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Topology optimization methods with gradient-free perimeter approximation
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In this paper we introduce a family of smooth perimeter approximating functionals designed to
be incorporated within topology optimization algorithms. The required mathematical properties,
namely the � -convergence and the compactness of sequences of minimizers, are first established.
Then we propose several methods for the solution of topology optimization problems with perimeter
penalization showing different features. We conclude by some numerical illustrations in the contexts
of least square problems and compliance minimization.
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1. Introduction

In several areas of applied sciences, models where the perimeter of an unknown set plays a
crucial role may be considered. Such problems encompass multiphase problems where the interface
between two liquid phases is assumed to minimize a free energy while keeping its area bounded
[24, 32], or image segmentation models with Mumford-Shah [7] type functionals. A related problem
is that of minimal partitions [12, 14, 19]. Specifically, consider a bounded domain ˝ of R

2, a
number m 2 N, functions g1; : : : ; gm 2 L1.˝/, and a parameter ˛ > 0. A model problem of
minimal partition reads

min
˝1;:::;˝m

mX
iD1

�Z
˝i

gi .x/dx C ˛

2
Per.˝i /

�
; (1.1)

where the minimum is searched among all partitions .˝1; : : : ;˝m/ of ˝ by subsets of finite
perimeter and were Per.˝i / is the relative perimeter of ˝i in ˝ . Another important field where
the perimeter comes into play is the optimal design of shapes [6], such as load bearing structures
or electromagnetic devices, where it aims at rendering the problem well-posed in the sense of the
existence of optimal domains. Indeed, it is known that a perimeter constraint provides in many shape
optimization problems an extra compactness that leads to the existence of a domain solution, while
on the contrary homogenization would occur if the perimeter constraint was removed.
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However it is known that a major difficulty of standard perimeter penalization is that the
sensitivity of the perimeter to topology changes is of lower order compared to usual cost functionals,
like volume integrals (see, e.g., [9, 23, 31] for the topological sensitivity of various functionals) and
thus prohibits a successful numerical solution. In this paper we propose a regularization of the
perimeter that overcomes this drawback and show simple applications in topology optimization and
source identification. Since we believe that applications of our method could be useful in other areas
of applied sciences, a brief overview of the physical motivation of our approach is first proposed.

The Ericksen-Timoshenko bar [30] was designed as an alternative to strain-gradient models to
simulate microstructures of finite scale ", where an energy functional

G".u; v/ D
Z 1

0

�
"2

2
.v0/2 C 1

2
.u � v/2

�
dx

depending on two variablesu, the longitudinal strain, and v, an internal variable assumed to measure
all deviations from 1D deformations, is minimized in .u; v/. Seeking a minimum in the second
variable amounts to finding v" solution of the Euler-Lagrange equation �"2v00

" C v" D u with
v0

".0/ D v0
".1/ D 0. Hence the problem can be restated as

u" 2 argmin F".u/ WD 1

"
G".u; v"/ D ˛

2"
hu � v"; ui; (1.2)

where the brackets denote the L2 scalar product. Moreover, it is observed that v" also minimizes
QG".u; v/ WD 1

"
G".u; v/C 1

2"
hu; 1�ui which, in two papers of Gurtin and Fried [21, 22], is identified

with the free energy of (a particular choice of�) some thermally induced phase transition models
where u stands for the scaled temperature variation and v represents a scalar “order parameter”.
In [22], the authors consider a dimensional analysis where " is allowed to tend to 0.

In the present paper, the problem is considered for an arbitrary space dimension N . Our
approximating functional is based on the minimization in the second variable of

QG".u; v/ D 1

2"

Z
˝

�
u.1 � u/C .u � v/2�dx C "

2

Z
˝

jrvj2dx;

thereby involving for each selected " the solution v" of the following PDE:� �"2�v" C v" D u in ˝
@nv" D 0 on @˝:

: (1.3)

Specifically, in this paper we show that the function

QF".u/ WD inf
v2H 1.˝/

QG".u; v/ D QG".u; v"/ D 1

2"
h1 � v"; ui (1.4)

for u 2 L1 .˝; Œ0; 1�/ is the relaxation with respect to the weak-� topology of the functional
defined by F".u/ WD 1

2"
hu � v"; ui if u 2 L1 .˝; f0; 1g/, and C1 otherwise in L1 .˝; Œ0; 1�/.

Then, we prove that ˛�1 QF".u/ converges as " ! 0 in a suitable sense and for a particular value of
˛ independent of N to the perimeter Per.A/ of A as soon as u is the characteristic function of some

� In particular a model with dissipationless kinetics and vanishing specific heat.
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subset A of ˝ , and to C1 otherwise. As a consequence we can address topology optimization
problems where the perimeter is approximated by ˛�1 QF".�A/ with A in some admissible class of
shapes. The behavior of the functional QF" with respect to optimization is enhanced by the fact that it
is by construction weakly-� continuous on L1.˝; Œ0; 1�/ and obviously free of any gradient term.
Let us emphasize that, while the addition of the perimeter in several shape and topology optimization
problems is by now quite standard, it is usually done in an ad-hoc manner to penalize an optimization
algorithm, see [15] and the references therein. To our knowledge a proper mathematical justification
is still missing and we believe that the contribution of this paper is also to propose a theoretical
response to this important issue.

Since we intend to analyze the convergence of minimizers as " ! 0, a general notion of
convergence of functionals, namely the � -convergence [18, 20], must be considered. In this setting,
the Modica-Mortola approach to approximate the perimeter is well-known (the reference papers
are [27–29]). In image segmentation [7] or fracture mechanics [5, 17, 33], the length of the jump
set of the unknown u is added to quadratic terms integrated over the smooth regions, whose joint
regularization is provided by the celebrated Ambrosio-Tortorelli functional [8]. Let us emphasize
that, as they involve a gradient term kruk2

L2 , the two aforementioned functionals present several
drawbacks in order to approximate optimal solutions in topology optimization. First, they are
defined for H 1 functions and not for characteristic functions, hence they would require to extend
the cost function to the intermediate values, typically by a relaxation which is not always doable.
Second, they are not compatible with a discretization of u by piecewise constant finite elements,
which are yet the most frequently used in topology optimization. Third, as observed in [16] where
the Modica-Mortola functional was combined with a phase field approach, the Laplacian of u
appearing when differentiating the gradient term leads to numerical instabilities in the optimization
process, requiring the use of rather sophisticated semi-implicit schemes.

In a previous paper [10] the pointwise convergence of a variant of F".�A/ to Per.A/ for A
with suitable regularity has been studied. Moreover, the topological sensitivity (or derivative) of the
approximating functionals has been explicitly computed. With our approximating functionals QF"

or F" we are able to nucleate holes, in particular, we can compute the corresponding topological
derivatives at the only additional cost of computing an adjoint state solution to a well-posed
elliptic PDE similar to (1.3) with appropriate right hand-side. Moreover, if topology optimization is
intended without using the concept of topological derivative, our formulation allows one to relax
the cost function, yielding minimizing sequences showing intermediate “homogenized” values,
but nevertheless converging to a characteristic function. This is a simple consequence of the fact
that QF".u/ ! C1 as soon as u takes values outside f0; 1g. In this respect, it can be seen as a
particular way to penalize intermediate densities in homogenization methods, which is usually done
by heuristic techniques [2]. From a numerical point of view another direct benefit of our approach is
that some special but important topology optimization problems can be explicitly written as multiple
infima, which are efficiently handled by alternating directions algorithms.

It is rather remarkable that QF".u/ seems not only to be arbitrarily proposed to get better
numerical algorithms, but also has an intrinsic meaning in terms of physical modeling, i.e., as a
free-energy type functional depending on a small parameter and where v is interpreted as a slow
internal variable which tracks the fast variable u. Our approach can therefore be a tool to study limit
models as " ! 0. In fracture mechanics one may think for instance of fracture models approximated
by damage models, where the damage variable is the scalar v, " is the “thickness” of the crack, and
u the displacement field, while the cost function is a Griffith-type energy [5, 17]. Coming back
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to our first motivation example, the Eriksen-Timoshenko bar, there is an interest to replace strain-
gradient models by models with internal variables and free energy functionals reading as our F".
We believe that several other problems in physics where the perimeter enters the model could also
find appropriate interpretations and/or extension in the light of our functional.

The rest of the paper is organized as follows. The basic properties of the functionals F" and QF"

are studied in Section 2. The � -convergence is proved in Section 3, using as essential ingredient a
result from [32]. Our main results concerning the solution of topology optimization problems are
established in Section 4. Sections 5 through 7 are devoted to numerical applications. Concluding
remarks are given in Section 8.

