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In this paper we revisit models for the description of the evolution of crystalline films with anisotropic

surface energies. We prove equivalences of symmetry properties of anisotropic surface energy models

commonly used in the literature. Then we systematically develop a framework for the derivation of

surface diffusion models for the self-assembly of quantum dots during Stranski-Krastanov growth

that include surface energies also with large anisotropy as well as the effect of wetting energy, elastic

energy and a randomly perturbed atomic deposition flux.

A linear stability analysis for the resulting sixth-order semilinear evolution equation for the thin

film surface shows that that the new model allows for large anisotropy and gives rise to the formation

of anisotropic quantum dots. The nonlinear three-dimensional evolution is investigated via numerical

solutions. These suggest that increasing anisotropy stabilizes the faceted surfaces and may lead to a

dramatic slow-down of the coarsening of the dots.
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1. Introduction

Modeling, analysis and numerical simulation of the self-assembly of thin nanostructured crystalline

films is of enormous interest for many emerging applications in the semiconductor industries, for the

synthesis of multifunctional materials or in the design of next-generation solar cells. A fundamental

understanding of the underlying principles that control the formation of patterns as well as their

evolution, forms the basis for optimizing the properties of new materials, such as e.g. the positioning,

size and shape of superlattices of quantum dots to increase of conversion efficiencies of thin-film

solar cells, see e.g. [3].

One of the most prominent examples for the patterning of surfaces is the quantum dot self-

arrangement during epitaxial growth which has been studied in numerous works. In particular, for
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heteroepitaxial growth of the systems Ge/Si and SiGe/Si there exists a sizable body of literature

that is concerned with a precise understanding of the processes on the nanoscale. The review by

Drucker [12] and many of the references therein yield a detailed overview of the experimental

works.

In order to capture and predict the long-time evolution of large scale three-dimensional

nanostructures continuum models have shown to be very useful. They involve the coupling of the

elasticity problems for the film and the underlying substrate with the evolution of the film surface

h.x; y; t/ based on Mullins’ surface diffusion equation [31, 39]

ht D
p

1 C jrhj2Dr2
s �; (1.1)

where j � j is the Euclidean norm, r2
s is the surface Laplacian, see e.g. [44], D is a diffusion constant

and

� D Esed C Esurf ; (1.2)

the chemical potential with contributions arising from the strain energy

Esed D 1=2
X

i;j

�ij �ij jzDh (1.3)

evaluated at the surface, with the strain and stress tensor, .�ij /ij and .�ij /ij , respectively, and the

surface free energy Esurf . The derivation of the latter will be discussed in detail in this study.

For the resulting free boundary problems, asymptotic methods leading via a small-slope

reduction of the system to a single high-order evolution equation for the film profile, have

previously been developed, see in particular the works by Spencer et al. [37, 39]. Extensions of

these studies that in addition account for effects of substrate-film wetting or anisotropy, see, e.g.,

[17, 24, 44], show that for such reduced models large-scale numerical simulations of the formation

of nanostructures are feasible and can also be evolved on a long time-scale to yield information on

their coarsening behavior.

Further extensions of this approach are important for the implementations of superlattices,

such as for example the SiGe/Si system as has been studied by Sutter et al. [42] or the similar

Ge/Si system investigated by Chen et al. [6] to design and optimize material systems relevant for

photovoltaic applications, see also [20, 21] and the review by Springholz and Holy [41]. To make

progress using above approach, a thorough understanding of the important physical effects and how

to incorporate them systematically into a realistic model, even for the basic one-layer heteroepitaxial

growth on a substrate, is crucial.

In the first part of this study (Section 2) we first revisit the different formulations for surface

energy. In a purely surface energy driven system the chemical potential can be derived from the

functional derivative of the surface free energy via the surface integral over the surface energy

density  ;

Esurf D ı

ıh

Z

 dS : (1.4)

We discuss different formulations for  that have been used in literature and show equivalence

of symmetries. In particular, we show how the standard cubic symmetry properties of a surface

energy .n/, expressed in terms of the normal n pointing out of the film, relate to the gradient

formulation .hx; hy/, which is used for the derivation of the thin film evolution equation. We
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systematically develop a framework that incorporates the specific properties of the film-substrate

system and naturally extends to the case that includes strong anisotropy.

The analysis and results are used in the following Section 3 for the derivation of a new thin-film

equation and leads, via asymptotic long-wave approximations, to a sixth-order semi-linear equation

for h.x; y; t/ that accounts for an elastic field in the film and in the substrate, wetting layer, strong

surface energy anisotropy in the film and a randomly perturbed atomic flux, extending the models

by Tekalign and Spencer [44] and Savina et al. [34].

In the final Section 4 we investigate the linear stability results for increasing anisotropy of

the surface energy and compare them to our numerical solution of the evolving patterns of the

two-dimensional surface h.x; y; t/. For the numerical scheme used to approximate the solutions

of the sixth-order semi-linear PDE we employ pseudo-spectral methods using exponential time

differencing (ETD) [11, 22], and a third order semi-implicit backward differentiation (SBDF)

scheme.

We discuss the impact of the corner energy on the faceting that appears as a sixth-order Wilmore

regularization in the model equation. We find that large anisotropy coefficients lead to stabilized

faceted arrays and a slow-down of the coarsening process.

2. Surface energy density formulations

First we revisit the different surface energy formulations that have been used in the literature for

growing surfaces, discuss equivalence of symmetry characteristics of the surface energies, followed

by the derivation of general expressions for the constituent terms for the chemical potential.

The first continuum models for epitaxial growth were actually rather concerned with the elastic

problem than the surface energy, neither intermolecular interactions between film and substrate nor

anisotropy have been considered, see [37, 39, 40]. The surface energy was assumed to be isotropic

together with surface diffusion and stress fields [38, 47, 49, 50]. We denote this class of surface

energy models by SEI :  D const: Consequently neither wetting layer connecting the nano-

structures nor faceting of the growing dots could be captured although this is a signature of the

Stranski-Krastanov growth mode.

