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We consider a two-phase problem for two incompressible, viscous and immiscible fluids which are
separated by a sharp interface. The problem arises as a sharp interface limit of a diffuse interface
model. We present results on local existence of strong solutions and on the long-time behavior of
solutions which start close to an equilibrium. To be precise, we show that as time tends to infinity,
the velocity field converges to zero and the interface converges to a sphere at an exponential rate.
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1. Introduction

We study the flow of two incompressible, viscous and immiscible fluids inside a bounded domain
2 C R*, n = 2,3. The fluids fill domains 27 (¢) and £27(¢), t > 0, respectively, with a common
interface I (¢) between both fluids. The flow is described in terms of the velocity v: (0, 00) X £2 —
R” and the pressure p: (0, 0c0) x £2 — R in both fluids in Eulerian coordinates. We assume the fluids
to be of Newtonian type, i.e., the stress tensors of the fluids are of the form 7' (v, p) = 2u*Dv—pI
in 2% (¢) with constant viscosities u* > 0 and 2Dv = Vv + Vv . Moreover, we consider the
case with surface tension at the interface. In this model the densities of the fluids are assumed to be
the same and for simplicity set to one. For the evolution of the phases we take diffusional effects
into account and consider a contribution to the flux that is proportional to the negative gradient of
the chemical potential p. Precise assumptions are made below. This is motivated e.g. from studies
of spinodal decomposition in certain polymer mixtures, cf. [28].

To formulate our model we introduce some notation first. Denote by v () the unit normal of
I (¢) that points outside £27(¢) and by V and H the normal velocity and scalar mean curvature of
I"(t) with respect to v (). By [-] we denote the jump of a quantity across the interface in direction
of vr@,ie.,

A1) = fim (£G4 hvra) = f(x = hvr) for x € 1),
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Then our model is described by the following system

v +v-Vo—divT(v,p) =0 in 2%(7) forr > 0, (1.1)
divv =0 in 2%(7) forr > 0, (1.2)

mAw =0 in 2%(t) forr > 0, (1.3)

—vrqe) - [T, p)] =cHvrq on I'(¢t) fort > 0, (1.4)
V—vrw vlre = —mlvre -Vu] onI'(t) fort > 0, (1.5)

ulre = oH on I'(r) fort > 0, (1.6)

together with the initial and boundary conditions

vjge =0 onds2 fort > 0, (1.7)

ve -mVulgo =0 ondfort >0, (1.8)
Q10 = 2f, (1.9)

V|f=0 = Vo in £2, (1.10)

where vg, .QJ are given initial data satisfying 3.(23' N 382 = @ and where o,m > 0 are a surface
tension and a mobility constant, respectively. Here and in the following it is assumed that v and p
do not jump across I'(¢), i.e.,

[vl =0ul =0 onI'(¢)fort > 0.

Equations (1.1)—(1.2) describe the conservation of linear momentum and mass in both fluids and
(1.4) is the balance of forces at the boundary. The equations for v are complemented by the non-
slip condition (1.7) at the boundary of §2. The conditions (1.3), (1.8) describe together with (1.5) a
continuity equation for the masses of the phases, and (1.6) relates the chemical potential u to the
L,-gradient of the surface area, which is given by the mean curvature of the interface.

For m = 0 the velocity field v is independent of w. In this case, (1.5) describes the usual
kinematic condition that the interface is transported by the flow of the surrounding fluids and (1.1)-
(1.10) reduces to the classical model of a two-phase Navier—Stokes flow as for example studied by
Denisova and Solonnikov [10] and K6hne et al. [23], where short time existence of strong solutions
is shown. On the other hand, if m > 0, the equations (1.3), (1.6), (1.8) with v = 0 define the
Mullins—Sekerka flow of a family of interfaces. This evolution describes the gradient flow for the
surface area functional with respect to the H ~!(£2) inner product. Therefore we will also call (1.1)-
(1.10) the Navier—Stokes/Mullins—Sekerka system.

The motivation to consider (1.1)—(1.10) with m > 0 is twofold: First of all, the modified system
gives a regularization of the classical model m = 0 since the transport equation for the evolution of
the interface is replaced by a third order parabolic evolution equation (cf. also the effect of m > 0
in (1.13) below). Secondly, (1.1)—(1.10) appears as sharp interface limit of the following diffuse
interface model, introduced by Hohenberg and Halperin [20] and rigorously derived by Gurtin et
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al. [19]:
;v +v-Vv—divQu(c)Dv) + Vp = —ediv(Ve ® V) in 22 x (0, 00), (1.11)
divv =0 in £2 x (0, 0c0), (1.12)
dic+v-Ve=mAu in £2 x (0, 00), (1.13)
w=-¢e'f(c)—eAc in £2 x (0, 00), (1.14)
v|se =0 on 982 x (0, 00), (1.15)
Onclae = Onitlae =0 on 82 x (0, 00), (1.16)
(v, ¢)|s=0 = (vg, co) in £2. (1.17)

Here c is the concentration of one of the fluids, where we note that a partial mixing of both fluids
is assumed in the model, and f is a suitable “double-well potential”, e.g., f(c) = ¢2(1 — ¢)2.
Moreover, ¢ > 0 is a small parameter related to the interface thickness, u is the so-called chemical
potential and m > 0 is the mobility. We refer to [2, 8] for some analytic results for this model
and to [18, 22] for results for a non-Newtonian variant of this model. For some results on the sharp
interface limit of (1.11)—(1.17) we refer to A. and Roger [5, Appendix] and A., Garcke, and Griin [4].

