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Cell swelling by osmosis: A variational approach
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A very simple model for cell swelling by osmosis is introduced, resulting in a parabolic free boundary

problem. In case of radially symmetric initial conditions, it is shown that the model can be viewed as

a gradient flow involving entropy, surface area and the Wasserstein metric. This observation is used

to construct solutions and explain the presence and nature of osmosis.
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1. Introduction

In this article, a very simple model for osmotic cell swelling is introduced, and studied using a

gradient flow approach. Observations of osmotic effects indicate that cell membranes are permeable

to water, but impermeable to other molecules. Therefore, it is believed that water transport through

cell membranes is facilitated by proteins acting as water channels, generally called ‘aquaporins’

([6]). Although there is growing evidence that aquaporins are proteins embedded in the cell

membrane ([15]), existence has been shown for only a few types of cells. The exact nature of

aquaporins remains uncertain, although aquaporins are believed to be proteins ([10]).

1.1 A model for osmotic cell swelling

Quantitative modeling of water flux through membranes by aquaporins seems to have started with

[10]. In this paper, the water flux was assumed to be proportional to the difference in molar free

energy inside and outside the cell. However, the model did not predict the eventual slowing of cell

swelling. Several other models using this assumption have been considered since, but no model

succeeded to provide evidence for either the permeability or aquaporin model when comparing

predictions and observations. Furthermore, most models assumed spatially constant concentrations

inside and outside the cell.

Recently, Pickard ([14]), made a first attempt to develop a model for cell swelling, based on

observations of Xenopus oocytes submitted to hypoosmotic shocks, that is, sudden exposure to low

concentrations of solute. The proposed model uses proportionality of free energy differences and

water flux as a starting point. In this model, the surface tension of the cell membrane is not taken

into account.

Unfortunately, the justification of dropping surface tension does not seem to be valid if the

cell is close to equilibrium. Although it should be noted that in most test tube situations the cell

will burst long before it reaches equilibrium, the implications of assuming zero surface tension

should be investigated. Furthermore, it might be insightful to compare a mathematical model with
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aquaporins with a similar model where the cell membrane has a constant permeability. Except for

the last section, the constant permeability model will be considered.

1.2 Mathematical formulation

The model consists of two main ingredients: a time-varying domain with diffusion of mass inside.

@u

@t
D ��u: (1.1)

The free boundary is non-permeable to the diffusing mass, which is basically a Neumann condition

for a free boundary:

�� @u.t/
@n

D uv: (1.2)

Here, u.x; t/ is the concentration of solute, and v is the normal velocity of the cell membrane, where

the normal n is pointing outward. It is comparable to the standard Neumann boundary condition

since it requires that there is no flux of solute through the boundary of the free domain. This can be

seen by introducing the additional variable v.x; t/, the velocity of the diffusing mass. Since (1.1)

implies that v D �� ru
u

, (1.2) is equivalent to

uv � n D uv; (1.3)

that is, normal velocity of the boundary and the normal component of the velocity of mass at the

boundary should match. Note that this condition (1.2) does not depend on how the membrane reacts

to u.

In the present model, the normal velocity of the membrane is caused by the absorption of an

incompressible solvent, usually water. Assuming constant permeability for the cell membrane, the

amount of solvent absorbed through a portion of surface is proportional to the difference in the

Helmholtz free energy A inside and outside the cell, which is given by

�A D �P C�u; (1.4)

where �P and �u denote the pressure difference and concentration difference across the cell

membrane, respectively. The pressure difference is due to the surface tension of the cell membrane,

resulting in a term proportional to the mean curvature of the membrane. Since it is assumed that

there is no solute outside the cell, the concentration difference is equal to just the value of u at the

boundary. Since the solute is assumed to be incompressible, the normal velocity of the boundary

should be proportional to the amount of solvent absorbed by the cell. Combined with the above

model for the absorption of solvent, this resulting equation for the normal velocity of the cell

membrane is

v D 
H C ˇu; (1.5)

in which 
 and ˇ are positive parameters. The sign convention for H is according to n, which

means that H D � n�1
r

for a sphere of radius r in R
n. Note that the first term will tend to make v

smaller, whereas the second term tends to make v bigger. This is in accordance with the intuition of

the model: the surface tension of the cell membrane will tend to make the cell smaller, whereas the

osmotic force tends to make the cell bigger.
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A number of parameters from this problem can be eliminated by changing variables. Looking at

the units of u, x and t , it follows that � and ˇ have the same dimension. Therefore, at most one of

the two can be set equal to 1 in general by changing units.

Since the total mass is a conserved quantity, it can also be regarded as a parameter, say # .

Changing units for x first, the total mass can can be set equal to 1. Next, changing units for u and

x simultaneously, ˇ can be made equal to 
 without changing the total mass. Finally, scaling t ,


 D ˇ D 1 can be realized. This results in new, scaled variables

� D
�

ˇ

#


�
1

nC1

x; w.�; �/ D
�




ˇ

�
n

nC1 1

#
1

nC1

u.x; t/;

� D
�

ˇ

#

�
2

nC1



n�1
nC1 t; �.�/ D

�

ˇ

#


�
1

nC1

r.t/:

(1.6)

It is easy to check that w and � satisfy (1.1), (1.2), (1.5), with coefficients 
 D 1 and ˇ D 1, and
R

w d� D 1. Note that the change of coordinates also implies a change in the coefficient �.

It follows that one can restrict attention to the problem

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

@u

@t
D ��u; for x 2 ˝.t/, t > 0;

�� @u
@n

D uv; for x 2 @˝.t/, t > 0;

v D H C u; for x 2 @˝.t/, t > 0;

(1.7)

with the integral of u equal to 1. The remaining parameter �, which cannot be scaled out, can now

be regarded as a measure of how fast the dynamics is inside the domain, compared to the movement

of the boundary.

Looking at (1.7), a few observations can be made. First of all, the diffusion equation can be rewritten

as a system of two equations with two unknowns:

8

ˆ

<

ˆ

:

v D ��ru
u
;

@u

@t
D � div.uv/:

Since v is regarded as the velocity of mass particles at a certain position and time, the first equation

is, up to multiplication by u, Fick’s law of diffusion, which can be regarded as a modelling law

describing how mass moves in reaction to the spatial variations of the concentration u. In contrast,

the second equation is conservation of mass. The boundary condition, which was given in terms of v

in (1.3), reduces to the requirement that the normal part of the velocity of the mass and the velocity

of the boundary should math wheneveru is positive. From a modeling point of view this formulation

as a system is more natural: each equation and each unknown has a physical interpretation. In the

classic approach, one of course eliminates the velocity and writes the diffusion equation with only

u in it. This representation as a system representation can also be found, for instance, in [13, ÷2].

Here, the Porous Media Equation is reformulated in the same way, by replacing only Fick’s law by

another law.
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A similar observation can be made for the time-varying domain. The splitting between a

modeling equation and a continuity equation has already been done. The modeling equation is,

in this case, the expression for the normal velocity v. The continuity part is not written explicitly,

but in words, it is the remark that v is the normal velocity of @˝.t/. This can be put into a formula

in a number of ways, depending on the smoothness of @˝.t/.

Summing up, the problem (1.7) can be viewed as a system of four relations, each with a physical

interpretation:

� Fick’s law of diffusion, giving an expression for the velocity of particles,

� Conservation of mass, relating the change in u to the velocity,

� The modelling law v D H C u,

� v being the normal velocity of @˝ .

As explained above, these four relations can be divided in two groups in two different ways: the first

two describe the evolution of u, whereas the latter describe ˝ . On the other hand, one can argue

that the first and third contain the actual model that is being studied, whereas the second and fourth

are merely equations relating the evolution of u and˝ to the functions v and v, respectively. These

four equations will play a key role in what follows, as will the two subdivisions made here, which

are natural from a modeling point of view.

Note that the problem is almost a superposition of two well-known problems: the diffusion equation

and the mean curvature flow. However, there is a nonlinear coupling, which consists of two parts.

First of all, u is required to be supported inside˝ , and secondly an osmotic boundary term appears

in the evolution of ˝ . It will turn out that there is a close relation between these two couplings; in

some sense, the latter follows from the former, as will be shown later.

For both the diffusion equation and the mean curvature flow, variational approaches have been

developed. A well-known paper about a variational approach to the Fokker-Planck equation, and the

diffusion equation in particular, is [9]. It has turned out that this is a fundamental example of a flow

that can be seen as a gradient flow in a metric space, for which a fairly general theory is developed

in [3], with gradient flows in the space of probability measures, and diffusion in particular as an

example. Beside the diffusion equation, many parabolic equations have been modeled as gradient

flows in the space of probability measures with the Wasserstein metric, see for instance [13], which

also treats the Porous Medium Equation, or [1].

A variational approach for the mean curvature flow can be found, for example, in [2] or [11].

Although there is, a far as the author is aware, no theorem stating that the mean curvature flow

is in fact a gradient flow in a metric space, the similarities between the discretization used in [2]

and [11] on the one hand, and the discretization used for the diffusion equation in [9] on the other

hand, strongly suggest that the mean curvature flow is a gradient flow. The functional playing the

role of the metric in [2] is, however, not a metric. Recalling the first variation of area formula,

an appropriate metric would be related to the L2 norm of the normal velocity, as is noted in [8].

Unfortunately, this yields a trivial metric in general.

One way to avoid this problem and obtain a gradient flow with respect to an honest metric, is

to restrict attention to the case of radial symmetry. Although this essentially reduces the boundary

movement to a one-dimensional problem, the resulting problem is still rich enough to see how

exactly the osmotic term in the normal velocity v arises from the restriction on the support of u.

Another possible approach to the problem is to combine the time discretization techniques

in [9] and [11] without making an explicit connection to gradient flows. Obviously, this is

technically much more involved. Although some of the results are easily generalized, taking the
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limit for the discretization parameter to zero is much harder than in either of the two individual

cases.

In the following sections, it will be shown that the radially symmetric version of (1.7) is a

gradient flow in a metric space, and solutions will be constructed using this observation. More

precisely, in Section 2, a metric space and functional will be constructed for radially symmetric

initial conditions, and fitted into the framework of [3], enabling the use of a theorem that guarantees

the convergence of an abstract version of the approach used in [2], [9], and [11]. In Section 3,

some finer properties of the space and functional from Section 2 will be studied, resulting in a

theorem concerning, among other things, regularity of the curve constructed in Section 2. Convexity

of certain functionals will be a special point of interest. Section 4 is devoted to the study of the

differential properties of the functional constructed in Section 2, making the conclusions of Theorem

3.9 more concrete. In Section 5 it is shown, using theory from Sections 3 and 4 that the construction

in Section 2 indeed gives a weak solution of (1.7). Finally, in Section 6, a model for aquaporins

will be presented. It will be shown that a very small modification of the metric space is sufficient to

obtain a gradient flow formulation for the resulting problem.

2. Construction of a generalized minimizing movement

In order to obtain a gradient flow solution for (1.7) under the assumption of radial symmetry, a

metric space will be constructed to represent the domain and mass profile. It will be shown that

this space, equipped with a weak topology, and a suitable functional fit the theory in [3, ÷2]. More

precisely, a so-called Generalized Minimizing Movement or GMM will be constructed. The idea of

this concept is a (formal) generalization of the Euler backward approximation of a gradient flow in

R
n.

The gradient flow of a function � on R
n can be constructed by an Euler backward scheme. Time

is discretized by setting tk D kh for some small h > 0, and the equation

r�.xkC1/C xkC1 � xk

h
D 0; (2.1)

is solved for every timestep. Setting x.kh/ D xk , this is an approximation of the gradient flow of

�.