Golovin et al. [17] extended the theory by including wetting effects. In later works such as by

Pang and Huang [32, 33] or Tekalign and Spencer [44, 45] such an extension has been incorporated

by letting  depend not only on the gradients of the surface profile to model the anisotropy, but

also on the surface height h itself. This dependency has been be modeled in the framework of the

boundary layer theory by Spencer [35]. It constituted a fundamental result for modeling Stranski-

Krastanov systems and was followed by many further studies, e.g. [1, 5, 17, 32, 44, 45]. We denote

this class here by SEII :  D .h/.

Since crystalline materials are inherently anisotropic as a result of the regular structure defined

by their bravais lattices, preferred orientations corresponding to lower free energy states emerge

during growth. For the heteroepitaxial case, cusped anisotropic surface energies have been proposed

by Eisenberg and Kandel [13–15], while combinations of wetting and anisotropic surface energies

were considered by Chiu and Huang [9, 10]. For these situations the family of SEII can be extended

by letting the surface energy density also be a function of the gradients of the surface, denoted here

by SEIII :  D .h; hx; hy/.

Often the surface anisotropy is expressed in terms of angles or the outward unit normal

as arguments, and as Figure 1 (c) indicates for the one-dimensional case, the formulations are
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(a) (b) (c)
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n

FIG. 1. Polar plots (dashed lines) of the surface energy .�/ D 1 C G cos.4�/ and the corresponding equilibrium shapes

(white areas) constructed with the Wulff construction for (a), the weak anisotropy strength G D 0:05, and (b) the strong

anisotropy G D 0:3. The latter leads to “ears” in the Wulff construction and corners in the equilibrium shape. (c) shows the

orientation dependency in one dimension expressed in terms of the slope hx , the outward unit normal n or the facet angle � .

equivalent as long as the gradients of the surface stay away from infinity. We will discuss these

relations in more detail in the following paragraphs.

This family of surface energies has been shown to be very useful for the description of a Stranski-

Krastanov systems in a long-wave approximation, see e.g. [7–10, 24, 48]. However, all of these

models will eventually become ill-posed for large enough anisotropy of the surface energy. This

corresponds to the appearance of sharp edges in the film surface, as can be seen in Figure 1, where

the Wulff construction is applied to obtain the equilibrium shapes (see [46] or [19]). In (a) the

anisotropy is weak, which means that the polar plot of .�/ D 1 C G cos.4�/ (dashed line) is

convex for G D 0:05 and it yields a smooth shape from the Wulff construction (white area). In (b)

the anisotropy strength is increased to G D 0:3 and while the polar plot becomes nonconvex, the

Wulff construction shows distinct “ears” and the equilibrium shape has sharp corners.

An extension of the surface energy that includes higher order gradients is called Wilmore

regularization. It was introduced by Golovin et al. [16] in connection with crystallization of Si

from a melt. Further studies that are mainly concerned with equilibrium shapes e.g. Spencer [36],

analyze the influence of the corner regularization onto the stationary geometry by using matched

asymptotic expansions. Savina et al. [34] proposed a model for the faceting of growing surfaces in

the absence of elastic stresses that used this regularization. The model was further analyzed with

respect to its stationary states and existence of unique solutions in [25–27] and it has been extended

by Golovin et al. [18] who also considered wetting interactions in the anisotropic surface energy.

Both works are not related to growth based on the Asaro–Tiller–Grinfeld instability since no elastic

subproblem resulting from lattice mismatch is considered.

The dependence of the surface energy on higher order gradients has further been addressed by

several other works in crystal growth theory, such as in [4, 34, 36]. In what follows, we denote this

family by SEIV :  D .h; hx; hy ; hxx; hxy ; hyy/. In particular this includes models of the type

 D .n; �/, where n is the outward unit normal and � is the mean curvature of the growing film.

2.1 Symmetry and surface energy properties

We show the equivalences of the different formulations for the surface energy and begin by proving

how cubic symmetry relates an outward unit normal description to an angle parametrization.
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Secondly we show in Proposition 2.3 that there is an equivalent formulation in terms of the

dependency on the surface gradients when h is a regularly growing surface. Finally, we show how

to incorporate such surface energies in a surface diffusion equation.

The spatial derivatives of the evolving surface, hx and hy , serve as arguments for the families of

surface energies SEIII and SEIV . This dependency is used to model the anisotropy of the surface

energy. Typically, the outward unit normal n D .n1; n2; n3/ is used as argument for  . Then for

crystals with e.g. cubic symmetry the regular structure implies

1.n1; n2; n3/D1

�

�.n1; n2; n3/
�

D1.ı1n1; ı2n2; ı3n3/; ıi 2f˙1g ; (2.1)

for any permutation � of the three components, see, e.g., McFadden [30]. It is a natural idea to

believe that these properties have an analogon in terms of a polar description of the unit normal. In

polar coordinates �1; �2 the symmetry property

2.�1; �2/ D 2.�1 ˙ �=2; �2 ˙ �=2/ D 2.ı1�1; ı2�2/; ıi 2 f˙1g : (2.2)

appears natural. In the one-dimensional case, for the square symmetry .�/ D 1 C G cos.4�/, one

can easily check that the above statement holds (reduced by one dimension). However, we will show

that the symmetry properties of 1 and 2 are not equivalent and that (2.2) follows from (2.1), but

not vice versa.

For regular surfaces, where the outward unit normal is a function of hx and hy , the surface

energy can be written as 3.hx; hy/ D 1.n.hx ; hy//, then the symmetry defined by (2.1) transforms

to

3.hx; hy/ D 3.hy; hx/ D 3.ı1hx; ı2hy/; ıi 2 f˙1g : (2.3)

Symmetries in (2.1) and (2.3) are indeed equivalent for regular surfaces (those which are regularly

parametrizable from the plane). However, we first discuss the symmetries (2.1) and (2.2), therefore

we state the following lemma on description of symmetry (2.1) in terms of Householder reflections:

LEMMA 2.1 Let H.aj / D Id � 2aj aT
j ; j D 1; : : : ; 5; be Householder reflections with the

normalized cubic symmetry axes

a1 D e1; a2 D e2; a3 D e3;

a4 D .1; �1; 0/=
p

2; a5 D .1; 0; �1/=
p

2 ;

where ej ; j D 1; 2; 3 are the three Cartesian basis vectors, then symmetry properties (2.1) are

equivalent to .n/ D .H.aj /n/; j D 1; : : : ; 5.

