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The subject of the paper is the solvability theory of evolution free boundary problems of
magnetohydrodynamics for viscous incompressible liquid in multi-connected domains. The main
result is the local existence theorem for such problems under rather general assumptions on the
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1. Formulation of the problem

We consider the problem of motion of a viscous incompressible capillary electrically conducting
liquid with a free surface surrounded with a vacuum. The liquid is subject to the mass forces,
capillary force at the free boundary and forces generated by the magnetic field. This field is induced
by the electric current prescribed in a fixed domain separated from the domain occupied with the
liquid.

The governing equations are the Navier—Stokes equations with the additional terms containing
the magnetic field and the Maxwell equations in quasistationary approximation, i.e., without the
displacement current (see [1, 2]).

Evolution initial-boundary value problems of magnetohydrodynamics are intensively studied in
the mathematical literature (see, for instance, [3—17]). The major part of the papers deals with the
problems in fixed domains. It seems that the first rigorous proof of the solvability of such problems
is given in the paper [23], where a global existence of a weak solution of the Hopf’s type and a local
existence of a weak solution with the square integrable time derivative is established (moreover, it
was proved that in the two-dimensional case this solution is global). These results are analogous to
those of Kiselev-Ladyzhenskaya [18] and Ladyzhenskaya [19] for the Navier—Stokes equations. It
has to be emphasized that in some problems studied in [3] the magnetic and electric fields are sought
not only in the domain §2; filled with the liquid but also outside §2;, in a surrounding vacuum region
£2,, where the governing equations are of a completely different type in comparison with £2;.

The construction of the strong solution possessing square integrable second space derivatives
of the velocity of the liquid v(x, ) and of the magnetic field H is carried out in [4] in the case of
simply connected and in [17] for multi-connected £2;. In particular, it is shown that in both cases
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the whole problem can be written in the form of the equation
U/ +QU +8BU =F, Ul=o=Uyp

for U = (v, H), where Q is a linear positive self-adjoint operator in a Hilbert space and ® is a
nonlinear operator (like in the case of the Navier—Stokes equations). This provides the possibility of
studying the problems of magnetohydrodynamics with the methods of the semi-groups theory.

As for the free boundary problem, it has been first considered, to our knowledge, in the paper
[20] in the case of simply connected §2. In the present paper the last condition is removed, which has
required an essential change of the scheme of the analysis. This concerns the way of determination
of the field H, where the ideas of the paper [17] are used, whereas [20] was essentially based on
the paper [4]. Using the transformation of independent variables that now is connected with the
name of Hanzawa [21] (although it has been used earlier), we write the problem in a fixed domain
with a smooth boundary, and we eliminate the electric field E . The resulting nonlinear problem is
solved in a certain finite time interval, on the basis of the coercive estimates for the solutions of
the corresponding linearized problem, after which the construction of E is carried out (this step
is missing in [20]). It should be also emphasized that one of the boundary conditions, namely, the
jump condition on the free surface for the tangential part of E, differs from the standard condition
[E ;] = 0 on fixed surfaces, see (1.7), and this is essentially used in the construction of E. At this
point, a valuable help was delivered to the author by Dr. N. Filonov, who gave the proof of the
important Proposition 1. The author brings him his deep gratitude. The author is indebted also to
Prof. J. Rodrigues and to the referee for their important suggestions concerning the presentation of
the paper.

Now we pass to the precise formulation of our problem. We assume that the liquid fills a variable
connected compact domain §2;; C R whose boundary 7 is a free surface. The liquid is subject to
the external mass forces f (x, t), capillary forces on I’y and forces arising due to the presence of the
magnetic field. Moreover, in a fixed domain £23 an electric current of density j (x, ¢) is given. This
vector field should have zero normal component on 0£23:

jon=0 (1.1)

and vanish outside £23.

Both £21; and £23 are surrounded by a vacuum region £2,;. The domain 2 = 21, UR3U 2y
is bounded by a compact perfectly conducting surface S. If is assumed that the domains §2;; and
£23 are disjoint, as well as the surfaces S and Iy (see Fig. 1).

The case S = @, 2 = R3 is not excluded.
The state of the medium in 2 is characterized by the following functions:
v(x, 7): the velocity vector field of the liquid,
p(x,1): the pressure function,
H (x,t), x € §2: the magnetic intensity,
B (x, t): the magnetic induction,
E (x,t), x € §2: the electric intensity.
The vector fields H (x,t) and B (x, t) are connected by the relation

B(x,t) = uH(x,t)

where p is a piece-wise constant function of magnetic permeability taking positive values (1 in
8§21, o in §254, 03 in £23. The domain £23 may consist of several components with different values
of us.
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Fi1G. 1.

The motion of the liquid is governed by the Navier—Stokes equations

v,+(v-V)v—V-T(v,p)—V-TM(H)=f(x,t),

(1.2)
V-v(x,t) =0, x€8qy, t>0,

where
e T(v,p) =—pl + vS(v) is the viscous stress tensor,
e S(v) = Vv + (Vv)T is the doubled rate-of-strain tensor,
e Ty(H)=u(H ® H — %|H|21) is the magnetic stress tensor.
Electric and magnetic fields satisfy the system of the Maxwell equations with the omitted
displacement current

uH; =—rotE, V-H =0, xe€8;U£82 U3,
rotH = a(E + p(vx H)), x €82y, t>0,
rotH = oE + j(x,t), x € 823,

rotH=0, V-H=0, V-E =0, x¢€§2.

(1.3)

where « is a piece-wise constant function of conductivity, positive for x € £2; U §23 and equal
to zero in £2;. The last equation for E follows from the fact that the vacuum region £2,; can not
contain electric charges.

Let us turn to the boundary conditions on the exterior boundary S and on the interfaces I'; and
S3 separating media with different physical properties. On fixed surfaces S3 = €23 and S standard
boundary and jump conditions are prescribed (see [1, 2]):

H-n=0 E.=0, xe8, (1.4)
[uH -n] =0, [H]=0, [E;]=0, xE€Sj,
and on the free surface I'y we have
(T(v,p) + [TM(H)])n =onH, V,=v-n, (L5)
[wH -n] =0, [H] =0,
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where
e H is the doubled mean curvature of 17},
H,=H —n(n-H),E, =E —n(n- E) are tangential components of H and E,
[F]is a jump of the vector field F (x), x € §£21; U §25; U £23, on I and S3,
Vi, is the velocity of evolution of Iy in the direction of the exterior normal n.
It remains to write the jump condition for E ; on I'y. Usually the jump conditions are deduced
from the Maxwell equations, assuming that they are satisfied in the sense of the distribution theory.
For instance, from

/ B -Vop(x)dx =0
K

where ¢ € Cg°(K), K C 22, K U I'; # @ it follows that

—/V-B(pdx+/ [B -nlpdS =0,
K Nk

and this implies
V-B=0, xe€K\Iy, [B-n]=0, xel;NK. (1.6)

In the same way the jump condition [H ;]|, = 0 is deduced. Moreover, if the equation B; =
—rot E is satisfied in a generalized sense, i.e.,

tot+t
/ / (—B -9, + E -rotp)dxdt =0,
1o K

then on the manifold &, = {x € I';, t € (ty,to + 1)} C R* the relation
n[B]+ My xE]=0 (1.7)

holds, where ny, = (ny,nz,ns3) and n, are components of the normal vector n to &, in R*. In
particular, for fixed interfaces, when n; = 0, the condition (1.7) takes a standard form [n, x E] = 0,
ie,[E{] =0.

The following proposition is important for the construction of the solution of (1.2)—(1.5), (1.7).