The purpose of this paper is to prove existence of strong solutions of (1.1)—(1.10) locally in time.
Moreover, we will prove stability of spheres, which are equilibria for the systems. (More precisely,
we show dynamic stability of the solutions v = 0, 1, p = const., and 27 (1) = Bg(x) C §2 for all
t > 0.) Existence of weak solutions for large times and general initial data was shown in [5].

In the following we will assume that 2 C R”,n = 2, 3, is a bounded domain with C 4-boundary
and that u*, m, o > 0 are constants. One essential feature of (1.1)—(1.10) is the coupling of lower
order between the velocity field v and the chemical potential i in equation (1.5). Indeed, we will
obtain functions in the regularity classes i € L,(J; sz(.Q\F (+))) and

ve HN(J: Ly(2)") N L2(J; HZZ(Q\F(-))”).

Taking the trace to I'(¢) yields Vu|r € Ly(J; Wpl_l/ P(Ir'(-))™) and by complex interpolation and
Sobolev embeddings we obtain

ve H}(J: La(2)") 0 Lo HA(@\TO)") = Lo (1 W (21 0)"),
where g > p and p < 2(n 4 2)/n. This shows that the trace
vlr € Lq(J; W;—l/l’(r(-))”)

possesses more regularity with respect to time compared to Vu|r. We make essential use of
this fact by applying the following strategy for the proof of local-in-time well-posedness. After
parameterizing the free interface I"(¢) via the Hanzawa transform by a height function /, the basic
idea is to reduce (1.1)—(1.10) to a single equation for 4. To this end we first assume that the interface,
hence 4, is given. Then we solve the (transformed) two-phase Navier—Stokes equations to obtain a
solution operator v = Sys (/). Doing the same for the (transformed) two-phase Mullins—Sekerka
equations, this yields a solution operator & = Spss(h). Finally, we consider the transformed
evolution equation (1.5) for the height function 4 and replace v and u by Sys(h) and Sars(h),
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respectively, to obtain a single equation for /. This quasilinear parabolic equation in turn can be
solved by parabolic theory. The only point one has to take care of is that the solution operator Sys
is nonlocal in time and space. Therefore one has to deal with a parabolic equation with local leading
part and lower order perturbations which are nonlocal (in time and space). Having solved the single
equation for & one readily computes the velocity, the pressure and the chemical potential by the
solution operators obtained before.

Let us comment on the choice of an L2-setting for the Navier-Stokes part, while the equations
for the height function /. and the chemical potential y are treated by an L?-theory, p > 2. One
advantage is that the optimal regularity result for the two-phase Navier—Stokes equations with a
given interface (see Theorem A.1) is more or less easy to prove since it relies solely on resolvent
estimates in L2. Another benefit is the reduction of the regularity of the initial velocity and the
compatibility conditions at # = 0. For instance, if p = 2, then there is no compatibility condition
for the initial value vy coming from the jump of the stress tensor, that is equation (1.4).

The structure of the paper is as follows: First we introduce some basic notation and auxiliary
results in Section 2. Then we will prove that for a given sufficiently smooth interface I'(¢) the
Navier—Stokes part of the system, i.e., (1.1)—(1.2), (1.4), (1.7), (1.10) possesses for sufficiently small
times a unique strong solution v in L2-Sobolev spaces, which are second order in space and first
order in time. This result is proved using a coordinate transformation to the initial domains .Qgt
which goes back to Hanzawa and applying the contraction mapping principle. A key tool in our
analysis will be a maximal L2-regularity result for the linearized Stokes system, which is proved
in the appendix. Afterwards in Section 4 we prove that the full system possesses a strong solution
locally in time for sufficiently smooth initial data by reducing the whole system to a single equation
for the height function % (see above). Then in Section 5 we prove stability of the stationary solutions
that are given by v = 0, u, p = const. and I'(¢) = 9B, (xp) C §2 and we show that (v(z), I'(¢))
converges to an equilibrium as ¢t — oo at an exponential rate.

2. Preliminaries
2.1  Notation and Function Spaces

If X is a Banach space, r > 0, x € X, then Bx(x,r) denotes the (open) ball in X around x
with radius r. We will often write simply B(x, r) instead of By (x,r) if X is well known from the
context.