The proofs of the lemma as well as the following propositions are given in the appendix. For the

next proposition we let n 2 S
2 (the unit sphere in R

3), then n can be expressed as rotation of e3,

the third Cartesian basis vector, in the .x; y/� and in .x; z/�planes defined by the angles �1 and �2

and obtain

PROPOSITION 2.2 For

2.�1; �2/ D 1

�

sin.�2/ cos.�1/; � sin.�1/ cos.�2/; cos.�2/
�

(2.1) and (2.2) are not equivalent, but the implication (2.1))(2.2) is true.
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In Section 3 we will express the surface energy in terms of 3, hence it is important how this

formula relates to the other formulations. Since the gradients of a regular surface h are not infinite,

the outward normal (or the angles �j ), cannot be chosen arbitrarily. The next proposition states the

equivalence of (2.1) and (2.3) for such smooth surfaces.

PROPOSITION 2.3 Let h W ˝ ! R; .x; y/ 7! h.x; y/ be the smooth parameterization of a

connected surface M over a bounded domain ˝ � R
2. Furthermore, let n W R

2 ! S
2; .a; b/ 7!

.�a; �b; 1/=
p

1 C a2 C b2 be the outward unit normal function which maps onto the unit sphere

S
2. Then by defining 3 W R

2 ! R; 3 WD 1 ı n the symmetries (2.1) and (2.2) are equivalent.

Similar relations can be derived for other symmetry groups, here we focus on the symmetry

properties of diamond cubic semiconductor materials, such as silicon and germanium. In the

following the anisotropic surface energy for small surface gradients will be expressed as

.hx; hy/ D
1
X

kD0

k
X

j D0

gkj hj
xhk�j

y ; (2.4)

where for practical use the first sum will be truncated to be finite. In general the anisotropy

coefficients gkj are given constants, e.g. supplied by experimental data. The chemical potential

part that stems from the surface energy (1.4) can now be derived for the four energy types

SEk; k 2 fI; II; III; IV g. Under sufficient regularity assumptions the following result holds:

PROPOSITION 2.4 (SEIV ) The variational derivative of the surface free energy based on SEIV leads

to the four term expression

Esurf D E� C Ewet C Eanis C Ehot ; (2.5)

with

E� D �� ; (2.6)

Ewet D n3 @h ; (2.7)

Eanis D �2

�

hxhxx C hyhxy

N
@hx

 C hyhyy C hxhxy

N
@hy



�

� N @x@hx
 � N @y@hy

 ; (2.8)

Ehot D r2r�h.N / ; (2.9)

where

N D
q

1 C h2
x C h2

y ; rrh D .@hx
; @hy

/T and r�h D @hxx
C @hyy

; (2.10)

so that

r � rrh D @x@hx
C @y@hy

and r2r�h D @xx@hxx
C @xx@hyy

C @yy@hxx
C @yy@hyy

:
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Proof. With the above notation one can easily check the following equalities:

Esurf D ı

ıh

Z

.h; hx; hy ; hxx; hxy ; hyy/Ndxdy

D N @h � r � rrh.N / C r2r�h.N /

D N @h � @x.
hx

N
/ � @y.

hy

N
/ � @x.N @hx

/ � @y.N @hy
/ C Ehot

D N @h �
h2

x Ch2
y

N
@h � hxhxx Chyhxy

N
@hx

 � hyhyy Chxhxy

N
@hy



� 

�

@x.
hx

N
/ C @y.

hy

N
/

�

� @x.N @hx
/ � @y.N @hy

/ C Ehot

D .@h /n3 � � C Eanis C Ehot D Ewet C E� C Eanis C Ehot :

As SEIV is a generalization of the other energies we have established the results for SEI –SEIII .

3. Strong anisotropic surface energy

Based on the analysis of the surface energy in the previous section we derive a new model for

Stranski-Krastanov growth for surface energy type SEIV . It extends the model by Korzec and

Evans [24] in that it accounts for a randomly perturbed flux and, more importantly, allows for large

anisotropy coefficients. Here the surface energy transition between film and substrate is achieved by

defining the overall surface energy density as

 D 1

2
.f C  s/ C .f �  s/

1

�
arctan

�h

b

�

C 1

2
��2: (3.1)

Such boundary-layer formulas have been used before [28, 35] as special case of a class of models

with appropriate smooth transition functions of the surface energy of the substrate  s to the surface

energy of the film f . This transition takes place on a small length scale b. As had been argued

in [16], that near regions with sharp corners, where the curvature varies rapidly, the surface energy

also depends on the surface curvature, leading to an additional contribution of ��2=2, where the

constant � is a measure of the corner energy. The expressions f and  s have been defined as

constants in earlier works, while we let f depend on the orientation of the film. In this way,

preferred facets have a smaller value than the forbidden orientations. We let

f .hx; hy/ D 0

�

1 C W.hx ; hy/
�

: (3.2)

The anisotropy will be written as a general polynomial in the slopes of the surface

W.hx ; hy/ D
N
X

kD1

k
X

j D0

gkj hj
xhk�j

y ; (3.3)

see, e.g., [24]. The general form (3.3) allows for various anisotropies, however, we restrict the

polynomials in that f ! 1 for hx; hy ! ˙1. In this way large gradients, which are not allowed
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to be preferred in any case when using a small slope approximation, are punished. This behavior is

also visible in the Wulff shape for the surface energy density formula for a quadruple well that leads

to faceted pyramidal quantum dots, used in [24]. Setting N D 4; g20 D g02 D �2g; g40 D g04 D
g and gkj D 0 for all other index pairs .k; j /, then the formula reads

W.hx; hy/ D g
�

h4
x C h4

y � 2.h2
x C h2

y/
�

; g > 0 : (3.4)

The resulting surface energy density (3.2) for the film is in fact a quadruple-well that fulfills the

symmetry properties (2.3), so that (2.1) is fulfilled with the normals of the surface as argument. By

using an angle-slope relation similar as in Figure 1 (c) we obtain the equilibrium shapes by applying

the Wulff construction in Figure 2 (compare Figure 1 (a) and (b)). In (a) we see that the equilibrium

shapes have rounded corners at the regions of interest (left and right corners – the upper and lower

ones result from hx ! ˙1). In (b) the anisotropy strength is increased from g D 0:15 to g D 0:3

and the previously smoothed out corners are now real kinks in the equilibrium shape, as is the case

for the corresponding polar plots from Figure 1.