PROPOSITION 1 If the relations (1.6) and (1.7) are satisfied, then
[n-rotEl=—[n-B;], x¢€ly. (1.8)

Proof. Suppose the surface &, C K x (to,to + 1) C R* is given by the equation £3 = z(£1, &>, 1),

where (£1, &>, £3) are Cartesian coordinates in R3. The functions given on &, can be considered as

functions of &1, &, t. The normal n to &; is parallel to the vector (77, z;), where n = (zg,, zg,, —1).
It is easily verified that

—[i-rotE] = [z¢g, (E23 — E3p) + 2, (E31 — E13) — (E12 — Ea1) ]
0

~ [, G Ea + E) + - (E1 = 25, Ea)]

&2
0 ad
=@["7XE]1+@[’7XE]2, (1.9)
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where E; ; is the partial derivative of E; with respect to §; and

oE
—=FE E 3, =1,2,
aSOt S0 + Zgg £ 3 o4

are derivatives calculated taking into account the dependence of E on &3. By (1.7), the equation
(1.9) is equivalent to

—[n-rotE] = —%Zt[Bl] - %ZI[BZ]
= —[ze, B1 + z¢B1,1 + zg,2¢ B13 + 25, 1 Bo + 2t Bap + 2,2 Bo 3. (1.10)
Now we differentiate [ - B] = 0 with respect to ¢, which leads to
[zg, ¢B1 +ze, Biy + zizg, Bis + 26,0 Bo + 26, Bay + 2¢,2: B2 3 — B3y — ;B3 3] = 0. (1.11)
When we add (1.11) to (1.10) and take the equation V - B = 0 into account, we obtain
—[-rotE] = [z¢g, Bit + zg, Boy — B3] = [1- By,
O

The proof of the Proposition is due to Dr. N. Filonov.
Let us go back to the formulation of the problem. At the initial moment # = 0 the configuration
of the liquid and the values of v(x, 0) and H (x, 0) are prescribed:

v(x,O):vo(x), xG.Qlo, H(X,O)ZH()(X), x6910U920UQ3, (112)
where £21¢, §25¢9 are given domains. Finally, we need some normalization conditions for E (x, ),
X € £2,. Indeed, together with E the vector field E + E’ also satisfies (1.3), (1.4), if E’ = 0 in

£21; U 223 and E’ is so called Dirichlet vector field in §25,, satisfying the conditions

rotE'(x,t) =0, V-E'(x,t)=0, x€2y, E,=0, x€i2y,
in other words, E'(x,t) = 2?2:1 Ci()yj(x,1),
V(e t) =0, x €2 200)|0g =8k 10| ep, =0,

where Sg, k = 1,..., by are all the connected components of d§2,;, except 'y and b, is the second
Betti number of §2,;. The normalization conditions can be taken in the form

/ E -ndS =0. (1.13)
Sk

Since the matrix with the elements f S; %dS ,i,j = 1,...,bs is not degenerate, the equations
(1.13) define C; (¢) (and the vector field E (x, ), x € §£25;) in a unique way.
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The aim of the paper is to prove local (in time) unique solvability of the problem (1.2)—(1.5),
(1.7), (1.12), (1.13) under the assumption that the initial data satisfy only natural compatibility
conditions

Veovo(x) =0, x €10, [(SWo)n):|=0, xc¢€lp,

V-Hy(x) =0, x€210U8220U 239, rotHop(x) =0, x € 2,

[Ho:] =0, [uHo-nol =0, x €I, (1.14)
[Hyo;] =0, [uHo-n]=0, xe€Ss,

Hy(x)-n=0, xe€8,

where n is the exterior normal to .
The precise formulation of the result is given in Theorem 2.1.

2. Transformation of the problem and formulation of the main result

It is customary to write free boundary problems as nonlinear problems in fixed domains. We
introduce now the corresponding coordinate transformation. We assume that I is located in the
neighborhood of a smooth connected surface § of arbitrary topological type, and can be regarded as
a normal perturbation of G:

No={x=y+N©po(y). ye8}

where py is a given small function and N (y) is the exterior normal to §. Moreover, we assume that
also fort > 0

I={x=y+N®py1), yes} @.1)

with an unknown function p(y, ¢) such that p(y,0) = po(y). We extend N (y) and p(y,t) from G
into £2 in such a way that the extension N* of N is a smooth non-zero regular function in £2 and
p* vanishes in £2; and near S U S3 and satisfies the inequalities (4.11) (hence p* is small for small
0). We denote by ¥ the domain bounded by G and we set 5, = 2 \ (¥; U 23), 23 = F; (for
uniformity of notation).

The transformation

x=e,(y.t) =y +N*"(»)p*(y.1), yeS (2.2)

maps F; on £2;;,i = 1,2, and leaves £23 invariant. We denote by £ = L£(y, p*) = (l;j)i,j=1,2, 3t the
Jacobi matrix of the transformation (2.2) and we set J = det &L, L=Jg! (L,] )i, j=1,2,3; £is

the co-factors matrix of £. We note that J(y, p*) = 1 and £ = £ =1 for y€eFzandy € S.
We set

u(y,t) =v(ep.t) q(y,t) = plep,1),

introduce new unknown vector fields

h=2SH(e, 1), e=8E(e,.t), (2.3)
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and make use of the formulas

£7(y.pN®)
€7 (. )N ()|
Voh(y.t)=£TVy H(ep.t) = J(3.p") Ve - H(X.0)|x=e, (5.0

Vee(y,t) =J(,p")Vx E(X,1)]x=e,(y.0)> (2.5)

n(e,) = 9, 2.4)

roty H(x,t) = ?roty(Ph(y,t), rotyE(x,t) = ?roty(Pe(y,t),

where x = e,(y,t) and
T

£
C.p") = L. (2.6)

Repeating the calculations from [20], Sec.1, we show that the transformation (2.2) converts (1.2)—
(1.5)1in
u— pH &N (y) - Vyu + (£ u - Vyu
—V-T(u,q) = V-Tu($h) = f(ep.1), .7
V- Lu=0, yes, t>0,

jhy — 18,80 — prL(LTIN*(y) - V)LL) = —rotPe, yeFIURUF,
®ProtPh = a(Pe + (£ 'uxh)), V-h=0, yed,

2.8)
rotPh =0, V-h=0, V-e=0, xe%,
roth =ae + j(y,t), V-h=0, yei7T;,
h-n=0, e, =0, yesS, 2.9)
[wh-nl=0, [h]=0, [e;]=0, yeSs,
h-N1=0, [h—%E"N 4. N)]=o,
[f ] [ ZrNe ) -, (2.10)
T(u,q)n(ey) + [T(3h)n(ey)] = oHn, p; = ’ﬁfy’g, yesq,

where
. :V: = JZ_ZVy is the transformed gradient Vx ("7 means transposition, L£T =& HT)y,
S(u) =Vu + (Vu)iis the transformed rate-of-strain tensor,
T(u,q) = —ql + vS(u) is the transformed stress tensor,
A.p) =N £0.pNY) =1-pRc() + p*Xa ()
and
e Hg, Kg are the doubled mean curvature and the Gaussian curvature of G, respectively.
Now we turn to the boundary condition (1.7). We compute the components n; and n, of the
normal to the surface {x € I}, € (0,7)} in R*. We consider the four-dimensional transformation
(x,1") = ep(y,t) defined by

x=ep(y,1), t'=t (2.11)
and we make use of the four-dimensional analog of (2.4), i.e.,
TN,
IE7 No|’

n(ep, t) =
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where No(y) = (N1(y), N2(y), N3(»), 0) is the normal to G x (0, T') and € is the co-factors matrix
corresponding to the transformation (2.11). The Jacobi matrix of this transformation is given by

i ha his NyO)pe;(y,t)
o= lr1 I s NFy()p;(y.t)
I31 I3 Iz Ny(pe;(y,t) |’

0 0 0 1
hence N . - =N
Lu Lz Lis —(;J%N)lp,(y,t)
S| L2t Lz L —(EN)20:(y,7)
L31 L3 L3z —(£N)3p:(y,1)
0 0 0 J
for y € G and

€Ny = (&N, - Ap,).

It follows that (1.7) is equivalent to
—Ap[uH] +[ETN x E] =0. x =e,(y.1) (2.12)

or, in view of the algebraic identity A f x Ag = AT (f x g) and the kinematic boundary condition,

to
—(u-LTN)[uh] + J[N x ®e] = 0. (2.13)

Finally, we have the initial and normalization conditions

u(y,0) = uo(y) =volepy). y eI, p(y.0)=po(y), yeS
ho(y.0) = ho(y) = £(y.pg)Hol(ep,), y €F1UFUT3, (2.14)
fske(y,t)-n(y)dS =0, k=1,...,h(%).

We find the solution of the problem (2.7)—(2.10), (2.13), (2.14) in anisotropic Sobolev—Slobodetskii
spaces. We recall the definition of the corresponding norms. Let 2 be a domain in R”. The
(isotropic) Sobolev space Wzl (£2) with [ > 0 is the space of functions u(x), x € £2, with the

norm
gy = 3 IDul = > [ 1D/utnPax

o<l|jl<l o<l|jl<l

if [ = [I], i.e. [ is an integral number, and

dxdy
Il gy = 10 gy + Z/[w'u(x) DInnP =
[71=11]

ifl =[I]+A, A € (0,1). As usual, D/ u denotes a (generalized) partial derivative where

aJI ajn

j = (1,Jj2,--.,Jn)and |j| = j1+...+ jn. The anisotropic space Wzl’l/z(QT), Or = 2x(0,T),
can be defined as ,
La((0.7). W3 (£2)) 0 W,"2((0. 7). L2(£2))



FREE BOUNDARY PROBLEMS OF MAGNETOHYDRODYNAMICS 577

and supplied with the norm

T
2 _ a2 3112
107200,y = [, IOyt + [ TGN, @.15)
There exist many other equivalent norms in Wzl A 2(QT); some of them will be used below. Sobolev
spaces of functions given on smooth surfaces, in particular, on § and on Gr = § x (0,7),

are introduced in a standard way, with the help of local maps and partition of unity. We also
find it convenient to introduce the spaces WZI’O(QT) = L,(0,T; Wzl(.Q)) and Wzo’l/z(QT) =
WZI / 2(0, T; L,(82)); the squares of norms in these spaces coincide, respectively, with the first and
the second integral in (2.15).