The usual LP-Sobolev spaces are denoted by ka (£2) for k € Ng,1 < p < oo, and
H*(Q) = W2k (£2). Moreover Wp]fo([?) and Hé‘ (£2) denote the closure of C5°(£2) in ka (£2),
H¥(£2), respectively. The vector-valued variants are denoted by ka (£2;: X) and H¥(2; X), where
X is a Banach space. The usual Besov spaces are denoted by B, ,(R"), s € R, 1 < p.q < oo,
cf., e.g., [7, 36]. If 2 C R” is a domain, B;’q (£2) is defined by restriction of the elements of
B ,(R") to §2, equipped with the quotient norm. We refer to [7, 36] for the standard results on
interpolation of Besov spaces and Sobolev embeddings. We only note that B, ,(£2) and ka (£2)
are retracts of B, /(R") and ka (R™), respectively, because of the extension operator constructed
in Stein [35, Chapter VI, Section 3.2] for bounded Lipschitz domains. In particular, we have

1 1-6 0
- = + —.k e Np, 2.1)
p Po P1

(W (52). Wlf‘l“(Q))&p = BX0(2) if
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for all & € (0,1), cf. [36, Section 2.4.2 Theorem 1]. We also denote W¥¢(2) = BX+9(2) for
k € Ng, 08 € (0,1), 1 £ p < oo. Furthermore, we define

L3)(2) = {f € L2(Q): /Q f(x)dx = 0},

Lz(())”

LZ(2) = {f e C§(Q)" : div f =0}

In order to derive some suitable estimates we will use vector-valued Besov spaces B;’OO(I ;1 X)),
where s € (0,1), 1 < g < o0, [ is aninterval, and X is a Banach space. They are defined as

By oo(I:X) ={f € LYU: X) : || f By oo 1:x) < 00},
1A NBs or:x) = If lLacr;xy + sup (| An f (@) llLaay;x)-
0<h<l1

where Ay, f(t) = f(t +h)— f(t)and [, = {t € I : t + h € I}. Moreover, we set C*(1; X) =
B3 .00(1;X),s € (0,1). Now let Xo, X7 be two Banach spaces. Using f(¢)— f(s) = fst %f(l’) dt
it is easy to show that for 1 < gp < g1 < 00

1-60 6

1

- = + —, 2.2)
q qo q1
<

W (I X1) N L9 Xo) <> BY (15 Xp),

where 6 € (0, 1) and Xy = (Xo, X1)[s) or Xg = (X0, X1)g,r, | < r < oo. Furthermore,

1
BS (I X) CO (I X) forall0 <0 <1,1<g<ocowithf——>0, (2.3)
q

cf., e.g., [32]. Furthermore, for s € (0, 1) we define H*(0,7; X) = Biz(O, T;X), where [ €
B3 ,(0,T; X) ifand only if f € L%(0,T;X) and

TNf@o) = f@l3
||f||Bf2(0TX)—||f||L2(OTX)+/ / OO g1 ge < oo

In the following we will use that

Tlf@o - f@lx T 25’
_ (s’'—s)—1 2
// e i </0 /0 I — 1| dtde) £ 12 g0 115,

< Cos T N F 120 o)

forall 0 < s < s’ < 1, which implies

1/ lis07:0) < Cow TN f lev qoryxy  forall £ € C¥([0.T): X) (2.4)

providedthat0 < s <s' < 1,0< T < 1.

Furthermore, we note that the space of bounded k-times continuously differentiable functions
f:U C X — Y with bounded derivatives are denoted by BC k(U ;Y), where X, Y are Banach
spaces and U is an open set. Moreover, f € CK(U:Y) if for every x € U there is some
neighborhood V of x such that f|y € BC*(V:Y).
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We will frequently use the following multiplication result for Besov spaces:

17055 ooy < Crsmall Flsg, o, g5, (2.5)
forall f € B, , (R"),g € By, (R") providedthat 1 < p < p1 < 00,1 <q1,92 S 00,1 > %,

and
1 1
_r+n(_l+__1) <s<r,

cf. [21, Theorem 6.6]. Since W (R") = B, ,(R") forevery s € (0,00) \ N, this implies that

I /gllws@ny < Cs.pll fllwg@mlglws@ny — forall fig € Wi(R") (2.6)

provided that s — % > 0,1 < p < oo. Concerning composition operators, we note that
G(f) € B, ,(R") forall G € C*(R) with G(0) = 0, f € B, ,(R") 2.7)

provided that again s — % > 0,1 < p,q < oo. This implies that f~1 € B, ,(82) forall f €
B; ,(82) such that | f| = c¢o > 0 if £2 is a bounded Lipschitz domain. Moreover, the mapping
S+ G(f) is bounded on B, ,(R") under the previous conditions. We refer to Runst [29] for an
overview, further results, and references. Furthermore, using the boundedness of f +— G(f) one
can easily derive that

G() € C'(By ,(RM)

for any G € C*°(R) with G(0) = 0. To this end one uses

1
G(f(x)+h(x)) =G(f(x) +G'(f(x)) +/0 G"(f(x) + th(x)) dt h(x)?

together with (2.6) and the fact that (G”(f + th))sefo,1] is bounded in B; , (R").