Furthermore, we include an atomic flux f a D .f1; f2; f3/ in the model. We note that the

natural fluctuations that occur during deposition can be described via a Gaussian noise that perturbs

a vertically impinging flux. Neglecting evaporation, the atoms are oriented downwards, f3 < 0, the

variations in x and y directions have the same probability and the flux at one space point at different

time points is not correlated. If we denote the strength of the flux f a by the prescribed flux rate F ,

one can, out of these properties, deduce the expression

f a D � w

jwjF with w D
�

r.0; �1/; r.0; �1/; r.1; �2/
�

; (3.5)

where r. Q�; Q�/ denotes a Gaussian random number with expectation Q� and standard deviation Q� . We

use the expectations 0; 0 and 1 and that standard deviations in the z direction �1 may be different

than for both horizontal directions, �2. The exact values do not have a significant influence on the

surface evolution in the simulations. For simplicity we use the abbreviations r1 D r.0; �1/; r2 D
r.0; �1/ and r3 D r.1; �2/. For the governing equations we obtain

ht D F

jwj .�r1hx � r2hy C r3/ C
p

1 C jrhj2Dr2
s � ; .x; y; t/ 2 Œ0; L�2 � Œ0; T � ;

� D Esed C E� C Eanis C Ewet C Ehot ;

Esed D 1

2

3
X

i;j D1

�ij �ij jzDh ;

E� D �� ;

Eanis D �2

�

hxhxx C hyhxy

N
@hx

 C hyhyy C hxhxy

N
@hy



�

� N @x@hx
 � N @y@hy

 ;

Ewet D .@h/=N ;

Ehot D Œ@xx@hxx
C @xx@hyy

C @yy@hxx
C @yy@hyy

�.N / ;

 D 1

2
.f .hx; hy/C s/C.f .hx; hy/� s/

1

�
arctan.

h

b
/ C 1

2
��2 ;

f D 0.1 C
N
X

kD2

k
X

j D0

gkj hj
xhk�j

y / ;
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(a) (b)

FIG. 2. Wulff shape constructions based on the anisotropy formula (3.4) in one dimension for two different anisotropy

strengths. The dashed lines denote the polar plot of the surface energy density. (a) Weak anisotropy, g < 0:25 leading to

rounded shapes near hx D 0; (b) strong anisotropy, g > 0:25 leading to corners in the equilibrium shapes.

where we note that the terms @hx
 and @hy

 appearing in the chemical potential (2.8) are given as

derivatives of the anisotropy function W, for now left in its general form (3.3).

rrh D
�

@hx

@hy

�

 D 0	.b; h/rrhW ; (3.6)

scaled by the transition function

	.b; h/ D 1

2
C 1

�
arctan.h=b/ : (3.7)

The derivative is

rrhW D

0

B

@

PN
kD2

Pk
j D1 gkj jh

j �1
x h

k�j
y

PN
kD2

Pk�1
j D0 gkj .k � j /h

j
xh

k�j �1
y

1

C

A
: (3.8)

Furthermore note, that the elastic strain energy density Esed for a dislocation free interface, the

stresses in film and substrate are, result from the lattice mismatch �. The problem can be described

in terms of linear elasticity, if the mismatch between the two materials is sufficiently small. In

combination with Hooke’s law and the fact that mechanical equilibrium is reached much faster than

thermodynamic equilibrium, the elastic subproblem is given by the Navier–Cauchy equations

.1 � 2�f=s/r2uf=s C r.r � uf=s/ D 0;

for the displacements uf=s in film and substrate, and the corresponding Poisson’s ratio �f=s.

Additionally one treats the boundary conditions � � n D 0 at z D h, us
i ! 0 for z far below

the substrate’s surface, u
f
i D us

i C�.x; y; 0/T and continuity of the normal component of the stress

at the substrate-film interface z D 0, � D .af � as/=as , af and as being the lattice mismatch and

the lattice spacings, respectively. Also periodicity in the horizontal directions can be assumed. It has

been discussed in [44] how to obtain reduced expressions for the strain energy density out of this

problem setting.
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3.1 Thin film model

A scaling under the thin-film assumption is [24, 44]

h D H0H D ˛LH; z D ˛LZ; .x; y/ D .LX; LY /;

t D �T; ui .x; y; z/ D LUi .X; Y; Z/; i D 1; 2; 3;

where ˛ D H0=L � 1. Furthermore the transition thickness is chosen orders of magnitude smaller,

it is scaled by b D L˛3 Nb, so that the leading order of the wetting term Ewet will be of the same order

as the surface energy term E� . To guarantee that the overall reduced model reflects the anisotropic

behavior anticipated, orientation dependent variations have to be reflected in the leading order term

of Eanis . To capture the anisotropy in a reduced formula, all corresponding surface energy terms

have to be incorporated in the evolution equation. Therefore these terms have to be of the same

order, which is only the case when

gkj D Gkj ˛�kC2; Gkj D O.1/ : (3.9)

In this way the slope polynomial becomes W D ˛2W with W defined by

W.HX ; HY / D
N
X

kD1

k
X

j D0

Gkj H
j

XH
k�j
Y : (3.10)

From the nondimensionalization of the chemical potential

� D 0

L
N�; N� D NEsed C NE� C NEanis C NEwet C NEhot ;

and from the natural scalings

�ij D E
base
sed N�ij ; � D 1

L
N�;  D 0 N; r2

s D 1

L2
Nr2

s ;

one can derive the characteristic length and time scales

L D 0

E
base
sed

and � D L4

D0

: (3.11)

Note, the nondimensionalization is achieved by using the expression E
base
sed

D �2Ef =.1 � �f / that

is derived for a biaxially strained film on an undeformed substrate covering a half-space, where Ef

is Young’s modulus and �f is Poisson’s ratio of the film material.