In order to obtain uniform estimates of the solutions of the above problem for small 7', we
introduce in WZI 4 2(QT) equivalent norms defined by

Wl oy = lulwiizg,):
if//2isanintegerorl/2 =[I/2]+ A, X € (1/2,1),

1
, 1 gt/

— 2 —_ull?
||”||V’I7/2,//2(QT) = ||”||W21.1/2(QT) + T2% | at[l/ﬂ“”Lz(QT)v

if A € (0,1/2),and
lliir20p = Wilgiirzg, * 20 SURIDIUCOIG 112 g
0<j<(-1)/2

Similar norms can be introduced on the manifold Gr = G x (0, T'). The advantages furnished by
working with H -norms are discussed in [22, Propositions 1.1 and 1.2].
We prove the following theorem.

THEOREM 1 Letug € W/t (%)), po € WiH2(8), ho € W/ HN(F). i =1,2,3, with 1/2 < I’ <
[ < 1, and let the compatibility conditions

Voug=0, ye7, S(uo)no(epy) — no(no - S(ug)ng) =0, y e,

V-hg=0, ye%, i=123,

rot®(y,po)ho =0, y e,

£y, p0)LTN (2.16)
[who- N1 =0, [hot] = (&’:’7]\”2 — N)lho-N]. yes,
[who -n] =0, [ho] =0, ye€Ss,
ho-nls =0,
and the smallness condition
ool 1+ar2(g) < € < 1 (2.17)
be satisfied. Assume also that
£ e w20, T; WAR?)) n WiH20(R? x (0, Tp)), o)

J e W0, T: W,k (35)) n W H10(35 % (0, Tv))
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and that the condition (1.1) holds. Then the problem (2.7)—(2.11) has a unique solution defined in a
certain (small) time interval (0, 7') with the following regularity properties:

ue W01 vg e w2l
g e W, P0Gy nwy (0. T: W, (9)),
pe Wy 0Gry nwy (0. w;%(9)).
i € Wzl+3/2’l/2+3/4(GT), r® < Wzl/“’l//“l(Q}),
e® e Wy Q) nwy (0. T: W} (8)).
where 0% = % x (0,T), G = §x (0,T), hV) = hlgi . e® = elgi i =1,2,3. The solution
satisfies the inequality
Ml grsarztioyy + IVallGLiz g1y + ldllyir1206,) + ||(J||W12/2(0’T;W21/2(9T))

+ ”'OHW2’+5/2‘°(GT) + ||P||V'[712/2(0’T;W25/2(9T)) + ot gi+3r2.0243/4(6,y)

3
+sup oG, Dllyre2gy + Y [B PN g2 24101
<1 2 i=1 :
3 (2.19)
oy _ OIS
+ 22 (e lyrriogr, + 1ePlgrr2 (o i @)

i=1
< C<||f||v7,12.1/2(Q1T) + ||RG||W21+1/2(9) + ||u0||W21+1(;]) + ||P0||W21+2(9)
3
+ 2 Whollyrrs1 gy + 1 1003, + 1 N7z (o 7oy @)).

i=1
For the problem (1.2)—(1.5), (1.7), (1.12), (1.13) this means that it is solvable in the time interval
(0, T) and
voe,€ W22+l'1+l/2(Q%"), Vpoep c WZI’I/Z(Q}),

poe, e W20Gr)y n w20, T; w,)3(9)),
p e W20 Gy n Wi (0, T; wy'(9)),
o1 € W21+3/2’l/2+3/4(GT), HO ce, e W21/+2’l//2+1(QiT),
EDoe, e W0 n w20, T; W (%)), i =1,2,3.
Once the solution with the above-mentioned properties is obtained, it can be shown that
h(i) c W21+2’l/2+1(Q§w),
e® e W) n W0, T; WA (), i =1,2,3,
provided hg € W/t (Qi0), i = 1,23, j € WT0(03) n Wl/2(0, T; W} (F3)) (see Sec. 4).

The restriction / > 1/2 comes from the estimates of nonlinear terms, and / < 1 can be relaxed
and replaced with [ < 5/2. For [ > 5/2 additional compatibility conditions are required.
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Theorem 1 is proved in the paper [20] under the following extra assumptions: f = 0, j = 0,
£23 =, £21 and 2 are simply connected. In this case the equationsrot H =0, V-H =0, x €
£25; imply

H® = vy, (2.20)
where ¢ is a solution of the Neumann problem
d ad
Vz(p(x,t)zo, X € §2;, uza—(pzulH(l)-n, x €Iy, a—¢=0, xesS 2.21)
n n

and H D (x, t) = H(x,t)|xeq; - Hence H® is completely determined by HD. n|xer,, which
permits to exclude E and to work only with the function H 1 satisfying the relations

wiH: + a YrotrotH — prrot(v x H) =0,

V-H(x,t) =0, x €8,

H,=®H®Y.n), xer,

H(x,0) = Ho(x), x € £,
where ® is a non-local linear operator defined through (2.21). In the general case (2.20) is not true,

nevertheless, one can separate the determination of u, p, h from that of e. Let ¢ € W21,o( QiT),
i =1,2,3 be atest vector field satisfying the conditions

V-Yy(y,t)=0, yeFuUHUZF3, roty(y,t) =0, ye, (2.22)
[M"/,N]:Ov [7/,1:]:0’ y€9,
(¢ -n] =0, [P ]=0, yeSs, (2.23)

¥v-n=0, yeS.
Since, in view of (2.13),
oTr

/ rot®e(y.1) - ¥ (y, 1)dy :/ (Pewotwﬁdy—k/#[,uh]'wﬁd&
2 2 [°]

it is easy to obtain from the equations (2.8) the integral identity
T T
/ / u(h, — ¢(h,p)) Y (y,t)dydt + / / o Y®rot®h - roty (y,t)dydt
0 2 0 F1UF3
T T
— U1 / (L7 'u x h) -roty(y,t)dydt + / dt / V(u,h,p) -vdS
0o JF 0 g

T
=/ / a iy, t)-roty(y, t)dydt, (2.24)
0o Jx

where : |
®(h.p) = —L,Lh + p; L(LT'N*(y)- V)~ Lh,
J J
7 (2.25)
u-£°N (k]
g
This identity, together with the initial and boundary conditions for /& and the equation rot®h = 0

in £2,, constitutes a nonlinear problem studied in Sec. 4.

V(u.h,p)=
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3. Linear problems

The proof of the solvability of the problem (2.7)—(2.10) is based on the analysis of the following
non-homogeneous linear problems:
1. Find (v, p, p) such that

v, — vV +m(y,0)p* +Vp = f(y.0),

V-v= f(y,t)=V-F(y,t), yed¥, t>0,

T(,p)N(y) +oN(y)Bp=d(y,1), (3.1
pr +V(x)-Vep—v-N(y) =g(y,1), ye€S,

v(y,0) =vo(y), ye€F1, p(y.0)=po(y), ye€S,

where Bp = —Agp — b(y)p, b = (R — 2K ), Ag is the Laplace—Beltrami operator on G,
2. Find the vector field H (y, t), satisfying the equations

rotH(y,t) =rotl(y,t), ye3, H(,0) =Hy(y), yeFHUFU7T;,
[wH-N]=0, [H]=a ye§ [uH-n]=0, [H:]=0, yE€Ss, (3.2)
H-n=0, yeS.

and the integral identity

T T
/ / WH -y (y,t)dydt + / / a trotH - roty (v, t)dydt
0 JR 0 JFUF;

T T (33)
— [ [ G rovindyars [ [ 160 wndva,
0 F1UF3 0 2
with the same kind of the test function ¥ (y, ¢) as in (2.24).
In addition, we need to consider the auxiliary problem
roth(y)=k(y), V-h=0, ye3FiUFHU 33,
h-N]= O, h =a, € gs
[uh - N] [h<] y 3.4)

[wh-n] =0, [h]=0, ye€Ss,
h-n(y)=0, yeS.

We start with the existence theorem for the problem (3.1).