Finally, by standard methods these results directly carry over to W;(X), B, ,(¥) if X' is an
n-dimensional smooth compact manifold. Then G(0) = 0 is no longer required since constant
functions are in B,  (X).

2.2 Coordinate Transformation and Linearized Curvature Operator

In the following let X' C $2 be a smooth, oriented, compact and (n — 1)-dimensional (reference)
manifold with normal vector field vy . Moreover, for a given measurable “height function” h: ¥ —
R let

Op: X - R": x = x + h(x)vs(x).

Then 6y, is injective provided that ||i2||Le < a for some sufficiently small @ > 0, where a depends
on the maximal curvature of X. Moreover, we choose a so small that 3¢ < dist(X, 9§2). Then the
so-called Hanzawa transformation is defined as

On(x,t) =x+ )((dz(x)/4a)h(t, H(x))vz(n(x)), (2.8)

where d x; is the signed distance function with respect to X', IT(x) is the orthogonal projection onto
Y, y € C*(R) such that x(s) = 1 for |s| < % and y(s) = 0 for |s| > % as well as | y'(s)] < 4 for
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alls € R, and ||h||p~ < a. Itis well-known that ©(.,1): 2 — £ is a C !-diffeomorphism. Hence

I := Op(X) = 6,(X) is an oriented, compact C¥-manifold if & € C¥(X) with |hllLeo(x) < a.
For the following let

_4
W={heW, 7(2):|h|L~ <a), 2.9)

_1 _1
Eir = LP(0,T; W, *(£)NWH0,T;W, ”(5)),
where 3 < p < @, 0 < T < oo. Furthermore, let
K(h) = Hh o 9;,, (2.10)

where Hj: I, — R denotes the mean curvature of I, = 6,(X), i.e., it is the sum of all principal
curvatures.

44
LEMMA 2.1 Let3 < p < @ and W C W, 7 (X) be as above. Then there are functions

Pe cl(u, £(Wp“‘%(2), sz_%(z))), 0 ec'(u, W,f_%(z))

such that
4—1
K(p) = P(p)p+ Q(p)  forallpe UNW, "(X).

Moreover, if ¥ = Sg := dBg(0), then

1 n—1
DK() = D := Dg, := p— (T+ASR). (2.11)

Proof. The proof follows essentially from the proof of [12, Lemma 3.1] and [12, Remark 3.2 a.].
To this end let {(U;,¢;) : 1 < I < L} be a localization system for X, i.e., ¥ = U1L=1 U; and
¢1:(—a,a)""! — U is a smooth local parametrization of U; for all [ = 1,..., L. Moreover, let
s = (s1,-..,S,—1) be the local coordinates of U; with respect to this parametrization and

p1(s) == p(ei(s)). X;(s.r) := X(1(5).7). (s,r) € (—a,a)"

be the local representations of p, X, where X: ¥ x (—a,a) — R" with X(s,r) = s + rvx(s)
4

and p € U C W;_;(Z‘). Then it follows from [12, Equations (3.4), (3.5), Remark 3.2 a.] that
K(p) = P(p)p + Q(p), where P(p), Q(p) have the local representations

n—1 n—1
Pp) = o | 3 o)y g+ 3 20 |- Q1) = —a(p),

n—1 4
jk=1 i=1
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where
1 ) n—1 ]
Pk () = 73 (= 2wk (0) + 37w ()" (0)ds, P, p).
p I,m=1
1
Pz(P) _3 12 Z wjk[vz + Z wjl k11—vn s,p“f‘ Z zwkml-vzk 51 P
s Jrk=1 il=1 k,m=1
n—1 ) )
— Z wjlwkm jlkaSlpasmp ,
Ji.k,l.m=1
n—1
q(p) = —— Z w ) hp), L= |1+ ) wk(p)ds; pdsp,
P jk=1 Jk=1
. n_l .
Fjlk(P) = Z wlm(P)aSj aSkX : 8sz|(s,p(s)), I #n,
m=1

Fi’;c(p) = aSj ast : asnxl(s,p(s))s wjk(p)(s) = aSjX : aSle(s,p(s))s

and (w/* (p)(s));.’j | is the inverse of (wjk(p)(s))] k=1"
_4
Since X is smooth, X and 95, X - d5; X are smooth. Therefore wjx (p) € W; ?(X) because

_ _a
of (2.7). Since det((wjk 7,;1=1) > ¢o > 0 by construction, we obtain w/*(p) € W; ?(X) for all
j.k =1,...,n—1because of (2.7).

