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For a bounded domain D � R
n, we study minimizers of the energy functional

Z

D
jruj2 dx C

Z

D\.Rn�1�f0g/
�C�fu>0g C ���fu<0g dH

n�1;

without any sign restriction on the function u. One of the main result states that the free boundaries

� C D @fu.�; 0/ > 0g and � � D @fu.�; 0/ < 0g

never touch. Moreover, using Alexandrov-type reflection technique, we can show that in dimension

n D 3 the free boundaries are C 1 regular on a dense subset.
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1. Introduction

For a bounded domainD in R
n, consider the problem of minimizing the energy functional

J.u/ D
Z

D

jruj2 dx C
Z

D\.Rn�1�f0g/

�C�fu>0g C ���fu<0g dH
n�1; (1.1)

among all functions u 2 W 1;2.D/ with u� u0 2 W 1;2
0 .D/ for a prescribed u0. We assume that �C

and �� are positive constants. The main objective of this paper is to study the local properties of the

free boundaries

� ˙ D � ˙
u WD @˝˙

u \D; where ˝˙
u WD f˙u > 0g \ .Rn�1 � f0g/:

The boundary here is defined by the topology of R
n�1 � f0g, so formally it is of co-dimension two

in R
n.

This problem bears resemblance to the one of minimizing the functional

QJ .u/ D
Z

D

jruj2 C �C�fu>0g C ���fu<0g; (1.2)
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studied in [2], the same paper where the renown Alt-Caffarelli-Friedman monotonicity formula has

been introduced. The minimizers of (1.2) are generalized solutions of a classical two-phase free

boundary problem

�u D 0 in fu > 0g [ fu < 0g;
jruCj2 � jru�j2 D M on @fu > 0g [ @fu < 0g;

(1.3)

with M D �C � ��. In one particular application, the problem (1.3) appears in a simplified model

for premixed equidiffusional flames, in the stationary case. More specifically, one considers the

limits as � ! 0C of a singular perturbation problem

�u D ˇ�.u/ in D;

where the nonlinearitiesˇ� , � > 0, are supported in Œ0; �� and have a fixed total energy
R �

0
ˇ�.s/ds D

M=2, see, e.g., [5].

When long range interactions are present, it is relevant to replace the Laplacian by nonlocal

operators, such as the fractional Laplacian. See survey papers [13] and [3]. If one formally considers

the equation

.��x0/˛u D �ˇ�.u/ on R
n�1;

where �x0 is the Laplacian on R
n�1 and 0 < ˛ < 1, then in the case ˛ D 1=2 this equation can be

rewritten as a boundary reaction problem

�u D 0 in R
n�1 � .0;1/;

@xn
u D ˇ�.u/ on R

n�1 � f0g;

solutions of which can be found by minimizing a suitably smoothed version of the energy functional

(1.1) on R
n. Letting � ! 0C, we obtain thereby that the minimization problem (1.1) can be viewed

as a “localized” version of the free boundary problem (1.3) for the half Laplacian .��x0/1=2.

The one-phase version of our problem (i.e., nonnegative minimizers) has been recently

considered in [8]. The authors of [8], in fact, consider the analogous problem for all fractional

powers of Laplacian, by using the extension of Caffarelli and Silvestre [7]. While our study of

the two-phase problem is only for ˛ D 1=2, there are more technical tools available at our disposal

(such as the Alt-Caffarelli-Friedman monotonicity formula) which allows us to obtain richer results.

Main results and outline of paper

The main results obtained in this paper are as follows.

– Existence of minimizers. In Section 2 we show the existence of minimizers (Theorem 2.1),

including the maximal and minimal ones for the given boundary data (Theorem 2.3).

– Optimal regularity. In Section 3, we show that the bounded minimizers are in fact C 1=2 regular

(Theorem 3.1). This is the best regularity possible since in fact C Re.xn�1 C i jxnj/1=2 is a

minimizer for appropriately chosen constant C (Theorem 9.1).

– Convergence properties. Having the optimal regularity, in Section 4 we study the convergence

properties of sequences of minimizers (Theorem 4.1), including the strong convergence in W 1;2

(Theorem 4.2).
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– Nondegeneracy. In Section 5 we show that the minimizers cannot decay faster than the square

root of the distance from the free boundaries, in both phases, (Theorem 5.1), even restricted to

the thin spaceD0 D D\R
n�1�f0g (Theorem 5.5). As a consequence, we obtain that˝˙

u satisfy

a H
n�1-density property (Theorem 5.7), which implies that H

n�1.� ˙/ D 0.

– Separation of phases. In Section 6 we prove an unexpected result that the two phases ˝C
u and

˝�
u are separated in a sense that � C \ � � D ;, and that in fact the minimizers don’t change

sign in solid neighborhoods of points on � ˙ (Theorem 6.1). This effectively reduces the two-

phase problem to an one-phase problem, at least for the study of the local properties of the

free boundary. The proof is obtained by the application of Alt-Caffarelli-Friedman monotonicity

formula.

This result is in complete contrast with two-phase free-boundary problem (1.3), where the two-

phase points create a major complication even in the proof of the optimal (Lipschitz in that case)

regularity of solutions, see [2].

– H
n�3=2 measure of the free boundary. In Section 7 we show that the free boundary has H

n�3=2

measure zero (Theorem 7.1). This result is not optimal, but it is a simple corollary for an estimate

on H
n�1-density of �u on D0 (Lemma 7.2), that is instrumental for the remaining part of the

paper.

– Monotonicity formula and blow-ups. In Section 8 we prove a Weiss-type monotonicity formula

(Theorem 8.1). It has an immediate corollary that the blow-ups are homogeneous of degree 1=2,

see Section 9. We then give a characterization of so-called regular free boundary points (i.e., the

points where the blow-up has a flat free boundary) in terms of the Weiss energy (Theorem 9.4).

The proofs are heavily based on the use of the Steiner symmetrization.

– Regularity of the free boundary in dimension n D 3. In Section 10 we prove that the set of regular

points is a relatively open subset of the free boundary, and is locally a C 1 curve (Theorem 10.1).

We do this only in dimension n D 3 (so that the free boundary is contained in R
2 � f0g), where

we may apply the Alexandrov reflection technique, appropriately adapted to our setting.

Notation and terminology

Throughout the paper we will use the following notation.

– We denote a point x 2 R
n by .x0; xn/ where x0 D .x1; : : : ; xn�1/.

– For s 2 R, we define s˙ D max.˙s; 0/, the positive and negative parts of s, so that we have

s D sC � s�.

– For any set ˝ � R
n, we define

˝ 0 WD ˝ \ .Rn�1 � f0g/:

We will refer to R
n�1 � f0g as the thin space.

– The balls Br .x/ D fy 2 R
n j jx � yj < rg will be often referred to as solid balls; whereas,

B 0
r .x

0/ D fy0 2 R
n�1 j jy0 � x0j < rg will be referred to as the thin balls. Sometimes we will

abuse the notation and write B 0
r .x

0; 0/ for B 0.x0/� f0g and will identify R
n�1 with R

n�1� f0g �
R
n.

– The unit sphere in dimension n will be denoted by Sn�1.

– The spherical coordinates .r; �1; : : : ; �n�1/ 2 .0;1/� Œ��; �/� Œ0; ���� � �� Œ0; �� for a nonzero
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point x D .x1; x2; : : : ; xn/ are defined by the relations

r D jxj;
xn D r cos �n�1;

� � � ;
xn�k D r sin �n�1 sin �n�2 � � � sin �n�k cos �n�k�1;

� � � ;
x1 D r sin �n�1 sin �n�2 � � � sin �1:

– We will call the sets ˝˙
u WD f˙u > 0g \ .Rn�1 � f0g/ positive and negative phases of u and

�u WD fu D 0g \ .Rn�1 � f0g/ the zero set. The free boundary �u is the union of � C
u and � �

u ,

where � ˙
u WD @˝˙

u \D.

– It is useful when studying local properties of free boundary points to consider the rescalings at

x0 2 �u
ur WD u.rx C x0/

r1=2
:

It is easy to see that the rescalings are still minimizers of the functional J . When we let r ! 0,

the process is known as blow-up. If for a certain subsequence r D rk ! 0, ur converges to u0
(in a certain sense) we will also refer to u0 as a blow-up of u at x0.

2. Existence

We say that u is a minimizer of the functional J in (1.1) if

J.u/ 6 J.v/; for v 2 uCW
1;2
0 .D/: (2.1)

Many of the results in this paper can be generalized also for local minimizers, for which (2.1) is

satisfied with v such that supp.u � v/ b D and diam supp.u � v/ < ı for some ı > 0.

Throughout the paper we will assume that the domain D is bounded and that the subdomains

D˙ D D \ f˙xn > 0g have Lipschitz boundaries. This guarantees, for instance, that the trace

operatorW 1;2.D/ ! L2.D0/ is compact.

The next theorem establishes the existence of minimizers with a given Sobolev trace on @D.

THEOREM 2.1 (Existence) For any � 2 W 1;2.D/ there exists a minimizer u to the functional J in

the class K D � CW
1;2
0 .D/.

Proof. Since J.v/ > 0, there exists a minimizing sequence fukg such that J.uk/ ! infK J . Since

krukkL2.D/ is bounded, and uk j@D D �, we obtain that

kukkW 1;2.D/ is bounded.

Hence, we may extract a further subsequence such that

uk * u in W 1;2.D/:

It is clear that u � � 2 W
1;2
0 .D/, or, equivalently, u 2 K. Furthermore, since the trace operator

v 7! vjD0 is compact, we may pass to a further subsequence to obtain

uk ! u in L2.D0/; and uk ! u H
n�1-a.e. in D0:
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Then there exist two functions 
˙ with 0 6 
˙
6 1 such that

�fuk>0g

�
* 
C and �fuk<0g

�
* 
�:

Since
R

D0.uk/˙.1 � �f˙uk>0g/ D 0, passing to the limit, we obtain
R

D0 u˙.1 � 
˙/ D 0, which

implies that

�fu>0g 6 
C; �fu<0g 6 
�
H
n�1-a.e. in D0:

We then obtain:

Z

D

jruj2 C
Z

D0

�C�fu>0g C ���fu<0g

6 lim
k!1

Z

D

jruk j2 C
Z

D0

�C
C C ��
�

D lim
k!1

Z

D

jruk j2 C lim
k!1

Z

D0

�C�fuk>0g C ���fuk<0g:

Hence u is a minimizer.

Note that since the functional J is not convex, we may not necessarily have the uniqueness of

the solution, and in general we may not necessarily conclude that if u and v are two minimizers

with u 6 v on @D, then u 6 v in D. Instead we have the following lemma.

LEMMA 2.2 (Lattice property) Let u; v be two minimizers of the functional J in a domain D with

uj@D 6 vj@D . If we define w � maxfu; vg and w � minfu; vg, then w and w are minimizers of the

functional J with boundary values v and u respectively.