THEOREM 2 Assume that [ € (1/2,1) and that the data of the problem (3.1) possess the
following regularity properties: f € Wzl’l/z(Q}), f € Wle’O(Q}), F € W20’1+I/Z(Q}),
d-N e WG n w0, 1 w,/%(9), d — Nd - N) € WitV Gr, ¢ €
W21+3/2’l/2+3/4(GT), Vo € WZH'I(?l), po € W21+2(9), where T < oo, Q} = % x(0,7),
Gr = § x (0,T). Moreover, let m € Wzl’l/z(QlT), V e W21+3/2(9) and let the compatibility

conditions
V-vo(x) = f(x,0), x e,

3.5
vIlgS(vo)N = Ilgd (x,0), x €9, 3-3)
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be satisfied, where
Ilgd =d —N(N -d)

is the tangential component of d on §. Then the problem (3.1) has a unique solution v, p, p such
that

ve WIHEIRPY Ly vy e w20y, p e WTYEYGr) n W0, T WA (9)).
pe WZHS/Z’O(GT) N Wzl/z(O, T W25/2(9)), oy € W21+3/2’l/2+3/4(GT),

and the solution satisfies the inequality

Wllgit2i24105) + IVPIGLI2 Q1) + 1Py it1206,) + IPIGL2 6 w1261

+ ||P||W21+5/2.0(GT) + ||P||VT,12/2(O’T;W25/2(9T)) + ot gr+32.0243/4 G

< e(If lguigry +1f lysrogry + IF lgorsiz gy, (3.6)

+ ||H9d||H1+1/2~’/2+1/4(GT) + ||d -N||W21+1/2.0(GT) + ||d -N||W12/2(0,T;W21/2(9))

+glzreazireasyy + ol g + loolyiag))-

This theorem is proved in [23] in the case m = 0. The term mp* in (3.1) is weak and can be
estimated by the interpolation inequality

Imp* g2 g1y < enllpllyitsrog,y + oy reanirntsg, ) + cmlplzGr:

with arbitrarily small 7, so the result of [23] extends to the case m # 0 in a standard way.

Before discussing the problems (3.2), (3.3) and (3.4), we recall some basic results concerning
the space L,(9) of square summable vector fields given in the domain ® C R3 with a smooth
connected boundary d9. We introduce the finite dimensional spaces of the Neumann and Dirichlet
vector fields

Up(D)={uecW)(®): V-u=0, rotu=0, u-nlpg =0}

Us(D) ={v e W21($) : V.v=0, rotv=0, wv]yp =0}
The dimensions of these spaces are equal to the first and the second Betti numbers of 9, b1(9) and
b (D), respectively. Following [24, 17], we recall the structure of the Neumann vector fields. In the

case b1 () > 0 there exist b1 (D) closed contours € € R3\  generating the first homology group
of R3\ 9, end every such contour generates the Neumann vector field of the form

u=uy+u

with u; given through the Biot-Savart law

X=)
ul(x)zfemxdly

and u, = Vo,

dp

Ap =0, inD, %\al):—ul-nbl).
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As for b>(9D), it is equal to the number of connected components I'; of the boundary of ® minus
one (denoted by (), and the basis in U (D) consists of vector fields vy (x) = V& (x), where @
is a solution of the Dirichlet problem

AP =0, Dlp, =8k, k.j=1,....029), P, =0.

We also recall the Weyl decomposition formula for the space L, (D) [25]:

[2(D) = G(D) ® U(D) ® J(D) = G(D) ® J(D) = G(D) ® J(D), 3.7)

where
GO ={uel(D): u=Vo, ¢eW) (D). ¢lpo =0}
UD)={uecl,(9): u=Vy, veW (D), Vy=0}

J®) ={uely(D): V-u=0 u-nlsp=0}

G(9) = G(D) ® U(D) is the space of the potential vector fields and J(D) = J (D) & U(D) is
the space of divergence free vector fields.

It is clear that U, (D) C J(9) and Uy (D) C U(D). o
Following [17], we introduce in the gomain 2 = 31 U3, U T3 the by (£2)-dimensional space
of the modified Neumann vector fields U, (£2) whose elements @y (y) satisfy the relations

rotug(x) =0, V- uz(x)=0, xe%, i=172,3
[ng - N1 =0, [ug]=0, xe68,

Wiy -n] =0, [U4]=0, xe€8s,

U (x)-n(x) =0, xeS.

It is clear that u, (x) = uy(x) + Vg, (x) 1 uy € Uy(£2),

Viau(x) =0, xe%, i=1273,
B

5] = —[ulug - N. o] =0. xe€ 6.
dw

[Ma—nq =—[ulug-n, [wg] =0, xe Ss,

F)

ﬂ—O, xesS

on

We denote by K/ (£2) the space of the vector fields ¥ € Wzl (%), i = 1,2, 3, satisfying (2.22),
(2.23). For [ < 1/2 the boundary conditions (2.23) are replaced with

[I‘LWN]:Ov yegv [M‘/’"]ZO, y€S3s 7/""=0s _)/ES, (38)

because ¥, has no sense in this case. By ®°(£2) we mean the closure of ¥/(£2) in L,(2). If ¢ €
®0(£2), then vy @ € J(F;),i = 1.3. and y @ = Vo(y) + Zbl (%2) cjw;i(y), where w; € Uy,(32)

i=1
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and g is the solution of the Neumann problem

il
V%(y) =0, yeF prebo =uyp@P.N, yes,
oN
9o 90 (3.9)
/"LZ_:I‘L37/,(3)'n7 y€337 — =0 yES
on on
Along with (3.7), we shall use in £2 the decomposition
Lru(£2) = Gu(2) & J u(82) = G (82) & Ju($2), (3.10)
where L, ;,(§2) is the space L, (§2) supplied with the scalar product
(w,v), = / wu - vdy, (3.11)
Q

J ,,(£2) is the space of divergence free vector fields satisfying the conditions (2.23), and G, (£2) =

G(2) = {u = Vo, ¢ € W, (£2)}. The projection operator Py, on J,(£2) is defined by P,u =
u — Vo, where ¢ € W,!(£2) is the solution of the problem

d
V2o =V-u(y). llsus, = 0. [ng]lg = luu- N,
(3.12)
dg dg
(1 llsy = b -mlss. 5 ls = w-nls.

or, in a weak form,

/ Ve - Vndy =/ pu-Vndy, Ve W) (),
2 2

3

and it is continuous not only in L3(£2), but also in U;_,

estimates of the solution of (3.12).

It is clear that X/ (£2), U, (£2) C J,(£2). We denote by Py f', f € J . (§2), the projection of f
on ¥% and by Py, f the projection of f on the subspace ?ﬂg_ C %% whose elements are orthogonal
to U (£2):

Wy (%:), which is a consequence of the

/ﬂmﬁ-'ﬁqdyzo, g=1,....b1(2). (3.13)

It is easily verified that for f € J,(£2)

fO0G)., yed., i=1,3,

Prf(y) = "%
Vo) + Y ajw;(y), ye,

Jj=1
where ¢(y) is a solution of the Neumann problem

Vip(y) =0, ye®,

2 =0, = = .
o s 3N fY9)-N, yeSuUS;
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(note that [u f] = 0 on G U S3), w;(y) are the Neumann vector fields in ¥, orthonormalized in
Lz(?z) and
ax = L FP) - we(dy. k=1.....bi1(%2).
2
As P, the operators Py, and Py, are continuous not only in L, (£2), but also in Ul.3=1 Wy (%:).
Now we turn to the problem (3.4).
THEOREM 3 Ifk € W)Y (%;),i = 1,2,3 and the conditions

V-k(y,t)=0, yeFHUFHUT;,
k-nls=0 [k-nls,=0 [k-N]=N-rota, ye§

hold, then the problem (3.4) has a unique solution b € Wzl+2(?,-), i = 1,2,3, orthogonal to the
space U:

/ ph -dadx =0, qg=1,...,b1(2). (3.14)
Q
The solution satisfies the inequality
3 3
D llyreay < e Qo Ml gy + lallyrarng)- (3.15)
i=1 i=1
Moreover, if
k=rotK, [K:]|ls; =0 K:|s=0 [K;]—0a|lg=0 (3.16)

and a is representable in the form a = [A]g with A®) =0, 4 = O near S and S35, AV - N|g =
A@. N|g = 0, then
I71L,2) < (1K Ly@) + 14llzy@)- (3.17)

Proof. Following [20], we construct the solution in the form

b1(£2)
h(y)=a*+Vy +E+ Y i, (3.18)
j=1

where a* is the extension of @ into £2 such that a*(y) = 0 for y € ¥, U 3 and
||a* ||W2]+2(3"1) < c||a||W21+3/2(9) (3.19)
The functions ¥ (x) and & we define as solutions to the problems