34
Moreover, ds; p € W, ”(X) and therefore

n—1

3wy, pidyp € Wy 7 (Z)
J.k=1

_4
due to (2.6). Using (2.7) again, we obtain /, € W; 7 (X). Proceeding this way, we finally obtain
_4
that pjx(0), pi(p), q(p) € W; P(X) for all p € W. Now (2.5) implies that

lell 5y

laull 5 1 < Gpllall 54
» P w, (&)

» 7(D) 7
34 2—1
foralla e W, ”(X),ue W, ”(X).Hence
_1 1
Pe cl(u,,,e(W,j‘ (2) W, 7 (2)),
0 eC'(w LW, "(2)))

since the operators are compositions of C '-mappings. Moreover, (2.11) follows directly from the
observations in the proof of [12, Lemma 3.1]. O
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COROLLARY 2.2 Let K be as in (2.10). Then
K e C'(Bir N HE (0, La(2)) N L2 (0. T: HE (X)) ).

Moreover, for every ¢ > 0,0 < Ty < oo there is some C > 0 such that

1K

<
BCI(E 7N We; HF (0,T5Ly(S)NLy(0,T;HE ()
forall 0 < T' < Tp, where Uy = {a € W : ||a|poo(x) < a —¢}.

Proof. We use that
K(h) =) aa(x.h.Vih)oZh

la|<2

forall h € C?(X), where ag: ¥ x R x R"™! — R is smooth. Since

2 1 1 _1
Eir <> Byoo(0.T:W, 7(2)) N Byo(0.T: W, 7(X))
due to (2.2) and
2 _1
By oo(0.T: W, 7(X)) = C3([0.T]: C°(%))
due to (2.3) and p > 3, we conclude that
ag(x,h,Vsh) € C3([0,T};C°(X)) forallh € By NU
and for all |«| < 2. Moreover, the mapping
WNEy 7 5h > aq(x.h, Vsh) € C3 ([0, T]: CO(X))
is C! since a4 are smooth. Furthermore, we conclude that

laa(x, h, Vih)oZv|| 1 < Cellag(x, h, Vih)oSv||

1
H4(0,T;L2(2)) B3 oo (0,T5L (X))

<
< Colla b Ve g oy P00 i

< C8||al¥(x9 ha Vsh)”C,_l;([O T1:CO(%)) ”v”]El,T

forall o] < 2,v € Ey,7, h € E;,7 N U, & > 0. Since multiplication is smooth (if bounded), it
follows that .
K € BC!(Bir N Wei HA(0.T: La()) )

for any & > 0. Finally, we use that ay (x, h, Vsh) € BUC([0, T]; C' (X)) and
Ei,7 N We 3 h > aq(x,h, Vih) € BUC([0,T]; C'(X))
is in C! with bounded derivative. Hence
o (x.h.Vsh)Veh € Ly(0. T W,,l_%(z)) < L,(0.T: H*(X))

for every h € We N Ey7, & > 0 and the mapping & +— K(h) is in BC! with respect to the
corresponding spaces. Altogether we have proved the corollary. o
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3. Two-Phase Navier-Stokes System for Given Interface

In this section we assume that the family of interfaces {I"(¢)};>¢o is known and we will solve the
system (1.1), (1.2), (1.4), (1.7), (1.10) together with the jump condition [v] = 0.

For the following let &' C £2 be a smooth compact (n — 1)-dimensional reference manifold as in
the previous section. Moreover, we assume that there is a domain 2§ CC £ such that ¥ = 982
Moreover, we assume that

r(t)={x+htx)vsx):xe X} =Ty
for some 4 € U NE; 7, where
Eir =W, (J; Xo) N Lp(J. X1),
J =10,T], and
Xo=W, 7D, xi=W, 7).

for p > max(%, 3) =3,n = 2,3, and vy (x) is the exterior normal on 32 = X.Here W is as
in (2.9). ~ 5
Forgivenh € E; 7 leth = Eh € E; r, where

E:Eir — Ei7 = W) (J: W, (Za)) N Ly(J: WHEZS))

is a continuous extension operator and ¥, = {x € £ : dist(x, XY) < a}. Then by Lion’s trace
method of real interpolation, we have

~ ~ ~ _3 _
Eir < BUC(0.T:Xy).  Xy=W, 7(Z) < C3Z,). 3.1)

n+3

since p > 2=, Moreover, if we equip [E1 7 and [E; 7 with the norms
p 2 quip g, ,

[l 7 = [l + [u(0)llx, .

_1 _1
WAIW, T (ENNL, (LW, P (D)
e, = lullwy sw) saopnL, w1 OIF, .

then the operator norm of the embedding (3.1) is bounded in 7 > 0. Additionally, we have
~ 1
Eir < C'77([0. T W, (X4)).