2. Description of the approximating functionals

Let ˝ be a bounded domain of R
N with Lipschitz boundary. For all u 2 L2.˝/ we define

F".u/ WD inf
v2H 1.˝/

�
"

2
krvk2

L2.˝/
C 1

2"
kv � uk2

L2.˝/

	
; (2.1)

i.e., F" is equal to "=2 times the Moreau-Yosida regularization with constant 1="2 of the function
v 2 H 1.˝/ 7! krvk2

L2.˝/
. We next introduce the functional QF" given by

QF".u/ D F".u/C 1

2"
hu; 1 � ui; (2.2)

or equivalently after simplification

QF".u/ WD inf
v2H 1.˝/

�
"

2
krvk2

L2.˝/
C 1

2"



kvk2

L2.˝/
C hu; 1 � 2vi

�	
: (2.3)

Throughout we use the notation hu; vi WD R
˝
uvdx for every pair of functions u; v having

suitable regularity. In Proposition 2.4 we shall show that the functional QF" restricted to the space
L1.˝; Œ0; 1�/ is the relaxation with respect to the weak-� topology of the functional defined by
F" if u 2 L1 .˝; f0; 1g/, and C1 otherwise in L1 .˝; Œ0; 1�/. Before that, we give practical
expressions of these functionals based on the Euler-Lagrange equations of the corresponding
minimization problems.

PROPOSITION 2.1 Let u 2 L2.˝/ be given and v" 2 H 1.˝/ be the (weak) solution of� �"2�v" C v" D u in ˝;
@nv" D 0 on @˝:

(2.4)

Then we have

F".u/ D 1

2"
hu� v"; ui; (2.5)

QF".u/ D 1

2"
h1� v"; ui: (2.6)

Moreover, QF".u/ is differentiable with respect to " with derivative

d

d"
QF".u/ D 1

2"2

h
3hu; v"i � 2kv"k2

L2.˝/
� h1; ui

i
: (2.7)
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Proof. The Euler–Lagrange equations of the minimization problems (2.1) and (2.3) are identical
and read for the solution v"

"2hrv";r'i C hv"; 'i D hu; 'i 8' 2 H 1.˝/; (2.8)

which is the weak formulation of (2.4). It holds in particular

"2krv"k2
L2.˝/

C kv"k2
L2.˝/

D hv"; ui: (2.9)

Plugging (2.9) into (2.1) and (2.3) entails (2.5) and (2.6). Let Pv" denote the derivative of v" with
respect to ", whose existence is easily deduced from the implicit function theorem. Differentiating
(2.6) by the chain rule yields

d

d"
QF".u/ D � 1

2"2
h1� v"; ui � 1

2"
h Pv"; ui:

Using (2.8) we obtain

d

d"
QF".u/ D � 1

2"2
h1 � v"; ui � 1

2"

�
"2hrv";r Pv"i C hv"; Pv"i


: (2.10)

Now differentiating (2.8) provides

2"hrv";r'i C "2hr Pv";r'i C h Pv"; 'i D 0 8' 2 H 1.˝/:

Choosing ' D v" yields

"2hr Pv";rv"i C h Pv"; v"i D �2"krv"k2
L2.˝/

:

It follows from (2.10) that

d

d"
QF".u/ D � 1

2"2
h1� v"; ui C krv"k2

L2.˝/
:

Using (2.9) and rearranging yields (2.7).

REMARK 2.2 Conversely, there is a natural way to retrieve (2.1) and (2.3) from (2.5) and (2.6) by
Legendre-Fenchel transform. Indeed, the function Q" W u 2 H 1.˝/0 7! hu; v"iH 1.˝/0;H 1.˝/ with
v" 2 H 1.˝/ solution to (2.8) is convex and continuous. Hence Q" is equal to its biconjugate Q��

"

(see e.g. [13]). A short calculation provides, for all v 2 H 1.˝/,

Q�
" .2v/ D "2krvk2

L2.˝/
C kvk2

L2.˝/
:

This entails for all u 2 L2.˝/

hu; v"i D Q".u/ D Q��
" .u/ D � inf

v2H 1.˝/
"2krvk2

L2.˝/
C kvk2

L2.˝/
� 2hu; vi;

from which we straightforwardly derive (2.1) and (2.3).
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It is well-known that the set L1.˝; Œ0; 1�/ is the convex hull of L1.˝; f0; 1g/. Let us now
prove the relaxation result for F". Setting for u 2 L1.˝; Œ0; 1�/

NF".u/ WD
�
F".u/ if u 2 L1.˝; f0; 1g/;
C1 otherwise in L1.˝; Œ0; 1�/; (2.11)

we will show that QF" as defined by (2.3) is the lower semicontinuous envelope (or relaxation) of NF"

with respect to the weak-� topology, that is,

QF".u/ D inf
n

lim inf
n!1

NF".un/ W un 2 L1.˝; Œ0; 1�/; un

�
* u

o
:

LEMMA 2.3 The functional QF" is continuous on L1.˝; Œ0; 1�/ for the weak-� topology ofL1.˝/.

Proof. We first note that L1.˝; Œ0; 1�/, endowed with the weak-� topology of L1.˝/,
is metrizable. Thus continuity is equivalent to sequential continuity. Assume that un; u 2
L1.˝; Œ0; 1�/ satisfy un * u weakly-� in L1.˝/. Set vn D .�"2� C I /�1un and v D
.�"2�C I /�1u, so that by Proposition 2.1

QF".un/ D 1

2"
h1� vn; uni; QF".u/ D 1

2"
h1 � v; ui:

For all test function ' 2 L2.˝/ we have, as the operator .�"2�C I /�1 is self-adjoint in L2.˝/,

hvn; 'i D ˝
un; .�"2�C I /�1'

˛ ! ˝
u; .�"2�C I /�1'

˛ D hv; 'i;
hence vn * v weakly-� in L2.˝/. By standard elliptic operator theory, kvnkH 1.˝/ is uniformly
bounded. By the Rellich theorem, one can extract a non-relabeled subsequence such that vn ! w

strongly in L2.˝/, for some w 2 L2.˝/. By uniqueness of the weak limit, we have w D v

and strong convergence of the whole sequence .vn/. Finally, as product of strongly and weakly
convergent sequences, we get hvn; uni ! hv; ui, and subsequently QF".un/ ! QF".u/.

PROPOSITION 2.4 The function QF" W L1.˝; Œ0; 1�/ ! R is the relaxation of the functional NF"

defined by (2.11) with respect to the weak-� topology of L1.˝/.

Proof. According to Proposition 11.1.1 of [13], the problem amounts to establishing the two
following assertions:

8.un/ 2 L1.˝; Œ0; 1�/; un

�
* u ) QF".u/ 6 lim inf

n!1
NF".un/;

8u 2 L1�˝; Œ0; 1�� 9.un/ 2 L1�˝; Œ0; 1�� s.t. un

�
* u; QF".u/ D lim

n!1
NF".un/:

Using that NF".u/ > QF".u/ for all u 2 L1.˝; Œ0; 1�/, the first assertion is a straightforward
consequence of Lemma 2.3. Let now u 2 L1.˝; Œ0; 1�/ be arbitrary. A standard construction (see

e.g. [25] proposition 7.2.14) enables to define a sequence .un/ 2 L1.˝; f0; 1g/ such that un

�
* u.

By Lemma 2.3 there holds

QF".u/ D lim
n!1

QF".un/ D lim
n!1

NF".un/:
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We end this section by the explicit study of a typical one-dimensional example.