Note that (2.1) is the optimality condition for the minization problem

min
y2Rn

�

�.y/C 1

2h
jy � xj2

�

: (2.2)

This last problem can easily be generalized to the setting of a metric space by replacing jy � xj2
with d 2.x; y/. It is expected that this will, in some sense, give an approximation of a gradient flow.

In general, (2.2) might not have a unique solution, or no solution of all. Moreover, one must ask

whether the limit for h # 0 exists, in what sense, and whether this limit is unique.

The concept of a (Generalized) Minimizing Movement is defined in [3, Definition 2.0.6]. The

starting point is a partition of the time interval .0;C1/

P� WD
n

0 D t0
�
< t1

�
< � � � < tk

�
< � � �

o

(2.3)
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associated to a sequence � D f�kgk2N of positive time steps with

lim
k!1

tk
�

D
1
X

j D1

�j D C1: (2.4)

and j�j WD supkf�kg < C1. Additionally, the time intervals

I k
�

WD
�

tk�1
�

; tk
�

�

(2.5)

are introduced.

Given a complete metric space .S; d / and a functional � W S ! .�1;C1�, a discrete solution

associated to the partition P� is a map U � W .0;C1/ ! S such that U � is constant on I k
�

for every

k 2 N, and U �.t
k
�
/ is a minimizer of the functional

V 7! ��k

�

U �.t
k�1
�

/; V
�

WD �.V /C 1

2�k

d 2
�

U �.t
k�1
�

/; V
�

: (2.6)

A curve Œ0;C1/ ! S is called a minimizing movement for � starting at u0 2 S if for every partition

� with j�j sufficiently small there exists a discrete solution U � such that

lim
j�j#0

�
�

U �.0/
�

D �.u0/; lim sup
j�j#0

d
�

U �.0/; u0

�

< C1; (2.7)

and U �.t/ ! u.t/ for all t > 0 as j�j # 0. In this definition, convergence of the discrete solutions

with respect to the metric may be replaced by convergence with respect to a weaker topology.

This allows for the use of a topology that may enjoy better compactness properties than the metric

topology.

A generalized minimizing movement is defined analogous to a minimizing movement, but with

(2.7) required only along a sequence �j of partitions. That is, a curve Œ0;C1/ ! S is a generalized

minimizing movement for � starting at u0 2 S if there exists a sequence of partitions �j with

limj !1 j�j j D 0 and discrete solutions U �j
such that

lim
j !1

�
�

U �j
.0/
�

D �.u0/; lim sup
j !1

d
�

U �j
.0/; u0

�

< C1; (2.8)

and U �j
.t/ ! u.t/ for all t > 0 as j ! 1. Again, metric convergence may be replaced with

convergence with respect to a weaker topology.

Examples of the construction of a GMM can be found in [9], [2] and [11], where this approach

is applied. In this section, a metric space .Xn; %/ and a functional ˚ on X
n will be introduced.

Moreover, it will be shown that GMM’s exist for initial conditions that have finite ˚-value by

applying [3, Proposition 2.2.3], which is proven in ÷3 of the same book. This results in the following

theorem.

2.1 The space of balls

By radial symmetry, the free domain will be a ball centered at the origin, which means it can be

represented by a non-negative real number: the space of balls centered at zero is Cn WD Œ0;C1/.
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The abbreviationBr for Br .0/ will be used throughout the paper. Following [2], [11], [5] and many

others, in order to obtain the mean curvature term the perimeter Pn.r/ D n!nr
n�1 of @Br will be

used.

Although metrics on Cn are trivial to construct and study, it is interesting to view them as the

restriction of metrics on a suitable space of domains to the space of balls.

A natural way to construct such a metric is described in [8, ÷2]. One could consider all families

fEt W t 2 Œ0; 1�g of domains with smooth boundary, where E0 and E1 are prescribed, such that

[

t2Œ0;1�

@Et � ftg (2.9)

is a smooth, n-dimensional manifold. If vt is the normal velocity of @Et , the integral

Z 1

0

�Z

@Et

v2
t dH

n�1

�
1
2

dt ; (2.10)

is positive whenever E0 ¤ E1. One would like to define the distance between E0 and E1 to be the

infimum of (2.10) over all such families fEt W t 2 Œ0; 1�g. Unfortunately, this infimum is in general

not positive, even if E0 and E1 are different. However, if the Et are restricted to be balls centered

at zero, the infimum can be computed explicitly:

d.r0; r1/ WD
Z

.r0;r1/

p

Pn.�/ d� D 2
p
n!n

nC 1

ˇ

ˇ

ˇ

ˇ

r
nC1

2

1 � r
nC1

2

0

ˇ

ˇ

ˇ

ˇ

; (2.11)

where E0 D Br0
and E.1/ D Br1

. The fact that the above infimum is positive when restricted to

Cn is the main reason to consider only the radially symmetric case.

In the general situation, the integral of a distance over the symmetric difference of two domains

in [2, ÷2.6] and [9, (1)] instead of d:

Qd2.Br0
; Br1

/ D 2

Z

Br0
4Br1

d.x; @Br0
/ dx :

However, this is not a metric: it is not symmetric and does not satisfy the triangle inequality.

If it does not matter which one is used when constructing solutions, one would expect that, at an

infinitesimal level, the two are the same. This is indeed the case: by evaluating Qd for balls,

Qd2.r0; r1/ D 2

Z

Br0
4Br1

d.x; @Br0
/ dx D 2n!n

 

rnC1
1

nC 1
C rnC1

0

n.nC 1/
� rn

1 r0

n

!

; (2.12)

so that,

d

dt
Qd.r0; rt /

ˇ

ˇ

ˇ

ˇ

tD0

D jr 0
0j
q

n!nr
n�1
0 D

 

Z

@Br0

jvj2 dH
n�1

!
1
2

(2.13)

since v D r 0 for balls. Intuitively, this means that the two metrics have ‘the same infinitesimal

structure’. What this means exactly, and what the implications for gradient flows are is being

investigated by the author. Here, (2.11) will be used as the metric on Cn.
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Clearly, the map

�n W Cn ! Œ0;1/ W r 7! 2
p
n!n

nC 1
r

nC1
2 (2.14)

is an isometry, which will be used in computations. One can see immediately that .Cn;d/ is a

complete metric space. Moreover, (2.11) generates the standard topology on Cn, which means in

particular that Pn is continuous with respect to d. Finally, rk ! r is equivalent to L
n.Brk

4Br/ !
0 as k ! 1.

2.2 Mass profiles

The mass profile will be a radially symmetric nonnegative function with a fixed integral. Identifying

a profile with a function u on .0;1/, fixing the total mass is equivalent to requiring

Z 1

0

u.�/Pn.�/ d� D 1 (2.15)

Hence, an appropriate space for the solute profile is the space L1
n of radially symmetric probability

density functions on R
n, which is a metric subspace of L1.Rn/. Alternatively, it can be seen as a

subspace of L1..0;1/; Pn/, the space of integrable functions on .0;1/ with weight Pn.

The topology on this space will be the weak topology inherited from L1.PnL
1/, by definition,

this means that uk * u if and only if

Z 1

0

uk.�/g.�/Pn.�/ d� !
Z 1

0

u.�/g.�/Pn.�/ d�; 8g 2 L1
�

.0;1/
�

: (2.16)

The following compactness result is an easy consequence of the Dunford-Pettis theorem [4,

Theorem 1.38].

THEOREM 2.1 (Relative sequential compactness) Let fukgk2N be a sequence in L1
n such that

� for any " > 0, there exists an R > 0 such that
R1

R
uk.�/Pn.�/ d� < " for all k 2 N,

� there exists a nondecreasing function g W Œ0;1/ ! Œ0;1/with superlinear growth and a constant

C 2 R such that
Z 1

0

g.uk/Pn dL
1

6 C: (2.17)

for all k 2 N.

Then fukgk2N has a subsequence fuk.j /gj 2N converging weakly to u 2 L1
n.

Proof. By [4, Proposition 1.27], fukgk2N is equi-integrable. Therefore, using the Dunford-Pettis

theorem [4, Theorem 1.38], it has a subsequence fukj
gj 2N that converges weakly to some u 2

L1..0;1/; Pn/. Since uk.�/ > 0, it follows that u.�/ > 0 for L
1-almost all � > 0. Moreover,

since the constant function is certainly in L1..0;1//,

Z 1

0

u.�/Pn.�/ d� D lim
k!1

Z 1

0

uk.�/Pn.�/ d� D 1;

which means that u 2 L1
n.
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Note that all that needed to be shown is that L1
n is closed as a subset of L1..0;1/; Pn/.

The metric on L1
n set will be the Wasserstein distance, which is based on the optimal

transportation problem. Given two mass profiles u and w, one can consider all measurable maps

T W Œ0;1/ ! Œ0;1/ such that the profile u turns into w if all mass is transported according to the

map T . Mathematically, this means that the push-forward T#u of u under T , defined by
Z

A

u.�/Pn.�/ d� D
Z

T .A/

T#u.�/Pn.�/ d� (2.18)

for every Borel set A � Œ0;1/, must be equal to v. The Wasserstein metric is defined as

W2.u; v/ WD
�

inf
T WT#uDv

Z 1

0

jx � T .x/j2 dx

�
1
2

; (2.19)

which can be interpreted to be the minimum amount of work needed to transport mass from a

profile u to another profile w. For an extensive introduction of the optimal transportation problem

and the Wasserstein metric, see [3, ÷6–7]. The heat equation as a gradient flow with respect to the

Wasserstein metric is treated as an example in this book.

The optimal transport problem in this setting is essentially the same as the one-dimensional

optimal transportation problem. Therefore, the result of [3, Theorem 6.0.2] can be carried over to

this setting. Writing

Fu.�/ WD
Z �

0

uPn dL
1 (2.20)

the optimal transport map twu W Œ0;1/ ! Œ0;1/ and Wasserstein metric are given by

twu D F�1
w ı Fu (2.21)

W 2
2 .u;w/ D

Z 1

0

j� � F�1
w ı Fu.�/j2u.�/Pn.�/ d� D

Z

.0;1/

ˇ

ˇF �1
u .�/ � F�1

w .�/
ˇ

ˇ

2
d� (2.22)

whenever Fu and Fw are invertible. If Fu or Fw is not invertible, the same identities hold if the

inverse is replaced by the pseudo-inverse

F�1
u .�/ WD sup f� > 0 W Fu.�/ 6 �g ; � 2 Œ0; 1�: (2.23)

This observation will be useful later for studying convexity properties of the Wasserstein metric.

In [3, Proposition 7.1.3], it was shown that the Wasserstein metric is lower semicontinuous with

respect to the topology of narrow convergence. Since the weak L1 topology is stronger, it follows

immediately that W2 is also lower semicontinuous with respect to this topology.

Note that L1
n, equipped with Wasserstein metric is not a complete metric space, a sequence

of profiles concentrating at the origin has no limit in L1
n. Moreover, the weak L1 topology is not

necessarily weaker than the topology generated by the Wasserstein distance. It will turn out that this

will not be a problem due to the choice of the functional, which will be defined below.

As in [9], the entropy functional will be used. Given a mass profile, its entropy is defined as
Z 1

0

u.�/ logu.�/Pn.�/ d�;

which is, up to a constant, Boltzmann’s Entropy. Since the exact formula of the integrand is of little

importance to the analysis, z log z will be replaced by a more general function.
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DEFINITION 2.2 (Internal energy) Let f W Œ0;1/ ! R be a function such that

� f .0/ D 0,

� limz#0 f .z/ D 0

� f is strictly convex,

� limz!C1
f .z/

z
D C1,

� f is continuously differentiable on .0;1/.