Interpolation with (3.1) implies
~ 241 —
Eir < C*([0.T): B, ;" (%)) = C([0.T]: C*(Z,))

for some t > 0 since p > ”zﬁ Here again all operator norms of the embeddings are bounded in
T > 0. We will need the following technical lemma:

LEMMA 3.1 For every ¢ > 0 the extension operator £ above can be chosen such that for every
0<T <o
supT Hh(t, H(-)) — Eh(t,-) ”Cl(Ea) < ellhlg, 7-

o<r<
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Proof. First of all, since Eh(t,x) = h(t,x) forallx € X, t € [0, T],

sup 1t 11()) = Eh(t,)| g1 (5, <@ sup IERG,)c2s,) < Ca'lhle, -
T a 0<t<T

o<r<

forany 0 < a’ < a, where C is independent of 0 < T < 0o. Hence, if, for given ¢ > 0, a’ is chosen
sufficiently small, we have

sup [[k(t.110)) = ER(t.) |1z, < elltlle - (3.2)

o<r<

If we now define E": By 7 — EIJT by
i
(E'h)(t,x) = (Eh)(t,H(x) + a—dg(x)v;(n(x))) forall x € Sa.1 € [0, 7],
a

then E:E; 17 — ELT is an extension operator, which satisfies the statement of the lemma. O

For technical reasons, we modify the Hanzawa transformation ®, to
On(x,1) = x + x(dz(x)/a)h(t, vy (M1 (x)),
where h = Eh € ELT is the extension of / to §2 as above. Then
|©n(.1) = Onc, ’)”cl(ﬁ) < C A1) = h(IT(), 1) ”cl(za)

forall0 < ¢ < T, where C is independent of 7 and 0 < 7' < oo. If we now choose & > 0in (3.2)
sufficiently small, @ (., 1): 2 — 2 is again a C !-diffeomorphism for every 0 < ¢ < T'. This can
be shown by applying the contraction mapping principle to

x = 0,1 (Op(x) — Op(x) + )

for given y € §2, which is equivalent to Z;h(x) = y. Moreover, 5h(2,t) = O(2,t) = I'(t) for
alo<r<T.
Now let
Fii = Op(.1) 0 Op(. 0",
Then Fj,: 2 — 2 with F, ,(2F) = 2%(¢) and Fj,,(Io) = (1), where Iy = I'(0) = 327(0).

_3
Moreover, F, = (Fi¢)tefo.r] € BUC([0, T]; W; 7(22)) N W) (0,T: W, (£2)) and

1 Fny = Fiyllcrqo.r1:c2@y) < Cllh — h2llg, £ (33)
<

||Fh1 - Fh2||Wpl (o,T;Wp‘ £2)) C||h1 - h2||IEl,T’ (3.4)

forall |Aj g, 7 < R, j = 1,2, where C is independent of 1; and 0 < T < oo. Since Fj, o = Idg
forall h € E; 7, (3.3) implies

”Fh] - Fh2||BUC 0,7 ;Cz Q S CTT”hl _hZH]El,T‘ (35)
([0,T];C=(£2))
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Now we consider

dv+v-Vo—puTAv+Vp=0 in 2%(1),1 € (0,7),
divv =0 in 2%(1),1 € (0,7),
[v] =0 onI'(t),1 € (0,T),
lvra) - T, p)l = oHr@yvrq onI(1),t€(0,7),
v[ae =0 on 3.t € (0,7),
V]i=0 = Vo on 2%(1),1 € (0, 7).

Defining
u(x,t) = v(Fop(x).1), q(x.t) = p(Fra(x),1),
the latter system can be transformed to

dou—pEAu+ Vg =a*(h; Dy)u.q) + 3:Fy - Vau —u - Vyu in Q%

divu =Tr ((I - A(h))Vu) =: g(h)u in Q%
[ul =0 on Iy,
vry - T(u,q@)] = t(h: Dx)(u.q) + o Hp on oz
ulpe =0 on 0927,
Ulr=0 = vo on [23:,

(3.6)
3.7)
(3.8)
(3.9)

(3.10)

(3.11)

where 0F = (0,T) x i, 25 = 2\ (IoURS), Lo, = (0,T) x Iy, 027 = (0,T) x 352. Here

a®(h; Dy)(u.q) = p* divy(Viu) — p® div Vu + (V = Vi)g,
Vi = AWV, divyu = Tr(Vyu), A(h) = DF; ], vy =

t(h, Dx)(u.q) = [(vry, — vi) - @QuEDu — qI) + 2vy - sym(Vu — Vu)],
Hy(x) = Hr)(Fae ())vr@y (Fp (x)) forall x € I.

In the following let Y7 = Y} x Y2, where

A(h)vr,
~ JA(hvr|

v} = {ue BUC(0.T): H'(@)") N H'(0.T: Lo,o(R))  ul g € La(0,T: HX(@23)")}.