VZW - _V .a*(x), x €FUFH U T3, (3.20)
W1=0. Ilugyl=0, xe6 [¥1=0, [ugl=0, xeS Fr| =0

roté = k(x) —rota*(x), V-£=0, xeFUFH UT;,
[ -N]1=0, [§]=0 xe6 [uE-n]=0 [5]=0, xeS835 §&-nls=0.
(3.21)
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The solution of (3.21) has the form & (x) = &, + Vo with

1 k(y) —rota*(y)
1) = gror [ ZLIE Dy,

VZo(x) =0, xeHURUF [0]=0 [nd2]=—[ul§, N, xe6. 3.22)
[ =0, [nd]=—[uls,-n, xeS5 ¥=-£.n yes. '
The constants ¢; are found from the orthogonality conditions (3.14):
b1 (£2)
0= / w@* + Vi + &) -urdx + Z cj / W -urdx, (3.23)
2 e 2
k=1,...,b1(£).1tis clear that
by
Y leil < clla* + VY + & lLy0)-
i=1
which implies
3 b
DI Tl < cla” + Vi + €Ly (3.24)

i=1 j=1
Making use of well known estimates of the Newtonian potential and of solutions of the elliptic
boundary value problems (3.20) and (3.22), we obtain

3

*
DIV lprrag, < cla®lyirag,, < clalyrvaag,
i=1

3 3 3
D gy, <€ 3ok =rotall gy < QO Ikl it g, + lallyian ).

i=1 i=1 i=1

Together with (3.24), these inequalities yield (3.15) The uniqueness follows from the fact that the
solution of a homogeneous problem (3.4) belongs to U ,(£2).
Now we prove (3.17). We use the following representation formula for /:

b1(2)
h=A+V¥+X+ > .
j=1

where ¥ and X are solutions to the problems

V() = -V-AR), xeRURUR, I =0, 429)
W1=0. [ugwl=0, xeb [@¥]=0 [ug]=0. x€Ss

rotX =rotk—rotA(x), V-X=0, xefHuixhUZF;, X-n|ls=0,
WX -N]1=0, [X{]=0, xe69, [puX-n=0, [X]=0, xe¢€dSi.
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Since A|s =0, [nA - N]|g =0, [uA - n]|s, = 0, the problem (3.25) is solvable, and

IV, 2) < cllAllL,@)- (3.26)
As for X, we represent it as the sum

X(x)=X1(x) + VU(x),
_ 1 rot(K(y) — A(y))
Xi(x) = Erot/{2 T dy,
V2U(x) =0, xeFURBUF, [Ux]=0, ¥ =—[uX;-N, xe,
U] =0, i) =—[ulX:i-n xeS; ¥Els=-X-n

Since [N x (K —A)]ls = N x([K:]—a)|s = 0, we have X 1(x) = z-rot [o VA x (K —A)dy,
and by the Calderon—Zygmund theorem

X1l < c(IK L@ + 1A llLy@))- (3.27)

In addition,

VUl < (X1 Ny + 1K1l s,)) (3.28)
<cllX 1z, @)

because X | is divergence free.
Putting the inequalities (3.26)—(3.28) together, we obtain (3.17). The theorem is proved. O

COROLLARY 1 Assume that k, K, a, A in (3.4), (3.16) depend on ¢ € (0,T), k € Wi T1°(01),
k(1) € WA3), j = 1.2.3,a € W)T?°Gr), a(.t) € W/T2@Q) Vi < T, K. A €
W20’1+l/2(QT). Then

3
Z ”h(]) ”HIJFZJ/ZJH (Q#)
j=1

3
< c(Z(||k(‘)||W21+1.o(Q,-T) + tSl<lIT) ||k(l)(',t)||W21(z,») + ”K||v’!72"+’/2(gr)))

i=1

+ ||a||W21+3/2.0(GT) + tSng)_ ||a||W21+1/2(9)

+ |4 (3.29)

wot2r)

Estimate (3.29) follows from (3.15) and from (3.17) applied to the time derivative &; and to the
finite difference of the time derivative &, (x,t + s5) — h;(x,t) (cf. the analogous corollary in [20]).
Let us pass to the problem 2. (3.2), (3.3).

THEOREM 4 Assume that G, € W) T10(Qi)nW}/2(0, T: WA(®)),i = 1,3,G, € W01,
Ho e W (S, i =1,2,3,8 € WP YHQ2) 0(y,0)|yesus = 0, a € W20y,
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a1y € W)TY2©G), Vi € (0.T), a = [A], A, € W>'*(Qr) and that the compatibility
conditions

V-Ho(y) =0, yeFiUFK UZF;, rotHo(y)=rotl(y,0), ye3,
LLTN

|§TN|2 ‘p=po
[(WHo-n]l=0, [Ho]=0, yeSi3, Ho-n=0, yeS.

[WHo N1 =0, [Ho=( — N)[Ho - N, (3.30)

are satisfied. Then the problem 2. has a unique solution H € W2H'2’l/2+1 (Q’T), i=1,2,3,and

3
Z | H ||H/+2,l/2+l (QiT)

i=1
3

< e UGllyrrrosy + 1G G120 raws s + 2 1G2 N1z g1

=13 i=1
+ 1€l 12002y + sup G Dpi+1 (g, + 1o+ 02,

3
tlallyits20G,) +sup<rllaC. Oy g + 1AlGoitz g ) + 2 1Holly g+ ,)-

i=1
(3.31)
The solution is unique in the class of vector fields with the above-mentioned regularity properties
that are orthogonal to U ,,(£2):

/ wH -u,(y)dy =0, k=1,...,b1(R).
Q

Proof. Step 1. Reduction to the case £ = 0,a = 0.
We extend £ from %, in ¥ in such a way that the extension £* satisfies

* *
€ ||W2/+2(?F1U?F2) <c|e ||W2/+2(?F2)’
1€z, 0%) < cll€llz,3s)-

then
* *
€ ||W21+2.0(Q1TUQ2T) + 1€ ”W%IH/Z(QITUQ%) < C(||€||W21+2.0(Q2T) + ||€||W2,1+1/2(Q2T)). (3.32)

For y € ¥3 we set £(y, 1) = 0. We define h as a solution of the problem (3.4) with k = rot(£* +
A); it satisfies the inequality (3.29) with K = £* + A. For h = H — h; we obtain the problem 2.
with £ = 0,a = 0 and with G1, G, replacedby G| = G| —a " 'rothy, Gy, = G, — hy;.

Step 2. Proof of the solvability of the Problem 2 with £ = 0, a = 0.
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This problem can be written in the form

T T
/ /Mh,-z/f(y,z)dydz+/ / o troth -roty(y,t)dydt
0 JR 0 JFUF3

r T
:/0 /m%gl(y,t).ronﬁ(y,t)a’ydz+/0 /;zlu,gz(y,[).w(y’[)dydt’

V-h(y,t) =0, yeFhiUF UZF;3, roth(y,t)=0, ye3IF,
[wh-N]1=0, [h]=0, y€S,

[wh-nl =0, [h]=0, yeS3, h-n=0, yeS,
h(y,0) = Ho(y) —h1(y.0) = ho(y).

(3.33)

where
81 =PJG’1, g2=P9eP,LG/,

Pj is the orthogonal projection on the space J (31 U §3).
Now we decompose g, and A in the sum of linear combinations of the modified Neumann
vector fields u, (x) in §2 and of the vector fields that are orthogonal to U, (£2). We set

h=h+h", g,=g)+g5.
where

B b1(£2) , b1(£2)
W =Py h. gh=Py g, h(y.0)=Y xOu(). g,0.0= Y yOEQy).
j=1 j=1

In the same way we decompose the test fu})ction ¥ and the initial datum k¢. Then (3.33) is
decomposed in two problems. Setting ¥y = ¥ , we reduce (3.33) to

W, =g, h (3.0)=hy(y), (3.34)

and for &’ we obtain the problem

Jo Sonlty ¥ (v.0)dydt + [} [5, 5,0 roth’ - oty (y.0)dydt
= Jo Jsuz, §10n.0) - rot! (v.0)dydi + [§ [ ugh(v,0) - ¥/ (v.1)dydt,
V-h'(y,1) =0, yeFHiUH UTF;, roth'(y,t) =0, ye,
[uh’ -N]1=0, [h.]=0, yeS§,
[uh’-n] =0, [h,]=0, yeSs, h'-n=0, yeS,
h'(y,0) = ho(y).

(3.35)
Clearly, (3.34) is easily solved. We have

t

B (y,1) = h};(y)+/ g, (v, 0)dr, (3.36)
0
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which is equivalent to

xj(t):xj(0)+/0 yi(dr, j=1,....b)(2).