PROPOSITION 2.5 Let a < 0 < b, ˝ D�a; bŒ and u D ��0;bŒ. We have

lim
"!0

F".u/ D 1

4
;

d

d"
F".u/ 6 0; 8" > 0:

Proof. In order to solve (2.4) we make the splitting v" D v";1 C v";2 with v";1 and v";2 respectively
solutions of

�"2v00
";1 C v";1 D �RC

on R; (2.12)� �"2v00
";2 C v";2 D 0 on Œa; b�;

v0
";2.a/ D �v0

";1.a/; v
0
";2.b/ D �v0

";1.b/:

We find the explicit solutions

v";1.x/ D
�

1
2
ex=" if x 6 0;

1 � 1
2
e�x=" if x > 0;

(2.13)

v";2.x/ D �1
2

e�2a=" � 1
e2.b�a/=" � 1e

x=" C 1

2

e2b=" � 1
e2.b�a/=" � 1

e�x="; 8x 2 R:

After some algebra we arrive at

F".u/ D 1

4

.e�2a=" � 1/.e2b=" � 1/

e2.b�a/=" � 1
:

Setting t D 2=", we obtain

F".u/ D 1

4

.e�ta � 1/.etb � 1/
et.b�a/ � 1

D 1

4

.1 � eta/.1 � e�tb/

1 � e�t.b�a/
:

Clearly, F".u/ ! 1=4 as t ! C1. Set now h D b � a > 0, r D �a=.b � a/ 2�0; 1Œ, so that
a D �rh, b D .1 � r/h, and

F".u/ D 1

4

.1 � e�t rh/.1 � e�t.1�r/h/

1 � e�th
:

The change of variable s D e�th leads to

F".u/ D 1

4

.1 � sr /.1 � s1�r /

1 � s
:

Now differentiating with respect to s yields

d

ds
F".u/ D 1

4.1� s/2

�
2 � r.sr�1 C s1�r /� .1 � r/.s�r C sr /


:

Set

f .s; r/ D 1

2

�
r.sr�1 C s1�r /C .1 � r/.s�r C sr /


:



408 S. AMSTUTZ AND N. VAN GOETHEM

We have
f .e� ; r/ D r cosh

�
.1 � r/��C .1 � r/ cosh.r�/ DW gr .�/:

For fixed r 2�0; 1Œ, the function gr is clearly even and nondecreasing on RC. Hence gr .�/ >
gr .0/ D 1 for all � 2 R. This implies that f .s; r/ > 1 for all .s; r/ 2 R

�C��0; 1Œ, therefore

d

ds
F".u/ 6 0; 8.s; r/ 2 R

�C��0; 1Œ:

Recalling that s D e�2h=", we derive

d

d"
F".u/ 6 0; 8" > 0:

3. � -convergence of the approximating functionals

This section addresses the � -convergence of the sequence of functionals . QF"/ when " ! 0. Note
that, when a sequence is indexed by the letter ", we actually mean any sequence of indices ."k/ of
positive numbers going to zero.

3.1 Definition and basic properties of the � -convergence

The notion of � -convergence (see, e.g., [13, 18, 20]) is a powerful tool of calculus of variations in
function spaces. Given a metrizable space .X; d/ (in our case X D L1.˝; Œ0; 1�/ endowed with
the distance induced by the L1 norm) one would like the maps

F 7! inf
X
F and F 7! argmin

X

F

to be sequentially continuous on the space of extended real-valued functions F W X ! R [ fC1g.

DEFINITION 3.1 Let . QF"/ be a sequence of functions QF" W X ! R [ fC1g and QF W X !
R [ fC1g. We say that QF" � -converges to QF if and only if, for all u 2 X , the two following
conditions hold:
(1) for all sequences .u"/ 2 X such that d.u"; u/ ! 0 it holds QF .u/ 6 lim inf

"!0

QF".u"/,

(2) there exists a sequence . Nu"/ 2 X such that d. Nu"; u/ ! 0 and QF .u/ > lim sup
"!0

QF". Nu"/.

The key theorem we shall use in this paper is the following ( [13] Theorem 12.1.1).

THEOREM 3.2 Let QF" W X ! R [ fC1g � -converge to QF W X ! R [ fC1g.
(1) If .u"/ is a sequence of approximating minimizers for QF", i.e.

QF".u"/ 6 inf
u2X

QF".u/C �";

with �" ! 0, then inf
u2X

QF".u/ ! inf
u2X

QF .u/ and every cluster point of .u"/ is a minimizer of QF .

(2) If QJ W X ! R is continuous, then QJ C QF" � -converges to QJ C QF .

Let us emphasize that the consideration of approximate minimizers is of major importance as
soon as numerical approximations are made.
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3.2 Preliminary results

It turns out that the � -convergence can be straightforwardly deduced from the pointwise
convergence if the sequence of functionals under consideration is nondecreasing and lower
semicontinuous (see, e.g., [20] Proposition 5.4). Proposition 2.5 as well as several numerical tests
based on the expression (2.7) of the derivative lead us to conjecture that QF" is indeed nondecreasing
when " decreases. In addition, the pointwise convergence can be established, at least under some
regularity assumptions, by harmonic analysis techniques, similarly to [10]. However, proving in full
generality that (2.7) is nonpositive does not seem easy. We will proceed more directly.

We define the potential functionW W R ! RC by

W.s/ D
8<
:
s.1 � s/ if 0 6 s 6 1;

�s if s 6 0;

s � 1 if s > 1:

(3.1)

We set for all u; v 2 L1.˝/ �L1.˝/

QG".u; v/ D
8<
:

"

2
krvk2

L2.˝/
C 1

2"
kv � uk2

L2.˝/
C 1

2"

Z
˝

W.u/dx if .u; v/ 2 L2.˝/ �H 1.˝/;

C1 otherwise:

Note that, if .u; v/ 2 L1.˝; Œ0; 1�/ �H 1.˝/, then

QG".u; v/ D "

2
krvk2

L2.˝/
C 1

2"
kv � uk2

L2.˝/
C 1

2"
hu; 1 � ui

D "

2
krvk2

L2.˝/
C 1

2"



kvk2

L2.˝/
C hu; 1 � 2vi

�
:

Therefore we have for all u 2 L1.˝; Œ0; 1�/

QF".u/ D inf
v2H 1.˝/

QG".u; v/:

The following theorem, taken from [32] (see also [1]), will play a central role in our proof. We recall
(see, e.g., [13]) that the total variation of u 2 L1.˝/ is defined as

jDuj.˝/ D sup
˚hu; div �i W � 2 C1

c .˝/
N ; j�.x/j 6 1 8x 2 ˝�; (3.2)

and u is said of bounded variation, denoted u 2 BV.˝/, when jDuj.˝/ < 1. When u belongs
to BV.˝/, its distributional derivative Du is a Borel measure of total mass jDuj.˝/. If u is the
characteristic function of some subset A of ˝ with finite perimeter (i.e. u is of bounded variation),
then jDuj.˝/ corresponds to the relative perimeter of A in ˝ , namely, the N � 1 dimensional
Hausdorff measure of @A \ ˝ (the boundary of A is here meant in the geometric measure theory
sense).

THEOREM 3.3 When " ! 0, the functionals QG" � -converge in L1.˝/ � L1.˝/ to the functional

QG.u; v/ D
(
	jDuj.˝/ if u D v 2 BV.˝; f0; 1g/;
C1 otherwise:
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The constant 	 is given by the two alternative expressions

	 D 1

2
inf

�Z
R

W.'/dx C 1

4

Z
R2

e�jx�yj.'.x/ � '.y//2dxdy; ' 2 Y
	
;

	 D 1

2
inf

�Z
R

W.'/dx C
Z

R

�
. 0/2 C . � '/2 dx; ' 2 Y; 2 Y \H 1

loc.R/

	
;

with Y D ˚
' 2 L1.R; Œ0; 1�/; ' D ��0;C1Œ on Rn� � R;RŒ for some R > 0

�
.

Before stating our � -convergence result for QF" (Theorem 3.7), we shall prove three technical
lemmas useful for the proof.

LEMMA 3.4 Let ˚" be the fundamental solution of the operator �"2� C I on R
N . For all u 2

L1.RN ; Œ0; 1�/ we have
lim
"!0

k˚" � u � ukL1.RN / D 0:

Proof. Let � > 0 be arbitrary. A classical density result gives the existence of v 2 C.RN ; Œ0; 1�/

with compact support such that ku � vkL1.RN / 6 �. We have

k˚" � u � ukL1.RN / 6 k˚" � v � vkL1.RN / C k˚" � .u � v/kL1.RN / C ku � vkL1.RN /:

Using that ˚" > 0 (from the maximum principle) and
R

RN ˚" D 1 (from �"2�˚" C ˚" D ı), we
obtain

k˚" � u � ukL1.RN / 6 k˚" � v � vkL1.RN / C 2ku � vkL1.RN /: (3.3)

Now let 
 > 0. By uniform continuity of v (Heine’s theorem) there exists � > 0 such that

jx � yj 6 � ) jv.x/ � v.y/j 6 
:

We have for any x 2 R
N

j.˚" � v � v/.x/j D
ˇ̌̌
ˇ
Z

RN

˚".x � y/.v.y/ � v.x//dy

ˇ̌̌
ˇ

6
Z

fjy�xj6�g
˚".x � y/jv.y/ � v.x/jdy

C
Z

fjy�xj>�g
˚".x � y/jv.y/ � v.x/jdy

6 
C
Z

fjy�xj>�g
˚".x � y/dy:

By change of variable we have ˚".z/ D .1="N /˚1.z="/, whereby
R

fjy�xj>�g ˚".x � y/dy DR
fjzj>�="g ˚1.z/dz. Therefore we get for " small enough

R
fjy�xj>�g ˚".x � y/dy 6 
. This shows

that j.˚" � v� v/.x/j ! 0 uniformly on R
N . This entails k˚" � v � vkL1.RN / ! 0. Consequently,

we have for " small enough k˚" � v � vkL1.RN / 6 �. Going back to (3.3) we arrive at

k˚" � u � ukL1.RN / 6 3�:

As � is arbitrary this proves the desired convergence.
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We define the projection (or truncation) operator PŒ0;1� W R ! Œ0; 1� by

PŒ0;1�.s/ D max
�
0;min.1; s/

�
: (3.4)

LEMMA 3.5 Let .u; v/ 2 L2.˝/ �H 1.˝/ and set Qu D PŒ0;1�.u/, Qv D PŒ0;1�.v/. Then

QG". Qu; Qv/ 6 QG".u; v/:

Proof. We shall show that each term in the definition of QG" is decreased by truncation. Suppose that
.u; v/ 2 L2.˝/ � H 1.˝/. For the first term we have r Qv D �f0<v<1grv. Hence kr Qvk2

L2.˝/
6

krvk2
L2.˝/

. For the second term we use that the projection PŒ0;1� is 1-Lipschitz, which yieldsˇ̌ Qv.x/ � Qu.x/ˇ̌ 6
ˇ̌
v.x/ � u.x/

ˇ̌
; 8x 2 ˝:

This obviously implies that k Qv � Quk2
L2.˝/

6 kv � uk2
L2.˝/

. As to the last term we notice that, by
construction of W , we have

0 6 W.PŒ0;1�.s// 6 W.s/; 8s 2 R:

The last lemma addresses the value of the constant 	. Observe that Proposition 2.5 already
suggests that 	 D 1=4, since 	 is independent of the dimension. Nevertheless, as the � -limit and
the pointwise limit do not necessarily coincide, a proof remains to be done.

LEMMA 3.6 For the potentialW given by (3.1), the constant 	 of Theorem 3.3 is 	 D 1=4.

Proof. Starting from the second expression of 	 we arrive at:

	 D inf

�
F .';  / WD 1

2

Z
R

�
. 0/2 C  2 � 2' C '


dx; ' 2 Y; 2 Y \H 1

loc.R/

	
:

For a given pair .';  / 2 Y � .Y \H 1
loc
.R//, it is observed that keeping  fixed and defining Q' by

Q'.x/ D 0 if  .x/ 6 1=2 and Q'.x/ D 1 if  .x/ > 1=2 provides a better candidate for the infimum.
Therefore

	 D inf
˚
F .';  /; ' 2 Y \ L1.R; f0; 1g/;  2 Y \H 1

loc.R/
�
:

We now argue similarly to [32] to show that it is enough to consider nondecreasing functions ' and
 . Let .';  / 2 L1.R; f0; 1g/ � L1.R; Œ0; 1�/ and R > 0 be such that ' D  D ��0;C1Œ on
Rn� � R;RŒ. We define the right rearrangement of a subset A of Œ�R;R� by A] D ŒR � jAj; R�. If
f 2 L1.Œ�R;R�; Œ0; 1�/ we set

f ].x/ D sup
˚
� 2 R; x 2 I ]

�

�
; x 2 Œ�R;R�;

with I� D fx 2 Œ�R;R�; f .x/ > �g. It directly stems from this definition that the � upper level-set
of f ] is I ]

�
. Hence f ] is always nondecreasing with values in Œmin f;maxf �. Indeed, if �R 6 x 6

y 6 R, then for any given � it holds x 2 ff > �g] ) y 2 ff > �g] whereby f ].x/ > � )
f ].y/ > �; since ff ] > �g D ff > �g] D I

]

�
. We set

N'.x/ D
8<
:
0 if x < �R;
'].x/ if �R 6 x 6 R;

1 if R < x;
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and define N likewise. Standard properties of this type of rearrangement [25, 26, 34] ensure that
F . N'; N / 6 F .';  /. In addition, N' remains with values in f0; 1g. Hence, denoting by Y C the set of
nondecreasing functions of Y , we have

	 D inf
˚
F .';  /; ' 2 Y C \L1�

R; f0; 1g�;  2 Y C \H 1
loc.R/

�
:

We now choose an arbitrary ' 2 Y C \ L1.R; f0; 1g/. Due to the invariance by translation of the
functional F , we may assume without any loss of generality that ' D �RC

. The function  which
minimizes F .'; :/ is solution to (2.12) with " D 1, and its expression is given by (2.13). A short
calculation results in 	 D F .';  / D 1=4.

3.3 Main result

With Theorem 3.3 and the three above lemmas at hand we are now able to state and prove our
� -convergence result.

THEOREM 3.7 When " ! 0, the functionals QF" � -converge in L1.˝; Œ0; 1�/ endowed with the
strong topology of L1.˝/ to the functional

QF .u/ D
8<
:
1

4
jDuj.˝/ if u 2 BV.˝; f0; 1g/;

C1 otherwise:
(3.5)

Proof. (1) Let .u"/; u 2 L1.˝; Œ0; 1�/ be such that u" ! u in L1.˝/. For each " > 0 there exists
a (unique) function v" 2 H 1.˝/ such that QF".u"/ D QG".u"; v"/. This is the solution of� �"2�v" C v" D u" in ˝;

@nv" D 0 on @˝:
(3.6)

Set w" D ˚" � u", where ˚" is as in Lemma 3.4 and u" is extended by zero outside ˝ . By the
Lax–Milgram theorem we have

1

2



"2krv"k2

L2.˝/
C kv"k2

L2.˝/

�
� hu"; v"i 6 1

2



"2krw"k2

L2.˝/
C kw"k2

L2.˝/

�
� hu"; w"i:

Adding to both sides 1
2
ku"k2

L2.˝/
results in

"2krv"k2
L2.˝/

C kv" � u"k2
L2.˝/

6 "2krw"k2
L2.˝/

C kw" � u"k2
L2.˝/

:

Yet the right hand side is bounded from above by

"2krw"k2
L2.RN /

C kw" � u"k2
L2.RN /

D
Z

RN

���"2�w" C w"

�
w" � 2u"w" C u2

"


dx

D
Z

RN

�
u"w" � 2u"w" C u2

"


dx

D
Z

RN

.u" �w"/u"dx:
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We obtain

kv" � u"k2
L2.˝/

6 ku" �w"kL1.˝/

6 ku �˚" � ukL1.˝/ C ku � u"kL1.˝/ C k˚" � .u" � u/kL1.˝/:

By virtue of Lemma 3.4 and Fubini’s theorem the right hand side goes to zero, hence kv" �
u"kL2.˝/ ! 0. Next we have

kv" � ukL1.˝/ 6 kv" �u"kL1.˝/ C ku" �ukL1.˝/ 6 j˝j1=2kv" �u"kL2.˝/ C ku" �ukL1.˝/:

It follows that kv" � ukL1.˝/ ! 0. We infer using Theorem 3.3:

lim inf
"!0

QF".u"/ D lim inf
"!0

QG".u"; v"/

> QG.u; u/ D 4	 QF .u/:
(2) Suppose that u 2 L1.˝; Œ0; 1�/. By Theorem 3.3 there exists .u"; v"/ 2 L2.˝/�H 1.˝/ such

that u" ! u, v" ! u in L1.˝/, and

lim sup
"!0

QG".u"; v"/ 6 QG.u; u/:

By truncation (see Lemma 3.5), one may assume that u"; v" 2 L1.˝; Œ0; 1�/. Yet QF".u"/ 6
QG".u"; v"/, which entails

lim sup
"!0

QF".u"/ 6 QG.u; u/ D 4	 QF .u/:

(3) The value 	 D 1=4 obtained in Lemma 3.6 completes the proof.

4. Solution of topology optimization problems with perimeter penalization

In this section we propose solution methods for the optimization of shape functionals involving a
perimeter term. The functionals under consideration will be of the form j˛.A/ D J˛.�A/, with

J˛.u/ D J.u/C ˛

4
jDuj.˝/:

The so-called “cost” or “objective” function J is the quantity which we seek to optimize. Typically,
in shape optimization, J represents the flexibility (or compliance) of a load-bearing structure.
In image processing J may represent a distance between an observed image and the image to
reconstruct. Usually, J is a shape functional and it is known that its minimization without perimeter
control will involve some relaxation of J . More generally, we consider here an arbitrary extension
QJ of J to L1.˝; Œ0; 1�/. Following our approach, J˛ will be approximated through a continuation

procedure by a sequence of auxiliary functionals of the form

QJ˛;".u/ D QJ .u/C ˛ QF".u/:

The issue is then to study the convergence (up to a subsequence) of sequences of minimizers of
QJ˛;".u/. As is well-known, the � -convergence of the functionals is not sufficient for this, since

it does not guarantee the compactness of the sequence. Typically, compactness stems from an
additional equicoercivity property [18, 20]. We follow this approach and establish the equicoercivity
of the functionals QJ˛;" in Theorem 4.7. Related compactness results for non-local functionals can
be found in [1].
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4.1 Preliminary results

LEMMA 4.1 Let .u"/ be a sequence ofL1.˝; Œ0; 1�/ such that . QF".u"// is bounded. For each " > 0
let v" 2 H 1.˝/ be the solution of (3.6). Then .v"/ admits a subsequence which converges strongly
in L1.˝/.