Y7 = {q € L2(0.T: Lz, 0)(£2)) : Vq'ﬂgﬂ € L2((0.7) x Qg:)"}

The main result of this section is:

THEOREM 3.2 Let R > 0, hg € U. Then there is some Ty = To(R) > 0 such that for every
0<T <Toand h € E;,r N W with h|;—9 = ho and vy € Hol(.Q)” N Lye(£2),n = 2,3, with
max{||2|g, ;. ||v0||H(% (Q)} < R thereis aunique solution (u, p) =: $7(h,vo) € Y7 of (3.6)—-(3.11).

Moreover, for every € > 0
¥ € BC'(Aer ¥ By 1 (0, R); Y7),

where
Acr = {h € Be, 7 (0. R) : h(0) = ho, sup_[[h(0)][Loo(x) < a e

0<t<T
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We can formulate (3.6)—(3.11) as an abstract fixed-point equation
Lw = G(w; h, vg) in Zp (3.12)
for w € Yr, where

du — putAu+ Vg

divu
L= om0
u|t=0
at(h; Dy)yu + 0; Fp - Vyu —u - Vyu
g(hu — & [o g(hudx
-h = 2] J£2 ~
Ge.q: . vo) ((h: D)oo q) + 0 F

Vo
forallw = (u,q) € Yr, where Zy = Z} x Z2 X Z3. x Z7,
Z3 = Lo((0,T) x 20)",  Z3 = H(£2)" N L25(£2),
Z7 = L2(0,T; Hygy(20)) N H'(0,T; Higy (20)),
Z3 = L,(0.T: H? (Io)") N H*(0,T: La(Io)").

and Z7 = Hy(2)" N Ly (82). Here H(lo)(.Qo) = H'(20) N L,0)(£2) is normed by ||V - ||,,
Hgl(2) = (H}, Q).
First of all, let us note that (3.12) implies (3.6)—(3.11) except that (3.7) is replaced by

1
divu = g(hu — — h)dx.
g(h) 2] Qg()

But the latter equation implies (3.7), which can be seen as follows: Let K(¢) = ﬁ Jo g(h(x,1))dx
and v(x,?) = u(Fh_l(x, t),t). Thenv(t) € HO1 (§2) forall t € (0, T) and therefore

O:/Qdivv(x,t)dx =/9Tr(A(h(x,t))Vu(x,t)) det DFy(x,t) dx
= K(t)/ det DFy(x,t) dx
2

for all t € [0, T']. Since the last integral is positive, we obtain K(¢) = 0 forall ¢t € (0, 7).

LEMMA 3.3 Let R > 0,& > 0, and let Y7, Z7, ho be as above. Moreover, let

Aer={h€Brr: sup [h(1)lee(s) < a—e.h(0) = ho. [, + < RY.
T

o<r<

Then there is some 7y > 0 such that for every 0 < T < T, the mapping G defined above is
well-defined and
G € C'(By,; (0.R) x A x By, (0.R): Z7).
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Moreover, there are some C, o > 0 such that
G(wish,vo) — G(wa:h,vo)llz; < CT*||lwi —wally,
for every wi, wy € W,O <T <To,h € Ag,r,and vg € W
Proof. First of all, because of (3.3), for any ¢ > 0 there are some C, Ty > 0 such that
IDxFr —id |l gyco.rict @)y < Ellle, ¢

forall0 < T < Ty, ||hllg, » < R. Hence F;;:2 — Qisa C2-diffeomorphism and Dy Fj, is
invertible with uniformly bounded inverse for these 4, T'. Since matrix inversion is smooth on the

set of invertible matrices, o
A(hy = DF; T € C*([0,T); C'(2))

for some 7 > 0if || 1||g, , < R. Moreover, interpolation of (3.3) and (3.4) yields
DFy € C2~35+%([0, T]; C°(2))

due to Wp1 0,T;X) — C 1_%([O, T]; X), where the operator norm of the latter embedding is
boundedin0 < T < oo if Wp1 (0, T'; X) is normed by

1A wp 0,753 = ICS DLy 0mx) + 1L/ (O)llx-
1 1 _
Here we have also used that [| f || c1 () < C||f||é0(§)||f||é2(§) and Wp1 (22) = C°($2). Hence

A(h) = DF; T e C3735+5([0.T]: C°(2)).

Furthermore,
A€ BC'(Bg, ,(0,R); X) with (3.13)
X = C*(0, T C' () N W0, T: Ly(2)) N €225 +5 (0, T): €°(2)), (3.14)

again since matrix inversion is smooth.
Using the above observations, one easily obtains

”(Vh - V)f”Lz(O,T;Hk(.Qét)) < CTT”h”]ElT ||f||L2(0,T;Hk+1(96t))
forall f € L,(0,T; Hk(.QgE)), k = 0,1, |lhllg, ; < R.From this estimate, one derives
la* (D)6 D 0.1ty < CT Wl 1 10 @)l

< CT" ”h”]ElT ||M ||L2(0,T;H2(Q(:)|:))’

gl o, 7.1 i)
v - DFhV””Lz((O,T)ngt) <CT3 ”v”LOO(O,T;Wpl (Q(:)l:))”u”Loo(OaT;Wpl(Q(:)t))
< CT3 ol lullyy.