Proof. It is fairly straightforward to check that

J.w/C J.w/ D J.u/C J.v/:

Since wj@D D v and wj@D D u, we conclude that w and w are minimizers of the functional J .

THEOREM 2.3 (Maximal and minimal minimizers) For any � 2 W 1;2.D/ there exists a maximal

(minimal) minimizer u� .u�/ of J on D with boundary data � on @D such that v 6 u� .v > u�/

for all other minimizers v with vj@D D �.

Moreover, if u�
1 and u�

2 are maximal minimizers corresponding to boundary data �1 and �2 on

@D and such that �1 6 �2 then u�
1 6 u�

2 . A similar statement holds for minimal minimizers.

Proof. The existence of u� and u� is obtained by the limiting procedure by using the lattice

property, similar to the standard Perron method.

The second part of the theorem is a direct consequence of the lattice property.

COROLLARY 2.4 If D and the boundary data � on @D are axially symmetric about the line

.0; : : : ; 0; xn/, then so will be u� and u�.

Proof. By Theorem 2.3, ifO is any rotation about the line .0; : : : ; 0; xn/, then u� ıO is a minimizer

with the same boundary data and therefore u� ı O 6 u�. This is possible only if u� is axially

symmetric about .0; : : : ; 0; xn/. The same proof holds for u�.
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3. Optimal regularity

In this section we show the Hölder-1=2 regularity of minimizers. This regularity is suggested by the

natural scaling of the problem. Namely, if u is a minimizer of J , then ur .x/ D u.rx C x0/=r
1=2 is

still a minimizer of J in the appropriately scaled domain.

THEOREM 3.1 (Hölder-1=2 regularity) Let u be a minimizer of J in B1 with kukL1.@B1/
6 M .

Then

kukC1=2.B1=2/
6 C;

where C is a constant depending only on n, M , and �˙.

Remark 3.2. In the above theorem we only need to control kukL1 on the boundary of the ball,

since it is straightforward to show that if kukL1.@B1/
6 M , then kukL1.B1/

6 M . Similarly, we

note that if uj@B1
> 0 .6 0/ then u > 0 .6 0/ in all of B1.

To prove the above theorem, we will need a Caccioppoli inequality. Without assuming a priori

that u is continuous, we do not necessarily know that uC and u� are subharmonic. Instead we prove

the Caccioppoli inequality directly from the fact that u is a minimizer.

LEMMA 3.3 Let u be a minimizer of the functional J in B2r . Then

Z

Br

jruj2 6
Cn

r2

Z

B2r

u2;

where Cn is a constant depending only on the dimension n.

Proof. Choose a cut-off function � 2 C1
0 .B2r / such that

0 6 � 6 1; � � 1 on Br ; jr�j 6
Cn

r
;

and consider a competing functionu� D u��uC�
2 for a small � > 0. Note that fu� > 0g D fu > 0g

and fu� < 0g D fu < 0g, besides u� D u on @B2r . Therefore, from the minimality of u, we must

have
Z

B2r

jruj2 6

Z

B2r

jr.u � �uC�
2/j2;

which by letting � ! 0C yields
Z

B2r

rur.uC�
2/ 6 0:

Proceeding as in the standard proof of the Caccioppoli inequality, we arrive at

Z

Br

jruCj2 6
Cn

r2

Z

B2r

u2C:

Similar inequality holds also for u�. This completes the proof of the lemma.

We are now able to prove the optimal regularity of minimizers.
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Proof of Theorem 3.1. Let Br .x/ be a ball contained in B1. Consider the harmonic replacement v

of u in Br .x/; i.e., a harmonic function v in Br.x/ such that v D u on @Br .x/. Then, using that
Z

Br .x/

rvr.v � u/ D 0

combined with the minimality of u in B1, we obtain the estimate
Z

Br .x/

jr.u� v/j2 D
Z

Br .x/

jruj2 � jrvj2

6

Z

Br .x/\.Rn�1�f0g/

�C
�

�fv>0g � �fu>0g

�

C ��
�

�fv<0g � �fu<0g

�

6 C0r
n�1;

with C0 depending only on n and �˙. Then for any 0 < � < r we have

�Z

B�.x/

jruj2
�1=2

6

�Z

Br .x/

jr.u� v/j2
�1=2

C
�Z

B�.x/

jrvj2
�1=2

6 C0r
.n�1/=2 C

��

r

�n=2
�Z

Br .x/

jrvj2
�1=2

6 C0r
.n�1/=2 C

��

r

�n=2
�Z

Br .x/

jruj2
�1=2

:

Here in the second inequality we have used that t�n
R

Bt .x/
jrvj2 is nondecreasing for 0 < t < r ,

because of the subharmonicity of jrvj2 in Br .x/, and in the third inequality we have used that v

minimizes the Dirichlet integral on Br .x/. The above estimate can be rewritten as

A.�/ 6 C0

�

r

�

�.n�1/=2

C
��

r

�1=2

A.r/;

where

A.r/ WD
�

1

rn�1

Z

Br .x/

jruj2
�1=2

:

Choosing � D ır for a fixed 0 < ı < 1=2, and using a simple induction argument that starts with

the Caccioppoli inequality for Bı.x/, we arrive at the estimate

A.ık/ 6 C; k D 1; 2; : : : ;

where C D C.C0; ı;M/ is a large constant satisfying

C > C0ı
�.n�1/=2=.1 � ı/; C > CnMı�1=2:

This readily implies that
Z

Br .x/

jruj2 6 Crn�1

for any x 2 B1=2 and r 6 1=2. Applying Morrey’s theorem, see e.g., [11, Theorem 1.53], we

conclude that u is Hölder-1=2.
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Remark 3.4. Now that we know that minimizers are continuous and we may use first variation to

conclude that u is harmonic on the set fu ¤ 0g [DC [D�. In particular, we also obtain that uC

and u� are continuous subharmonic functions in entireD.

4. Convergence of minimizers

In this section we have collected some results on the convergence of sequences of minimizers, that

are going to be important in blow-up analysis and compactness type arguments throughout the paper.

THEOREM 4.1 (Convergence of minimizers) Let fukg be a sequence of minimizers of the functional

J in the domainD with kukkL1.@D/ 6 M . Then there exists a subsequence and a function u0 such

that for every open U b D

.1/ u0 2 W 1;2.U / \ C 1=2.U /;

.2/ uk ! u0 in C ˛.U / for ˛ < 1=2;

.3/ uk * u0 in W 1;2.U /;

.4/ u0 is a minimizer of J in U .

Proof. Properties (1)–(3) follow immediately from Lemma 3.3 and Theorem 3.1. So we will

concentrate on the proof of (4). We must show J.u0/ 6 J.u0 C  / for  2 W
1;2
0 .U /. Since

minimizers exist and are Hölder-1=2 continuous, we only have to show the inequality for  

continuous. Choose a cut-off function � 2 C1
0 .D/ such that

0 6 � 6 1; � � 1 on a neighborhood of U :

For the minimizer uk consider the following competing function:

v�k D .uk C  � ��/C � .uk C  C ��/�:

Then we have

J.uk/ 6 J.v�k/

6

Z

D

jr.uk C  /j2 C
Z

supp�nU

.2�jruk jjr�j C �2jr�j2/

C
Z

D0

�C�fukC ���>0g C ���fukC C��<0g:

We now want to pass to the limits as k ! 1. To this end, subtract

Z

D

jruk j2 C
Z

D0nU

�C�fuk>0g C ���fuk<0g

from both sides of the previous inequality to obtain

Z

D0\U

�C�fuk>0g C ���fuk<0g 6

Z

D

.2rukr C jr j2/

C
Z

D0\U

�C�fukC ��>0g C ���fukC C�<0g C C�:
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Now, using that ruk * ru0 in L2.D/ and uk ! u0 uniformly on U , we obtain

J.u0/ 6

Z

D

jr.u0 C  /j2 C
Z

D0

�C�fu0C >0g C ���fu0C <0g C C�:

Letting � ! 0, we conclude that J.u0/ 6 J.u0 C  /.

Our next result strengthens the convergence given in part (4) of Theorem 4.1 from weak

convergence in W 1;2 to strong convergence, so minimizers under the assumptions of Theorem 4.1

will be locally compact in W 1;2.

THEOREM 4.2 (Strong convergence) Let fukg and u0 be as in Theorem 4.1. Then, over a

subsequence, uk ! u0 strongly in W 1;2.U / for any open U b D.

To prove this theorem, we will need the following result on the structure of�u for the minimizer

u.

LEMMA 4.3 Let u be a minimizer of the functional J . Then �u is a signed Radon measure

supported in � D fu D 0g \D0 with the total variation j�uj satisfying

hj�uj; �Ki 6 C.n;K/krukL2.D/

for anyK b D. Moreover,�u is absolutely continuous with respect to H
n�1j� and

�u D !H
n�1j�n� ; ! D @u

@xn
C @u

@x�n

or equivalently, for � 2 C1
0 .D/,

h�u; �i D
Z

�n�

� ! dH
n�1:

In the statement of the lemma above we have used the notation

@u

@xn
.x0; 0/ D lim

h!0

u.x0; h/ � u.x0; 0/

h
;

@u

@x�n
.x0; 0/ D lim

h!0

u.x0;�h/ � u.x0; 0/

�h ;

where h > 0, which exist at every point x0 2 D0 n � .

Proof. The functions u˙ are nonnegative, continuous, harmonic where positive. Hence, u˙ are

subharmonic in B1, implying that �u˙ are nonnegative Radon measures, and consequently that

�u D �uC��u� is a signed Radon measure. Besides, we know that u is harmonic inB1n�which

implies that�u lives on�. The quantitative estimate on j�uj follows from a standard argument for

subharmonic functions. Indeed, let � 2 C1
0 .D/ be a nonnegative cut-off function such that

� � 1 on K; kr�kL2.D/ 6 C.n;K/:

Then,

h�u˙; �Ki 6 h�u˙; �i D �
Z

D

ruCr� 6 C.n;K/kukL2.D/
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and the claimed estimate follows.

For the second part of the theorem, we will essentially prove the divergence theorem directly. If

fact, we will need to jump ahead and use the fact that H
n�1.� / D 0, see Corollary 5.8. (We just

note here that the proof of Theorem 5.7 and Corollary 5.8 is independent of Lemma 4.3.)