Proof. We have by definition

QF".u"/ D "

2
krv"k2

L2.˝/
C 1

2"



kv"k2

L2.˝/
C hu"; 1 � 2v"i

�
;

and, as 0 6 u" 6 1,

hu"; 1 � 2v"i >
Z

˝

min.0; 1 � 2v"/dx:

Setting
W.s/ D s2 C min.0; 1� 2s/

we obtain

QF".u"/ >
Z

˝

�
"

2
jrv"j2 C 1

2"
W.v"/

�
dx: (4.1)

Straightforward calculations show that the function W is nonnegative, symmetric with respect to
1=2, and vanishes only in 0 and 1 (see Figure 1). We now use a classical argument due to Modica
[27], which consists in applying successively to the right hand side of (4.1) the elementary Young
inequality and the chain rule. This entails

QF".u"/ >
Z

˝

jrv"jpW.v"/dx D
Z

˝

jrw"jdx;

where  is an arbitrary primitive of
p

W and w" D  ı v". The weak maximum principle implies
that 0 6 v" 6 1, hence  .0/ 6 w" 6  .1/. It follows that .w"/ is bounded in L1.˝/. By the
compact embedding of BV.˝/ into L1.˝/, .w"/ admits a subsequence which converges strongly
in L1.˝/ to some function w. By construction,  is an increasing homeomorphism of R into
itself. Denoting by  �1 the inverse function, we have v" D  �1 ı w". Up to a subsequence, we
have w" ! w almost everywhere, thus v" !  �1 ı w DW v almost everywhere. The Lebesgue
dominated convergence theorem yields that v" ! v in L1.˝/.

1 0.5 0 0.5 1 1.5 2
0
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0.2
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1

FIG. 1. Plot of the function W
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LEMMA 4.2 Let .u"/ be a sequence of L1.˝; Œ0; 1�/ which converges weakly-� in L1.˝/ to
u 2 L1.˝; Œ0; 1�/. For each " > 0 let v" 2 H 1.˝/ be the solution of (3.6). Then v" * u weakly
in L2.˝/.

Proof. The variational formulation for v" readsZ
˝

�
"2rv":r' C v"'

�
dx D

Z
˝

u"'dx 8' 2 H 1.˝/: (4.2)

Choosing ' D v" and using the Cauchy–Schwarz inequality yields

"2krv"k2
L2.˝/

C kv"k2
L2.˝/

6 ku"kL2.˝/kv"kL2.˝/

6 ku"kL2.˝/

q
"2krv"k2

L2.˝/
C kv"k2

L2.˝/
;

which results in
"2krv"k2

L2.˝/
C kv"k2

L2.˝/
6 ku"k2

L2.˝/
6 j˝j:

In particular we infer that

kv"kL2.˝/ 6
p

j˝j; krv"kL2.˝/ 6
pj˝j
"

: (4.3)

Coming back to (4.2) we derive that, for every ' 2 H 1.˝/,Z
˝

v"'dx D
Z

˝

u"'dx � "2

Z
˝

rv":r'dx:

Passing to the limit, we get with the help of (4.3)Z
˝

v"'dx !
Z

˝

u'dx: (4.4)

Choose now an arbitrary test function  2 L2.˝/, and fix � > 0. By density of H 1.˝/ in L2.˝/,
there exists ' 2 H 1.˝/ such that k' �  kL2.˝/ 6 �. From (4.4), there exists � > 0 such that

ˇ̌̌
ˇ
Z

˝

.v" � u/'dx
ˇ̌̌
ˇ 6 �; 8" < �:

We obtain for any " < �ˇ̌̌
ˇ
Z

˝

.v" � u/ dx

ˇ̌̌
ˇ 6

ˇ̌̌
ˇ
Z

˝

.v" � u/'dx
ˇ̌̌
ˇC

ˇ̌̌
ˇ
Z

˝

v". � '/dx
ˇ̌̌
ˇC

ˇ̌̌
ˇ
Z

˝

u. � '/dx

ˇ̌̌
ˇ

6 �.1C 2
p

j˝j/:
Hence v" * u weakly in L2.˝/.

LEMMA 4.3 Let .u"/ 2 L1.˝; Œ0; 1�/ be a sequence such that u" * u weakly-� in L1.˝/. If
u 2 L1.˝; f0; 1g/, then u" ! u strongly in L1.˝/.
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Proof. We have by definitionZ
˝

.u" � u/'dx ! 0 8' 2 L1.˝/: (4.5)

Since u 2 L1.˝; f0; 1g/ and u" 2 L1.˝; Œ0; 1�/, we haveZ
˝

ju" � ujdx D
Z

fuD0g
u"dx C

Z
fuD1g

.1 � u"/dx:

From (4.5) with ' D �fuD0g we get Z
fuD0g

u"dx ! 0:

Choosing now ' D �fuD1g results in Z
fuD1g

.1 � u"/dx ! 0;

which completes the proof.

The three above lemmas can be summarized in the following Proposition.

PROPOSITION 4.4 Let .u"/ be a sequence of L1.˝; Œ0; 1�/ such that . QF".u"// is bounded. For
each " > 0 let v" 2 H 1.˝/ be the solution of (2.4) with right hand side u". If u" * u weakly-� in
L1.˝/ then, for some subsequence, there holds:
(1) v" ! u strongly in L1.˝/,
(2) u 2 L1.˝; f0; 1g/,
(3) u" ! u strongly in L1.˝/.

Proof. By Lemma 4.2, we have v" * u weakly in L2.˝/, thus also weakly in L1.˝/ since ˝ is
bounded. By Lemma 4.1, we have for a subsequence v" ! v 2 L1.˝; Œ0; 1�/ strongly in L1.˝/,
and subsequently by uniqueness of the weak limit we have v D u.

Next, we have in view of (2.6)

QF".u"/ D 1

2"

Z
˝

.1 � v"/u"dx:

Therefore, the boundedness of . QF".u"// entailsZ
˝

.1 � v"/u"dx ! 0:

Yet, there holdsZ
˝

.1� v"/u"dx �
Z

˝

.1 � u/udx D
Z

˝

.u" � u/.1 � u/dx �
Z

˝

u".v" � u/dx:

Since, on one hand, u" * uweakly-� inL1.˝/ and, on the other hand, v" ! u strongly inL1.˝/

and u" 2 L1.˝; Œ0; 1�/, both integrals at the right hand side of the above equality tend to zero. We
arrive at Z

˝

.1 � u/udx D 0:
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In addition, due to the closedness of L1.˝; Œ0; 1�/ in the weak-� topology of L1.˝/, we have
u 2 L1.˝; Œ0; 1�/. We infer that u.x/ 2 f0; 1g for almost every x 2 ˝ .

Finally, Lemma 4.3 implies that u" ! u strongly in L1.˝/.

4.2 Existence and convergence of minimizers

Consider a functional J W L1.˝; f0; 1g/ ! B , whereB is a bounded interval of R, and a parameter
˛ > 0. We want to solve the minimization problem

I WD inf
u2BV.˝;f0;1g/

n
J.u/C ˛

4
jDuj.˝/

o
: (4.6)

PROPOSITION 4.5 Assume that J is lower semi-continuous on L1.˝; f0; 1g/ for the strong
topology of L1.˝/. Then the infimum in (4.6) is attained.

Proof. Let .un/ 2 BV.˝; f0; 1g/ be a minimizing sequence. By boundedness of ˝ and definition
of the objective functional, kunkL1.˝/ C jDunj.˝/ is uniformly bounded. Therefore, due to the
compact embedding of BV.˝/ into L1.˝/, one can extract a subsequence (not relabeled) such that
un ! u in L1.˝/, for some u 2 L1.˝/. In addition, for a further subsequence, un ! u almost
everywhere in ˝ , thus u 2 L1.˝; f0; 1g/. Using the sequential lower semi-continuity of J and
u 7! jDuj.˝/, we obtain

J.u/C ˛

4
jDuj.˝/ 6 lim inf

n!1 J.un/C ˛

4
jDunj.˝/ D I:

It follows that u is a minimizer.