As for (3.35), this problem is studied in [17]. Indeed, let E be the extension operator defined on the
space J (%1 U F3) N W1 (%1 U F3) such that By € W,1(£2) and (Eyr); = O on S. Then

/ g -rotlﬁ’dy:/ Egl-rot'/f’dy=/ rotEgl-t#’dy=/ 1Py, " 'rotEg, - ¢'dy,
F1UF3 2 22 2

/ a troth’ -roty’(y,t)dy = / WPy, (na) 'rot(Eroth)-roty'dy.
F1UF3 2

Consequently (3.35) can be written as the Cauchy problem

B, +Qh =g)+g,=2g, hli=o=h. (3.37)
where
g5 = P;gluflrotEgl (3.38)
and
Qh' = Py, " 'rotEa " "roth’ (3.39)

The operator @ is a positive operator defined on the space of vector fields h € W2 (51 UF, U F3) U
K2(£2) (see details in [17]). Now we pass to the proof of (3.31). It is clear that

3
DB 221 iy

i=1

< cMYxlig it py + Xl + 17 g2 7)) (3.40)

3
< (M) Y (lhollyi+1 5, + 8271072 gr )-

i=1

because
) b1(2)
/ﬂ pho(y) T ()dy = /ﬂ phy(y) T (y)dy = ; 34(0) /ﬂ Wi (y) Ty (y)dy.
b1(2)
/ngz(y,t)-?ik(y)dy = ; Vq(t)/gﬁk(y)-?iq(y)dy,

Next, we estimate the functions g/, and g5 in (3.37) making use of the boundedness of the projection
operators Py, P, Py, Py :

1PrGllws sy <cllGillwray. i=13 r=1 r=I01+1,
3
1PuGhllLa@) < clGhllia@. D IPuGhllwis,) < cllGhllwis,:

i=1
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moreover we require that

IEflwsay <c Y Iflwrgy. r=11+1
i=1,3

This implies

3
> ||g3||v'f,12.1/2(QiT) sc Z (”g1”W21+l.0(QiT) + ||g1||VT,12/2(0’T:W21 (?,-)))

i=1 i=1,3 (341)
/ /
<c 2 (1G Igrr1ogry T 1G G120 rw 51y
i=1,3
> Ig5lgrirgny <€ X 1Gs gL g
i=1,3 i=1,3

Hence

3
> Igaligrizgg

i=1

3
< c(Z 1G5 prir2gr, + > (1G lyr+10g1, + 1G 31720 703 (m)). (3.42)

i=1 i=1,3

Now we make use of the following result.

THEOREM 5 For arbitrary g, € N3 WZI’I/Z(Q}) N L2(0,T; %IJ_(.Q)) and h € 3rﬂﬂ_“(.Q) the

i=1
problem (3.37) has a unique solution

B e} w200y 0 Ly (0, T ®1F2(2))

and

3 3
DI gariavirnoiy < € 3 (I8allgrirzgry + Mol ,)- (3.43)

i=1 i=1

This result is obtained in [17] for / = 0, ¥3 = @, and in [20] it is extended to / € (1/2, 1) in the
case of simply connected ¥ and §2, when U, (£2) = 0. The general case is considered in a similar
manner.

The inequality (3.31) for the solution of the Problem 2 is a consequence of (3.29), (3.40)—(3.43).
The uniqueness follows from the uniqueness of the solution of (3.37). Theorem 4 is proved. o
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4. Nonlinear problem
In this section we consider the main nonlinear problem
u, —pH(ELIIN*(») - Vu+ (L7 'u-Vyu
= ~ = L
Vo T(u.q) =V -Tu( h) = flep.0),

V-Su=0, yeF, t>0,
u-ETN
Ay, p)’

T T
/ / uhy —®@(h,p))-¥(y,t)dydt + / / a " ®rot®h - roty (y,t)dydt
0 JR 0 JF U

~ L
T(ll, Q)n(ep) + [TM(Zh)n] = UH(ep)nv pl = y € 9,

T T @
—,u1/ (L Yu x h)-roty(y,t)dydt +/ dt/!?(u,h,p)'wﬁdet ‘
0o JF 0 g

=‘/J:/ @™ j (3.1) - rory (y.1)dyd.

0o Jx

V-h(y,t) =0, yeFiUFK UF, rotPh(y,t)=0, ye,
LLTN
LT NP2
[wh-nl =0, [h]=0, yeS3;, h-n=0, yeS,

u(y.0) =uo(y). ye¥, h(y0) =ho(y), yeFHiuUFHUTs,

[h-N1=0. [h]=( ~N)[k-N]. yes.

where ¥ is an arbitrary test function satisfying the conditions (2.22), (2.23).

As in [20], we transform the problem (4.1) by separating the linear and nonlinear parts with
respect to u, g, p, h in all the equations and separating the tangential and normal components in the
equation T(u, q)n(e,) = o H(ep)n. We also make use of the formulas

1

d d
Flent) = £+ [ o flends = £+ 5 f |

1 d2
+/0 (=)o f(esp.t)ds = f(y.0) + P . ON*-V) f(y.1) (4.2)

1 d2
+AU—%mﬂmﬁﬁ

_ LT (v, p)N ()

_ ‘ - _ T ———————

H(ep) = =V - 0(X)|x=e, (1) L0V LT (v, p)N (»)]
LT (y.sp)N(y)

1 d? _T
=?€s(y)—%p—/0 (=92t OsPV T or N O

where Bp = —Agp — (%é —2Xg)p is the first variation of —(H (e,) — ®g(y)) with respect to p.
Without restriction of generality, we assume that f (x, ) is given in the whole space R>. Since
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V. -y =V¥,.-Y,=(NxW¥)-(N x ), the surface integral in (4.1) can be written in the form

/W-l/r(y,t)dS = —/ rot(N* xW¥*) - (y,t)dy +/ (N*xW¥*)-roty(y,t)dy,
g 1 E3T

where N* is the extension of N in §2 mentioned in Sec.2 and

u- L7 (y, p*)N*(y)
J(y, p*)

w* = [Wl(h — N*(N*-h)), yeF.

W21+3/2

Finally, we introduce the vector field V' € (9), satisfying the condition

|V — u0||W2/+1/2(9) <5k 1.
It is easily seen that (4.1) is equivalent to

u;(y.1) —vViu + Vg —p*((N*(») - V) f (y.1) = f(3.1) + L1 (u.q. p).
Veu=10unp), yesd,

gS(u)N(y) = 13(u, p),

—q+VvN-S@N +0Bp = l4(u, p) + I5(p) + o¥g(y),

pr + V() - Vep—u-N =ls(u,p),

T T
. -1 . _
/0 /Qlihz VY (y.t)dydt +/0 /?IU%Q roth -roty (y,t)dydt
r T
:/0 [ﬂ l7(u,h,P)-r0t1/f(y7t)dydt+/0 /lei(h’/o)'!h(y,t)dydt
r T
+/0 /Tl rot(N*™ x ¥ ).w(y,t)dydt—/o /;I(N X W*) . roty(y,t)dydt

T
+/ / ot_lj(y,t) -roty(y,t)dydt,
0o Ja

V-h(y,t) =0, yeFUFHUZF;,

roth = rotlg(h,p), y € 3,

[uh-N] =0, [h]=1o(h,p), y€SG,

[wh-n]=0, [h]=0, yeS3, h-n=0 yeSs,

u(y.0) =uo(y). ye€Fi. h(y.0)=ho(y). yeFUFHUZ,

4.3)

“4.4)

(4.5)
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where — —~

1i(u,q,p) = v(V2 = Vu + (V= V)q + p} (LTIN*(y) - Vu
i ~ L 1 d2

&L u-Vyu+V- TM(jh) + /0 (1 —s)ﬁf(exp,t)ds,

L(u,p)=(I —LT)V-u=V-Lup),

Lu,p)=U—-Lu, yeF,

I3(u, p) = Mg(ITgS(u)N)(y) — IS (w)n(e,(»)),

laGa . p) = VN - SN —n-S@m) — [nep) - Tog(Fhn),

1 d? or ,Sp)N
zs<p)=—o/ (=998 (v - SO
0

|7 (y.sp)N| (4.6)
£TN
ls(u,h,p)=(A(y p)+Vrp—N)'u+(V—u)'Vrp, y €6,

I7(h,p) = a Y(roth — Prot®h) + u (L 'u x h), ye3,
Is(h,p) = (I —®)h, ye5,

LETN
Io(h,p) = (= =N)h-N]l=[A(h,p)], yeS§,
9 (|£TN|2 )
: LETN* .
AD,p) = (=——— —NHRD-N*), ye%, i=12,
ST N2 ’

nf=f-nn-f), Ilgg=g—-N(g-N).
We note that the vector field

1~ ~ " 1 ~
D (h,p) = 7£,£h + P;KGQ(GQ_IN ) - V)7£h =h(y, 1) — L(H (x,1)|x=e,)

is divergence free and @ = 0 in ¥3 and in the neighborhood of S U S3.
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The solvability of the problem (4.5) can be proved by successive approximations, according to
a usual scheme

Uni1,0(0. ) = vVUmi1 + Vmir — o1 )V(N*(0) - V) £ (3.1)
= f.0) +Li@m, qm, pm),

Voeumir = b(m, pm), y € %1,

Mg S(Um+1)N(y) = L3(um, pm).