We first break up the integral overD as follows:

Z

D

u�� D
Z

DC

u�� C
Z

D�

u��:

Then, we break up the Laplacian as:

Z

DC

u�� D
Z

DC

u
@2�

@x2n
C
n�1
X

iD1

Z

DC

u
@2�

@x2i
:

Further, use iterated integrals as follows:

Z

DC

u
@2�

@x2n
D
Z

D0n�

Z 1

0

u
@2�

@x2n
:

(We may integrate over D0 n � since H
n�1.� / D 0). We are now able to use integration by parts

on each line to obtain

Z

D0n�

Z 1

0

u
@2�

@x2n
D
Z

D0n�

�

@u

@xn
� � @�

@xn
u

�

C
Z

DC

@2u

@x2n
�:

Since also
n�1
X

iD1

Z

DC

u
@2�

@x2i
D

n�1
X

iD1

Z

DC

�
@2u

@x2i
;

combining the equalities above, we arrive at

Z

DC

u�� D
Z

DC

��uC
Z

D0n�

�

@u

@xn
� � @�

@xn
u

�

:

Now, u is harmonic and differentiable off the zero set, so when we add the integral over D�, we

obtain
Z

D

u�� D
Z

�n�

�

@u

@xn
C @u

@x�n

�

�:

We can now prove the strong convergence.

Proof of Theorem 4.2. Take a test function � 2 C1
0 .D/ such that

0 6 � 6 1; � � 1 in a neighborhood of U :

Next, suppose that k is so large that juk � uj < � on supp �. Then we will have

ˇ

ˇh�.uk � u/; .uk � u/�2i
ˇ

ˇ 6 �
�

hj�ukj; �2i C hj�uj; �2i
�

6 C�;
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where C depends only on L2 norms of ruk and ru on D, by Lemma 4.3. Therefore

Z

D

jr.uk � u/j2�2 6 C� � 2
Z

D

�.uk � u/hr.uk � u/;r�i

and applying Young’s inequality, we arrive at

Z

U

jr.uk � u/j2 6 C� C C

Z

supp�

.uk � u/2:

One of the main applications of the results of this section is to the existence of blow-ups at free

boundary points.

COROLLARY 4.4 (Existence of blow-ups) Let u be a minimizer x0 2 �u. Then the family of

rescalings furg defined by

ur .x/ D u.x0 C rx/

r1=2
; x 2 1

r
.D � x0/

is uniformly bounded on every U b R
n for 0 < r < rU . In particular, there exists a subsequence

rj ! 0 and a function u0 on R
n such that urj ! u0 on every U b R

n, in the senses described in

Theorems 4.1 and 4.2. The function u0 is a called a blow-up of u at x0 and is a minimizer on every

U b R
n.

Proof. Just observe that if ı > 0 is such that Bı .x0/ � D, then ur is defined at least in Bı=r and,

by Theorem 3.1, the family furg is uniformly bounded on BR for 0 < r < ı=R. The rest follows

from Theorems 4.1 and 4.2.

5. Nondegeneracy

When we consider blow-ups of minimizers at free boundary points, it is not immediately obvious

that they may not vanish identically in R
n. What is even less obvious is whether the origin will

be a free boundary point for the blow-ups. The main results of this section, Theorems 5.1 and 5.5,

address these issues.

THEOREM 5.1 (Nondegeneracy) Fix 0 < t < 1, and let u be a minimizer of J in Br . There exists

� > 0 with � depending only on f�C; ��; tg such that if uj@Br
6 �r1=2 .uj@Br

> ��r1=2/ then

u.x/ 6 0; .u.x/ > 0/ for x 2 B 0
t r :

To prove this theorem, we will need the following estimate.

LEMMA 5.2 Fix 0 < � < 1. If u is a minimizer on B1 with u 6 M on @B1, then
Z

B0
�

�C�fu>0g 6 M 2Cn;� ;

where Cn;� is a constant depending only on dimension n and �.

Proof. For 0 < � < 1, let �� be the solution to

�� j@B D 1; �� jB0
�

D 0; ���.x/ D 0 for x … B 0
� :
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We first note that the solution �� exists since B n B 0
� is a regular domain for the Dirichlet problem

by the Wiener criterion. Let v � M�� and w � minfu; vg. Then J.u/ 6 J.w/, and by grouping

similar terms we find that

Z

D0\fvD0g

�C�fu>0g 6

Z

D\fu>vg

jrvj2 � jruj2: (5.1)

Note that we have used that u� D w�. Now we use that u is harmonic in the open set fu > vg so

that
Z

fu>vg

jruj2 D
Z

fu>vg

rurv

Substituting this into inequality (5.1) gives

Z

D0\fvD0g

�C�fu>0g 6

Z

fu>vg

rvr.v � u/ D
Z

B0
�

.�v/u D h�v; ui:

Here, �v is a nonnegative Radon measure in B1 whose support is fv D 0g D B 0
� (see, e.g., proof

of Lemma 4.3). The lemma now follows from the bound

h�v; ui 6 M 2h��� ; �B0
�
i 6 M 2Cn;� :

Next lemma improves the statement of Corollary 2.4 when the boundary data is constant.

LEMMA 5.3 Let u be a minimizer of J on B1 such that the values of uj@B1
D M > 0. Then u is

symmetric about the line .0; : : : ; 0; xn/, and the coincidence set � D fu D 0g \ B 0
1 is connected

and centered at the origin.

Proof. First observe that 0 6 u 6 M in B1, see Remark 3.2. Extend u to be a function on the cube

Q1 with side length 2, by defining u.x/ D M for x … B1. Now, fix a direction e 2 R
n�1 � f0g and

apply Steiner symmetrization (as defined in [10, Section II.7]) to the function v D M � u on lines

parallel to e and let Qv denote the resulting function. If we only consider fx 2 Q1 j jxnj > �g, then

v is Lipschitz. Then by [10, Theorem 2.31], we have that

Z

B1\fjxnj>�g

jruj2 D
Z

B1\fjxnj>�g

jrvj2 >

Z

B1\fjxnj>�g

jr Qvj2

and by letting � ! 0
Z

B1

jruj2 D
Z

B1

jrvj2 >

Z

B1

jr Qvj2:

If now Qu D M � Qv, then by the properties of Steiner symmetrization, we also have

H
n�1.fu > 0g \ B 0

1/ D H
n�1.f Qu > 0g \ B 0

1/:

Therefore we obtain that J. Qu/ 6 J.u/ and since u D Qu on @B1, we conclude that Qu is also a

minimizer. Now, we want to show that in fact Qu � u. To this end, consider w D maxfu; Qug, which

is also a minimizer by Lemma 2.2. In particular, w is harmonic in B1 n fw D 0g � B1 n B 0
1. Then

by the strict maximum principle for harmonic functions, we have that either u � w or Qu � w in
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B˙
1 , and hence in all of B1. This is equivalent to having u 6 Qu or Qu 6 u in B1. In the first case, the

equality
Z

B1nf QuD0g

jr Quj2 D
Z

B1nf QuD0g

jruj2

and the harmonicity of Qu inB1 nf Qu D 0g implies that u is also harmonic there and consequently that

u � Qu in this case. The second case is treated similarly, implying that indeed Qu � u. To complete

the proof, we Steiner symmetrize along all directions e 2 R
n�1 � f0g to obtain that u is symmetric

about the line .0; : : : ; 0; xn/ and fu D 0g is connected and centered at the origin.

We are now able to prove the nondegeneracy result.

Proof of Theorem 5.1. First we note that by rescaling we only need to prove Theorem 5.1 on the unit

ball B1. Also, Theorem 2.3 reduces Theorem 5.1 to proving the theorem for the maximal minimizer

u�
� where u�

� j@B D �. Lemma 5.3 proves that fu�
� D 0g D B 0

� for some � < 1. Lemma 5.2 shows

Z

B0
�

�C�fu�
�>0g ! 0 as � ! 0:

Then there exists � depending only on ft; �Cg such that if uj@B1
D � then

ujB0
t

D 0:

The case for which u > �� is proven similarly.

COROLLARY 5.4 If u is a minimizer and 0 2 � C .0 2 � �/, then

sup
@Br

u > Cr1=2
�

inf
@Br

u 6 �Cr1=2
�

; (5.2)

where C depends only on �C; �� and n.

We have nondegeneracy for the solid balls. The next theorem will give us nondegeneracy in the

thin space. This result will have many implications in the study of the free boundary. We note that

Theorems 5.5 and 5.7 have already been proven in [8] for the one-phase problem.

THEOREM 5.5 (Nondegeneracy in the thin space) Let u be a minimizer of J in Br with

kukC1=2.Br /
6 M . Then there exists C > 0 and 0 < � < 1, depending only on n, M , and �C

.��/, such that if 0 2 ˝C
u (0 2 ˝�

u ) then

sup
B0

r nB0
�r

u > Cr1=2

 

inf
B0

r nB0
�r

u 6 �Cr1=2
!

:

Proof. By rescaling, it is enough to prove the lemma for the case when r D 1. Suppose first that

0 2 ˝C
u and u 6 0 on B 0

1 n B 0
� with � < 1=4 to be chosen later. Let �1=2 be as defined in Lemma

5.2. Then, as before:

�C

Z

B0
1=2

�fu>0g 6 M

Z

B0
1=2

.��1=2/u (5.3)
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Now, ��1=2 is a nonnegative Radon measure, with a support in B
0

1=2 and in fact

��1=2 D 2
@�1=2

@xn
H
n�1jB0

1=2
:

Moreover, it is easy to see that @�1=2=@xn 6 Cn on B 0
1=4

� B 0
� . Using also that u 6 M�1=2 on B 0

�,

we can write

�C

Z

B0
1=2

�fu>0g 6 CnM�
1=2

Z

B0
1=2

�fu>0g:

Thus, by making � small enough, we would obtain that u 6 0 on B 0
�. This would be a contradiction

since 0 2 � C.

Suppose, by way of contradiction, that there exists a sequence fukg of minimizers in B1 with

kukkC1=2.B1/
6 M , 0 2 ˝C

uk
, and such that

uk.x
0; 0/ <

1

k
jx0j1=2; for all .x0; 0/ with � 6 jx0j 6 1:

Then uk ! u0 in C ˛ for ˛ < 1=2. Furthermore, by Theorem 4.1, u0 is a minimizer of J in any ball

Br , 0 < r < 1. Since 0 2 ˝C
uk

, then u0 inherits the same nondegeneracy properties of Theorem 5.1

that each uk has. Then 0 2 ˝C
u0

. But in the limit u0 6 0 on B 0
1 n B 0

�. This is a contradiction.

The nondegeneracy in the thin space has one immediate corollary. We omit the simple proof.

COROLLARY 5.6 Let fukg and u0 be as in Theorem 4.1. If xk 2 � ˙
uk

and xk ! x0 2 D, then

x0 2 � ˙
u0

.

We next show the positive density of the free boundary.

THEOREM 5.7 Let u be a minimizer of J in B1 with kukC1=2.B1/
6 M and 0 2 � C. Then there

exists c D c.n;M; �C/ > 0 such that

c <
H
n�1.˝C

u \ B 0
r /

Hn�1.B 0
r /

< 1 � c (5.4)

for every 0 < r < 1. Similar estimate holds also for˝�
u if 0 2 � �.