Then

F .u/ WD
Z 1

0

f
�

u.�/
�

Pn.�/ d� (2.24)

is called the internal energy of u.

REMARK 2.3 By continuity of f and superlinear growth, it follows that f has a global minimum,

say

f .z/ > �f0: (2.25)

Note that the minimum of f does not need to be negative, f may be increasing.

Since the integrand is assumed to be convex, the internal energy defines a weakly lower

semicontinuous functional on L1
n. This has been proven in a much more general setting in [4,

Theorem 2.34] by writing f as the supremum of countably many linear functions.

In what follows, the following auxiliary function will be used:

Of W Œ0;1/ ! Œ0;1/I z 7!
(

zf 0.z/ � f .z/; if z > 0;

0; if z D 0:
(2.26)

Note that, since f is convex, Of is increasing, nonnegative and continuous. If f .z/ D z log z,
Of .z/ D z.

2.3 The variational formulation

The two spaces from the previous subsections can be combined into one space. This requires some

caution, because the mass is supposed to stay inside the free domain. Therefore, the following space

will be used.

X
n WD

�

.r; u/ 2 Cn � L1
n W
Z 1

r

uPn dL
1 D 0

�

(2.27)

Note that the support of u need not be the whole ball Br .

The metric on this space will be

%
�

.r; u/; .s; w/
�

WD
�

d2.r; s/C W 2
2 .u;w/

�

�

1
2

: (2.28)

Moreover, since X
n is a subspace of a product, it inherits a topology from Cn and L1

n: weak

convergence in X
n, denoted by .rk; uk/ * .r; u/ is equivalent to rk ! r and uk * u, where

uk * u denotes weak L1
n convergence, characterized by (2.16).

An obvious question is if the compactness properties of the spaces Cn and L1
n carry over to X

n.

Clearly, using Theorem 2.1 and the Heine-Borel theorem for R
1, suitable sequences Cn � L1

n have
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convergent subsequences. The question is, however, if the condition that all mass should stay inside

the varying domain can be carried over from a sequence in X
n to its limit, if it exists. The following

theorem states that this can be done.

THEOREM 2.4 X
n is closed as a subspace of Cn � L1

n in the weak topology.

Proof. Suppose that .rk; uk/ * .r; u/ in Cn � L1
n with .rk; uk/ 2 X

n for all k 2 N. By the

Dunford-Pettis theorem [4, Theorem 1.38], fukgk2N is equi-integrable. Let then " > 0, and pick

ı > 0 be such that

L
n.A/ < ı H)

Z

A

uk.x/ dx < " (2.29)

for all k 2 N and all Borel sets A � R
n. Choose also N 2 N such that, !n.r

n
k

� rn/ < ı for all

k > N . Then,

Z 1

r

uk.�/Pn.�/ d� 6

Z 1

maxfrk ;rg

uk.�/Pn.�/ d� C
Z maxfrk ;rg

r

uk.�/Pn.�/ d� < "; (2.30)

because the first integral is zero by definition of X
n and the second integral is smaller that " by

(2.29) for all k > N . Taking limits for k ! 1, it follows that

Z 1

r

u.�/Pn.�/ d� 6 "; (2.31)

for any " > 0. Then the integral must be zero, which means that .r; u/ 2 X
n.

The functional that will be used is a combination of the perimeter and the internal energy:

˚.r; u/ WD Pn.r/C F .u/: (2.32)

In order to obtain coercivity, an assumption on the integrand f in relation to the dimension is made:

lim
z#0

z� 1
n f .z/ D 0: (2.33)

This condition can be interpreted as a coercivity condition. Without it, very large balls with a

constant mass profile have very low ˚-values. This would, in the end, result in the domain growing

indefinitely large. A nice example is the case where the dimension n is 1 and f .z/ D z log z. Note

that, in particular, the choice f .z/ D z log z does satisfy the assumption, provided that n > 1. In

order to ensure coercivity, it will be assumed that n > 1 and (2.33) holds in the remainder.

It turns out that, once the assumption is made, the sublevels of ˚ are complete with respect to

% and the weak topology is the same as the metric topology on sublevels. Before proving this, some

basic properties of ˚ will be shown.

LEMMA 2.5 Given r 2 Cn, u 7! ˚.r; u/ takes its unique minimal value

˚o.r/ WD n!nr
n�1 C !nr

nf

�

1

!nrn

�

(2.34)

at u D 1
!nrn�.0;r/. The function ˚o is coercive, in the sense that



498 M. ZAAL

� limr!C1˚o.r/ D C1,

� limr#0˚o.r/ D C1,

� r 7! ˚o.r/ has a unique global minimum.

Proof. Since f is convex, Jensen’s inequality [7, Theorem 2.4.19] implies that u D 1
!nrn�.0;r/

minimizes ˚.r; u/ for given r > 0. Superlinear growth of f implies that limr#0 ˚o.r/ D C1.

Moreover, limr!1˚o.r/ D C1 using (2.33). Since

d

dz

�

zf
�1

z

�

�

D � Of
�1

z

�

> 0; (2.35)

is strictly increasing, the second term in (2.34) is convex. Since the first term is obviously also

convex, it follows that r 7! ˚o.r/ has a unique global minimum.

Using this coercivity lemma, the following two properties of sublevels of ˚ can be shown.

THEOREM 2.6 For any M 2 R, ˚�1.�1;M � WD f.r; u/ 2 X
n W ˚.r; u/ 6 M g is weakly

sequentially compact.

Proof. Let f.rk; uk/gk2N be a sequence in ˚�1.�1;M �. By Lemma 2.5, frkg is uniformly

bounded away from 0 and C1, say c < rk < C , which means it must have a convergent

subsequence, say rk ! r > 0. Taking the corresponding sequence in uk , it follows that

Z 1

0

maxff
�

u.�/
�

; 0gPn.�/ d� 6 M � !nC
n�1 C !nC

nf0 (2.36)

along this subsequence. Since also uk.�/ D 0 for any � > C , Theorem 2.1 with g D maxff; 0g
implies that there must be a further subsequence converging weakly to some u 2 L1

n. Taking

the corresponding subsequence for rk , this results in a subsequence f.rk.j /; uk.j //gj 2N such that

.rk.j /; uk.j // ! .r; u/ for some .r; u/ 2 Cn � L1
n. By 2.4, .r; u/ 2 X

n. Moreover, by continuity of

Pn and weak lower semicontinuity of F , ˚.r; u/ 6 lim infk!1˚.rk; uk/ 6 M .

LEMMA 2.7 Let f.rk; uk/gk2N be a sequence in ˚�1.�1;M �. Then .rk; uk/ * .r; u/ if and only

if .rk; uk/ ! .r; u/ with respect to %.

Proof. Suppose first that .rk; uk/ * .r; u/. Then, as above, uk.�/ D 0 for � > C . Therefore,

the corresponding measures on R
n have uniformly integrable second moments. By definition,

weak convergence in L1 of uk implies narrow convergence of the measures �k to �. Applying

[3, Proposition 7.1.5], it follows that uk converges to u with respect to the Wasserstein metric. Then

.rk; uk/ ! .r; u/ with respect to %.

Conversely, assume .rk; uk/ ! .r; u/. Then boundedness of rk , together with Theorem 2.1

implies that .rk.j /; uk.j // must have weak limit point .r 0; u0/. Clearly, this implies r 0 D r . By

definition of weak* convergence of measures and weak convergence in L1, the measures �kj

corresponding to ukj
must weak*-converge to �0, the measure corresponding to u0. On the other

hand, since uk ! u, �kj
converges weak* to �, the measure corresponding to u, as well. This

implies �0 D �, which means that u0 D u almost everywhere.
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The above analysis shows that the metric space

X
n D

�

.r; u/ 2 Cn � L1
n W
Z 1

r

uPn dL
1 D 0

�

; (2.37)

%
�

.r; u/; .s; w/
�

D
�

d2.r; s/C W 2
2 .u;w/

�

�

1
2

(2.38)

and the functional

˚.r; u/ D Pn.r/C F .u/ D n!nr
n�1 C

Z 1

0

f
�

u.�/
�

Pn.�/ d� (2.39)

satisfy the requirements of [3, ÷2.1] if the problem of finding a GMM can be restricted to a sublevel

of˚ . Lower semicontinuity of % and˚ , coercivity of˚ hold on the whole of X
n. Since on sublevels

of ˚ , the weak and metric topology coincide, strong compactness follows from weak sequential

compactness. In particular, sublevels of ˚ are complete.

By requiring that ˚ is finite for the initial condition, it is no problem to restrict the construction

to a sublevel of ˚ . Therefore, [3, Proposition 2.2.3] applies, which finishes the proof of

THEOREM 2.8 Let .r0; u0/ 2 X
n, such that ˚.r0; u0/ is finite. Then a GMM for ˚ starting from

.r0; u0/ exists.

3. Interpolation, convexity and uniqueness

In this section, the convexity properties of the problem are studied. The goal is to prove that [3,

Theorems 2.4.15 and 4.0.4] can be applied. This implies a number of properties of the GMM

constructed in the previous section, and eliminates the finiteness condition from Theorem 2.8.

The main assumption is convexity of the minimization problem solved in every time step of the

discretized problem.

ASSUMPTION 3.1 For every w, v0, v1 in .X; d /, there exists an interpolating curve 
 W Œ0; 1� ! X

such that 
.0/ D v0, 
.1/ D v1, and the map

v 7! �.v/C 1

2h
d 2.w; v/ (3.1)

is . 1
h

C �/-convex along 
 for every 0 < h < 1
�� .

REMARK 3.2 This assumption implies that for h < 1
�� , any two points are connected by a curve

along which (3.1) is strictly convex. In particular, this means that minimizers are unique. In turn,

this implies that for j�j < 1
�� , discrete solutions associated to � are unique.

The definition of �-convexity along a curve will be recalled below. As is the case with ordinary

convexity, this assumption is only useful if v0 and v1 have finite �-value, but w, v0 and v1 can be

restricted to an even smaller set, see [3, Assumption 4.0.1] for the details.

Before showing that .Xn; %/ and ˚ satisfy this assumption, some finer properties of .Xn; %/

will be analyzed further.
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3.1 Absolute continuity and the metric derivative

In order to study interpolating curves, and geodesics of % in particular, it is convenient to first study

the notion of absolute continuity and metric derivative, as introduced in [3, ÷1.1]. Summarizing, a

curve 
 parametrized on Œ0; 1� is absolutely continuous with respect to a metric d if there exists a

function g 2 L1.Œ0; 1�/ such that

d
�


.s/; 
.t/
�

6

Z t

s

g.�/ d� (3.2)

for all 0 6 s < t 6 1. If 
 is absolutely continuous, the limit

j
 0j.�/ D lim
h!0

d
�


.� C h/; 
.�/
�

jhj ; (3.3)

called the metric derivative of 
 , exists for almost every � . Moreover, it is the smallest g that satisfies

(3.2). Note that existence of the limit does not guarantee absolute continuity of the curve. In this

section, the notion of absolute continuity will first be analyzed for d and W2 first.