The evolution equation in nondimensional form becomes

HT D
q

1 C ˛2.H 2
X C H 2

Y /
1

˛

�

Nr2
s

� NEsed C NE� C NEwet C NEanis C NEhot

�

C Nf
�

;
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with the constituent potential terms

NEsed D 1

2

X

i;j

N�ij �ij ;

NE� D � N N� ;

NEwet D .f �  s/˛ Nb
0�.˛4 Nb2 C H 2/

p

1 C ˛2jrH j2
; (3.12)

NEanis D �2˛
.HX HXX C HXHXY /@HX

W C .HY HY Y C HY HXY /@HY
W

.1 C ˛2.H 2
X C H 2

Y //1=2

� 1

˛

�

1 C ˛2.H 2
X C H 2

Y /
�1=2 �

@X

�

	@HX
W
�

C @Y

�

	@HY
W
��

(3.13)

NEhot D 1

˛
r2Œ@HXX

C @HY Y
�
�1

2
N� N�2

�

1 C ˛2.H 2
X C H 2

Y /
�1=2

�

; (3.14)

where in the last expression N� D �=.0L2/ and in the anisotropy term Eanis the transition function

with rescaled arguments 	 D 	.L˛3 Nb; H0H/ has been used. The flux term is

Nf D QF �˛r1HX � ˛r2HY C r3

jwj (3.15)

with the dimensionless deposition number

QF D FL3

D0

: (3.16)

Here, the randomly perturbed vector is w D .r1; r2; r3/T , defined as in equation (3.5). Now, all

terms are expanded with respect to the small parameter ˛. In particular, the leading order terms of

the nondimensionalized chemical potential

N� D N�.0/ C ˛ N�.1/ C O.˛2/

and the flux
Nf D Nf .0/ C ˛ Nf .1/

will be determined. Derivative operators such as the nabla operator r D .@X ; @Y /T or the Laplacian

r2 are now defined in the .X; Y / variables. The surface Laplacian Nr2
s can be expanded to a standard

Laplacian plus higher order perturbations, so that to order ˛ the evolution equation can be written

as

HT D r2

�

1

˛
N�.0/ C N�.1/

�

C 1

˛
Nf .0/ C Nf .1/: (3.17)

The leading order terms of the chemical potential have already been already derived in [24, 44],

giving the terms Esed ; E� ; Ewet ; Eanis : The strain energy density expansion is

NEsed D NE.0/

sed
C ˛ NE.1/

sed
C O.˛2/ :

with
NE.0/

sed
D 1 and NE.1/

sed
D F

�1
�

� QekF ŒH �
�

: (3.18)
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and the material constant

Qe D 2�f .1 C �f /.1 � �s/

.1 � �f /�s
; (3.19)

which relates the elastic state of the substrate to the state of the film. Here �f;s is the shear modulus

and �f;s is Poisson’s ratio of the film and the substrate, respectively, and k D
q

k2
1 C k2

2 is the

length of the vector of two wave numbers .k1; k2/ that appear in the two dimensional Fourier

transform F and its inverse F
�1.

From the constant part of the surface energy and the wetting layer one obtains the expansions

NE� D NE.0/
� C ˛ NE.1/

� C O.˛2/ with NE.0/
� D 0 and NE.1/

� D �r2H : (3.20)

NEwet D NE.0/
wet C ˛ NE.1/

wet C O.˛2/ with NE.0/
wet D 0 and NE.1/

wet D � Q
H 2

; (3.21)

where Q D Nb. s � 0/=.0�/. Usually Q > 0, when a film covering the substrate is favorable.

The anisotropy results in

NEanis D NE.0/
anis C ˛ NE.1/

anis C O.˛2/ :

With the choice of the coefficients in W as in (3.9) we have

N D =0 D 1 C ˛2W.HX ; HY / C ˛2

2
N�.r2H/2 C O.˛3/ ;

and W is as in (3.10). Then the leading order expression is

NE.1/
anis D � 1

˛2
r � rrH W.HX ; HY / D �r � rrH W.HX ; HY / : (3.22)

For the higher order regularization term

NEhot D NE.0/

hot
C ˛ NE.1/

hot
C O.˛2/

we set N� D ˛2 Q� to guarantee that the leading order term corresponds to the leading orders of the

other surface energy terms. Then we obtain by expanding the terms in (3.14)

NEhot D ˛r2
�

@HXX
C @HY Y

�

�1

2
Q�r2H

�

1 C O.˛2/
�

�

D Q�˛r4H C O.˛3/ ;

and note the leading order terms

NE.0/

hot
D 0; NE.1/

hot
D Q�˛r4H : (3.23)

Finally the deposition terms can be read off from

Nf D QF �˛r1HX � ˛r2HY C r3

jwj D
QF r3

jwj � ˛
QF

jwj .r1HX C r2HY / ;

giving

Nf .0/ D
QF r3

jwj and Nf .1/ D �
QF

jwj .r1HX C r2HY / : (3.24)
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Recall that we choose the flux such that it models a perturbed beam of atoms which is oriented in

the .0; 0; �1/ direction.

Using r2�.0/ D 0 the evolution equation (3.17) becomes

HT D r2. NE.1/

sed
C NE.1/

� C NE.1/
wet C NE.1/

anis/ C Nf .0/=˛ C Nf .1/ : (3.25)

Insertion of the derived terms (3.18), (3.20)–(3.24) into (3.25) results in the final evolution equation

HT D r2
h

Q�r4H � r2H � Q=H 2 C F
�1
�

� QekF ŒH �
�

� r � rrH W.HX ; HY /
i

C
LF r3

jwj �
QF

jwj .r1HX C r2HY / ; (3.26)

where now

LF D FL4

D0H0

: (3.27)

This thin film model is stabilized by the linear sixth order term in comparison to the weak equation

(where Q� D 0). Furthermore, although the linear fourth order term has a stabilizing sign and may

suggest that the regularization is not necessary, this is not true in general, as the overall stability

depends on the polynomial W .