Let QJ W L1.˝; Œ0; 1�/ ! B be an extension of J , i.e., a function such that QJ .u/ D J.u/ for all
u 2 L1.˝; f0; 1g/. By Theorem 3.7 we have

I D inf
u2L1.˝;Œ0;1�/

˚ QJ .u/C ˛ QF .u/�: (4.7)

Given " > 0 we introduce the approximate problem:

I" WD inf
u2L1.˝;Œ0;1�/

˚ QJ .u/C ˛ QF".u/
�
: (4.8)

It turns out (cf. Theorem 4.8), that the approximate subproblem (4.8) needs to be solved only
approximately. The existence of exact minimizers is nevertheless an information of interest
regarding the design and analysis of a solution method.

PROPOSITION 4.6 Assume that QJ is lower semi-continuous for the weak-� topology of L1.˝/.
Then the infimum in (4.8) is attained.

Proof. By Lemma 2.3, the functional u 2 L1.˝; Œ0; 1�/ ! QJ .u/ C ˛ QF".u/ is lower semi-
continuous for the weak-� topology of L1.˝/. In addition, the set L1.˝; Œ0; 1�/ is compact for
the same topology. The claim results from standard arguments.

Thanks to Proposition 4.4 the so-called equicoercivity property might be formulated as follows.
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THEOREM 4.7 Consider a sequence .u"/ 2 L1.˝; Œ0; 1�/ such that

QJ .u"/C ˛ QF".u"/ 6 I" C �";

with .�"/ bounded. There exists u 2 L1.˝; f0; 1g/ and a subsequence of indices such that u" ! u

strongly in L1.˝/.

Proof. By the limsup inequality of the � -convergence, there exists a sequence .z"/ 2
L1.˝; Œ0; 1�/ such that z" ! 0 in L1.˝/ and QF".z"/ ! QF .0/ D 0. For this particular sequence
we have

QJ .u"/C ˛ QF".u"/ 6 QJ .z"/C ˛ QF".z"/C �";

which entails that . QF".u"// is bounded.
Now, sinceL1.˝; Œ0; 1�/ is weakly-� compact in L1.˝/, there exists u 2 L1.˝; Œ0; 1�/ and a

non-relabeled subsequence such that u" * u weakly-� in L1.˝/. Using Proposition 4.4, we infer
that u 2 L1.˝; f0; 1g/ as well as u" ! u strongly in L1.˝/.

Combining Theorem 3.2, Theorem 3.7 and Theorem 4.7 leads to the following result.

THEOREM 4.8 Let .u"/ is a sequence of approximating minimizers for (4.8), i.e., for each " > 0

u" 2 L1.˝; Œ0; 1�/ satisfies
QJ .u"/C ˛ QF".u"/ 6 I" C �";

with lim"!0 �" D 0. Assume that QJ is continuous on L1.˝; Œ0; 1�/ for the strong topology of
L1.˝/. Then we have QJ .u"/C ˛ QF".u"/ ! I . Moreover, .u"/ admits cluster points for the strong
topology of L1.˝/, and each of these cluster points is a minimizer of (4.6).

Theorem 4.8 shows in particular that, when (4.6) admits a unique minimizer u, then the whole
sequence .u"/ converges inL1.˝/ to u. We have now a solid background to address the algorithmic
issue.

4.3 Algorithms for topology optimization with perimeter penalization

As already said, we propose to use a continuation method with respect to ". Namely, we construct a
sequence ."k/ going to zero and solve at each iteration k the minimization problem (4.8) using the
previous solution as initial guess.

Several methods may be used to solve (4.8). The specific features of the functional QJ may guide
the choice.
(1) The most direct approach consists in using methods dedicated to the solution of optimization

problem with box constraints, for instance the projected gradient method.
(2) When QJ is continuous for the weak-� topology of L1.˝/ one can restrict the feasible set to

L1.˝; f0; 1g/ and use topology optimization methods to find an approximate minimizer.
(3) Another alternative is to come back to the definition of QF" by (2.3), and write

I" D inf
u2L1.˝;Œ0;1�/

inf
v2H 1.˝/

�
QJ .u/C ˛

�
"

2
krvk2

L2.˝/
C 1

2"



kvk2

L2.˝/
C hu; 1 � 2vi

��	
:

Then one can use an alternating minimization algorithm with respect to the pair of variables
.u; v/.
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In the subsequent sections we present three examples of application. The first one illustrates the
method (1) in the context of least square problems. The last two ones deal with self-adjoint problems
for which, as we shall see, the method (3) is particularly relevant. We refer to [10] for some examples
of application of the approach (2).

For the discretization of all the PDEs involved, in particular (2.4), we use piecewise linear finite
elements on a structured triangular mesh. We use the same finite elements to represent the variable
u, although a piecewise constant approximation would be possible. This choice is motivated by
two reasons. First, the expressions (2.3) or (2.6) of QF".u/ involve the scalar product hu; vi, thus it is
rather natural to approximate u and v with the same finite elements. Second, as observed in [11], the
use of P1 elements for u cures the checkerboard instabilities, which otherwise typically occur when
interpolation or homogenization methods are employed to solve minimal compliance problems with
piecewise linear displacements [2, 15].

For each example different values of the penalization parameter ˛ are considered. Note that
choosing ˛ too small requires, in order to eventually obtain a binary solution (i.e., inL1.˝; f0; 1g/),
to drive " towards very small values, which in turn necessitates the use of a very fine mesh to solve
(2.4) with an acceptable accuracy. This is why, to enable comparisons of solutions obtained with
identical meshes and a wide range of values of ˛, we always use relatively fine meshes.

5. First application: Source identification for the Poisson equation

5.1 Problem formulation

For all u 2 L2.˝/ we denote by yu 2 H 1
0 .˝/ the solution of

� ��yu D u in ˝;

yu D 0 on @˝;
(5.1)

and we set

QJ .u/ D 1

2
kyu � y�k2

L2.˝/
;

where y� 2 L2.˝/ is a given function.

PROPOSITION 5.1 The functional QJ is continuous on L1.˝; Œ0; 1�/ strongly in L1.˝/ and also
weakly-� in L1.˝/.

Proof. First we remark that if .un/ is a sequence of L1.˝; Œ0; 1�/ such that un ! u strongly in
L1.˝/, then un ! u almost everywhere (for a subsequence), which implies that un * u weakly-�
in L1.˝/ by dominated convergence.

Thus, let us assume that un * u weakly-� in L1.˝/. As .kyun
kH 1.˝// is bounded, we can

extract a subsequence such that yun
* y 2 H 1

0 .˝/ weakly in H 1
0 .˝/ and strongly in L2.˝/.

Passing to the limit in the weak formulation of (5.1), we obtain that y D yu. Moreover, by
uniqueness of this cluster point the whole sequence .yun

/ converges to y for the aforementioned
topologies. This implies that QJ .un/ ! QJ .u/.

In consequence of these continuity properties, Proposition 4.5, Proposition 4.6 and Theorem 4.8
can be applied.
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5.2 Algorithm and examples

In our simulations y� is defined by
y� D y] C n;

where y] solves � ��y] D u] in ˝;

y] D 0 on @˝;

for some given u] 2 L2.˝/ and n 2 L2.˝/. More precisely, n is of the form ˇ Nn, with ˇ > 0 and
Nn.x/ a random Gaussian noise with zero mean and unit variance. The function u] is chosen as the
characteristic function of a subdomain˝] �� ˝ .

The domain ˝ is the unit square �0; 1Œ��0; 1Œ. We initialize " to 1 and divide it by 2 until it
becomes less that 10�6. The initial guess is u � 1. In order to solve the approximate problems we
use a projected gradient method with line search. Here the mesh contains 80401 nodes. The results
of computations performed with different values of the coefficients ˛ and ˇ are depicted on Figure
2. Each plot represents the variable u obtained at convergence. The absence of intermediate (grey)
values is to be noticed. Rather than ˇ, we indicate the noise to signal ratio, viz.,

R D knkL2.˝/

ky�kL2.˝/

:

We observe, as expected, that the higher the noise level is, the larger the penalization parameter ˛
must be chosen in order to achieve a proper reconstruction. Of course, large values of ˛ produce
smoothed reconstructed shapes.