—qdm+1 + vN - S(um+1)N + U%Pm+1 = l4(llm, Pm) + lS(Pm) + 0%9()})7
Pm+1t V() - Vepmit —tmyr - N = le(Um, pm),

T T
| [ wtmirewonarar+ [* [ a oty rong vy
0 2 0 ?1U?3
T T
=/ /?l7(um,hm,pm)-rot'/f(y,t)dydt+/ Luq)(hm,pm)-x#(y,t)dydt
0 1 0

T T
+ / / rot(N*x W) -y (y, t)dydt —/ (N*x W) -roty(y,t)dydt
0 1 0 E71

“4.7)

T
+/ / oe_lj(y,t)-romll(y,t)dydt,
0o Jx

Vibhpy1(y,1) =0, yeFUFH UT;,

rothy,11 = rotlg(hy, pm), vy € %2,

(hms1- N1 =0, [hms1,) =1lo(hm, pm), Yy €9,

(hmt1-n] =0, [hmt1:]=0, y€S3 hpmy1-n=0, yeS,
Um+1(y,0) = uo(y), y €%, hmt1(3,0) =ho(y), yeF1UFRUTF3,

wherem =1, ..., and lI/fn is defined by (4.3) with u,,, h,,, py, instead of u, h, p.

The first approximation, (#1, g1, p1, h1), is defined for ¢t € (0, co) in the following way: g; = 0,
uy, p1 and h satisfy the initial conditions

ui1(y,0) =uo(y), ye€%, p1(».0)=po(y), ye§,
hi(y,0) =ho(y), yeF UFHUST3,

the equation V - h1(y,t) = 0, y € 31 U ¥, U 33 and the inequalities

||"1||H1+241/2+1(Qg>°) < C||"1||W21+241/2+1(Qé0) < C||"0||W21+1(g-1)7

o1 ||W2/+5/2!0(G00) + ||p1’,||W21+3/241/2+3/4(G00) < C||P0||W2/+2(g), 4.8)
3 3 |
Z ||h1||W21/+2.z//2+1(ng) Sc¢ Z ”hOHW{/“(Ti)

i=1 i=1

(concerning the construction of pj, see [23], Proposition 4.1). The proof of the solvability of (4.7)
is based on the estimates of non-linear terms and of the solutions of the linear Problems 1 and 2
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studied in Sec. 3. Let

Xm(T) = ||”m||H1+2.1/2+1(Q1T) + ”qu”ﬁ’]z’”z(Q'T) + ||61m||W2/+'/2s0(GT)
+ |Iqm“ﬁ\//2/2(0,T;W21/2(g))
+ ||Pm||W21+5/2.0(GT) + ||Pm||v'[712/2(0’T;W25/z(9)) + om,e lgi+3/2.0243/4 G4y
3
+ 0P llpm (- Dll g +2g) + YoMl g sarnsgry (49)
i=1
and
Zn(T) = 11 (wm, qm, hm. p)”ﬁ\//z,l/Z(QlT) + (12 (um, /Om)“W21+1~0(Q%W) + tSl<l]79" 112 (2, ;Om)“Wzl(';}'l)
Lot o)l g2 g1, + WGt pon) 117200241756y + st B po) 1720,
+ ||lS(pm)||W21+l/2'0(GT) + |Il4(um7h"’h Pm)||v"7/2/2(0’T;W21/2(9)) + ||15(pm)|Iﬁ712/2(0,T;W21/2(9))
+ |l (@m, pm)|| fri+3/2.00243/4(G1) + ||l7||W21'+1.o(Q1T) + ”17”W’2’/2(0,T;W2‘ E)
T sl g+ 24102y + Wo(rm, )l grir+3r2.00 1243146y + ||A(hm»Pm)||;‘72,1+1f/2(QT)

3
+ 212 G, pm)lr 21

i=1
+ ”W (umv hmv pm)”Wler]U(Q}") + ”!p (ums hms pm)”@/z’/Z(o’T;Wzl &)
The following proposition is an analog of Theorem 7 in [20].

PROPOSITION 2 Assume that (4.4) holds and

sup [l om (. )l 1+3/2(g) < 8 K1, (4.10)
t<T 2

moreover, let the extension p* of p (see (2.2)) possess the properties

ap*
=0,
oON s

p*(y,t) = 0, when y € 3 or y belongs to a neighborhood of S and

1™ Dllyr12(gy < cllplwg @), 7€ (0.1 +5/2],

i 4.11)
los C.Ollyr 12y < cllptllws @, € ©.0+3/2] 1€ (1/2.1).
Then
3 .
Zm <81 ZX,{,, (4.12)
j=1

where 6 is a small number dependenton § and 7.
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The non-linear terms (4.6) are identical or very similar to the nonlinear terms (1.10), (1.11) in
[20], and they are estimated in the same manner (cf. [20], Sec. 4, [22], Sec. 3). We point out that

the estimate of /9 are made here slightly better than in [20], because the norms in Wz_l/ 2(G) are
excluded from the final inequality (4.12).
Making use of the inequalities (3.6) and (3.31) applied to the problem (4.7), we obtain

3
Xmi1 < ci1éy ZX,Q + 2N,
j=1

where 61 < 1,

N = ||u0||W2/+](?F1) + ||p0||W21+2(g) + ||9‘E9||W2/+l/2(9)
3
+ D Mol gy + 1l 102y + 1 lgrr2g iy + 1 12,

i=1

and the constants ¢ and ¢, are independent of 7.
It follows that in the case of small §; the estimate

Xm+1 < 2C2N (4]3)

holds and, in addition,

t
lom G Dl gy1+3/2(g) < Nlooll 1372 +/ lom, . Dl 4372 d
e WTRE T fy TR W TG (4.14)

< ||po||W21+3/2(9) +26,NVT < €+2c,VTN =8.

Thus, we have proved that (4.13) is satisfied for all m > 1. The convergence of the sequences u,,,
qm> hm, pm follows from the estimates of the differences u,,4+1 — Um, gm+1 — Gm> hm+1 — hm,
Pm+1 — Pm (cf. [20], Theorem 8). Making m tend to infinity, we obtain the inequality

X(T) < 2¢2N (4.15)

for the solution of the problem (4.7) constructed above ( here X (7T') is defined by (4.9) with u, g, p, h
instead of uy,, G, Pms m).

The uniqueness of the solution obtained in this way follows from the same kind of estimates for
the differences u —u’, ¢ —q’, p — p’, h — h’ of two possible solutions of (4.5).

We conclude the proof of Theorem 1 by the construction of the vector field e assuming that the
solution of (4.1) is already obtained. For this we need to solve the problem

rot8(y) = uk(y), V-P'8=0, yeFiuURH UT,
[WPT'E-N]1=0, [8]=a(y), ye€S, (4.16)
[uP~le-n] =0, [8,]=0, yeSs;, 8 =0 yeSs.



FREE BOUNDARY PROBLEMS OF MAGNETOHYDRODYNAMICS 597

THEOREM 6 Assume that £ € Wzl/(?,-),i =1,2,3,a € Wzl/+1/2(9) and that the compatibility and
orthogonality conditions

V-£(y)=0, yeFiURUTF;,
[ué -N]=N -rota, y€$, [u&-n]=0 yeS;, E-n=0yeSs,

/;zu‘g'(y)"iq(y)dy = /;(N X o) -UgdS, Uy e Un(2), g=1,....b1(R) (4.18)

4.17)

are satisfied. Then the problem (AL 16) has a unique solution & € WZI /“(?r}), i = 1,2, 3 orthogonal
to the b, (§2)-dimensional space U ; of vector fields v(y) such that

rotv =0, V- 'v(y) =0,

. . (4.19)
[v:]=0, yeS3USG, [uP v -N]lg=0, [uP  v-n]ls; =0 v|s=0.
The solution satisfies the inequality
3 3
D Bl < (Do IElwg @ + lellyriirng) (4.20)
i=1 i=1
withr =1',r = 0.
Proof. We seek the solution in the form
by (£2)
E=a*+8 +VZ(y) + > djv;i(y), (4.21)
j=1
where a* is the extension of e, as in Theorem 3,
1 —rota™*(z))d
61(3) = o ror [ WO ol )z
4 2 ly —z|
V-PIVZ =-VP ! a*+81(y). yeFiUFKHUT,
() =-g(). yeS. [Z(]=0. yefUSs, 422)

[WP~IVZ-N] = —[u®P Y(a*+8;)-N], yes,
[WP~IVZ -n] = —[u® Y (a* +81)-n], yeSs.