4. Impact of strong anisotropy and deposition flux on faceting patterns

We focus first on the linear stability analysis of flat films to infinitesimal perturbations of amplitude
Lı � 1 for which a normal mode ansatz

H D NH C Lıe�tCik1XCik2Y ; (4.1)

yields the dispersion relation for equation (3.26) for F D 0

� D �Q�k6 � k4 C Qek3 � 2 Q
NH 3

k2 � 2k2
�

G20k2
2 C G21k1k2 C G22k2

1

�

: (4.2)

For the case of materials with cubic symmetry the anisotropy constants in the X and Y directions

are equal and that the crystal is aligned with those axes, G20 D G22 D �2G and G21 D 0. With

this choice of coefficients the relation simplifies to

� D �Q�k6 C .4G � 1/k4 C Qek3 � 2 Q
NH 3

k2 : (4.3)

Here we see most clearly, that for a strong anisotropy coefficient G the fourth order term becomes

positive, leading to unstable behavior in case without the regularizing sixth order term. As noted

before in [24] increased anisotropy leads to maxima at higher wave numbers in the dispersion

relation and moreover above a critical value (here G D 1=4) it has a completely destabilizing effect.

As we observe now, the corner energy may drastically change the picture if allowed to increase.

Figure 3 shows dispersion relations for two different anisotropy strengths and varying values of the

regularization coefficient Q�. It is visible that as Q� ! 0 the dispersion curve tends to the weak case

Q� D 0. As G > 0:25 this limit yields an ill-posed problem.
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While a recent study linear stability of thin solid films with strongly anisotropic surface energy

and wetting interactions has been carried out by Khenner et al. [23], a more detailed discussion of

the effects of strong anisotropy and corner regularization can best be found in Liu and Metiu [29],

but also Cahn and Taylor [43]. Our results basically confirm their analysis and extension of Mullins’

equation by including anisotropy and corner energy. Moreover, it is found that the coarsening

mechanism will also be influenced by effects of anisotropy and corner energy. Next we will explore

the nonlinear effect further by employing our numerical methods that enable us to follow the patterns

over a long time range. We devote our attention to the influence of the coefficients G and Q� together

with deposition flux F .

4.1 Numerical simulations

Our numerical simulations for equation (3.26) are based on a pseudospectral method, where we

use a third order semi-implicit backward differentiation formula (SBDF) time-stepping procedure

and an exponential time-differencing (ETD) method with a fourth order Runge–Kutta (RK4) time-

integration. Both are described in detail in the Appendix A.2, while here we present and discuss

the results from our simulations. The linear stability analysis shows that a flat state above a certain

critical thickness is unstable to perturbations (by choosing NH small the unstable intervals seen in

Figure 3 shrink until they vanish at a critical height dependent on the other parameters). Hence

a random perturbation of a sufficiently large and constant initial condition shows the anticipated

instability. First we made simulations for the case without deposition (F D 0) to see and understand

the interplay between the anisotropy strength G and the regularization coefficient Q�.

No deposition. In Figure 4 we see a typical evolution that is very similar to the case Q� D 0; G <

1=4, discussed in [24], for which we use the same wetting and elastic parameters as in this reference,

Q D 0:05; Qe D 1:2778, respectively, calculated for the Ge/Si system, but a strong anisotropy G D
0:5 and Q� D 0:2. The flat film above the critical thickness develops a wrinkle pattern that evolves

into faceted pyramids that are separated by a wetting layer. After long time of evolution as seen in

Figure 5 that the pyramidal shape is very pronounced as faceting gets more preferred.

When G is chosen larger, the anisotropy dominates the evolution. We observe in Figure 6 that a

very strong anisotropy in fact stabilizes the faceted structures. Between T D 10 and T D 480 not
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FIG. 3. Dispersion relation for the weak evolution equation (� D 0) and for the strong equation (� > 0) for an anisotropy

value below the threshold G D 0:2 < Gc D 0:25 and above, G D 0:3 > Gc .
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T D 10 T D 50 T D 200 T D 500

FIG. 4. Evolution based on equation (3.26) with F D 0; G D 0:5; Q� D 0:2, starting with a flat surface above the critical

height that is perturbed by white noise with a small amplitude.

T D 1500

FIG. 5. Pyramidally shaped quantum dots after long-time evolution of equation (3.26) without deposition, F D 0, simulated

with the SBDF method

T D 10 T D 480

FIG. 6. Two time-points for the evolution with very strong anisotropy, G D 1

much difference can be seen in the shapes and coarsening seems to come to a halt. This is in sharp

contrast to the cases, where Q� D 0; G < 0:25, where coarsening always takes place.

To study the influence of the pair .G; Q�/, which varies for different materials, on stationary states,

we made computations on a small domain Œ0; 10�2 for different such pairs. Starting the simulations
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G D 0:2 G D 0:4 G D 0:6 G D 0:8

nu D 0:2

nu D 0:1

nu D 0:05

FIG. 7. Numerically calculated stationary states for different values of Q� (D nu) and G.

with a Gaussian hump h.x; y; 0/ D 2 exp.�..x � 5/=2/2 � ..y � 5/=2/2/ we continued the time-

stepping until a the relative change of two consecutive iterates falls below a small threshold. The

results are plotted in Figure 7. While weak anisotropy with large regularization leads to a nearly

isotropic dot, the other limit, strong anisotropy and small Q�, gives a completely faceted array of

islands. The initial hump is decomposed smaller, faceted structures. With the regularizing term

we indeed obtain, at least numerically, stabilized morphological structures, different from a single,

stable pyramid, that is obtained in the weakly anisotropic case.

4.1.1 Deposition flux F > 0.. When the flux of incoming atoms is nonzero, F > 0, we observe

coarsening as in Figure 8. Here we simulated coarsening process with three different values of F

and each column in the figure depicts the dimensionless time point, where the same amount of

material has been deposited onto an initially flat surface. In all cases we see the typical coarsening

events, smaller dots are eaten in expense of the bigger ones, however, with increased deposition

rate, the number of islands remains higher, while the sizes of these dots are smaller. The additional

income of atoms lets small pyramids survive longer. The high island density leads to more covering

of the wetting region. This can also be read off from the coarsening diagram in Figure 9.

The diagram shows that the decrease in fact happens polynomially fast. The amount of deposited

germanium atoms is plotted against the number of islands in a doubly logarithmic plot for three

different flux rates. It is very well visible that more dots survive after the initial instability when the

flux rate is higher.