First, absolute continuity in Cn is studied. Using the isometry (2.14), it is easy to connect absolute

continuity with respect to d to absolute continuity with respect to the Euclidean metric. If � 7! r.�/

is absolutely continuous with respect to d,

d
�

r.s/; r.t/
�

6

Z t

s

jr 0jd.�/ d�; (3.4)

where jr 0jd is the metric derivative of the curve with respect to d. By applying the isometry �n, the

curve � 7! �.�/ WD �n.r.�// is absolutely continuous in Œ0;1/. It follows that �.�/ is differentiable

almost everywhere, and that the metric derivative with respect to the Euclidean metric is just the

absolute value j d�.�/
d�

j of the ordinary derivative
d�.�/

d�
for almost every � . Since �n is an isometry,

this absolute value must also be equal to jr 0j.�/ for almost every � . An easy computation now shows

that r.�/ must be differentiable, and

jr 0jd.�/ D
q

Pn

�

r.�/
�

ˇ

ˇ

ˇ

ˇ

dr.�/

d�

ˇ

ˇ

ˇ

ˇ

: (3.5)

It follows that absolute continuity of r is absolute continuity of r as an R-valued function, together

with integrability of
p

Pn.r.�//r
0.�/.

There is also a useful characterization of absolute continuity involving a weak formulation.

Clearly, if rt is smooth,

d

d�

Z r.�/

0

 .�; �/Pn.�/ d� D
Z r.�/

0

@ .�; �/

@�
Pn.�/ d�Cdr.�/

d�
 
�

r.�/; �/
�

Pn

�

r.�/
�

: (3.6)

for any smooth, radially symmetric test function  . As it turns out, this equation is sufficient to

characterize absolute continuity of r.�/, and provides an expression for the metric derivative.



CELL SWELLING BY OSMOSIS 501

LEMMA 3.3 Let � 7! r.�/ be a curve in Cn. Then r.�/ is absolutely continuous if and only if it is

continuous and there exists a function g such that g.�/
p

Pn.r.�// 2 L1
loc
..0;1//, and

Z 1

0

Z r.�/

0

@ .�; �/

@�
Pn.�/ d� d� D �

Z 1

0

g.�/ .r.�/; �/Pn

�

r.�/
�

d� (3.7)

for all  2 C1
c .Œ0;1/ � .0;1//. In this case, jr 0jd.�/ D jg.�/j

p

Pn.r.t�// for almost every

t > 0.

Proof. Suppose first that r.�/ is absolutely continuous. Then jr 0jd.�/ D j dr.�/
d�

j
q

Pn

�

r.�/
�

2
L1

loc
..0;1// and, for any  2 C1

c .Œ0;1/ � .0;1//,

Z 1

0

Z r.�/

0

@ .�; �/

@�
Pn.�/ d� d� D lim

h#0

Z 1

0

Z r.�/

0

 .�; �/ �  .�; � � h/

h
Pn.�/ d� d�

D lim
h#0

Z 1

0

1

h

 

Z r.�/

0

 .�; �/Pn.�/ d�

�
Z r.�Ch/

0

 .�; �/Pn.�/ d�

!

d�

D �
Z r.�/

0

dr.�/

d�
 
�

r.�/; �
�

Pn.r.�// d�;

(3.8)

if h > 0 is small enough.

For the opposite implication, assume that r.�/ is continuous and g satisfies the equation. One

would like to substitute  .�; �/ D �Œt0;t1��.�/ with � 2 C1
c .Œ0;1// into (3.7), but this function

is discontinuous. Let then �k W .0;1/ ! Œ0; 1� be a sequence of smooth functions such that �k !
�Œt0;t1� pointwise. Substituting �.�/�k.�/ for  in (3.7), one obtains

Z t1

t0

�.r.�//g.�/Pn

�

r.�/
�

d� D lim
k!1

Z 1

0

g.�/�
�

r.�/
�

�k.�/Pn

�

r.�/
�

d�

D lim
k!1

Z 1

0

� 0
k.�/

Z r.�/

0

�.�/Pn.�/ d� d�

D lim
k!1

Z 1

0

�k.�/
d

d�

 

Z r.�/

0

�.�/Pn.�/ d�

!

d�

D
Z r.t1/

r.t0/

�.�/Pn.�/ d�

(3.9)

if � 2 C1
c .Œ0;1// for all t0 < t1. Using another approximation argument, this also holds for

�.�/ D Pn.�/
� 1

2 , which implies that

d.r.t0/; r.t1// D
ˇ

ˇ

ˇ

ˇ

ˇ

Z r.t1/

r.t0/

p

Pn.�/ d�

ˇ

ˇ

ˇ

ˇ

ˇ

6

ˇ

ˇ

ˇ

ˇ

Z t1

t0

g.�/

q

Pn

�

r.�/
�

d�

ˇ

ˇ

ˇ

ˇ

: (3.10)

Since t0 and t1 are arbitrary, this implies that r.�/ is absolutely continuous with metric derivative

jr 0jd.�/ D jg.�/j
q

Pn

�

r.�/
�

.
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Next, absolute continuity in L1
n is considered. For this, it is helpful to remember that L1

n can be

considered as a subspace of the space of probability measures on R
n. A study of absolute continuity

of curves in the space of measures can be found in [3, ÷8.3]. The main theorem [3, Theorem 8.3.1]

from this section states that, essentially, the metric derivative of a curve of measures � 7! �.�/ can

be found by solving the continuity equation

@�.�/

@�
C div

�

v.�/�.�/
�

D 0 (3.11)

in distributional sense. It is shown that, if � 7! �.�/ is absolutely continuous, the metric derivative

at any time t0 is the minimal L2.�.�//-norm of solutions v.�/ of (3.11). Note that v.�/ can be

thought of as the velocity of the mass at a certain position and time. In particular, kv.�/k2
L2.�.�//

can be thought of as the kinetic energy.

In order to specialize [3, Theorem 8.3.1] toL1
n, a particular space of test functions is needed: the

space of functions  W Œ0;1/� .0;1/ such that � W R
n � .0;1/ defined by �.x; �/ D  .jxj; �/ is

C1 and compactly supported will be denoted by C1
c;r.Œ0;1/; .0;1//.

THEOREM 3.4 Let � 7! u.�/ be a weakly continuous curve in L1
n. If � 7! u.�/ is absolutely

continuous, there exists a Borel function v W .�; �/ 7! v� .�/ such that v� 2 L2..0;1/; u.�/Pn/

with kv�kL2..0;1/;u.�/Pn/ 6 ju0j.�/ for almost every � and

Z 1

0

Z 1

0

�

@ .�; �/

@�
C @ .�; �/

@�
v� .�/

�

u.�; �/Pn.�/ d� d� D 0 (3.12)

for all  2 C1
c;r.Œ0;1/; .0;1//. Conversely, if there exists v with v� 2 L2..0;1/; u.�/Pn/ such

that (3.12) holds for every  2 C1
c;r.Œ0;1/; .0;1//, then � 7! u.�/ is absolutely continuous and

ju0j.�/ 6 kv�kL2..0;1/;u.�/Pn/ for almost every � > 0.

Proof. Suppose first that � 7! u.�/ is absolutely continuous. By [3, Theorem 8.3.1], there exists a

Borel vector field v W .x; �/ 7! v� .x/ such that v� 2 L2.Rn; u/ with kv�kL2.Rn;u/ 6 ju0j.�/ for

almost every � 2 .0;1/. It follows that for such a vector field, [3, (8.3.8)] holds with � restricted to

radially symmetric, smooth, compactly supported functions on R
n � .0;1/. Under this restriction,

[3, (8.3.8)] becomes invariant under rotations, that is, if Qv� .x/ D v.Rx/ with R a rotation in R
n,

Qv also satisfies [3, (8.3.8)] for radially symmetric �. Hence, it may be assumed that v� is radially

symmetric for almost every � > 0. Let  2 C1
c;r.Œ0;1/; .0;1// be given, and set �.x; �/ WD

 .jxj; �/. Then, using [3, (8.3.8)],

0 D
Z 1

0

Z

Rn

�

@�.x; �/

@�
C
˝

v� .x/;rx�.x; �/
˛

�

u.x/ dx d�

D
Z 1

0

Z

Rn

�

@ .jxj; �/
@�

C
˝

v� .x/;
x

jxj
˛

 0.jxj; �/
�

u.x/ dx d�

D
Z 1

0

Z 1

0

�

@ .�; �/

@�
C
˝

v� .�e1/; e1

˛

 0.�; �/

�

u.�/Pn.�/ d� d�;

(3.13)

which means that v� .�/ WD hv� .�e1/; e1i solves (3.12). Moreover, by construction,

kv�kL2..0;1/;u.�/Pn/ 6 kv�kL2.Rn;u/ 6 ju0.�/j (3.14)
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for almost every � > 0.

For the converse implication, assume that v� satisfies (3.12) for every 2 C1
c;r.Œ0;1/; .0;1//.

Setting v� .x/ WD v� .jxj/ x
jxj

. It is easily checked that v� satisfies [3, (8.3.8)] for all radially

symmetric test functions �. If � 2 C1
c .Rn � .0;1// is a general test function, the function  ,

defined by

 .�; �/ WD 1

Pn.�/

Z

@B�

�.x; �/ dH
n�1x (3.15)

is in C1
c;r.Œ0;1/; .0;1//. By definition of v� and  , it follows that

Z 1

0

Z

Rn

�

@�.x; �/

@�
C
˝

v� .x/;rx�.x; �/
˛

�

u.x/ dx d�

D
Z 1

0

Z 1

0

�

@ .x; �/

@�
C @ .�; �/

@�
v� .�/

�

u.�/Pn.�/ d� d� D 0; (3.16)

which means that v satisfies [3, (8.3.8)] for any test function. Hence, � 7! u.�/ is absolutely

continuous, and ju0.�/j 6 kv�kL2.Rn;u/ D kv�kL2..0;1/;u.�/Pn/.

REMARK 3.5 If follows in particular that, if � 7! u.�/ is absolutely continuous, there exists v

satisfying (3.11) such that kv� kL2..0;1/;uPn/ D ju0j.�/ for almost all � . By [4, Proposition 8.4.5],

this v� is uniquely determined for almost every � .

Note the similarity between Lemma 3.3 and the theorem cited above: both relate absolute

continuity and the metric derivative to the solvability and a norm of solutions of a certain weakly

formulated equation. Both equations will prove useful later.

Intuitively, the optimal transport map and the solution of the continuity equation are related: the

former is displacement of mass, the latter is velocity of mass. This intuition can be made precise

using [3, Proposition 8.4.6], where it is shown that if � 7! u.�/ is absolutely continuous,

lim
h!0

t
u.�Ch/

u.�/
� id

h
D v� (3.17)

for almost every � , where v� is the solution of (3.11) such that kv� kL2..0;1/;u.�/Pn/ D ju0j.�/ for

almost every � .

Absolute continuity in X
n can now be characterized in terms of absolute continuity in Cn and L1

n.

That is,

LEMMA 3.6 A curve � 7! .r.�/; u.�// in Cn �L1
n is absolutely continuous if and only if the curves

� 7! r.�/ and � 7! u.�/ are absolutely continuous in Cn and L1
n, respectively. In this case,

j.r; u/0j.�/ D
 

jr 0j2d.�/C
ju0j2W2

.�/

�

!
1
2

(3.18)

for almost all � .
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Proof. Let � 7! .r.�/; u.�// be a curve in Cn � L1
n. By definition,

d.r.s/; r.t// 6 %
�

�

r.s/; u.s/
�

;
�

r.t/; u.t/
�

�

; (3.19)

W2

�

u.s/; u.t/
�

6
p
�%
�

�

r.s/; u.s/
�

;
�

r.t/; u.t/
�

�

; (3.20)

which means that absolute continuity of � 7! .r.�/; u.�// implies absolute continuity of � 7! r.�/

and � 7! u.�/.

Conversely, if both � 7! r.�/ and � 7! u.�/ are absolutely continuous,

%
�

�

r.s/; u.s/
�

;
�

r.t/; u.t/
�

�

D
 

d2.r.s/; r.t//C
W 2

2

�

u.s/; u.t/
�

�

!
1
2

6

 

�Z t

s

jr 0jd.�/ d�

�2

C
�Z t

s

ju0jW2
.�/p
�

d�

�2
!