It is easily seen that rot8; = ué& — rota™. The function g is defined as follows. Since (1§ —
rota*)-n|s = 0, we have [y ror€;-ndS = 0 for arbitrary ¥ C S, and this relation holds also for
Y =X, k=1,...,b1(82), where X are cuts of §2 that make £2 simply connected (this follows
from the orthogonality conditions (4.18), i.e., from

| wg = rota®) - ugay =0,
2

see [6]). Hence by the Stokes formula, the relation

/81'dl:0
Y
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holds for arbitrary closed contour y C S, which implies 8;|s = V.g(y) with a certain single-
valued g(y). Now the relations (4.16) are easily verified.

Making use of the estimates of the volume potential and of the solution of elliptic problem (4.22)
for Z, we estimate &; and VZ, after which the term Zfi(fz ) djv;(y) is estimated with the help of
the condition of orthogonality of 8 to v; (cf. the proof of (3.15)). In this way we obtain (4.20). The
uniqueness of the solution in the class indicated in the statement of the theorem is obvious. The
theorem is proved.

Now we pass to the construction of e. We want to solve the problem (4.16) with &€ = —h; + ¢

and @ = —N X ¥; in this case the condition [€;] = & on § is equivalent to
[N xE]l=Ww. (4.23)

Let us verify the assumptions (4.17), (4.18) of Theorem 6. From Proposition 1 it follows that
arbitrary b and & given on ¥; U 3, and 9, respectively, and such that

V-b=0, yefs;ju3,, [b-N]=0, yeq,
u-8TN

[V x 8 = —

6], y €6,
satisfy
1~ ~ 1
[NV -rot8] = —[N -(bs — ZJZTJZb — o (LN - V)ZJZb)].

For b = ph, this coincides with the main compatibility condition in (4.17). As for (4.18), this
condition can be verified by setting ¥ = %, in the integral identity in (4.1). Hence the problem
(4.16) with the above-mentioned data is solvable, and the solution satisfies the identity

T
/ / (=8 +a troth) -roty(y, t)dydt
0 IRV (4.24)

T T
:/ / l7(u,h,p).r0t1/r(y,t)dydt+/ / oflj(y,t)-romll(y,t)dydt.
0 3‘] 0 Z13

By Theorem 3, oty runs over the whole J (¥; U F3), when ¥ runs over ®!(£2). It follows that

—8W 4 o7 ®rot®h™ — (&7 u x KWy = vy D,

(4.25)
— 89 palrorh® —a 7l j(y,1) = VY®,
We set
Pe=8+VY, yefsjuUs;

and

b2(£2)

Ce=8+VYP+ 3" C;()Vai(y). e
Jj=1

where ¥ @ is a solution of the problem

V-PIvY® =0, ye%H, YPe=vYD v =v® v =0 (4.26)
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and w; are solutions of
V- 'Vo; =0, yeF, oj(les, =8k Jj.k=1....02%), ojlyes =0.
Then the equations
V-e@(.) =0, yehH [@e)llyes = yeSs.
[(Pe):]lyes; = 0. (Pe):]yes =0

are satisfied.
We pass to the estimates of e. By (4.20),

3 3
D l8lyrr0y < (D= Pllyrogr + 1l yrsinog,) @27

i=1 i=1

Applying the same inequality with [’ = 0 to & and to the finite difference A, (h)8 = 8(y,t + h) —
8'(y,1), we easily obtain

3 3
_X; €150 20 rw) @) < C(X; e = PlGorrngiy + ”‘Il”VTI’Z'/Z(O,T;Wz‘/z(g))‘ (4.28)
1= 1=
Hence

3
2_ (U8l y+100g + IBIGL /20 7 510
i=1 (4.29)
3
< (Z e = @lipg2 gy + ¥y o120,y + I U0t 2
=

Furthermore, from (4.25) it follows that

IVY Ol yrsr01) < 1l yars10001,

+ ||a1*1(Pr0t(Ph — Ml(cﬁilu X h)”Wler]’O(Q%w)’

||Vy(1)||v7,12//2(0’T;W21 ) S ||8||W12’/2(0,T;W21 1) @30
+ e Crot®h — pa (87w X Wi 2y 11 51 '
||VY(3)||W21/+1.0(Q1T) < ||8||W21/+1.0(Q3T) + lla”! (roth — J')||W21'+1.0(Q1T),
||VY(3)||VT,12//2(O,T;W21 (33)) < “8”1/?/’2'/2(0,T;W21 (33)) + ||oF1(roth - J')||I,'f,12'/2(0,T;W21 33)"
In addition, since ¥ @ is a solution of (4.26), we have

IV Plyy10002) +IVY Py rwsan

<cVY Pllgaiogry + 1YY Cligrreg rap g

+ ||VY(3)”W2”+‘~°(Q3T) + ”VY(3)||VT/’2’/2(0,T;W2' @) @3
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The functions C;(¢) are found from the condition (1.13), since the matrix with the elements
/. Sy ®~!'Vw; - ndS is non-degenerate. Indeed, otherwise there would exist the constants a; such
that

/ P IVA(y)-ndS =0, k=1,...,b,(R)
Sk

where A(y) = 252:({2 )a i w;. This would imply

0=/ AV -®~ 'V Ady =/ (P’IVA(y)-nA(y)dS—/ P IVA(y)-VA(y)dy
2 %> EZ)

=—| ®'VA(y)-VA(y)dy,
EZ)

because Als, = const,k =0,...,b2(32). Hence VA = 0 and a; = 0.
By (1.13),

O:/ e-ndS:/ Pe-ndS = | (8+VY?P).nds
Sk Sk Sk

by (2)
+ Cj(t)/ Vow;-ndS, (4.32)
j=1 Sk
from which it follows that
b2 b2
” Z ¢~ Vo, ||W2,,+1,0(Q2T) +| Z C;0 ' w, ||v?,,2//z(0’T;W21 &) S C(||VY(2)||W21/+1.0(Q2T)
j=1 j=1
@) ., , ~
+ ||VY ”W/2 /Z(O,T;Wzl (32)) + ||8||W21 +l'0(Q%~) + ||8||W12 /Z(O,T;Wzl(fz)))'
(4.33)
Finally,
3 3
2 (lell 1001y + el o @) <€ Zl (Il zr+1.01
1= 1=
. @) , ) @y,
b2 b2
-1V, S T
+ 21 Ci® Vsl i1 gz + | 21 Ci® i 120,73 527))-
Jj= Jj=

Inequality (2.19) for e is a consequence of (4.27)—(4.34), (4.12), (4.13). This completes the proof
of Theorem 1. O

The solution of the problem (1.2)—(1.5), (1.7), (1.12), (1.13) is defined by

v(x,1) = u(e;l(x,t),t), p(x,t) = q(e;l(x,t),t),
L. _£O.pY)

H(x.1) = J(}’vp*)h(x’t)|y=e;1(x,t)’ E(x.0 = J(y,p*)

0 0ly—ez1 ey
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the free surface I'; is given by (2.1).

In conclusion we show that h € W21+2’l/2+1(QiT), provided kg € WZIH(?,-),Z' =1,2,3,j €
WZIH’O(Q%) N Wzl/z(O, T; W,}(%3)) The condition /” < [ was used for obtaining the estimate (4.17)
with a small §; that is a linear combination of § and Tiy, yi > 0; in particular, y may be equal to
(I —1’)/2. Analysis of such estimates (see [20], Sec 4. ) shows that the factor =172 appears in
the estimates of the norms ||(/ — ®)hA ||W21/+2,1//2+1 (i) they contain the expression

3
c(lpllysrotrro,, + 1015120 raws@y) Zl sup 1l /240, )
p

< cTU0/2 gy SO 1=+l
t<¥ llo( )||W23/2+1(9)(||P||W21+5/2,0(GT)
3
L h 4
+“p”wgz(o,r;W;ﬂ(GT»)l;f‘jl; 1l 372005,y (4:39)

with 3/2 + 1 < 2 +I'. In the estimate of [[(/ — ®)h ||, r+2.0/2+41
2
replaced by

) this expression would be

3
clliellysrztiogy + 1Pl 6 rws2e)) Zl P Wl /2405,
iz

3
< C(||p||W25/2+1.0(GT) + ||p||W’2/2(0,T;W25/2(9))) X; tSl<l¥ ”h”W22+V‘1+N/2(QiT))’ (4.36)
im

that is finite in view of (2.19). This yields the missing bound for the norm

3
DN LI ETRESE IS

i=1

It is easily seen that also
e € W, M0 N, 0.T: W) ().
which follows from the estimates (4.27)—(4.34) with [’ replaced by /.
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