6. Second application: Conductivity optimization

6.1 Problem formulation

We consider a two-phase conductor˝ with source term f 2 L2.˝/. For all u 2 L1.˝; Œ0; 1�/ we
define the conductivity

u WD 0.1� u/C 1u;

where 1 > 0 > 0 are given constants. The objective functional is the power dissipated by the
conductor augmented by a volume term, i.e.,

QJ .u/ D
Z

˝

fydx C `

Z
˝

udx; (6.1)

where ` is a fixed positive multiplier and y solves� � div.ury/ D f in ˝;

y D 0 on @˝:
(6.2)

Note that the Dirichlet boundary condition has been chosen merely for simplicity of the presentation.
Alternatively, this functional can be expressed in terms of the complementary energy (see, e.g., [3])

QJ .u/ D inf
�2˙

�Z
˝

�1
u j� j2dx

	
C `

Z
˝

udx; (6.3)
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FIG. 2. Source identification. Top: True sources. Then reconstructed sources for R D 33% (first line) and R D 58%
(second line) with ˛ D 10�8 (first column), ˛ D 10�7 (second column) and ˛ D 10�6 (third column).

with
˙ D f� 2 L2.˝/N ;� div � D f in ˝g:

When it occurs that u 2 L1.˝; f0; 1g/ we set J.u/ WD QJ .u/. Given ˛ > 0, we want to solve

inf
u2BV.˝;f0;1g/

n
J.u/C ˛

4
jDuj.˝/

o
; (6.4)

which amounts to solving
inf

u2L1.˝;Œ0;1�/

˚ QJ .u/C ˛ QF .u/� ;
where QF .u/ is defined by (3.5).

PROPOSITION 6.1 The functional QJ defined by (6.1) is continuous on L1.˝; Œ0; 1�/ strongly in
L1.˝/.

Proof. Assume that un ! u strongly in L1.˝/, and denote by yn, y the corresponding states.
Obviously, un

! u strongly in L1.˝/. Then yn * y weakly in H 1
0 .˝/, see [13] Theorem

16.4.1 or [2] Lemma 1.2.22. It follows straightforwardly that QJ .un/ ! QJ .u/.
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For " > 0 fixed we solve the approximate problem

inf
u2L1.˝;Œ0;1�/

˚ QJ .u/C ˛ QF".u/
�
: (6.5)

Using (2.3) and (6.3), this can be rewritten as

inf
.u;v;�/2L1.˝;Œ0;1�/�H 1.˝/�˙

�Z
˝

�1
u j� j2dx C `

Z
˝

udxC

˛

�
"

2
krvk2

L2.˝/
C 1

2"



kvk2

L2.˝/
C hu; 1 � 2vi

��	
: (6.6)

In the proof of the following existence result we will use the notion of G-convergence (see
e.g. [2]). We recall that a sequence of symmetric positive definite matrix fields An is said to G
converge to A if, for any right hand side ' 2 H�1.˝/, the sequence .yn/ of solutions of� � div.Anryn/ D ' in ˝;

yn D 0 on @˝;

converges weakly in H 1
0 .˝/ to the solution y of the so-called homogenized problem� � div.Ary/ D ' in ˝;

y D 0 on @˝:

PROPOSITION 6.2 The infima (6.5) and (6.6) are attained.

Proof. Since the infima (2.3) and (6.3) are both attained, it suffices to consider (6.5). Let therefore
.un/ be a minimizing sequence for (6.5), whose corresponding solutions of (6.2) are denoted by
.yn/. We extract a subsequence, still denoted .un/, such that un * u 2 L1.˝; Œ0; 1�/ weakly-�
in L1.˝/. By the so-called compactness property of the G-convergence (see, e.g., [2] Theorem
1.2.16), we can extract a further subsequence such that the matrix-valued conductivity un

I , where
I is the identity matrix of order N , G-converges to some A, where, at each x 2 ˝ , A.x/ is a
symmetric positive definite N � N matrix. This means that yn * y weakly in H 1

0 .˝/, where y
solves � � div.Ary/ D f in ˝;

y D 0 on @˝:

By virtue of [2] Theorem 3.2.6, we have Ary D ury at each point x 2 ˝ . Therefore, by
uniqueness, y is the state associated to u. By (6.1), QJ .un/ ! QJ .u/ while we know by Lemma 2.3
that QF".un/ ! QF".u/. This completes the proof.

6.2 Description of the algorithm

In the spirit of [4], we use an alternating minimization algorithm, by performing successively a full
minimization of (6.6) with respect to each of the variables �; v; u. The minimization with respect to
� is equivalent to solving (6.2) and setting � D ury. The minimization with respect to v is done
by solving (2.4). Let us focus on the minimization with respect to u. We have to solve

inf
u2L1.˝;Œ0;1�/

�Z
˝

˚";v;� .u.x//dx

	
; with ˚";v;� .u/ D �1

u j� j2 C `uC ˛

2"
u.1 � 2v/:
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This means that, at every point x 2 ˝ , we have to minimize the function s 2 Œ0; 1� 7! ˚";v;� .s/.
From

˚";v;� .s/ D j� j2
0 C .1 � 0/s

C
h
`C ˛

2"
.1 � 2v/

i
s

we readily find the minimizer

u D

8̂̂
<
ˆ̂:
1 if `C ˛

2"
.1 � 2v/ 6 0;

PŒ0;1�

 s
j� j2

.1 � 0/
�
`C ˛

2"
.1 � 2v/� � 0

1 � 0

!
if `C ˛

2"
.1 � 2v/ > 0;

where we recall that PŒ0;1� is the projection operator defined by (3.4).
The regularization parameter " is initialized to 1. It is divided by two each time a (local)

minimizer of (6.6) has been found by the alternating algorithm, more precisely, when the relative
variation of QJ .u/ C ˛ QF".u/ between two iterations becomes less than some threshold �max . The
whole procedure is stopped when " becomes less that h=10, with h the mesh size.

6.3 Numerical examples

Our first example is a conductor with one inlet and two outlets, see Figure 3. The domain ˝ is
the square �0; 1:5Œ��0; 1:5Œ. The conductivities of the two phases are 0 D 10�3 and 1 D 1.
The Lagrange multiplier is ` D 2. We use a mesh with 65161 nodes and the stopping criterion
�max D 10�3. The results of computations performed with different values of ˛ are shown on
Figure 4.

Our second example is a variant of the optimal heater problem presented in [3], with the
boundary conditions slightly modified to avoid boundary effects caused by the relative perimeter
(see Figure 5). The data are 0 D 10�2, 1 D 1 and ` D 10. In order to capture fine details, we
take a mesh with 115681 nodes and as stopping criterion�max D 10�5. The results are depicted on
Figure 6. A convergence history of the criterion QJ .u/C ˛ QF".u/ is given on Figure 7. The iterations
where the criterion increases correspond to updates of ". We observe that, when " becomes too
small (with respect to the mesh size), the criterion increases much more during the updates of "
than it decreases in between, while the design variables almost no longer evolve. This is a pure
discretization effect, already mentioned, corresponding to the fact that the accuracy allowed by the
mesh has been reached. There is no use to iterate further.

y = 0

γu∇y.n = −1

FIG. 3. Boundary conditions for the V-shaped conductor. An homogeneous Neumann condition is prescribed on the non-
specified boundaries.
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FIG. 4. Optimized V-shaped conductor for ˛ D 0:1; 0:5; 3, respectively

y = 0

γu∇y.n = −1

FIG. 5. Boundary conditions for the optimal heater problem

FIG. 6. Optimized heater for ˛ D 0:1; 0:5; 2, respectively

0 50 100 150 200 250 300 350 400
6

7

8

9

10

11

12

FIG. 7. Convergence history for the optimal heater problem (˛ D 0:1), with the number of iterations on the x-axis and the
values of the criterion on the y-axis.
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7. Third application: Compliance minimization in linear elasticity

7.1 Problem formulation

We assume now that ˝ is occupied by a linear elastic material subject to a volume force f 2
L2.˝/N . We denote by A.x/ the Hooke tensor at point x. In the presentation we assume for
simplicity, but without loss of generality, that the medium is clamped on @˝ . The compliance can
be defined either by

C.A/ D
Z

˝

f:ydx;

where the displacement y solves� � div.Arsy/ D 0 in ˝;

y D 0 on @˝;
(7.1)

with rs the symmetrized gradient, or with the help of the complementary energy [3],

C.A/ D inf
�2˙

�Z
˝

A�1� W �dx
	
; (7.2)

with
˙ D ˚

� 2 L2.˝/N �N ;� div � D f in ˝
�
:

Given `; ˛ > 0, we want to solve

inf
u2L1.˝;f0;1g/

n
J.u/C ˛

4
jDuj.˝/

o
; (7.3)

with

J.u/ D C.A.u//C `

Z
˝

udx; A.u/.x/ D
�
A0 if u.x/ D 0;

A1 if u.x/ D 1:

Here, A0, A1 are given Hooke tensors. Typically, A1 corresponds to a physical material, while
A0 represents a weak phase of small Young modulus meant to mimick void. The problem can be
reformulated as

inf
u2L1.˝;Œ0;1�/

˚ QJ .u/C ˛ QF .u/� ;
where

QJ .u/ D inf
A2Gu

C.A/C `

Z
˝

udx; (7.4)

the convention A 2 Gu ” A.x/ 2 Gu.x/ for almost every x 2 ˝ is used, and, for each x 2 ˝ ,
Gu.x/ is a set of fourth order tensors such that

Gu.x/ D
(

fA0g if u.x/ D 0;

fA1g if u.x/ D 1:

Henceforth we choose, for all x 2 ˝ , Gu.x/ as the set of all Hooke tensors obtained by
homogenization of tensors A0 and A1 in proportion 1 � u.x/ and u.x/, respectively (see, e.g., [2]
for details on homogenization). We recall in particular that Gu.x/ is closed.
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PROPOSITION 7.1 The functional QJ is continuous on L1.˝; Œ0; 1�/ strongly in L1.˝/.

