1.!/ denotes the C 1 norm of f on the parameter domain !. Hence, we get

Z

!

q
det.DyTDy/ d� D

�
1 � d

2

�Z

!

q
det.DxTDx/ d�

C 1

2

Z

!

tr
�
Dy.DxTDx/�1DyT

�q
det.DxTDx/ d�

CO.ky � xk2
C 1.!/

/ ;

which together with the observation jrMŒx�yj2 D tr.Dy.DxTDx/�1DyT / finally proves our

claim.
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B. Local finite element matrices and their derivatives

Here, we derive formulas for the derivatives of the local mass and stiffness matrices. For simplicity

we assume that we deal only with a single d dimensional, non degenerate simplex T with vertices

X0; � � � ; Xd in R
m. Then, the mass and stiffness matrix are given by

MŒX� D
p

detGŒX� OM ; LŒX� D 1

dŠ

p
detGŒX�

�
GŒx��1 Or O̊

i � Or O̊
j

�
i;j D0;:::;d

:

Here, OM is the usual mass matrix on the reference simplex OT in R
d with vertices 0 and e1; � � � ; ed .

Furthermore, O̊
k (k D 0; : : : ; d ) are the corresponding basis function on OT and the gradient of

O̊
k is given by Or O̊

k D
�
.1� ık0/ıkj � ık0d

� 1
2

�
j D1;:::;d

. Furthermore, GŒX� D DXTDX is the

(discrete) metric tensor, where X is the mapping from the reference simplex OT to the simplex T .

For the derivatives of the metric tensor we obtain

@Xk
GŒX�.V / D

�
@Xk

DX.V /
�T
DX CDX

�
@Xk

DX.V /
�T
;

@Xl
@Xk

GŒX�.V;W / D
�
@Xl
DX.W /

�T �
@Xk

DX.V /
�

C
�
@Xk

DX.V /
�T �

@Xl
DX.W /

�

for V; W 2 R
m, where @Xk

DX.V / D
�
..1 � ık0/ıkj � ık0/Vi

�
iD1;:::;m

j D1;:::d
is the derivative of the

Jacobian of X with respect to the position of the vertex Xk . From this we immediately deduce

@Xk

p
detGŒx� D 1

2

p
detGŒx� tr

�
GŒX��1@Xk

GŒX�.V /
�
;

@Xk
.GŒx��1/.V / D �GŒx��1@Xk

GŒX�.V /GŒx��1;

@Xl
@Xk

.GŒx��1/.V;W / D �GŒx��1@Xl
@Xk

GŒX�.V;W /GŒx��1

CGŒx��1@Xl
GŒX�.W /GŒx��1@Xk

GŒX�.V /GŒx��1

CGŒx��1@Xk
GŒX�.V /GŒx��1@Xl

GŒX�.W /GŒx��1;

@Xl
@Xk

p
detGŒx�.V;W / D 1

4

p
detGŒx� tr

�
GŒX��1@Xl

GŒX�.W /
�

� tr
�
GŒX��1@Xk

GŒX�.V /
�

C 1

2

p
detGŒx� tr

�
@Xl
.GŒx��1/.W /@Xk

GŒX�.V /

CGŒX��1@Xl
@Xk

GŒX�.V;W /
�
:

Finally, we get the following formulas for the derivative of the mass and stiffness matrix

@Xk
MŒX�.V / D @Xk

p
detGŒx� OM;

@Xl
@Xk

MŒX�.V;W / D @Xl
@Xk

p
detGŒx�.V;W / OM;

@Xk
LŒX�.V / D 1

dŠ

�
@Xk

p
detGŒx�.V /GŒx��1 Or O̊

i � Or O̊
j

C
p

detGŒx� @Xk
.GŒx��1/.V / Or O̊

i � Or O̊
j

�
i;j D0;:::;d

;

@Xl
@Xk

LŒX�.V;W / D 1

dŠ

�
@Xl
@Xk

p
detGŒx�.V;W /GŒx��1 Or O̊

i � Or O̊
j

C
p

detGŒx� @Xl
@Xk

.GŒx��1/.V;W / Or O̊
i � Or O̊

j

�
i;j D0;:::;d

:
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Derivatives of the local anisotropic area functional

We restrict ourselves here to the evolution of polygonal curves under discrete Willmore flow and

focus on the local area functional on a single line segment connecting points X0 and X1 in R
2. We

have A ŒX� D 1
2

p
detGŒX�.N /, where N D D90.X1�X0/

jX1�X0j
denotes the discrete normal and for

d D 1 this time GŒX� D jX1 � X0j. Due to the 1-homogeneity of  we can rewrite A and obtain

A ŒX� D 1
2

Q.X1 �X0/ with Q D  ıD90. Hence, via straightforward differentiation we obtain

@Xi
A .V / D Q; z.X1 � X0/ � V .ı1i � ı0i /;

@Xj
@Xi
A .V;W / D Q; zz.X1 �X0/V �W .ı1i � ı0i /.ı1j � ı0j /;

@Xk
@Xj

@Xi
A .V;W;Z/ D Q; zzz.X1 � X0/.V;W;Z/ .ı1i � ı0i /.ı1j � ı0j /.ı1k � ı0k/:
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26. DZIUK, G., KUWERT, E., & SCHÄTZLE, R., Evolution of elastic curves in R
n: existence and

computation, SIAM J. Math. Anal. 33, no. 5 (2002), 1228–1245 (electronic). Zbl1031.53092 MR1897710

27. FRANKEN, M., RUMPF, M., & WIRTH, B., A phase field based pde constraint optimization approach to

time discrete willmore flow, International Journal of Numerical Analysis and Modeling (2011), accepted.
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