5. Summary and discussion

In this study we have reviewed classes of surface energy formulations that have been proposed in

models for epitaxial growth and developed a systematic framework to derive the surface energy

for heteroepitaxial growth of a thin crystalline film. We presented a new model, where the surface

energies also take account of a large anisotropy as well as the effect of wetting energy, elastic

energy of the film and substrate and a randomly perturbed atomic deposition flux. We derived a
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FIG. 8. Evolution of the thin films for G D 0:4, Q� D 0:1 for three different flux rates. Each picture in a column corresponds

to the same amount of deposited film material and the flux is increased from one row to the next.
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FIG. 9. Coarsening diagrams for G D 0:4, Q� D 0:1 and different flux rates. The number of atoms deposited is plotted

against the normalized island density for three different fluxes.

corresponding thin film model and developed a numerical code that enables to capture the pattern

evolution of the coarsening quantum dots.

We have shown that our pseudospectral method is sufficiently fast to simulate arrays of quantum

dots for materials with strong anisotropy. The implicit-explicit schemes we tested had the drawback

that high order schemes have unfavorable time-step restrictions, making simulations very slow. We

found that the ETDRK4 method is well suited if one wants to obtain very accurate results on one

hand, while relaxing the time-step restrictions. Optimized codes in terms of time-stepping and GPU

utilization are the topic an ongoing study.

When the anisotropy parameters of the surface energy density are chosen very large, the dots are

stabilized against coarsening. The energy wells of the preferred facets are so large, that this prevents
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the surface from fast ripening. Then the wetting effect becomes negligible and the evolution reminds

more of perfectly faceted surfaces. We see from our numerical experiment on stationary states that

dependent on  the qualitative and quantitative differences of the morphology are immense, ranging

from isotropically shaped stationary states to small-scale faceted arrays. It hence is an important

task to use a realistic surface energy formula with properly determined anisotropy and regularization

coefficients.

The numerical results suggest also analytical studies on existence and investigations into the !-

limit set, both are not known. Such results may depend strongly on the anisotropy and regularization

parameters. The existence of stationary patterns of the nanostructures is in particular interesting for

applications. Analytical results would be useful to confirm the numerical findings.

We believe that our model represents a realistic setting that can be used for comparison to

experiments. Apart from investigating the impact of anisotropy on stability and coarsening behavior,

it will be necessary to obtain knowledge about the strength of the corner energy. For material

systems of large anisotropy (above the critical value of G), assuming a slow coarsening, a measure

of the pattern size that corresponds to the theoretical most preferred wavelength, would indirectly

imply or at least narrow the range for the strength of the corner energy.

Acknowledgment MK and BW would like to acknowledge the financial support by the DFG

Research Center MATHEON, project C10 and the photovoltaic competence center PVcomB.

A. Appendix

A.1 Proofs for Section 2.1

A.1.1 Proof of Lemma 2.1.

Proof. For the proof we need to show that the Householder matrices change the signs of the

components of n, and fulfill one of the 3Š D 6 possible permutations.

Sign switch, j 2 f1; 2; 3g: With the Kronecker delta ıij we get

H.aj /n D

0

@

1 � 2ı1j 0 0

0 1 � 2ı2j 0

0 0 1 � 2ı3j

1

A

0

@

n1

n2

n3

1

AD

0

@

.1 � 2ı1j /n1

.1 � 2ı2j /n2

.1 � 2ı3j /n3

1

A

which is just one sign swith at position j of the 3-vector. The equality .n/ D .H.aj /n/ allows

for repeated application to get several sign switches at once. Now we need to take care of the

permutations.

Permutations: j D 4:

H.a4/n D Id �

0

@

1 �1 0

�1 1 0

0 0 0

1

A

0

@

n1

n2

n3

1

AD

0

@

0 1 0

1 0 0

0 0 1

1

A

0

@

n1

n2

n3

1

AD

0

@

n2

n1

n3

1

A:

j D 5:

H.a5/n D Id �

0

@

1 0 �1

0 0 0

�1 0 1

1

A

0

@

n1

n2

n3

1

AD

0

@

0 0 1

0 1 0

1 0 0

1

A

0

@

n1

n2

n3

1

AD

0

@

n3

n2

n1

1

A:

The concatenation of these Householder matrices yields all possible permutations.
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A.1.2 Proof of Proposition 2.2.

Proof. Any n 2 S
2 has a polar representation, n D .n1; n2; n3/T D .sin.�2/ cos.�1/;

� sin.�1/ cos.�2/; cos.�2//T . Then a sign switch of one of the angles or the addition or subtraction

of �=2 can be represented by two Givens rotations R1. Q�1/R2. Q�2/, where

R1. Q�1/ D

0

@

c. Q�1/ s. Q�1/ 0

�s. Q�1/ c. Q�1/ 0

0 0 1

1

A and R2. Q�1/ D

0

@

c. Q�2/ 0 s. Q�2/

0 1 0

�s. Q�2/ 0 c. Q�2/

1

A (A.1)

and we abbreviate c D cos and s D sin. However, we have seen that the symmetry (2.1) can be

expressed in terms of Householder transformations. As det.H.aj // D �1 there cannot exist any

rotation giving the same result, since det.R1R2/ D det.R1/ det.R2/ D 1.

Although the equivalence does not hold, we have an implication. As two reflections H1; H2

fulfill det.H1H2/ D 1, the previous argument cannot be reversed.

For ı 2 f˙1g it is s.�/ D ıs.ı�/ and c.�/ D c.ı�/, hence we get for any ıj 2 f˙1g; j D 1; 2,

2.�1; �2/ D 1.n1; n2; n3/ D 1.ı2n1; ı1n2; n3/

D 1

�

ı2s.�2/c.�1/; �ı1s.�1/c.�2/; c.�2/
�

D 1

�

s.ı2�2/c.ı1�1/; �s.ı1�1/c.ı2�2/; c.ı2�2/
�

D 2.ı1�1; ı2�2/:

Now we prove the �=2 rotation invariance. We show only what happens when �2 ! �2 C �=2, the

other cases follow analogously. A �=2 increase of �2 means an additional Givens rotation for the

normal (n ! Qn D .n3; n2; n1/T ), we get

2.�1; �2/ D 1

 

0

@

n1

n2

n3

1

A

!