Proof. Since 0 2 � C, by Theorem 5.5 there exists .x0; 0/ such that jx0j > �r and u.x0; 0/ >

C jx0j1=2. By uniform Hölder-regularity,uwill be positive in a small ball around .x0; 0/. This proves

the estimate from below in (5.4).

To prove the estimate from above, we note that if B 0
r=2

\ ˝�
u is nonempty, then arguing as in

the preceding paragraph, we obtain that the set ˝�
u \B 0

r � B 0
r n˝C

u is large enough, which proves

the estimate in this case. So it remains to consider the case when u > 0 in B 0
r=2

. Besides, scaling if

necessary, we may assume that r D 1=2. Now, if the estimate from above fails in this case, we can

find a sequence of minimizers uk as in the statement of the theorem such that uk > 0 in B 0
1=4

and

H
n�1.fuk D 0g \ B 0

1=4/ ! 0:
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Let now vk be a harmonic function in B1=4, with the same boundary values as uk on @B1=4. Then

arguing as in the beginning of the proof of Theorem 3.1, we will have

Z

B1=4

jr.vk � uk/j2 6 �C

Z

B0
1=4

�fukD0g ! 0:

Next, passing to a subsequence, we may assume that uk ! u0 and vk ! v0 uniformly in B1=4.

Clearly, v0 is harmonic in B1=4 and u0 is a minimizer of J in B� for � < 1=4, with 0 2 � C
u0

.

Besides, by Fatou’s lemma ru0 D rv0 in B1=4, which implies that u0 � v0C c. Consequently, u0
is also harmonic in B1=4. Now observe that u0 > 0 in B1=4 and u0.0/ D 0. By the strong maximum

principle this implies that u0 � 0 in B1=4. However, this contradicts the fact that 0 2 � C
u0

.

COROLLARY 5.8 The free boundaries � ˙ have H
n�1 measure zero.

Proof. Apply Lebesgue’s density theorem and use the property (5.4).

The zero H
n�1 measure of the free boundaries allows to conclude the following fact about the

convergence of the positivity and negativity sets of minimizers.

THEOREM 5.9 Let fukg and u0 be as in Theorem 4.1. Then, over a subsequence,

�fuk>0g ! �fu0>0g; �fuk<0g ! �fu0<0g H
n�1-a.e. onD0:

Proof. Without loss of generality we may assume that D is the unit ball B1 and prove only

that �fuk>0g ! �fu0>0g H
n�1-a.e. on B 0

1=2
. We will also assume that the properties (1)–(4) in

Theorem 4.1 hold.

First, if x 2 fu0 > 0g \ B 0
1=2

, then from C ˛ convergence, uk.x/ > 0 for k sufficiently large.

Next, if x 2 B 0
1=2

and u0 6 0 onB 0
ı
.x/, then we claim that uk 6 0 onB 0

ı=2
.x/ for k sufficiently

large. Indeed, let y 2 B 0
ı=2
.x/. By C ˛ convergence we obtain that lim supB0

ı
.x/ uk 6 0 as k ! 1.

By Theorem 5.5 there exists C such that if for all z 2 B 0
ı=4
.y/

uk.z/ < C.�ı=4/
1=2;

then y cannot be in ˝C
uk

. Thus, uk 6 0 on B 0
ı=2
.x/ if k is large enough, as claimed.

Hence, we have established that �fuk>0g ! �fu0>0g everywhere on B 0
1=2

n � C
u0

. Since

H
n�1.� C

u0
/ D 0, this completes the proof of the theorem.

6. Separation of phases

In this section we prove that the free boundaries � C; � � cannot meet and that effectively near the

free boundary we deal only with a one phase problem.

THEOREM 6.1 (Separation of phases) Let u be a minimizer of J . Then � C \� � D ;, i.e., the free

boundaries � C and � � cannot touch. Moreover, for any x0 2 � C (x0 2 � �) there exists an open

ball Bt .x0/ � D such that u > 0 (u 6 0) in Bt .x0/.

As we will see, this follows from the combination of the nondegeneracy in Theorem 5.1 and the

following monotonicity formula.
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LEMMA 6.2 (Alt–Caffarelli–Friedman monotonicity formula) Let fh1; h2g be a pair of nonnegative

continuous subharmonic functions in B1 such that h1 � h2 D 0 in B1. Then the functional

r 7! ˚.r; h1; h2/ D 1

r4

Z

Br

jrh1j2
jxjn�2

Z

Br

jrh2j2
jxjn�2

is finite and nondecreasing for 0 < r < 1.

This monotonicity formula has first appeared in [2]. See also [6, Chapter 12] for more details.

(There is a superfluous assumption h1.0/ D h2.0/ in some versions of this monotonicity formula

which can be readily discarded). In a typical application we will have h1 D uC and h2 D u� for

a minimizer u, which satisfy the assumptions of the monotonicity formula, see Remark 3.4. Using

the scaling properties of the functional ˚ , we can then obtain the following statement about the

blow-ups.

LEMMA 6.3 Let u0 be a blow-up of a minimizer u at x0 2 �u over a sequence r D rk ! 0, as

described in Corollary 4.4. Then

Z

BR

jr.u0/C j2
jxjn�2

Z

BR

jr.u0/�j2
jxjn�2

D 0;

for any R > 0. Thus, either .u0/C � 0 or .u0/� � 0 in all of R
n.

Proof. Without loss of generality assume x0 D 0 and let ur .x/ D u.rx/=r1=2 ! u0.x/ over the

sequence r D rk ! 0. Making a simple change of variables and using the monotonicity of ˚ , we

obtain

˚.R; .ur /C; .ur /�/ D r2˚.rR; uC; u�/ 6 r2˚.1; uC; u�/ ! 0 as r ! 0:

Then, taking r D rk and applying Fatou’s lemma, in the limit we obtain that˚.R; .u0/C; .u0/�/ D
0 for any R > 0. This may happen only if either .u0/C or .u0/� is identically constant in R

n.

Since u0.0/ D 0, this constant must be zero, and therefore one of the functions .u0/˙ must vanish

identically in R
n.

Proof of Theorem 6.1. We split the proof into two steps.

(1) Thin separation: � C \ � � D ;.

Suppose by way of contradiction, that 0 2 � C \ � �. Consider then a blow-up urk ! u0. By

Corollary 5.4, there exists C > 0 such that for every k there are points xk ; yk 2 @B1 such that

urk .xk/ > C and urk .yk/ 6 �C . We may further assume that xk ! x0 and yk ! y0, passing

to a subsequence, if necessary. Then, since the convergence urk ! u0 can be assumed locally

uniform in R
n, we immediately obtain u0.x0/ > C and u0.y0/ 6 �C . However, this contradicts

Lemma 6.3. Hence, the free boundaries � C and � � cannot meet.

(2) Solid separation: If 0 2 � C, then there exists t > 0 such that u > 0 for all x 2 Bt .
In the previous step we have essentially showed that u has a sign in the thin ball B 0

t for a small

t . Here we show that u has a sign in the solid ball Bt .

Let urk ! u0 be a blow-up of u at the origin. By Lemma 6.3, u0 > 0. Since each urk .x
0; xn/

is harmonic in B1=rk n B 0
1=rk

, then u0 will be harmonic in the open set R
n
˙. We define

ı D infu0 over the set B1 \ fjxnj > 1=2g:
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We claim that ı > 0. Indeed, otherwise by the strong minimum principle u0 � 0 in R
n
C or R

n
�,

and therefore u0 � 0 on R
n�1 � f0g, which contradicts the fact that 0 2 � C

u0
(see Corollary 5.6).

Then, by C ˛ convergence, for large enough k, urk .x
0; xn/ > ı=2 for jxnj > 1=2 in B1. Also by C ˛

convergence, infB1
urk ! 0. Now by thin separation, for large enough k,

urk .x
0; 0/ > 0 in B 0

1:

Without loss of generality it suffices to show that urk > 0 in BC
1=2

. Let vk be the harmonic function

such that

vkjB0
1

D 0, and vk j
@B

C

1

D urk :

Then vk 6 urk in all of BC
1 . We show for k large enough that vk > 0 in BC

1=2
. To this end, consider

two subsets E1 and E2 of @.BC
1 /:

E1 D @.BC
1 / \ fxn > 1=2g; E2 D @.BC

1 / \ f0 < xn < 1=2g;

and there harmonic measures !1 and !2 with respect to the domain BC
1 . The latter means that !i

are harmonic functions in BC
1 satisfying

!i j@.BC

1
/

D �Ei
; i D 1; 2:

By using an explicit representation with the Poisson kernel or the boundary Harnack inequality, one

then has that

cnxn 6 !i .x/ 6 Cnxn in BC
1=2
:

for some positive dimensional constants cn and Cn. Now, by using the maximum principle we then

can write that in BC
1=2

vk.x/ > .ı=2/!1.x/C !2.x/ inf
B

C

1

vk

> xn
�

.ı=2/cn � Cn sup
.@B1/

C

u�
rk

�

:

Since u�
rk

! 0 uniformly on compact subsets of R
n, we obtain that vk.x/ > 0 in BC

1=2
for large k.

This completes the proof.

7. H
n�3=2 measure of the free boundary

For the remainder of the paper we will consider local properties of the free boundary. Using the

results of the previous section, it will suffice to assume unless otherwise stated that we now consider

minimizers of the functional

J.v/ D
Z

D

jrvj2 C
Z

D0

�fv>0g;

where v 2 K D fw 2 W 1;2 j wj@D D �g and � > 0. Since there is no negative phase, it will be

natural to denote the free boundary � C
v simply by �v.

We start with an improvement on Corollary 5.8.
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THEOREM 7.1 Let u be a minimizer of J . Then

H
n�3=2.� / D 0:

This result is far from being optimal, indeed, one would expect the free boundary to have locally

finite H
n�2 measure. We state it partially because its proof uses and estimate on the measure �u

that we will apply more than once throughout this paper.

LEMMA 7.2 Let u be a minimizer with kukC1=2.D/ 6 M . For any compact K b D, there exist

two positive constants c; C depending only on n;M andK such that if .x0; 0/ 2 .� n� /\K , then

c
p

dist.x0; � /
<
@u

@xn
.x0; 0/ <

C
p

dist.x0; � /
:

Proof. Without loss of generality we may assume D D B1 and K D B1=4. Suppose by way of

contradiction that there exists a sequence of minimizers fukg with kukkC˛.B1/
6 M and points

xk 2 .�uk
n �uk

/ \ B1=4 such that

@uk

@xn
.xk/ 6

1

k
p

dist.xk ; �k/
:

By rescaling with

Quk.x/ D uk.2dkx C yk/p
2dk

;

where yk 2 �uk
and dk D dist.xk ; � / D jxk � yk j, we obtain that f Qukg is a uniformly bounded

family of minimizers in B1 with 0 2 � Quk
. Then by Theorem 4.1, we may extract a subsequence

Quk ! u, where u is a minimizer on every ball Br , r < 1. Note that by Corollary 5.6, u is not

identically zero. Also, if we denote �k D .xk � yk/=2dk then j�k j D 1=2 and we may also assume

that �k ! �0 with j�0j D 1=2. Furthermore, since Quk is harmonic in BC
1=4
.�k/ and Quk.x/ D 0 for

x 2 B 0
1=4
.�k/, we obtain that u is harmonic in BC

1=4
.�0/ and u.x/ D 0 for x 2 B 0

1=4
.�0/. By C 1

convergence up to the boundary for harmonic functions we obtain that

@u

@xn
.�0/ D 0:

This is a violation of the Hopf principle, and we arrive at a contradiction. The proof of the estimate

from above is similar. Only this time we suppose that

@uk

@xn
.xk/ > k

1
p

dist.xk ; � /
:

This time, in the limit we obtain that
@u

@xn
.�0/ D 1;

which is of course a contradiction. This completes the proof.