1
2

6 2

Z t

s

 

jr 0j2d.�/C
ju0j2W2

.�/

�

!
1
2

d�

(3.21)

which means that � 7! .r.�/; u.�// is absolutely continuous.

Finally, if � 7! .r.�/; u.�// is absolutely continuous,

j.r; u/0j.�/ D lim
h!0

%
�

�

r.� C h/; u.� C h/
�

;
�

r.�/; u.�/
�

�

jhj

D

0

@

 

lim
h!0

d
�

r.� C h/; r.�/
�

jhj

!2

C 1

�

 

lim
h!0

W2

�

u.� C h/; u.�/
�

jhj

!2
1

A

1
2

D
�

jr 0j2d.�/C ju0jW2
.�/

�

�
1
2

(3.22)

where, for almost every � , existence of all limits is guaranteed by absolute continuity.

Together with the results about absolute continuity in Cn and L1
n, this lemma is the main tool to

study absolutely continuous curves in X
n.

3.2 Constant speed geodesics

In a metric space S, a constant speed geodesic is by definition a curve 
 W Œ0; 1� ! S satisfying

d.
.s/; 
.t// D .t � s/d.
.0/; 
.1// (3.23)

for any 0 6 s 6 t 6 1. Note that this is different from geodesics on a Riemannian manifold:

geodesics are parametrized by constant velocity on the unit interval, instead of parametrized by

length. By the triangle inequality, it is sufficient to show only

d
�


.s/; 
.t/
�

6 .t � s/d
�


.0/; 
.1/
�

:



CELL SWELLING BY OSMOSIS 505

It is also clear that a constant speed geodesic is absolutely continuous, and the metric derivative is

equal to d.
.0/; 
.1// almost everywhere. The converse is also true: if 
 is absolutely continuous,

and

j
 0jd .t/ 6 d
�


.0/; 
.1/
�

;

then 
 is a constant speed geodesic. From this observation, it follows that � 7! .r.�/; u.�// is a

constant speed geodesic if and only if the maps � 7! r.�/ and � 7! u.�/ are.

LEMMA 3.7 A curve � 7!7! .r.�/; u.�// in Cn � L1
n is a constant speed geodesic if and only if

� 7! r.�/ and � 7! u.�/ are.

Proof. Suppose first that � 7! r.�/ and � 7! u.�/ are constant speed geodesics. Then, using Lemma

3.6, � 7! .r.�/; u.�// is absolutely continuous, and

j.r; u/0j2.�/ D jr 0j2d.�/C
ju0j2W2

.�/

�
D d2.r.0/; r.1//C

W 2
2

�

u.0/; u.1/
�

�

D %2
�

�

r.0/; u.0/
�

;
�

r.1/; u.1/
�

�

:

(3.24)

Conversely, suppose that � 7! .r.�/; u.�// is a constant speed geodesic. Using Lemma 3.6 and

Jensen’s inequality,

%2
�

�

r.0/; u.0/
�

;
�

r.1/; u.1/
�

�

D
Z 1

0

jr 0j2d.�/C
ju0j2W2

.�/

�
d�

>

�Z 1

0

jr 0jd.�/ d�

�2

C 1

�

�Z 1

0

ju0jW2
.�/ d�

�2

> %2
�

�

r.0/; u.0/
�

;
�

r.1/; u.1/
�

�

(3.25)

which means that all inequalities are in fact equalities. Then � 7! jr 0j.�/ and � 7! ju0j.�/ must

be constant for almost all � . By the second (in)equality, these constants must be d.r.0/; r.1// and

W2.u.0/; u.1//, respectively. It follows that � 7! r.�/ and � 7! u.�/ are constant speed geodesics.

With this lemma at hand, it would seem that the constant speed geodesics of d and W2 can be

studied separately. This is not the case, as X
n is a subspace of Cn � L1

n. After characterizing the

constant speed geodesics of d and W2, the resulting geodesic in Cn � L1
n will be studied.

Using the isometry (2.14), it is easy to show that the constant speed geodesics of d are given by

r.�/ D
�

.1 � �/r.0/
nC1

2 C � r.1/
nC1

2

�
2

nC1

> .1 � �/r.0/C � r.1/: (3.26)

It is shown in [3, Theorem 7.2.2] that the constant speed geodesics of the Wasserstein metric are

given by

u.�/ D
�

.1 � �/id C � t
u.1/

u.0/

�

#
u.0/; (3.27)

where t
u.1/

u.0/
is the optimal transport map from u.0/ to u.1/. This expression has a nice interpretation:

the transport map t
u.1/

u.0/
tells where the mass at a certain position has to go to change the profile u.0/
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into u.1/. Thus (3.27) is the evolution where all mass travels from its initial position to its destination

at a constant speed.

The characterization (2.21) of the optimal transport map, which follows from the radial

symmetry, leads to the following characterization of a constant speed geodesic, which is also shown

in [3, (7.2.8)]

F �1
u.�/ D .1 � �/F�1

u.0/ C �F�1
u.1/ (3.28)

where Fu is defined as in (2.20).

As noted above in Lemma 3.7, the constant speed geodesics of Cn � L1
n curves � 7! .r.�/; u.�//

with r and u as in (3.26) and (3.27). By the inequality in (3.26), .r.�/; u.�// 2 X
n if this is the

case for � D 0 and � D 1: geodesics between points in X
n do not leave X

n. Note, however, that

the geodesics have a peculiar property. Since the inequality in (3.26) is strict for 0 < � < 1 unless

r.0/ D r.1/, the support of u.�/ will be strictly smaller than Br.�/, even if u.0/ and u.1/ are

positive throughoutBr.0/ and Br.1/, respectively.

3.3 �-convexity

As announced above, the concept of �-convexity will be used. �-convexity extends the notion of

ordinary convexity, which will be equivalent to 0-convexity. The number � can be interpreted as a

measure of how convex a functional is.

Lacking a linear structure, convexity of a functional on a metric space has to be defined using

curves. A functional � on a metric space .S; d / is said to be �-convex along 
 W Œ0; 1� ! S if

�.
.�// 6 .1 � �/�
�


.0/
�

C ��
�


.1/
�

� �

2
�.1 � �/d 2

�


.0/; 
.1/
�

(3.29)

for all � 2 Œ0; 1�. Clearly, it cannot be expected that a functional � is �-convex along all curves.

Inspired by convexity of a function on Euclidean space, which is equivalent to 0-convexity along

straight lines, one usually asks whether a functional is �-convex along geodesics.

With the results from the previous section in mind, the convexity of ˚ and %2 can be studied term

by term. It will be shown that ˚ is �-convex along geodesics, and that .r; u/ 7! 1
2
%2..r; u/; .s; w//

is 1-convex along geodesics.

First of all, F is 0-convex along geodesics if the map

z 7! znf .z�n/

is convex and nonincreasing, as is noted in [3, Proposition 9.3.9] and was first shown by McCann

[12, Proposition 1.2]. Similar to the proof of Lemma 2.5, this is implied by

d

dz

�

znf
�

z�n
�

�

D �nzn�1 Of .z�n/ ; (3.30)

which is an increasing nonpositive function. It will turn out that this property of f also plays a role

when computing the local slope of F .

The convexity ofW 2
2 can easily be checked in the radially symmetric situation. From (3.28) and

(2.22), it follows immediately that

W 2
2 .u.�/; w/ D

Z

.0;1/

ˇ

ˇ

ˇ
.1 � �/U�1

0 .�/C �U�1
1 .�/ �W �1.�/

ˇ

ˇ

ˇ

2

d� : (3.31)
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A straightforward calculation shows that the map x 7! 1
2
jx � yj2 is 1-convex, as is also shown in

[3, Remark 2.4.4]. Combining this with the above expression forW 2
2 implies that w 7! 1

2
W 2

2 .u;w/

is 1-convex along geodesics for any u 2 L1
n. Note that the special properties of W2 for radially

symmetric profiles are used in the proof. This is really necessary: in the general case, the Wasserstein

distance is not 1-convex. A straightforward counterexample is given in [3, Example 9.1.5]. Actually,

it is shown in [3, Theorem 7.3.2] that the opposite inequality holds.

The convexity of Pn can be checked using the isometry (2.14): �-convexity of Pn is equivalent

to �-convexity of the map

s 7! �ns
2n�2
nC1

where �n > 0 is a constant depending on the dimension. Note that the exponent is always between

0 and 2. The second derivative of this map is

s 7! �n

.2n � 2/.n � 3/
.nC 1/2

s
�4

nC1 :

Using [3, Remark 2.4.4], this means that Pn is 0-convex if n > 3. Note that P2 is not �-convex

along geodesics for any � since the second derivative is not bounded from below. However, if s is

bounded away from zero, the second derivative is bounded from below, and Pn is �-convex, with �

equal to the infimum of the second derivative. As was shown in the previous section, the radius r is

bounded away from 0 in any sublevel of ˚ , which means that restricting the problem to a sublevel

means that Pn is �-convex for some � < 0. Note that a similar argument can be used for n > 3 to

obtain � > 0 on sublevels.

Finally, again using the isometry (2.14) and [3, Remark 2.4.4], s 7! 1
2

d2.r; s/ is 1-convex along

geodesics for all r 2 Cn.

Collecting the above results, one finds

LEMMA 3.8 The map .s; w/ 7! 1
2
%2..r; u/; .s; w// is 1-convex along geodesics. Moreover, if n >

3, ˚ is 0-convex along geodesics. In case n D 2, ˚ is �-convex along geodesics with � < 0 on its

sublevels.

In particular, Assumption 3.1 holds. That is, given .s; w/; .r.0/; u.0//; .r.1/; u.1//, the map

.r; u/ 7! ˚.r; u/C 1

2h
%2
�

.s; w/; .r; u/
�

(3.32)

is convex along the constant speed geodesic � 7! .r.�/; u.�//, defined by (3.26), (3.27).

One can ask if the lack of convexity in case n D 2 is due to the odd shape of the geodesics

of d. Obviously, the convexity of Pn is much better along linear interpolants than along geodesics:

even if n D 2, it is immediately clear that Pn is 0-convex without having to restrict to a sublevel of

˚ . Unfortunately, d2 is not 1-convex along linear interpolants. Moreover, the profit from replacing

geodesics with linear interpolants is somewhat disappointing: even in case n > 3, it is not possible

to obtain �-convexity for � > 0, which would be the metric equivalent of strict convexity. Therefore,

it does not seem to be beneficial to use other curves instead of geodesics.

Having shown that Assumption 3.1 holds, [3, Theorems 2.4.15 and 4.0.4] can be applied. Since the

set of .r; u/ with˚.r; u/ < C1 is dense in X
n, no condition on the initial value is needed anymore.

THEOREM 3.9 For any .r0; u0/ 2 X
n,
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� There exists a unique mimimizing movement t 7! .r.t/; u.t// for ˚ starting at .r0; u0/.

� .r.t/; u.t// is also the unique generalized minimizing movement for ˚ starting at .r0; u0/.

� .r; u/ is a locally Lipschitz curve of maximal slope with j@˚ j.r.t/; u.t// < C1 for t > 0.

� .r; u/ is the unique solution of the evolution variational inequality

1

2

d

dt
%2
�

�

r.t/; u.t/
�

; .s; w/
�

C �

2
%2
�

�

r.t/; u.t/
�

; .s; w/
�

C˚
�

r.t/; u.t/
�

6 ˚.s;w/ (3.33)

for all .s; w/ 2 X
n such that ˚.s;w/ < C1 and almost all t > 0.