D 1

 

0

@

n3

n2

�n1

1

A

!

D 1

 

0

@

0 0 1

0 1 0

�1 0 0

1

A n

!

D 1

 

0

@

c.�=2/ 0 s.�=2/

0 1 0

�s.�=2/ 0 c.�=2/

1

A n

!

D 2.�1; �2 C �=2/:

A.1.3 Proof of Proposition 2.3.

Proof. Since the surface is smoothly parametrized, the third component of n is always bigger than or

equal to zero, n3.a; b/ > 0; 8.a;b/2˝ , and hence ı3 D C1 in (2.1). Furthermore the 3-permutation

� D .�.1/; �.2/; �.3// is only permitted if n�.3/ > 0. Let ı1; ı2 2 f˙1g be arbitrary.

“)” Let (2.1) hold and �.n/ D .n2; n1; n3/, then

3.hx; hy/ D 1 ı n.hx ; hy/ D 1.n1; n2; n3/

D
�

1.ı1n1; ı2n2; n3/ D 1 ı n.ı1hx ; ı2hy/ D 3.ı1hx; ı2hy/

1

�

�.n1; n2; n3/
�

D 1.n2; n1; n3/ D 3.hy ; hx/
:

“(” Let (2.2) hold, then as before 1.n1; n2; n3/ D 3.hx ; hy/ D 3.ı1hx; ı2hy/ D
1.ı1n1; ı2n2; n3/. There is nothing to show for the interchange of the first two normal components

since one can directly calculate 1.n1; n2; n3/ D 3.hy ; hx/ D 1.n2; n1; n3/.
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Let n3 permute with one of the other components (consider �.n/ D .n3; n2; n1/, the other

case can be treated analogously). Since n1 > 0, there exist .a; b/ 2 R
2 such that .n3; n2; n1/ D

.�a; �b; 1/=
p

1 C a2 C b2. Since .n1; n2; n3/ D .�hx ; �hy ; 1/=N , one obtains the identity

.1; �hy; �hx/=
q

1 C h2
x Ch2

y D .�a; �b; 1/=
p

1 C a2 C b2 ; (A.2)

which gives b D �hy=hx and a D 1=hx. Hence

1

�

�.n1; n2; n3/
�

D 1.n3; n2; n1/ D 3.a; b/ D 1.n1; n2; n3/

because of (A.2).

A.2 The numerical schemes

We solved evolution equation (3.26) for the case without deposition, F D 0, with a pseudospectral

method, by transforming the two spatial variables into Fourier space and using a time-stepping

scheme discussed by Ascher, Ruuth and Wetton [2]. For the case with deposition, F > 0, we used

an exponential time differencing (ETD) type method introduced by Cox and Matthews [11] and

improved by Kassam and Trefethen [22]. The first method is a third order semi-implicit backward

differentiation (SBDF) scheme. For an equation

ut D Lu C N.u/; (A.3)

with a linear part Lu and the nonlinearity N.u/, the update for the n C 1st time step is defined by

11

6
unC1 � 3un C 3

2
un�1 � 1

3
un�2 D dt

�

3N.un/ � 3N.un�1/ C N.un�2/ C LunC1
�

;

where one calculates the new iterate unC1 from the three previous steps uj ; j D n; n � 1; n � 2 and

dt is a fixed stepsize. It can be applied to our evolution equation, since in Fourier space, discretized,

with the DFT u D F .H/ it becomes just (A.3) with the diagonal linearity

L D diag
�˚

� Q�k6 � k4 C Nek3
	

.k1;k2/2K

�

; (A.4)

where K � R
2 is a set of suitable wavenumber pairs and k D

q

k2
1 C k2

2 . The nonlinear part reads

�

N.u/.k1; k2/
�

.k1;k2/2K
D
�

k2
�

ik1
O	1.k1; k2/ C ik2

O	2.k1; k2/ C Q O	3.k1; k2/
�

�

.k1;k2/2K

:

Here

O	j D F

h

G
�

ŒF �1Œi
�

kj u.k1; k2/
�

.k1;k2/2K
�
�3 � i

�

kj u.k1; k2/
�

.k1;k2/2K

�

i

; j D 1; 2

O	3 D F Œ
1

.F �1Œu�/2
�

for the special case of the quadruple-well anisotropy (3.4). It could be replaced by other anisotropic

expressions to model different materials. The shown figures were calculated with 1282 wave number

pairs and time-step size dt D 1e � 4.
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For the stationary islands discussed in the last Section (i.e. Figure 7) we evolved the surface

until the updated iterate, the shape hC, fulfills

khC � hk2=khk2 < dt�

for some small tolerance �.

For the case with deposition we used the same linearity (A.4) and added the flux terms to the

nonlinearity. We could have defined the deposition as part of the linearity, however, this would not

work well with the ETD method that we applied. This update writes

unC1 D eLdtun C ˛1N.un; tn/ C ˛2

�

N.an; tn C dt=2/ C N.bn; tn C dt=2/
�

C ˛3N.cn; tn C dt/

(A.5)

with the variable coefficients

an D eLdt=2un C L�1.eLdt=2 � I /N.un; tn/

bn D eLdt=2un C L�1.eLdt=2 � I /N.an; tn C dt=2/

cn D eLdt=2an C L�1.eLdt=2 � I /.2N.bn; tn C dt=2/ � N.un; tn//

and the cancellation error prone coefficients

˛1 D dt�2L�3
�

� 4 � Ldt C eLdt.4 � 3Ldt C .Ldt/2/
�

˛2 D 2dt�2L�3
�

2 C Ldt C eLdt .�2 C Ldt/
�

˛3 D dt�2L�3
�

� 4 � 3Ldt � .Ldt/2 C eLdt .4 � Ldt/
�

that we evaluate with help of a Cauchy integral as it has been proposed in [22]. If the linearity

would be time-dependent (by adding deposition), the coefficients would have to be calculated in

each time step, making the calculations costly. The method seems more efficient than high order

SBDF schemes. Additionally the ETD method has a better time-step restriction.
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