We are now able to prove Theorem 7.1.
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Proof of Theorem 7.1. Without loss of generality we will assume that u is a minimizer on B1 and

show that H
n�3=2.� \ B1=2/ D 0. By Lemmas 4.3 and 7.2, we know that as a measure for x0 2 �

c
p

dist.x; � /
<
@u

@xn
.x0; 0/C @u

@x�n
.x0; 0/ <

C
p

dist.x; � /
:

Let A� D fx0 2 � j 0 < dist.x0; � / < �g. Then

H
n�1.A�/ 6 c�1=2h�u;A�i: (7.1)

Let B D B1=2, and take a cover of � \ B by a collection thin balls B 0
i of radius � centered on the

free boundary with the property that at most N balls intersect. N is dependent only on dimension.

From Theorem 5.7 we have

H
n�1.B 0

i \A�/ > ˇH
n�1.B 0

i /

for some ˇ > 0 and therefore

X

i

H
n�1.B 0

i / 6
1

ˇ

X

i

H
n�1.B 0

i \A�/

6
N

ˇ
H
n�1.B \ A�/

6
h�u;B \ A�iNc�1=2

ˇ

6
h�u;BiNc�1=2

ˇ
:

This shows that the H
n�3=2-measure of � \B is finite. To show that actually H

n�3=2.� \B/ D 0,

we just notice that

h�u;B \A�i ! 0 as � ! 0

due to the fact that �u is a Radon measure and B \A� & ;.

8. Weiss-type monotonicity formula

In this section we establish a Weiss-type monotonicity formula, which will be a useful tool in

the study of local properties of the free boundary. One of its immediate corollaries is the 1=2-

homogeneity of blow-ups. We prove this monotonicity formula for minimizers without a sign

restriction.

THEOREM 8.1 (Weiss-type monotonicity formula) Let u be a minimizer of J as in (1.1) in BR.x0/

for x0 2 R
n�1 � f0g. Define the Weiss energy functional

W.r; u; x0/ WD 1

rn�1

�Z

Br .x0/

jruj2 C
Z

B0
r .x0/

�C�fu>0g C ���fu<0g

�

� 1=2

rn

Z

@Br .x0/

u2;

(8.1)
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for 0 < r < R. Then W.r; u; x0/ is monotone nondecreasing in r . Furthermore, if r1 < r2, then

W.r1; u; x0/ D W.r2; u; x0/ if and only if u is homogeneous of degree 1=2 with respect to x0 on

the ring r1 < jx � x0j < r2.

The latter means u.x0 C �y/ D �1=2u.x0 C y/, as long as � > 0 and jyj; �jyj 2 .r1; r2/.
Remark 8.2. Although, we may choose x0 to be any point, it will be most useful to choose x0 2 � .

We will also use a short-cut notationW.r; u/ when x0 D 0.

Remark 8.3. The Weiss energy functional is essentially a normalized and boundary adjusted version

of J . The normalization is chosen so that W is preserved under the scaling ur .x/ D u.rx/=r1=2 in

the sense that W.r; u/ D W.1; ur /.

Proof. The proof is along the lines of that given by Weiss in [12]. Without loss of generality we

may assume x0 D 0. Let ��.x/ D x C ��kx, where

�k.x/ D max

(

0;min
n

1;
r � jxj
k

o

)

:

Then �k.x/ D 0 outside of Br .0/, and

�k.x/ ! �Br .0/ as k ! 0:

Notice that ��.x/ D x.1 C ��k.x// leaves R
n�1 � f0g invariant. We will also denote by � 0

� the

restriction of �� to R
n�1 � f0g. Define now the function u� by the identity u�.y/ D u.x/, where

y D ��.x/. Then

1

�

�

J.u�/ � J.u/
�

> 0

and

J.u�/ � J.u/ D
Z

D

ˇ

ˇru�.y/
ˇ

ˇ

2 C
Z

D0

�C�fu�>0g C ���fu�<0g

�
Z

D

ˇ

ˇru.x/
ˇ

ˇ

2 �
Z

D0

�C�fu>0g C ���fu<0g:

We explicitly have

r�k.x/ D �x
jxjk�Br nBr�k

;

D��.x/ D I C �
�

�k.x/I C xr�k.x/
�

and therefore

detD��.x/ D 1C � traceD
�

�k.x/x
�

C o.�/;

D��1
� D I � �D

�

�k.x/x
�

C o.�/:
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Then, substituting these into the equality above, we obtain:

J.u�/ � J.u/ D
Z

D

ˇ

ˇru.x/.D��.x//�1
ˇ

ˇ

2
detD��

C
Z

D0

�

�C�fu>0g C ���fu<0g

�

detD� 0
�.x/

�
Z

D

jruj2 �
Z

D0

�C�fu>0g C ���fu<0g

D
Z

D

�

jruj2 � 2�ruD.�k.x/x/ru
�

Œ1C � div.�k.x/x/�C o.�/

C
Z

D0

�

�C�fu>0g C ���fu<0g

� �

1C � div.�0
k.x

0; 0/x0/
�

C o.�/

�
Z

D

jruj2 �
Z

D0

�C�fu>0g C ���fu<0g

D
Z

D

�jruj2 div �k.x/x � 2�ruD.�k.x/x/ruC o.�/

C
Z

D0

�

�C�fu>0g C ���fu<0g

� �

� div.�0
k.x

0; 0/x0/
�

C o.�/:

Now, we may let � be both positive and negative, implying that

lim
�!0

1

�

�

J.u�/ � J.u/
�

D 0:

Then we obtain the following equality:

0 D
Z

D

jruj2 div �k.x/x � 2ruD.�k.x/x/ru

C
Z

D0

�

�C�fu>0g C ���fu<0g

�

div.�0
k.x

0; 0/x0/:

Using the explicit formulas

div
�

�k.x/x
�

D n�k.x/ � jxj
k
�Br nBr�k

;

div
�

�k.x
0; 0/x0

�

D .n � 1/�0
k � jx0j

k
�B0

r nB0
r�k

;

we obtain

0 D .n � 2/

Z

Br

jruj2�k � 1

k

Z

Br nBr�k

jxj
"

jruj2 � 2

�

x

jxjru
�2
#

C .n � 1/

Z

B0
r

�

�C�fu>0g C ���fu<0g

�

�0
k

� 1

k

Z

B0
r nB0

r�k

jx0j
�

�C�fu>0g C ���fu<0g

�

:
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Letting k ! 0 gives

0 D .n � 2/
Z

Br

jruj2 � r

Z

@Br

jruj2 � 2.u�/
2

C .n � 1/
Z

B0
r

�C�fu>0g C ���fu<0g � r

Z

@B0
r

�C�fu>0g C ���fu<0g

D .n � 1/
Z

Br

jruj2 � r

Z

@Br

jruj2

C .n � 1/
Z

B0
r

�C�fu>0g C ���fu<0g � r

Z

@B0
r

�C�fu>0g C ���fu<0g

�
Z

Br

jruj2 C 2r

Z

@Br

u2� :

Now, for smooth  
Z

Br

u� C
Z

Br

r � ru D
Z

@Br

u � :

We let  to be a standard mollification of u, i.e.,  D �� � u, and let � ! 0 to obtain

Z

Br

u�uC
Z

Br

jruj2 D
Z

@Br

uu� :

Next, as a measure, u�u D 0, hence

0 D .n � 1/

Z

Br

jruj2 � r

Z

@Br

jruj2

C .n � 1/

Z

B0
r

�C�fu>0g C ���fu<0g � r

Z

@B0
r

�C�fu>0g C ���fu<0g

�
Z

@Br

uu� C 2r

Z

@Br

u2� :

Multiplying both sides of the equation by �r�n, we obtain that for a.e. r 2 .0;R/

0 D
�

1

rn�1

Z

Br

jruj2
�0

C
�

1

rn�1

Z

B0
r

�C�fu>0g C ���fu<0g

�0

�
�

1=2

rn

Z

@Br

u2
�0

� 1

rn�1

Z

@Br

�

up
2r

�
p
2u�

�2

:

To finish the proof, we now note that W is an absolutely continuous function of r and by the

computation above

W 0.r; u/ D 1

rn�1

Z

@Br

�

up
2r

�
p
2u�

�2

;

for a.e. r 2 .0;R/. Thus, W 0
> 0, and W 0 D 0 on the interval r1 < r < r2 if and only if u is

homogeneous of degree 1=2 on the ring r1 < jxj < r2.
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When studying blow-ups, one of the first questions that one may ask is, “what type of solutions

may arise as blow-ups?” It is immediate that blow-ups are defined and minimizers in all of R
n; that

is they are minimizers in all compact subsets of R
n. One of the most important uses of Weiss-type

monotonicity formulas is the ability to prove the following result about all blow-ups.

COROLLARY 8.4 If u0 is any blow-up, then u0 is homogeneous of degree 1=2.

Proof. By Theorem 4.2, if ur ! u0, over a subsequence r D rk ! 0 then

Z

B1

jru0j2 D lim
rDrk!0

Z

B1

jrur j2:

Also, by Theorem 5.9,

�f˙urk
>0g ! �f˙u0>0g H

n�1 � a.e. on R
n�1

and therefore
Z

B0
1

�f˙u0>0g D lim
rDrk!0

Z

B0
1

�f˙ur>0g:

Then for any � > 0,

W.�; u0/ D lim
rDrk!0

W.�; ur/ D lim
rDrk!0

W.�r; u/ D W.0C; u/;

where we have used the strong convergence of urk to u0 in B� , see Theorem 4.2. Thus, W.r; u0/ is

constant; consequently, u0 is homogeneous of degree 1=2.

We conclude this section with the following simplified form of the Weiss energy functional for

homogeneous minimizers.