Proof. Suppose that .un/ 2 L1.˝; Œ0; 1�/ converges to u 2 L1.˝; Œ0; 1�/ strongly in L1.˝/.
Thus un ! u almost everywhere for a non-relabeled subsequence. By compactness of the G-
convergence (see Section 6) and stability of Gun

with respect to this convergence (see [2] Lemma
2.1.5), there exists A�

n 2 Gun
such that

C.A�
n/ D inf

A2Gun

C.A/:

Using again the compactness of the G-convergence, there exists a subsequence such that A�
n

G- converges to some A�, thus C.A�
n/ ! C.A�/. By [2] Lemma 2.1.7, there exists c; ı > 0

independent of x such that

d.Gun.x/; Gu.x// 6 c
ˇ̌
un.x/ � u.x/ˇ̌ı (7.5)

for every x 2 ˝ , where d denotes the Hausdorff distance between sets. Hence there exists A]
n 2 Gu

such that jA�
n � A

]
nj 6 cjun � ujı almost everywhere. By the dominated convergence theorem we

get kA�
n � A

]
nkL1.˝/ ! 0. Once more by compactness of the G-convergence, A]

n G-converges to
some A] 2 Gu, up to a subsequence. It follows from [2] Proposition 1.3.44 that A� D A] 2 Gu.

Let now A 2 Gu be arbitrary, and denote by An.x/ the projection of A.x/ onto Gun.x/. Using
again (7.5), we get An.x/ ! A.x/ almost everywhere, therefore, by [2] Lemma 1.2.22, C.An/ !
C.A/. By definition we have C.An/ > C.A�

n/ for all n. Passing to the limit yields C.A/ > C.A�/.
This means that

C.A�/ D inf
A2Gu

C.A/:

Eventually we have obtained

QJ .un/ D C.A�
n/C `

Z
˝

undx ! C.A�/C `

Z
˝

udx D QJ .u/:

For " > 0 fixed we solve the approximate problem

inf
u2L1.˝;Œ0;1�/

˚ QJ .u/C ˛ QF".u/
�
: (7.6)

Using (2.3), (7.4) and (7.2), this can be rewritten as

inf
u2L1.˝;Œ0;1�/;A2Gu;

.v;�/2H 1.˝/�˙

�Z
˝

A�1� W �dx C `

Z
˝

udx

C ˛

�
"

2
krvk2

L2.˝/
C 1

2"



kvk2

L2.˝/
C hu; 1 � 2vi

��	
: (7.7)

PROPOSITION 7.2 The infima (7.6) and (7.7) are attained.
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Proof. First, we remark that both problems (7.6) and (7.7) amount to solving

inf
u2L1.˝;Œ0;1�/;A2Gu

�
E".u; A/ WD C.A/C `

Z
˝

udx C ˛ QF".u/

	
:

Let .un; An/ be a minimizing sequence. Thanks to the density of L1.˝; f0; 1g/ in L1.˝; Œ0; 1�/
for the weak-� topology ofL1.˝/ and the continuity ofE".:; A/ for the same topology, see Lemma
2.3, we may assume (after a classical diagonalization procedure) that .un/ 2 L1.˝; f0; 1g/.
We extract a subsequence, still denoted .un/, such that un * u 2 L1.˝; Œ0; 1�/ weakly-� in
L1.˝/. Further, by compactness of the G convergence, we can extract a subsequence such that
.An/ G-converges to some tensor field A. By construction, we have A 2 Gu. By definition of
the G-convergence, the sequence of the states .yn/, solutions of (7.1) with Hooke’s tensor An,
converges weakly in H 1

0 .˝/ to the state y associated to A. This implies that C.An/ ! C.A/, and
subsequently, using again Lemma 2.3, that E".un; An/ ! E".u; A/.

7.2 Description of the algorithm

We use again an alternating minimization algorithm, by performing successively a full minimization
with respect to each of the variables �; v; .u; A/. The minimization with respect to � is equivalent
to solving the linear elasticity problem (7.1) and setting � D Arsy. The minimization with respect
to v is again done by solving (2.4). The minimization with respect to A for a given u reduces to the
standard problem

inf
A2Gu

�Z
˝

A�1� W �dx
	

DW f .u; �/:
When A1 and A0 are isotropic and A0 ! 0, the minimization is achieved by using well-known
lamination formulas, see [2]. We have

f .u; �/ D A�1
1 � W � C 1 � u

u
f �.�/;

with, in dimensionN D 2,

f �.�/ D 2
C �

4
.
C �/
.j�1j C j�2j/2:

Above, �;
 are the Lamé coefficients of the phase A1, and �1; �2 are the principal stresses. Let us
finally focus on the minimization with respect to u. We have to solve

inf
u2L1.˝;Œ0;1�/

�Z
˝

˚";v;� .u.x//dx

	
; with ˚";v;� .u/ D f .u; �/C `uC ˛

2"
u.1 � 2v/:

This means that, at every point x 2 ˝ , we have to minimize the function s 2 Œ0; 1� 7! ˚";v;� .s/.
From

˚";v;� .s/ D A�1
1 � W � C 1 � s

s
f �.�/C

h
`C ˛

2"
.1 � 2v/

i
s

we obtain the minimizer

u D

8̂̂
<
ˆ̂:
1 if `C ˛

2"
.1 � 2v/ 6 0;

min

 
1;

s
f �.�/

`C ˛
2"
.1 � 2v/

!
if `C ˛

2"
.1 � 2v/ > 0:
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The stopping criteria for the inner and outer loops are the same as in Section 6, with�max D 10�4.

7.3 Numerical examples

We first consider the classical cantilever problem, where ˝ is a rectangle of size 2 � 1. The left
edge is clamped, and a unitary pointwise vertical force is applied at the middle of the right edge. We
choose the Lagrange multiplier ` D 100, and use a mesh containing 160601 nodes. Our findings are
displayed in Figure 8.

Next we address the bridge problem, where ˝ is a rectangle of size 2 � 1:2. The structure is
clamped on two segments of lengths 0:1 located at the tips of the bottom edge, and submitted to
a unitary pointwise vertical force exerted at the middle of the bottom edge. The chosen Lagrange
multiplier is ` D 30, and the mesh contains 123393 nodes. Our results are depicted in Figure 9.

8. Conclusion

We have introduced a new approximate perimeter functional which fulfills all the mathematical
properties needed to get the convergence of (sub)sequences of minimizers in a general setting. As
it is gradient-free, this functional can be directly applied to characteristic functions. But, since it
automatically penalizes the intermediate densities at convergence, it can also be combined with
convexification or homogenization methods. The fact that it can be defined through the solution of
a linear partial differential equation makes it particularly well-suited to the framework of topology
optimization.

Acknowledgements. We thank M. Ciligot-Travain for useful remarks.

FIG. 8. Cantilever for ˛ D 0:1; 2; 20; 50, respectively
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FIG. 9. Bridge for ˛ D 0:2; 1; 3; 10, respectively
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[Mathematics & Applications], vol. 48. (2005) Zbl1098.49001 MR2512810

26. KAWOHL, B., Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, vol.
1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002 MR0810619

27. MODICA, L., The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational
Mech. Anal. 98 (1987), 123–142. Zbl0616.76004 MR0866718

28. MODICA, L., & MORTOLA, S., Il limite nella � -convergenza di una famiglia di funzionali ellittici. Boll.
Unione Mat. Ital., V. Ser. A 14 (1977), 526–529 (Italian). Zbl0364.49006 MR0473971

29. MODICA, L., & MORTOLA, S., Un esempio di � -convergenza. Boll. Unione Mat. Ital., V. Ser. B 14
(1977), 285–299 (Italian). Zbl0356.49008 MR0445362

30. ROGERS, R. C., & TRUSKINOVSKY, L., Discretization and hysteresis. Physica B 233 (1997), 370–375.
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