� For .r0; u0/ and .s0; w0/, the minimizing movements .r; u/ and .s; w/ for ˚ starting at .r0; u0/

and .s0; w0/, respectively, satisfy

%
�

�

r.t/; u.t/
�

;
�

s.t/; w.t/
�

�

6 e��t%
�

.r0; u0/; .s0; w0/
�

: (3.34)

If ˚.r0; u0/ < C1, the right metric derivative

ˇ

ˇ.r; u/0C
ˇ

ˇ.t/ WD lim
h#0

%
�

�

r.t C h/; u.t C h/
�

;
�

r.t/; u.t/
�

�

h
; (3.35)

and the equation

d

dtC
˚
�

r.t/; u.t/
�

D �j@˚ j2
�

r.t/; u.t/
�

D �
ˇ

ˇ.r; u/0C
ˇ

ˇ

2
.t/ D �j@˚

ˇ

ˇ

ˇ

�

r.t/; u.t/
�
ˇ

ˇ.r; u/0C
ˇ

ˇ.t/

(3.36)

holds for all t > 0. If, additionally, j@˚ j.r0; u0/ < C1, (3.36) also holds for t D 0.

REMARK 3.10 The definitions of curve of maximal slope and j@˚ j will be presented below. It will

turn out that (3.36) is stronger that the statement that .r.t/; u.t// is a curve of maximal slope

Unfortunately, as � 6 0, the contraction property does not give a lot of information about the

asymptotic behaviour of the minimizing movement.

4. Curves of maximal slope

One of the conclusions of Theorem 3.9 is that for any .r0; u0/ 2 X
n, a curve of maximal slope

for ˚ starting from .r0; u0/ exists. In this section, the concepts of local slope, denoted by j@˚ j and

curve of maximal slope will be introduced. Additionally, the local slope of˚ , which may be infinite,

will be computed in this section.

A curve of maximal slope can be regarded as being the metric equivalent of a gradient flow. As

before, the inspiration is the situation in R
n. The equation Px.t/ D �r�.x.t// flow for the gradient

flow of some smooth � W R
n ! R is equivalent to

d

dt
�
�

x.t/
�

D �1
2

ˇ

ˇ

ˇ
r�

�

x.t/
�

ˇ

ˇ

ˇ
� 1

2
j Px.t/j: (4.1)

Using Young’s inequality,

d

dt
�
�

y.t/
�

> �
ˇ

ˇ

ˇ
r�

�

y.t/
�

ˇ

ˇ

ˇ
j Py.t/j > �1

2

ˇ

ˇ

ˇ
r�

�

y.t/
�

ˇ

ˇ

ˇ

2

� 1

2
j Py.t/j2 (4.2)
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for any smooth curve y. Therefore, a gradient flow in R
n can be characterized by the inequality

d

dt
�
�

x.t/
�

6 �1
2

ˇ

ˇ

ˇ
r�

�

x.t/
�

ˇ

ˇ

ˇ

2

� 1

2
j Px.t/j2: (4.3)

If it is possible to redefine jr�j and j Pxj in a metric space such that the chain rule for � ı x still

holds, this inequality can be used to define a gradient flow in a metric space. A generalization for

j Pxj has already been found: it is the metric derivative defined in the previous section. A possible

generalization for jr�j is the local slope. The local slope of a functional � W S ! R is defined by

j@�j.v/ D lim sup
w!v

�

�.v/ � �.w/
�C

d.v;w/
: (4.4)

Note that the local slope is in some sense one-sided: it only measures how fast the value of �

decreases near a point. This makes sense, since the functionals that are considered are usually only

lower semicontinuous. See [3, ÷1] for more details.

The local slope of ˚ can be computed using methods from the proof of [3, Theorem 10.4.6].

The main ingredient is [3, Lemma 10.4.4], which describes the behavior of F .u/ as u is pushed

forward by a sufficiently smooth map r.

LEMMA 4.1 Let u 2 L1
n, r 2 L2.Rn; u/ be a radial vector field, � > 0 and suppose that

1. r is differentiable u-almost everywhere, and rt WD .1 � �/r C � id is uL
n-injective with

j det rr� j > 0 uL
n-almost everywhere for any � 2 Œ0; � �,

2. kr.r � id/kL1.Rn;u/ < C1
3. There exists a constant C > 0 such that 8z1; z2 W f .z1 C z2/ 6 C .1C f .z1/C f .z2//

4. F ..r� /#u/ < C1.

Then the map � 7! ��1.F ..r� /#u/ � F .u// is nondecreasing in Œ0; ��, and

C1 > lim
�#0

F
�

.r� /#u
�

� F .u/

�
D �

Z

Rn

Of
�

u.x/
�

tr r.r.x/ � x/ dx (4.5)

It is easy to check that z 7! z log z satisfies this satisfies Condition (3), also known as the

‘doubling’ condition. Moreover, it does not limit the growth of f too much. For instance, the

functional z 7! z2 also satisfies Condition (3). The conditions on r are a bit technical, but there

are two important examples of vector fields that satisfy the requirements: smooth, injective vector

fields and optimal transport maps between profiles with compact support. The latter follows from

[3, Theorem 6.2.7] about regularity of optimal transport maps, and uL
n-essential injectivity follows

as in the beginning of the proof of [3, Proposition 9.3.9]. Note that the approximate differential in

[3, Theorem 6.2.7] is not needed if r is a transport map between compactly supported probability

measures.

Before the main theorem can be proven, a refined version of [3, Lemma 10.4.5] is needed. This

lemma shows that, if Of is smooth enough, a weak integration by parts formula holds.

LEMMA 4.2 Let .r; u/ 2 X
n, and r and � be as in Lemma 4.1. In addition, suppose that

1. Of .u/jBr
2 W 1;1.Br/;

2. r is of bounded variation.

Then
Z

Br

Of
�

u.x/
�

div
�

r.x/� x
�

dx 6 �
Z

Br

r Of
�

u.x/
�

� .r.x/� x/ dx C .s� r/ Of
�

u.r/
�

Pn.r/ (4.6)
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Proof. Without loss of generality, it can be assumed that � D 1. As in the proof of [3, Lemma

10.4.5], the main ingredient is an estimate for the distributional divergence of a BV vector field

�. However, now using [4, 3.92], the boundary term at @Br should also be taken into account. If

w 2 C1
c .Rn/ is nonnegative and radially symmetric, its trace on @Br is constant, say w.x/ D Qw if

jxj D r . Then
Z

Br

w.x/ div
�

�.x/
�

dx 6 �
Z

Br

rw.x/ � �.x/ dxC�.r/ QwPn.r/ (4.7)

if the distributional divergence of � is a nonnegative measure. For bounded �, the same inequality

holds for nonnegative and radially symmetricw such thatwjBr
2 W 1;1.Br / and w � 0 outsideBr .

Applying this for w D Of .u/, � WD r ,
Z

Br

Of
�

u.x/
�

div
�

r.x/
�

dx 6 �
Z

Br

r Of
�

u.x/
�

� r.x/ dx C r.r/ Of
�

u.r/
�

Pn.r/

6 �
Z

Br

r Of
�

u.x/
�

� r.x/ dxCs Of
�

u.r/
�

Pn.r/:

(4.8)

Standard integration by parts yields
Z

Br

Of
�

u.x/
�

div.x/ dx D �
Z

Br

r Of
�

u.x/
�

� x dxCr Of
�

u.r/
�

Pn.r/; (4.9)

which, together with (4.8), yields the result.

Comparing this result to [3, Lemma 10.4.5], the approximating sequence rk is left out. This

can be done because the lemma will be applied to an optimal transport map between radially

symmetric measures. From (2.21), it can be seen that twu is always monotone. Hence, the map

tw
u .x/ WD twu .x/

x
jxj

, for which the lemma will be applied, is of bounded variation.

Apart from radial symmetry, the only difference between this proof and the proof of [3, Lemma

10.4.5] is from the boundary term in (4.7). In the following computations, more boundary terms

will appear in a similar way. Loosely speaking, W 1;1.Rn/ functions in [3, ÷10.4] are replaced by

functions that are W 1;1 when restricted to Br . In the language of BV functions, this means that the

distributional derivative consists of an absolutely continuous part and a jump on @Br . Obviously, it

is not important that the domain is a ball when performing these calculations: the same calculations

can be done on much more general domains.

Since the calculation is basically integration by parts, it is not surprising that boundary terms

appear when restricting to a bounded domain. Through the calculations that follow, however, the

boundary term will give the osmotic term that was discussed in the introduction. This will become

clear in the proof of the following theorem that gives the local slope j@˚ j of ˚ .

THEOREM 4.3 Let .r; u/ 2 X
n be given. Then ˚ has finite local slope at .r; u/ if and only if

Of .u/ 2 W 1;1..0; r/; Pn/ with

r Of .u/
u

2 L2.Rn; uPn/: (4.10)

In this case,

j@˚ j.r; u/ D

0

@

ˇ

ˇ

ˇ

ˇ

n � 1

r
� Of .u.r//

ˇ

ˇ

ˇ

ˇ

2

Pn.r/C �
















r Of .u/
u
















2

L2.Rn;u/

1

A

1
2

: (4.11)
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Proof. Suppose first that j@˚ j.r; u/ is finite. Let � be a radial vector field, and define � by �.x/ D
�.jxj/ x

jxj
. Similar to the proof of [3, 10.4.6], note that

W2

�

u; .X� /#u
�

6 �k�kL2.Rn;u/ D �k�kL2..0;1/;uPn/ (4.12)

where X� .x/ D x C ��.x/. Using the definitions of j@˚ j and metric derivative, followed by this

inequality and (3.5),
ˇ

ˇ

ˇ

ˇ

Z

Rn

Of .u.x// div �.x/ dx

ˇ

ˇ

ˇ

ˇ

6 lim
�#0

ˇ

ˇ˚.X� .r/; .X� /#u/ � ˚.r; u/
ˇ

ˇ

�
C
ˇ

ˇPn.X� .r//� Pn.r/
ˇ

ˇ

�

6 j@˚ j.r; u/
ˇ

ˇ

ˇ

�

X� .r/; .X� /#u
�

ˇ

ˇ

ˇ

0

.0/C j�.r/jP 0
n.r/

6 j@˚ j.r; u/
�

ˇ

ˇ�.r/
ˇ

ˇ

2
Pn.r/C

k�k2

L2
�

.0;1/;uPn

�

�

�
1
2 C

ˇ

ˇ�.r/
ˇ

ˇP 0
n.r/

(4.13)

whenever � is smooth enough to apply Lemma 4.1 with r D � C id. For � D ��, this yields

n

Z

Rn

Of
�

u.x/
�

dx 6 j@˚ j.r; u/
�

r2Pn.r/C
kidk2

L2..0;1/;uPn/

�

�
1
2 C rP 0

n.r/; (4.14)

which means that Of .u/ is integrable. Next, apply (4.13) for smooth, compactly supported radial �

to obtain
ˇ

ˇ

ˇ

ˇ

Z

Rn

Of
�

u.x/
�

div �.x/ dx

ˇ

ˇ

ˇ

ˇ

6 j@˚ j.r; u/
�

ˇ

ˇ�.r/
ˇ

ˇ

2
Pn.r/C

k�k2
L2..0;1/;uPn/

�

�
1
2 C j�.r/jP 0

n.r/

6

�

j@˚ j.r; u/
� 1

�
C Pn

�
1
2 C P 0

n.r/
�

k�kC 0..0;1//:

(4.15)

Noting that this inequality only needs to be checked for radial �, Riesz’ theorem [4, 1.54] implies

that x 7! Of .u.x// is of bounded variation. Hence,
Z

Rn

Of
�

u.x/
�

div �.x/ dx D �
Z

Rn

�.x/ dD Of
�

u.x/
�

: (4.16)