LEMMA 8.5 If u is a homogeneous of degree 1=2 minimizer, then

W.r; u/ � �C
H
n�1

�

fu > 0g \ B 0
1

�

C ��
H
n�1

�

fu < 0g \ B 0
1

�

:

Proof. Because of the homogeneity, the formula is equivalent to

W.r; u/ D 1

rn�1

Z

B0
r

�C�fu>0g C ���fu<0g:

This means that we have to show that the other two terms in the Weiss energy functional cancel each

other; i.e.,
1

rn�1

Z

Br

jruj2 D 1=2

rn

Z

@Br

u2:

Essentially, this has already been established in the proof of Theorem 8.1. Indeed, we have shown

there that
Z

Br

jruj2 D
Z

@Br

uu� ;

as a consequence of the equality u�u D 0 in the sense of measures. Observing now that ru� D
.1=2/u on @Br for homogeneous of degree 1=2 functions, we complete the proof.
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9. Regular points

We resume the study of nonnegative minimizers as described in the beginning of Section 7.

In this section, our main focus will be on so-called regular free boundary points. Intuitively, we

would like to say that a free boundary point is regular (or differentiable) if there exist a blow-up

with a flat free boundary. To give formal definitions, we start with a special global minimizer, which

we will call the half-plane solution.

THEOREM 9.1 (Half-plane solutions) The function

Ou.x; y/ D
p

2=� Re
p

x C iy D

s

x C
p

x2 C y2

�
D
p

2=� r1=2 cos.�=2/

is a minimizer on any U b R
2. (Here .r; �/ are the polar coordinates in R

2.) Similarly,

Ou.x1; : : : ; xn/ D
p

2=� Re
p

xn�1 C ixn

is a minimizer on any U b R
n, n > 2. We call these minimizers half-plane solutions.

Proof. Blow-ups are minimizers and homogeneous of degree 1=2. To show the first part of the

theorem, we note that the only harmonic functions in R
2
˙ that are homogeneous of degree 1=2 and

nonnegative on R � f0g have the form Ou D c Re
p
x C iy (up to a reflection in x) for some constant

c. Thus, we only need to identify the constant c. This will be accomplished by using variational

techniques similar to the proof of Theorem 8.1. This time we choose ��.x; y/ D .x; y/C ��.x; y/

where �.x; y/ D .
.x/ .y/; 0/. Now following the same ideas as in [1] and the proof of Theorem

8.1, we obtain

Z

f Ou>0g

div
�

jr Ouj2� � 2.� � r Ou/r Ou
�

D �
Z

.R�fyD0g/\f Ou>0g

 .0/ div 
: (9.1)

Now let  .y/ � 1 and 
.x/ � 1 on .�ı; ı/ for some small ı > 0. Then the right-hand side in

(9.1) is equal to 1 by the fundamental theorem of calculus. For the left-hand side we approximate

by isolating the origin

Z

f Ou>0g

div
�

jr Ouj2�� 2.� � r Ou/r Ou
�

D lim
�!0

Z

f Ou>0gnB�

div
�

jr Ouj2� � 2.� � r Ou/r Ou
�

:

We next want to apply the divergence theorem. For our specific Ou we have that on the zero set

f Ou D 0g:

� � � D .
 ; 0/ � .0;˙1/ D 0; � � r Ou D .
 ; 0/ � .0; Ouy/ D 0

and therefore

lim
�!0

Z

f Ou>0gnB�

div
�

jr Ouj2�� 2.� � r Ou/r Ou
�

D lim
�!0

Z

@B�

�jr Ouj2 x
�

� 2 Oux Ou� :

Explicit computations for Ou D c Re
p
x C iy show that (in polar coordinates)

jr Ouj2 D c2

4r
and Oux D Ou� D c

r

cos.�/C 1

8r
:
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Then

lim
�!0

Z

@B�

�jr Ouj2 x
�

� 2 Oux Ou� D c2
Z

@B�

� cos.�/

4�
C 2

cos.�/C 1

8r

D c2

4

Z

@B1

1

D c2
�

2
:

Thus, c2�=2 D 1, and consequently c D
p

2=� . This establishes the first part of the theorem.

For the second part of the theorem, we just observe that it is fairly straightforward to show

that any minimizer u in dimension k 6 n can be “lifted” to a minimizer Qu in dimension n by

Qu.x1; : : : ; xn/ D u.xn�kC1; : : : ; xn/.

Definition 9.2 (Regular points). Let u be a minimizer and x 2 � . We call x a regular point if there

exists a blow-up u0 of u at x0 such that u0 is a rotation (in the first n�1 variables) of the half-plane

solution Ou.

The next theorem will give a characterization of regular points in terms of the so-called Weiss

energy.

Definition 9.3 (Weiss energy at a point). For x0 2 �u, the Weiss energy of u at x0 is defined as the

limit W.0C; u; x0/. We recall here that if u0 is any blow-up of u at the origin, then

W.0C; u; x0/ D W.r; u0/;

see the proof of Corollary 8.4. Moreover, since u0 is homogeneous of degree 1=2, by Lemma 8.5

we have that

W.0C; u; x0/ D H
n�1

�

fu0 > 0g \ B 0
1

�

:

In particular, if x0 is a regular point, then

W.0C; u; x0/ D H
n�1

�

f Ou > 0g \ B 0
1

�

D ˛n�1=2;

where

˛n�1 WD H
n�1.B 0

1/:

THEOREM 9.4 (Weiss energy and regular points) Let u be a minimizer and x0 2 �u. Then

W.0C; u; x0/ > ˛n�1=2

and equality holds if and only if x0 is a regular point.

To prove Theorem 9.4 we will use the following lemma.

LEMMA 9.5 Let f W Sn�1 ! R be continuous on Sn�1 and real analytic in Sn�1 n .Sn�1/0. By

using spherical coordinates we may consider f W R ! R, whereR WD .��; �/�.0; �/�� � ��.0; �/
and f is 2�-periodic in �1; i.e.

f .��; �2; : : : ; �n�1/ D f .�; �2; : : : ; �n�1/:
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If we Steiner symmetrize f in �1-variable to obtain Qf , then

Z

Sn�1

jr� Qf j2 6

Z

Sn�1

jr�f j2; (9.2)

Z

Sn�1

j Qf j2 D
Z

Sn�1

jf j2: (9.3)

Equality holds in (9.2) if and only if f D Qf modulo translation in �1-variable.

The latter means that for some constant c

f .�1; �2; : : : ; �n�1/ � Qf .�1 C c; �2; : : : ; �n�1/:

Proof. The spherical gradient of f on Sn�1 in local coordinates is given by

r�f D
�

f�i

sin �n�1 � � � sin �iC1

�

; (9.4)

so that

jr�f j2 D
n�1
X

iD1

f 2
�i

sin2 �n�1 � � � sin2 �iC1
: (9.5)

We now define

R� WD
˚

� 2 R j �2; : : : ; �n�2 2 .�; � � �/; �n�1 2 .�; �=2 � �/ [ .�=2C �; � � �/
	

and observe that
sinn�2 �n�1 : : : sin �2

sin2 �n�1 � � � sin2 �iC1
and sinn�2 �n�1 : : : sin �2

are positive and continuous on R� and independent of �1 and that f real analytic in R� . Besides,

f is 2�-periodic in �1-variable; i.e., f .��; �2; : : : ; �n�1/ D f .�; �2; : : : ; �n�1/. If we Steiner

symmetrize in �1-variable to obtain Qf , then by [10, Theorem 2.31]

n�1
X

iD1

Z

R�

Qf 2
�i

sin2 �n�1 : : : sin2 �iC1
sinn�2 �n�1 : : : sin �2

6

n�1
X

iD1

Z

R

f 2
�i

sin2 �n�1 : : : sin2 �iC1
sinn�2 �n�1 : : : sin �2 (9.6)

and
Z

R�

Qf 2 sinn�2 �n�1 : : : sin �2 D
Z

R�

f 2 sinn�2 �n�1 : : : sin �2 (9.7)

and equality holds in (9.6) if and only if f D Qf modulo translations in �1-variable. already Steiner

symmetric in �1-variable. We then let � ! 0 to obtain (9.2). And again, the equality in (9.2) will

hold if and only if f D Qf modulo translations in �1-variable.

We may now prove Theorem 9.4.



A LOWER-DIMENSIONAL FREE BOUNDARY 333

Proof. Let u be a minimizer and x0 2 � . Let v be a blow-up of u at x0. Since v is homogeneous of

degree 1=2 and harmonic when positive, restricted to the unit sphere Sn�1, v satisfies the differential

equation

��Sn�1v D �v in ˙ WD fv > 0g \ Sn�1;

where �Sn�1 is the spherical Laplacian and

� D 1

2

�

n � 2C 1

2

�

D 2n � 3
4

:

Since v is nonnegative, we conclude that v is a principal eigenfunction of ��Sn�1 associated with

˙ . We now consider v in the place of f in Lemma 9.5 and Steiner symmetrize it in �1-variable to

obtain Qv. Then,
R

Sn�1 jr Qvj2
R

Sn�1 Qv2 6

R

Sn�1 jrvj2
R

Sn�1 v2
: (9.8)

If Q̇ is the Steiner symmetrization of˙ , then we can replace Sn�1 in (9.8) by Q̇ and˙ respectively,

implying that the principal eigenvalue Q� of Q̇ satisfies

Q� 6 �:

Moreover, the equality is achieved if and only if v D Qv (and Q̇ D ˙) modulo translations in �1-

variable. We next note that we have a freedom in choosing the �1-variable. Namely, if we make an

orthogonal rotation in R
n�1 and leave xn unchanged, we may reintroduce the spherical coordinates

and reapply the Steiner symmetrization in �1. By a limiting procedure (similar to the Appendix

in [4]) we thus construct a set ˙� � Sn�1, whose complement is a thin spherical cap; i.e.

˙� D Sn�1 n Ct ; Ct WD
˚

.x0; 0/ 2 Sn�1 j xn�1 6 t
	

; (9.9)

for some jt j < 1, with the corresponding symmetrized function v� on Sn�1 such that fv� > 0g D
˙�. Moreover, we will have that

H
n�2

�

fv� > 0g \ Sn�1
�

D H
n�2

�

fv > 0g \ Sn�1
�

and that the analogue of (9.8) holds with v� in place of Qv. Hence, if �� is the principal eigenvalue

of ˙�, then

��
6 �:

Next, by considering the half-plane solution Ou, we observe that � is the principal eigenvalue of
Ȯ D Sn�1 nC0 D f Ou > 0g\Sn�1. This immediately implies that t 6 0 in the representation (9.9),

since strictly smaller domains have strictly larger principal eigenvalues. This enables us to conclude

that

W.v; r/ D .n � 1/Hn�2
�

fv > 0g \ .Sn�1/0
�

D .n � 1/Hn�2
�

fv� > 0g \ .Sn�1/0
�

> ˛n�1=2:

If equality above is achieved, then we must have �� D � and that v� is a multiple of the half-plane

solution Ou (by the uniqueness of the principal eigenvalue). But then we must also have equality

in (9.8) for any Steiner symmetrization Qv. Recall that this implies that v D Qv modulo a rotation

in R
n�1 � f0g. As a consequence, we obtain that v D v� D c Ou. Since the constant c is uniquely

determined (see the proof of Theorem 9.1) we conclude that v is a rotation of the half-plane solution

and that x0 is a regular point. This concludes the proof.
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One of the main difficulties in studying blow-ups is that a priori it is not clear if different

subsequences converge to different blow-up solutions; i.e., if rk ! 0 and r 0
k

! 0 are two different

subsequences and urk ! u0 and ur0
k

! u0
0, is it true that u0 � u0

0? At this stage we give only a

partial answer to this question, by noticing that at regular points the Weiss energy equals ˛n�1=2.

Applying Theorem 9.4, we then obtain the following.

COROLLARY 9.6 If x0 2 � and x0 is a regular point, then all blow-ups at x0 are rotations of the

half-plane solution.

Note that it is not immediately clear that the blow-ups have to coincide. They could, in principle,

be rotations of each other. In Section 10 we show that this is not the case, at least in dimension n D 3.

The next theorem will be useful in Section 10. We present the proof here, since the ideas are

similar to those in the proof of Theorem 9.4.

THEOREM 9.7 Let u be a minimizer in dimension n D 3 and 0 2 � . Suppose that in a small

enough thin ball B 0
�, the positivity set of u lies above a graph in x1 direction; i.e.

fu > 0g \ B 0
� D

˚

x1 > �.x2/
	

\ B 0
�;

for some function �. Then every free boundary point of u in B 0
� is a regular point.

We will need the following lemma for the proof of Theorem 9.7.

LEMMA 9.8 Assume the same hypotheses as given in Theorem 9.7. If x0 2 � \ B 0
�, and v is a

blow-up of u at x0, then the zero set of v consists of a single connected cone.

The zero set of a blow-up is always connected topologically (because of the homogeneity).

When we say that the zero set consists of a single connected cone, we mean that the interior fv D 0gı

(in the topology of R
n�1 � f0g) is connected.

Proof. Since blow-ups are homogeneous, it is clear that the zero set of v is a cone. Let y D
.y1; y2; 0/ 2 fv D 0gı. We claim that

v.t; y2; 0/ D 0 for all t 6 y1:

By the nondegeneracy in the thin space (Theorem 5.5), we know that for large enough k, urk D 0 in

a small thin ball around .y1; y2; 0/. Then, from the assumption on u we have that urk .t; y2; 0/ D 0

for t 6 y1 and consequently v.t; y2; 0/ D 0. This geometric property, along with the fact that the

zero set of v is a cone, proves the lemma.

Proof of Theorem 9.7. Let x0 2 � \ B� and v be a blow-up of u at x0. Then v is homogeneous of

degree 1=2 and harmonic off the zero set. We also obtain on S2

��S2v D 3=4v:

Here 3=4 D � is the dimensional constant that is a result of v being homogeneous of degree 1=2.

Since the free boundary of u can be represented as a graph, by Lemma 9.8 we know that the zero

set of v consists of a single connected cone. v, which is nonnegative, must then be the principal

eigenfunction on S2 associated with its coincidence set. We now utilize the fact that our minimizer

is in dimension three. Specifically, fv D 0g \ .S2/0 must be a thin spherical cap (since it is a
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1-dimensional curve). Since the principal eigenvalue of v is fixed at 3=4, this is possible only if

fv D 0g \ .S2/0 is a half-thin-sphere. Then

H
2.fv > 0g/ D ˛2=2;

and by Theorem 9.4, we conclude that x0 is a regular point.

10. Regularity of the free boundary in dimension three

In this section we prove that in three dimensions the free boundary is locally a C 1 graph near

regular points. Here again we consider only nonnegative minimizers, as described in the beginning

of Section 7.

THEOREM 10.1 Let u be a minimizer in dimension n D 3. Then the set of regular points is dense

and relatively open in � . Furthermore, the set of regular points is locally a C 1 graph in R
2 � f0g.

Remark 10.2. We would like to observe here that in dimension n D 2 the free boundary has a

very simple structure: it is discrete. Indeed, assuming that x0 2 � is a limit point of some xk 2 � ,

xk 6D x0, consider the limit u0 of the rescalings ur .x/ D u.x0Crx/=r1=2 with r D rk D jxk�x0j,
over a subsequence. We may also assume that .xk � x0/=rk ! �0 2 @B 0

1. Then, on one hand, u0
must be homogeneous of degree 1=2 (by Corollary 8.4) and thus have the form u0 D Ou (up to

reflection in x), and on the other hand, we must have �0 2 �u0
. However, �u0

D f0g, which is a

contradiction. Thus, the free boundary � is discrete in dimension n D 2.

To prove Theorem 10.1, we start with a technical lemma (that works in any dimension n > 2)

on the growth of minimizers away from the plane R
n�1 � f0g.

LEMMA 10.3 (Linear growth) Let u be a minimizer in B1 with kukC1=2.B1/
6 M , and let � > 0.

There exists a constant c D cn;M > 0 depending only on n and M such that if x0 2 B 0
1=2

,

dist.x0; � / 6 � and jxnj 6 �, then

u.x0; xn/ >
cjxnjp
�
:

Proof. Throughout this proof c and C will be constants depending only on dimension and on M .

Also, without loss of generality, we may additionally assume xn > 0. We consider the three cases:

x0 2 fu D 0g n �; x0 2 �; u.x0; 0/ > 0:

If x0 2 � , then we may use a compactness argument similar to the one used in Lemma 7.2, to

conclude:

u.x0; xn/ > c
p
xn D cxnp

xn
in B1.x

0; 0/:

In particular,

u.x0; xn/ >
cxnp
�

for xn < �:

If x0 … � , then let dist.x0; � / D ı 6 �. If x0 2 fu D 0g, then by Lemma 7.2

c
p

dist.x0; � /
6
@u

@xn
.x0; 0/ 6

C
p

dist.x0; � /
:
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Then we may compare u to the harmonic function f .x/ D xn, and by the boundary Harnack

principle [9],
cxnp
2�

6 u.x0; xn/ in Bı=2.x
0; 0/: (10.1)

If xn > ı=2, then let y0 be the closest point on the free boundary to x0. As stated earlier,

u.y0; yn/ >
cynp
yn
:

For t > ı, we can connect .y0; t/ to .x0; t/ by five balls of radius ı=4. Then, by using the Harnack

inequality on this Harnack chain, we obtain that for ı=2 < t 6 �:

u.x0; t/ >
c5tp
t

>
c5tp
�
: (10.2)

We now consider the last case when u.x0; 0/ > 0. For ı < t 6 � we may again use a Harnack chain

and obtain as in equation (10.2)

u.x0; t/ >
ctp
ı

>
ctp
�
:

But now, since u is harmonic in the tube B 0
ı

� .��; �/, we may continue a chain of three more

Harnack balls of radius ı=2, and we obtain for 0 6 t 6 ı

u.x0; t/ >
c3ıp
ı

>
c3tp
�
:

This implies the claimed estimate.

For the remainder of this section we will be working in dimension three, so the free boundary

will be contained in R
2 � f0g. Accordingly, our functional J will be

J.v/ D
Z

R3

jrvj2 dx C
Z

R2�f0g

�fv.x1;x2;0/>0g dH
2

and our half-plane solution will be

Ou.x/ D
p

2=� Re
p

x2 C ix3:

To prove that the free boundary is differentiable we will use the Alexandrov Reflection technique,

adapted to our problem.

For R; h > 0 consider the tube (cylinder)

TR;h WD B 0
R � .�h; h/:

and for every ! 2 Œ0; 2�/ let

�! WD .� sin!; cos!; 0/; ˘! WD fx � �! D 0g:

Note that˘! is the plane spanned by the vectors .cos!; sin!; 0/ and .0; 0; 1/. For a point x 2 TR;h
consider the reflection Nx! with respect to ˘! . Using polar coordinates in R

2, if r > 0 and � are

such that

x D .r cos.! C �/; r sin.! C �/; x3/;
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then

Nx! D .r cos.! � �/; r sin.! � �/; x3/:
For a given function v on TR;h, to compare v and its reflection with respect to˘! , we introduce the

quantity

�!.r; �; x3I v/ WD v.x/ � v. Nx!/
D v.r cos.! C �/; r sin.! C �/; x3/

� v.r cos.! � �/; r sin.! � �/; x3/:

LEMMA 10.4 (Reflection principle) Let u be a minimizer in the tube TR;h such that for every

y 2 @TR;h with y � �! > 0, we have

u.y/ > u. Ny!/:
Also, suppose that there exists at least one point z 2 @TR;h such that z � �! > 0 and

u.z/ > u.Nz!/:

Then for every x 2 TR;h with x � �! > 0 we have

u.x/ > u. Nx!/:

In terms of the function �, this lemma says that to verify the inequality

�.r; �; x3Iu/ > 0; for all .r; �; x3/ 2 Œ0; R� � .0; �/ � Œ�h; h�;

it is enough to do it only when r D R or jx3j D h, provided a strict inequality holds at least at one

of such points.

Proof. Define Qu.y/ � u. Ny!/. Then u and Qu are both minimizers in the set UTR;h D fx 2 TR;h j
x � �! > 0g (the upper half-tube in direction �!). By Theorem 2.2 we obtain that w D maxfu; Qug
is also a minimizer. In particular, both w and u are harmonic in UT˙

R;h
D UTR;h \ R

3
˙. Moreover,

by definition, we have that w > u in UT˙
R;h

and w D u on @UTR;h. Now, the existence of the

boundary point z as in the statement of the lemma implies that w � u in a neighborhood of z.

Suppose, for definiteness, that z3 > 0. Then, by the strong maximum principle we will have that

w � u in UTC
R;h

. In turn, this implies thatw � u on @UT �
R;h

as well, and consequently that w � u

in UT �
R;h

. Thus,w coincides with u in all of UTR;h, which is equivalent to having Qu 6 u there.

For the next result, we consider slightly more general reflection with respect to shifted planes

y C˘! for y 2 R
2 � f0g, namely

�y!.r; �; x3I v/ WD v.y C x/ � v.y C Nx!/
D v.y1 C r cos.! C �/; y2 C r sin.! C �/; x3/

� v.y1 C r cos.! � �/; y2 C r sin.! � �/; x3/:

Typically, we will let y vary in a narrow thin strip

S� WD .�1; 1/ � .��; �/ � f0g:
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THEOREM 10.5 Let fukg be a sequence of minimizers in the ball B4 converging to the half-plane

solution Ou.x/ D
p

2=� Re
p
x2 C ix3. Then for every ı > 0, there exists � D �ı and kı , such that

for y 2 S� , jx3j 6 1, 0 < r 6 1, � 2 .0; �/ we have

�y!.r; �; x3Iuk/
(

> 0; ! 2 .ı; �
2

� ı/ [ .3�
2

C ı; 2� � ı/;

6 0; ! 2 .�
2

C ı; � � ı/ [ .� C ı; 3�
2

� ı/;
(10.3)

if k > kı .