Restricting to � with �.r/ D 0,
ˇ

ˇ

ˇ

ˇ

Z

Br

� dD Of .u/
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

Z

Br

Of
�

u.x/
�

div �.x/ dx
ˇ

ˇ

ˇ
6

j@˚ j.r; u/
�

k�k2
L2.Rn;u/

(4.17)

Using duality, this means that D Of .u/ is absolutely continuous on Br . In particular, Of .u/jBr
2

W 1;1.Br /. Since u � 0 outside Br , it follows that the singular part ofD Of .u/ must be concentrated

on @Br . By radial symmetry, it follows from [4, Proposition 3.92] that D Of .u/ only consist of an

absolutely continuous part concentrated onBr and possibly a jump part across @Br . More precisely,
Z

Rn

Of
�

u.x/
�

div �.x/r dx D �
Z

Br

r Of
�

u.x/
�

� �.x/ dx C
Z

@Br

Of .u.x//�.x/ � x
r

dH
n�1.x/

D �
Z 1

0

d

d�
Of
�

u.�/
�

�.�/Pn.�/ d� C Of
�

u.r/
�

�.r/Pn.r/:

(4.18)
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Using Lemma 4.1, and (4.18)

lim
�#0

˚
�

X�.r/; .X� /#u
�

� ˚.r; u/

�
D �.r/P 0

n.r/ �
Z

Br

Of
�

u.x/
�

div �.x/ dx

D
�

P 0
n.r/ � Of

�

u.r/
�

Pn.r/
�

�.r/C
Z

Br

r Of
�

u.x/
�

� �.x/ dx :

(4.19)

Estimating the left hand side as in (4.13),

ˇ

ˇ

ˇ

ˇ

ˇ

�P 0
n.r/

Pn.r/
� Of

�

u.r/
�

�

Pn.r/�.r/C
Z

Br

r Of
�

u.x/
�

u.x/
� �.x/u.x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

6 j@˚ j.r; u/
 

j�.r/j2Pn.r/C
k�k2

L2.Rn;u/

�

!

1
2

:

Finally, using another duality argument and evaluating
P 0

n.r/

Pn.r/
,

0

@

ˇ

ˇ

ˇ

ˇ

n � 1

r
� Of

�

u.r/
�

ˇ

ˇ

ˇ

ˇ

2

Pn.r/C �

Z

Br

ˇ

ˇ

ˇ

ˇ

ˇ

r Of
�

u.x/
�

u.x/

ˇ

ˇ

ˇ

ˇ

ˇ

2

u.x/ dx

1

A

1
2

6 j@˚ j.r; u/: (4.20)

Conversely, assume Of .u/jBr
2 W 1;1.Br /,

r Of .u/
u

2 L2.Rn; u/; (4.21)

and let .s; w/ 2 X
n such that ˚.s;w/ 6 ˚.r; u/. As noted above, the map tw

u .x/ D twu .x/
x

jxj
,

which is the optimal transport map from u to w in R
n, is sufficiently regular to apply Lemmata 4.1

and 4.2. Then

˚.s;w/ � ˚.r; u/ >
�

Pn.s/ � Pn.r/
�

�
Z

Rn

Of
�

u.x/
�

tr r.tw
u .x/ � x/ dx

>

�

P 0
n.r/

Pn.r/
� Of .u.r//

�

.s � r/ Pn.r/C
Z

Rn

r Of
�

u.x/
�

�
�

tw
u .x/ � x

�

dx

> �

0

@

ˇ

ˇ

ˇ

ˇ

n � 1
r

� Of
�

u.r/
�

ˇ

ˇ

ˇ

ˇ

2

Pn.r/C �
















r Of .u/
u
















2

L2.Rn;u/

1

A

1
2

�

js � r j2Pn.r/C W 2
2 .u;w/

�

�

1
2

(4.22)

using convexity of r 7! Pn.r/. The inequality in (4.11) left to prove now follows by writing a

Taylor expansion for the integral from (2.11), and taking the limit superior for .s; w/ ! .r; u/.
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Note again that boundary terms appear, most importantly in (4.18). As explained above, this is a

direct consequence of restricting u to a bounded domain. The fact that the boundary of the domain

moves is not important here yet. In (4.17), it becomes clear that the boundary term disappears when

the perturbation is such that the mass at the boundary does not move. Studying the calculations a bit

closer, the boundary term can be ‘estimated away’ if �.r/ < 0. Hence, the boundary term still plays

a role when the boundary is fixed, but disappears from the final outcome. From a modelling point

of view this makes sense: if the cell membrane would be fixed for some reason, the osmotic force

would still be there. The only thing that has changed is that te membrane does not react to forces

anymore. In a more general setting, a fixed boundary can be regarded as a moving boundary with

infinite resistance to force: it can be seen from the calculation that all forces are there, but disappear

because the boundary is unable to react to them.

The section is concluded with a lemma that essentially characterizes the minimal Fréchet

subdifferential of ˚ .

LEMMA 4.4 Suppose that .r.�/; u.�// is an absolutely continuous curve in X
n, and v.�/ is the

solution of (3.11) with kv�kL2..0;1/;u.�/Pn/ D ju0j.�/ for almost every � . For any � such that

j@˚ j.r.�/; u.�// < C1, � 7! ˚.r.�/; u.�// is differentiable, and (3.17) holds,

d

d�
˚
�

r.�/; u.�/
�

D
�

n � 1

r.�/
� Of

�

u
�

r.�/; �
�

�

�

Pn

�

r.�/
�

r 0.�/C
Z r.�/

0

@ Of
�

u.�; �/
�

@�
v� .�/Pn.�/ d� : (4.23)

Proof. For h > 0, let th be the optimal transport map from ut to utCh. Then, as in the proof of the

Theorem 4.3,

˚
�

r.� C h/; u.� C h/
�

�˚
�

r.�/; u.�/
�

>

�

n � 1
r.�/

� Of
�

u.r.�/; �/
�

�

.r.� C h/ � r.�// Pn

�

r.�/
�

C
Z r.�/

0

@ Of
�

u.�; �/
�

@�
� .tu.�Ch/

u.�/
.�/ � �/Pn.�/ d� (4.24)

Using (3.17), dividing by h, and taking limits for h # 0 yields

d

d�
˚
�

r.�/; u.�/
�

>

�

n � 1
r.�/

� Of
�

u
�

r.�/; �
�

�

�

Pn

�

r.�/
�

r 0.�/C
Z r.�/

0

@ Of .u.�; �//
@�

v� .�/Pn.�/ d� (4.25)

where v is characterized by Remark 3.5. The converse inequality follows by studying the left

derivative.

5. Weak solutions

A natural question is whether a maximal slope curve obtained in Theorem 3.9 is a solution of (1.7),

and in what sense. Bearing in mind Lemma 4.4, it is expected that the argument from the beginning
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of the previous section justifying the definition of a curve of maximal slope can in this case be

reversed to obtain a weak form of (1.7). Of course, the choice for f should be kept in mind:
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

ut D �� Of .u/; for x 2 Br.t/, t > 0;

�� d

d�
Of
�

u.�/
�

ˇ

ˇ

ˇ

ˇ

�Dr

D u.r/r 0.t/; for t > 0

r 0 D �n � 1

r
C Of

�

u.r/
�

for t > 0.

(5.1)

It is possible to formulate this problem in a neater way. Note that

r Of .u/ D r
�

uf 0.u/
�

� rf .u/ D f 0.u/ruC urf 0.u/ � f 0.u/ru D urf 0.u/ (5.2)

if f is sufficiently smooth. Therefore, the first equation in (5.3) can be replaced by ut D �� Of .u/.
Similarly, the boundary condition for u can be rewritten:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

ut D � div
�

urf 0.u/
�

; for x 2 Br.t/, t > 0;

�� d

d�
f 0
�

u.�/
�

ˇ

ˇ

ˇ

ˇ

�Dr

D r 0.t/; for t > 0

r 0 D �n � 1

r
C Of

�

u.r/
�

for t > 0.

(5.3)

This way of writing the problem makes the structure clearer: particles have velocity equal to

rf 0.u/, and the velocity of the particles at the boundary should match the normal velocity of the

boundary.

In order to show that a curve of maximal slope can be regarded a weak solution of (5.3), some

integral identities are derived that characterize solutions when smoothness is assumed. By smooth,

it is meant that t 7! r.t/ is continuously differentiable, and .x; t/ 7! u.x; t/ is twice continuously

differentiable on the domain

f.�; t/ W 0 < � < r.t/I t > 0g
Moreover, it is shown that ˚ is a Lyapunov functional for (5.3). As before, when applying the

divergence rule, u.t/ is interpreted as a function on R
n.

If u is smooth in the sense explained above, and ' 2 C1
c .Rn � .0;1// is radially symmetric,

�
Z 1

0

Z

Br.t/

ut .x; t/'.x; t/ dx dt

D
Z 1

0

Z

Brt

u.x; t/'t .x; t/ dx dt C
Z 1

0

u
�

r.t/; t
�

Q'.t/r 0.t/Pn

�

r.t/
�

dt ; (5.4)

where Q'.t/ is the value of '.:; t/ on @Br.t/. Moreover,

�
Z 1

0

Z

Br.t/

ut .x; t/'.x; t/ dx dt D ��
Z 1

0

Z

Br.t/

� Of
�

u.x; t/
�

'.x; t/ dx dt

D �

Z 1

0

Z

Br.t/

u.x; t/r Of .u.x; t// � r'.x; t/ dx dt

�
Z 1

0

�
d

d�
Of
�

u.�; t/
�

ˇ

ˇ

ˇ

ˇ

�Dr

Q'.t/Pn.r.t// dt

(5.5)
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Combining these two identities with the Neumann boundary condition yields

1

�

Z 1

0

Z

Br.t/

u.x; t/'t .x; t/ dx dt D
Z 1

0

Z

Br.t/

r Of
�

u.x; t/
�

� r'.x; t/ dx dt : (5.6)

By a similar computation, for any radially symmetric  2 C1
c .Rn � .0;1//,

Z 1

0

Z

Br.t/

 t .x; t/ dx dt D �
Z 1

0

Q .t/r 0.t/Pn

�

r.t/
�

dt

D
Z 1

0

�

n � 1

r.t/
� Of

�

u.r.t/; t/
�

�

Q .t/Pn

�

r.t/
�

dt ;

(5.7)

where Q is defined analogous to Q'. From these identities, it follows that ˚ is indeed a Lyapunov

functional for (5.3):

d

dt

 

Pn

�

r.t/
�

C
Z

Br.t/

f .u.x; t// dx

!

D P 0
n.r.t//r

0.t/C
Z

Brt

f 0.u.x; t//ut .x; t/ dx C f
�

u
�

r.t/; t
�

�

r 0.t/Pn

�

r.t/
�

D
 

P 0
n

�

r.t/
�

Pn.r.t//
� Of

�

u
�

r.t/; t
�

�

!

r 0.t/Pn

�

r.t/
�

C �

Z

Br.t/

f 0.u.x; t// div
�

u.x; t/rf 0
�

u.x; t/
��

dx

C u.r.t/; t/f 0
�

u
�

r.t/; t
�

�

r 0.t/Pn

�

r.t/
�

D �
�

n � 1
r.t/

� Of
�

u
�

r.t/; t
�

�

�2

Pn

�

r.t/
�

C �

Z

Br.t/

jrf 0.u.x; t/j2u.x; t/ dx

C f 0
�

u
�

r.t/; t
�

�

Pn

�

r.t/
�

 

u
�

r.t/; t
�

r 0.t/C �
d

d�
Of
�

u.�; t/
�

ˇ

ˇ

ˇ

ˇ

�Dr.t/

!