Proof. We only prove the theorem for the case ! 2 .ı; �=2� ı/[ .3�=2C ı; � � ı/, the other case

being similar.

Let � D �ı > 0 be a small constant to be specified due course. For y 2 S�, x D .r cos.! C
�/; r sin.! C �/; x3/ with 0 < r 6 1 and � 2 .0; �/, we denote

z D y C x; Nz D y C Nx! :

Then, we have to show that

uk.z/ > uk.Nz/:
In order to do so, we split T2;2 into the following four regions

U1 D T2;� \ fx2 > 2�g;
U2 D T2;� \ fjx2j 6 2�g;
U3 D T2;� \ fx2 < �2�g;
U4 D T2;2 \ fjx3j > �g D T2;2 n T2;�:

Let also

QU1 D T2;� \ fx2 > ı=2g;
QU3 D T2;� \ fx2 < �ı=2g:

Note that QU1 � U1 and QU3 � U3, if � < ı=4.

(1) Suppose z 2 U4. Then, since �! � .0; 1; 0/ D cos! > sin ı, a direct computation shows that

@�!
Ou > cı;� > 0 in U4:

If k is large enough so that uk � Ou is small in C 1 norm in U4, then

@�!
uk > 0 in U4: (10.4)

By noticing that Nz D z � 2.sin �/�! we immediately obtain

uk.z/ > uk.Nz/:

(2) Suppose now z 2 T2;2 nT2;�. We then note that it would be sufficient to consider the case r D 1,

i.e., to verify that

�y!.1; �; x3Iuk/ > 0 for jx3j 6 �: (10.5)
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The general case 0 < r 6 1 will follow then form the reflection principle in Lemma 10.4 applied to

the tube T1;� and the shifted function u.y C �/. We therefore fix r D 1 in the rest of the proof. Then

z D .y1 C cos.! C �/; y2 C sin.! C �/; x3/;

Nz D .y1 C cos.! � �/; y2 C sin.! � �/; x3/:

We will consider several subcases, depending on the location of points z and Nz. In this regard, we

note that if ! 2 .ı; �=2 � ı/ [ .3�=2C ı; 2� � ı/ and � 2 .0; �/, then

j sin.! ˙ �/j 6 j sin ıj ) j sin.! � �/j > j sin ıj:

Hence, if we choose � < .sin ı/=4, and use that jy2j 6 �, then we have the following implications:

j Nz2j 6 2� ) z2 > ı=2;

jz2j 6 2� ) Nz2 < �ı=2:

Also note that we always have z2 > Nz2 in the considered ranges of ! and � .

Before proceeding, we note that by using the C ˛ convergence and the thin nondegeneracy as in

the proof of Theorem 5.9, we may choose k large enough so that

�uk
\ T2;2 � fjx2j < �g \ B 0

2.0/:

We then consider the following subcases.

(2a) j Nz2j 6 2� and consequently z2 > ı=2. Let � be so small that

sup
U2

uk 6 C
p
� 6

p

ı=4� D 1

2
inf
QU1

Ou:

Then, using L1 convergence of uk to Ou on QU1, we can guarantee that

sup
U2

uk 6 inf
QU1

uk ;

if k is large enough. This implies that uk.z/ > uk.Nz/, which is equivalent to (10.5).

(2b) jz2j 6 2� and consequently Nz2 < �ı=2. We can make � even smaller to have

cp
3�

jx3j > 2 Ou.x1; x2; x3/ for x2 6 �ı=2; and jx3j 6 �;

for the constant c as given in Lemma 10.3. Note that in this case we have z 2 U2, dist.z; �uk
/ 6 3�

and Nz 2 QU3. Then by Lemma 10.3

uk.z/ > 2 Ou.Nz/:
For x D .x0; 0/ 2 QU3, we know that uk.x

0; 0/ D 0, for large k, and by the C 1 convergence of

harmonic functions up to the set fx3 D 0g and we obtain that

uk.z/ > uk.Nz/:
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Therefore inequality (10.5) also follows in this case.

(2c) z2 > 2� and Nz2 < �2�. In this case, we may use L1 convergence of uk ! Ou again to obtain

sup
U3

uk 6 inf
U1

uk ;

which implies (10.5).

(2d) Both z2; Nz2 > 2�. Similar to the case (1), if x 2 U1, we may use C 1 convergence to obtain that

@�!
uk > 0 in U1

and consequently (10.5).

(2e) Both z2; Nz2 < �2�. This is our only remaining concern. Without loss of generality we may

further assume x3 > 0. On U3 we know that @x3
@�!

Ou > cı;� . On U3 we may use C 2 convergence

up to the boundary fx3 D 0g to obtain that for large enough k

@x3
@�!

uk > 0 in U3:

Since @�!
uk.x1; x2; 0/ D 0 for x2 < ��, we obtain

@�!
uk > 0 in U3

and consequently (10.5).

Thus, we have considered all cases, so we may conclude that inequality (10.5) is true for large

enough k. This also completes the proof of the theorem.

The technical details of the previous proof would have been simpler if instead of letting y 2 S�,
we had only considered y D 0. The usefulness of allowing y to vary is seen in the following

corollary.

COROLLARY 10.6 Let fukg, Ou, ı, � D �ı , kı be as in Theorem 10.5. If k > kı , then in the

thin strip S�, uk is monotone nondecreasing in the directions e! WD .cos!; sin!; 0/ for ! 2
.ı; �=2 � ı/ [ .�=2C ı; � � ı/.
Proof. Let x and r > 0 be such that x; x C re! 2 S�. Pick y to be the midpoint, so that y D
x C .r=2/e!. Then, noticing that e! D �!��=2, by Theorem 10.5 we obtain:

uk.x C re!/ D uk
�

y C .r=2/�!��=2

�

> uk
�

y � .r=2/�!��=2

�

D uk.x/:

This completes the proof.

COROLLARY 10.7 Let fukg, Ou, ı, � D �ı , kı be as in Theorem 10.5. If k > kı , then the free

boundary �uk
in B 0

1 is a Lipschitz graph.

Proof. This is a direct consequence of the directional monotonicity proven in Corollary 10.6 and

the fact that �uk
\ B 0

1 � S�.
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COROLLARY 10.8 Let fukg, Ou, ı, � D �ı , kı be as in Theorem 10.5. If k > kı and y 2 �uk
\ B 0

1,

then y is a regular point.

Proof. By Corollary 10.8 we know the free boundary can be represented by a graph. Recalling

that we are in dimension three, by Theorem 9.7 we conclude that every free boundary point is

regular.

Remark 10.9. The previous corollary shows that for a minimizer u, the set of regular points is

relatively open in the free boundary �u. This is seen by letting urk ! u0 be a blow up of u at a

regular point x0 for some sequence rk ! 0. Then u0 is a rotation of the half-plane solution Ou and

we may apply Corollary 10.8 to obtain that �ur
\ B 0

1, for r D rkı
, consists only of regular points.

Rescaling backwards, we obtain that all points in �u \ B 0
r .x0/ are regular.

We also note that the set of regular points is relatively dense in � . This is seen by noting that

free boundary points that have tangent balls from one side (as defined in [8]) are dense in � . It has

been shown in [8] that free boundary points that have a tangent ball are regular.

COROLLARY 10.10 (Differentiability) If x0 is a regular point for a minimizer u, then the blow-up

of u at x0 is unique. Moreover, if u0 is the blow-up of u at x0, then �u has a tangent line at x0
which is parallel to �u0

.

Proof. Let u0 and v0 be two different blow-ups of u at x0. By Corollary 9.6, we know that u0 and

v0 are both rotations of the half-plane solution Ou. Without loss of generality assume that u0 D Ou
and that v0 is a rotation of Ou by angle ˛ 2 .0; 2�/ in .x1; x2/-plane. By Corollary 10.6, u will

inherit directional monotonicity from both Ou and v0. Specifically, in a small ball around x0, u will

be monotone nondecreasing in directions e! D .cos!; sin!; 0/ for

! 2 .ı � ˛; �=2� ı � ˛/ [ .�=2C ı � ˛; � � ı � ˛/:

Then Ou, being a blow-up of u, will also be monotone nondecreasing in those directions. However,

if ı > 0 is small enough, the above range contains an angle ! 2 .�; 3�=2/ [ .3�=2; 2�/ for

which Ou is strictly decreasing (where positive) in the corresponding direction e! . This is clearly a

contradiction, which implies the uniqueness of the blow-up.

To show the differentiability of �u at x0, without loss of generality assume x0 D 0. Then

observe that the uniqueness of the blow-up implies that ur ! Ou locally in R
3 as r ! 0, not just

only over a sequence. In particular, using the C ˛ convergence and the thin nondegeneracy as in the

proof of Theorem 5.9, we will have that for any � > 0, there exists r� > 0 such that �ur
\B 0

1 � S�,

for r < r�. Rescaling backwards, we will have that

�u \ B 0
r � Sr� \ B 0

r ; r < r�:

This implies that �u (which is a Lipschitz curve) is differentiable at the origin and that � Ou D fx2 D
x3 D 0g is its tangent line.

We are now ready to prove Theorem 10.1. We only state what remains to be proven.

THEOREM 10.11 (C 1 regularity) Let u be a minimizer in dimension n D 3 and 0 2 � a regular

point. Then there exists a small � > 0 such that � \ B 0
� is a C 1 graph.

Proof. Without loss of generality we may assume that the blow-up at the origin is the half-plane

solution Ou. Let ı > 0 and � D �ı be as in Theorem 10.5. Then by using Corollary 10.7 and
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rescaling backwards, we obtain that there is a small � > 0 such that �u \ B 0
� is a Lipschitz graph.

Furthermore,�u\B 0
� � S��\B 0

�, and by Corollary 10.6, u is monotone nondecreasing in S��\B 0
�

in directions e! for ! 2 .ı; �=2 � ı/ [ .�=2 C ı; � � ı/. By Corollary 10.8, we know that every

point y 2 �u \ B 0
� is regular and, by Corollary 10.10, the blow-up v0 of u at y is unique. Also,

v0 will inherit monotonicity in the direction e! for ! 2 .ı; �=2 � ı/ [ .�=2C ı; � � ı/. Since v0
must be a rotation of Ou, the directional monotonicity implies that the rotation angle ˛ must satisfy

j˛j 6 ı. In particular, the tangent line at y, parallel to �v0
will form an angle j˛j 6 ı with � Ou,

which is the tangent line at the origin. This proves the C 1 regularity of �u at the origin. Repeating

the last argument at every point of �u \ B 0
�, we obtain the C 1 regularity of �u \ B 0

�.
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