D �
�

n � 1
r.t/

� Of
�

u
�

r.t/; t
�

�

�2

Pn

�

r.t/
�

� �

Z

Br .t/

jr Of
�

u.x; t/
�

j2

u.x; t/
dx;

since

u
�

f 0 ı u
�0 D

h

Of
i0

: (5.8)

If the integral identities (5.6), (5.7), together with monotonicity of ˚ along a trajectory are accepted

as a definition of weak solution of (5.3), the following theorem simply states that curves of maximal

slope of ˚ are weak solutions of (5.3). Loosely speaking, this means that (5.3) can be formulated

as a gradient flow.

THEOREM 5.1 Suppose that t 7! .r.t/; u.t// 2 X
n is continuous. Then .r.t/; u.t// is a curve

of maximal slope for ˚ if and only if ˚.r.t/; u.t// is decreasing, and (5.6) and (5.7) hold for all

radially symmetric test functions �; 2 C1
c .Rn � .0;1//.
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Proof. Assume first that .r.t/; u.t// is a curve of maximal slope for ˚ . By definition, this means

that �.t/ WD ˚.r.t/; u.t// is decreasing, and t 7! u.t/ and t 7! r.t/ are both absolutely continuous.

Then there exists a function v satisfying (3.11) and kv� kL2..0;1/;uPn/ D ju0j.t/ for almost every

t > 0. Hence, as in the proof of Theorem 3.4, v� .x/ WD v� .jxj/ x
jxj

solves

Z 1

0

Z

Br.t/

't .x; t/u.x; t/ dx dt D �
Z 1

0

Z

Br.t/

r't � v.x; t/u.x; t/ dx dt (5.9)

for any radially symmetric ' 2 C1
c .Rn � .0;1//. Using Lemma 4.4,

�0.t/ D
�

n � 1

rt

� Of
�

ut .rt /
�

�

Pn.rt /
drt

dt
C
Z r.�/

0

@ Of
�

u.�; �/
�

@�
v� .�/Pn.�/ d� (5.10)

for almost all t > 0, where �.t/ WD ˚.r.t/; u.t//. On the other hand,

�0.t/ 6 �j.r; u/0j2.t/
2

�
j@˚ j2

�

r.t/; u.t/
�

2

D �1
2

 

ˇ

ˇr 0.t/
ˇ

ˇ

2
Pn

�

r.t/
�

C
ˇ

ˇ

ˇ

ˇ

n � 1

r.t/
� Of

�

u
�

r.t/; t
�

�

ˇ

ˇ

ˇ

ˇ

2

Pn

�

r.t/
�

C
kvtk2

L2
�

Rn;u.t/
�

�
C �
















r Of
�

u.x; t/
�

u.x; t/
















2

L2
�

Rn;u.t/
�

1

C

A

(5.11)

for almost all t > 0. By Young’s equality, it follows that for all t > 0 such that both hold,

r 0.t/ D �n � 1
r.t/

C Of
�

u
�

r.t/; t
�

�

;

vt D ��
r Of

�

u.t/
�

u.t/
:

Substituting the latter in (5.9) yields (5.6). Together with (3.7), the first implies (5.7).

Conversely, note that (5.6) is equivalent to (3.11) with a given expression for v.t/ substituted.

Therefore, t 7! u.t/ is absolutely continuous with respect to the Wasserstein metric. Similarly,

by Lemma 3.3, t 7! r.t/ is absolutely continuous, and gives and expression for r 0.t/ almost

everywhere. Then Lemma 4.4 yields

�0.t/ D
�

n � 1
r.t/

� Of
�

u
�

r.t/; t
�

�

�

Pn

�

r.t/
�

r 0.t/C
Z r.�/

0

@ Of
�

u.�; �/
�

@�
v� .�/Pn.�/ d� (5.12)

for almost every t > 0.

Having explicit expressions for drt

dt
and vt at hand, it follows from Young’s inequality that

t 7! .r.t/; u.t// is a curve of maximal slope.

Note that the splitting of the problem from the introduction plays an important role: the equations

related to absolute continuity give the equations relating the evolution of u and r to different

velocities, whereas the gradients give the velocity in terms of the current state. As argued above, the

divergence formulation (5.3), also has this structure.
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6. Varying permeability

As stated in the introduction, two variants of the cell swelling model could be considered. Apart

from the above, which corresponds to a fixed permeability of the membrane, an alternative model

based on aquaporins could be studied. In this section, the model will be adjusted to reflect this, and

it will be shown that the gradient flow approach above also works for the resulting problem, with

only slightly different results.

6.1 Adjusting the model

If it is assumed that the number of aquaporins on the cell membrane is fixed, and the permeance of

an aquaporin is also fixed, the total permeance of the membrane is fixed. By radial symmetry, the

permeability of the membrane is equal to
Pn.r.0//
Pn.r.t//

, up to a multiplicative constant. This means that

the new equation for the normal velocity of the membrane will be

r 0.t/ D
Pn

�

r.0/
�

Pn

�

r.t/
�

�

�
 n � 1

r.t/
C ˇu

�

r.t/; t
�

�

: (6.1)

As before, all but one of the parameters can be made equal to 1. The one remaining parameter will

again be �. In this case, however, the scaling factor for t also depends on r.0/.

From a modeling point of view, there is only one reasonable way to adapt the gradient flow

approach to this new situation: since permeability basically determines how hard it is to move the

membrane, the metric for the r-coordinate should be modified. Remembering that d arose from

minimizing
Z 1

0

kvt kL2.@Br.t// dt ;

it seems reasonable to integrate some other norm of vt . It turns out that choosing the reciprocal of

the permeability, that is, Pn as a weight in the L2-norm of vt is the right choice. Therefore, define

Od.r0; r1/ WD
Z

.r0;r1/

Pn.�/ d� D L
n.Br1

4Br0
/ D !n jrn

1 � rn
0 j : (6.2)

Obviously, the metric for Cn � L1
n will be the same combination of Od and W2 as before:

O%
�

.r; u/; .s; w/
�

WD
�

Od2.r; s/C W 2
2 .u;w/

�

�

1
2

: (6.3)

6.2 Implications of changing the metric

Note that the new definition does not change the topology on Cn, which means that most of the

results still hold. Some of the finer properties, however, have changed. In this section, the results

from the previous sections will be adapted to reflect the new model.

First of all, since the metric has changed, the isometry from Cn to Œ0;C1/ has changed as well.

The isometry now reads

O�n W Cn ! Œ0;C1/ W r 7! !nr
n: (6.4)

All other results from Section 2 are the same.
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The metric derivative j:0jOd is of course also different. Absolute continuity in Œ0;C1/ and Cn are

of course still equivalent, but

jr 0jOd.�/ D Pn

�

r.�/
�

ˇ

ˇ

ˇ

ˇ

dr.�/

d�

ˇ

ˇ

ˇ

ˇ

; (6.5)

for an absolutely continuous curve � 7! r.�/. The obvious adaptation of Lemma 3.3 also holds.

LEMMA 6.1 Let � 7! r.�/ be a curve in Cn. Then r.�/ is absolutely continuous if and only if it is

continuous and there exists a function g such that g.�/Pn.r.�// 2 L1
loc
..0;1//,

Z 1

0

Z r.�/

0

@ .�; �/

@�
Pn.�/ d� dt D �

Z 1

0

g.�/ .r.�/; �/Pn

�

r.�/
�

d� (6.6)

for all  2 C1
c .Œ0;1/ � .0;1//. In this case, jr 0jOd.�/ D jg.�/jPn.r.�// for almost every � > 0.

As before, the isometry O�n can be used to characterize the geodesics of Od:

r.�/ D ..1 � �/r.0/n C � r.1/n/
1
n > .1 � �/r.0/C � r.1/; (6.7)

which means that combining geodesics for r and u will give a geodesic for O%.

A more substantial difference is the change in �-convexity of Pn. By the same argument as

before, �-convexity of Pn is now equivalent to �-convexity of the map

s 7! O�nr
n�1n; (6.8)

where �n > 0 is a constant. Before, Pn was 0-convex for n > 3, but this is not the case anymore:

for every n, the situation is similar to the situation n D 2 before: Pn is not �-convex globally, but

only �-convex with � < 0 on sublevels of ˚ .

Together with the observation that s 7! 1
2

Od2.r; s/ is still 1-convex for all r , [3, Theorems 2.4.15

and 4.0.4] still apply. Since � is still negative, no stronger contraction results follow from these

theorems.

Of course, the local slope @˚ with respect to O% should be different. Since the proof of Theorem

4.3 largely deals with the mass component, it only needs a small modification.

THEOREM 6.2 Let .r; u/ 2 X
n be given. Then ˚ has finite local slope at .r; u/ if and only if

Of .u/ 2 W 1;1.Br / with

r Of .u/
u

2 L2.Rn; u/: (6.9)

In this case,

j@˚ j.r; u/ D

0

@

ˇ

ˇ

ˇ

ˇ

n � 1

r
� Of

�

u.r/
�

ˇ

ˇ

ˇ

ˇ

2

C �
















r Of .u/
u
















2

L2.Rn;u/

1

A

1
2

: (6.10)

Proof. The proof is similar to the proof of Theorem 4.3. The estimate (4.13) now should be

ˇ

ˇ

ˇ

ˇ

Z

Rn

Of
�

u.x/
�

div �.x/ dx

ˇ

ˇ

ˇ

ˇ

6 j@˚ j.r; u/

0

B

@
j .r/j2P 2

n .r/C
k k2

L2
�

.0;1/;uPn

�

�

1

C

A

1
2

C j .r/jP 0
n.r/

(6.11)
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Proceeding as in the proof of Theorem 4.3 now yields

ˇ

ˇ

ˇ

ˇ

ˇ

�

P 0
n.r/

Pn.r/
� Of

�

u.r/
�

�

Pn.r/ .r/C
Z

Br

r Of
�

u.x/
�

u.x/
� �.x/u.x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

6 j@˚ j.r; u/
 

j .r/j2P 2
n .r/C

k�k2
L2.Rn;u/

�

!

1
2

;

which, with a duality argument, gives one of the implications.

The converse implication is also shown as in the proof of Theorem 4.3 but with the Cauchy

inequality applied differently:

˚.s;w/ � ˚.r; u/ >
�

Pn.s/ � Pn.r/
�

�
Z

Rn

Of .u.x// div
�

tw
u .x/ � x

�

dx

>

�

P 0
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�

u.r/
�

�
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Z

Rn
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�

u.x/
�

� .tw
u .x/ � x/ dx

> �
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ˇ

ˇ

ˇ

ˇ

n � 1
r
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�

u.r/
�

ˇ

ˇ

ˇ

ˇ

2
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r Of .u/
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2

L2.Rn;u/

1

A

1
2

�

js � r j2P 2
n .r/C W 2

2 .u;w/

�

�

1
2

;

(6.12)

which, after taking limits, again concludes the proof.

With expressions for the metric derivative and local slope at hand, the proof of Theorem 5.1 can

be repeated. In this new setting it will give

Pn

�

r.t/
�

r 0.t/ D �n � 1

r.t/
C Of

�

u
�

r.t/; t
�

�

(6.13)

for almost all t > 0, which means that (5.7) becomes

Z 1

0

Z

Br.t/

@ .x; t/

@t
dx dt D

Z 1

0

�

n � 1

r.t/
� Of

�

u
�

r.t/; t
�

�

�

 
�

r.t/; t
�

dt : (6.14)

The equation for u is, as expected, not changed.
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