192 - VUl o,1yws2ty = 1@t Fi = 30 Fo) - Vull L 0. 1yxgit
<CT* 7 1AllE, 7 vl o0, 1;E (2))

1_1
<CTz p”h”IEl.T”u”yTls
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where we have used (3.4) for the last estimate. Moreover,
leCh, D)ullz2. < CT|hlg, 71 ) llyr (3.15)

for some o > 0 can be proved in the same way as in [1, Proof of Lemma 4.3]. In order to estimate

g(hyu € H'(0,T; H) (82)), we use that

(gUnu, ), = —(u,div (1 - A(h)T)qo))Q forall g € Hb) ().

Therefore we obtain for all ¢ € H(IO)(.Q) with Vo, =1

d
(g

—~(deu.div (1 = AT)g)) L = (Vi @A) )0z
(Fl(t)s (,0) + (F2(t)v @)s

where

< Cl L@l = AW 0.1 )

‘(atu(t% div ((1 - A(h(z))T)w))Q

S CTH0:u@) L@ 1hllce o.r:c1 @)

and

‘(Vu(t), (a, (1 — A(h(t)))Tgo))Q

< Cluly o 1) 112 E () g oy
< Clully 1, A((0) ) @y
forall ¢t € (0, T). Hence

1Pl 07zl < CT Nulla@xo.mltler qorre @y

1Flly0.mmghy < C Il 10: AGD 07y < CT7 lullyy Il -

and therefore .
1 g Mull 0,75y < CROT™ 277kl 1 el
for all i € Ey,7 with ||h||g, , < R. Here we have used that A € BC'(Ag g: X), where X is as in

(3.14).
Finally, it remains to estimate the term Hj,. To this end we use that

A, = (K(h) o 9,;01) Vh,
where 0y, := O1(-,0)|5: ¥ — Iy bijectively. Here

K € BC'(Aer: H¥(0.T: La(2)) N L2(0,T; H3(X)))
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because of Corollary 2.2. Since 0, € C 2(X)" is independent of ¢ and h, the same is true for
K()o Qh_ol with X' replaced by Ip. Because of (3.13), we have for H (h) := Hj forall h € A r

Ae BCI(BELT(O, R): H¥ (0, T: Ly(I%)) N L(0, T H%(ro))).

Altogether, since all terms in G are linear or bilinear in (u, ¢) and A(h), these considerations imply
that G € BC'(By; (0. R) X Ag,r X By1(gyn (0, R); Z7) and

G (w1s h, vo) — G(was b, vo) | zp < CTY |wi —wallyy (3.16)

for all w; = (u;,q;) € Y7 with |wj|ly, < R, h € Agr,vo € Bz,(0,R)and 0 < T < Ty for
some o’ > 0. O

Proof of Theorem 3.2: Let ¢ > 0. Using Lemma 3.3 and choosing T > 0 sufficiently small,

L™'G(.;h,v0): By, (0, R") — By, (0, R')

becomes a contraction and is invertible if & € Ag g and [|[vo| g1 (o) < R, where
R = 2sup{}|L—lG(o;h,vo)HYT “h e Aer, ol < R}.
Hence for every (h,vg) € Agr X Bz,(0, R) there is a unique w =: ¥7(h, vg) € By, (0, R’) such

that
w=L7'G(w:h, Vo).

Moreover, (3.16) implies

| L7 DwGwih,vo)| gz, < CT* <

N =

forall w; = (u;,q;) € Y7 with ||w;|ly;, < R, (h,vo) € Ag,r X BHgang(O’ R),and0< T < Ty
if Ty is sufficiently small. Hence we can apply the implicit function theorem to

F(w;h,v9) =w— L™ 'G(w;h,v9) =0

and conclude that

%7 € BC! (AS,R x Bz, (0. R): By, (0, R’))

since Dy, F(w; h, vo) is invertible for all w € By, (0, R), h € As R, Vo € BZ4T (0, R). O
Finally we obtain that the mapping & — (v, - u) o (Op|;=0)|x satisfies the conditions to apply
the general result of [6]:

COROLLARY 3.4 Let R,e > 0, Ty = To(R) > 0, Ag r, and 37 be as in Theorem 3.2. For every
h € Ag R, Vo € HO1 (£2)" N Ly 5 ($2) with ”UO”Hg @ < R let

1 (h:vo) := (v - u) © (Opli=0)|z.

where (u, p) = Fr(h,vo), 0 < T < Tp. Then there is some ¢ > p such that S7 € C1(A4 g x
BH(} ALs.o (0, R); L4(0, T Xg)). Moreover, if hiljo,7/] = h2ljo,r/] for some 0 < T’ < T, then
S7(h1;vo)lo, 77 = 97 (h2;v0)l[0,77], i-€., the mapping i — Sr(h;vo) is a Volterra map in the
sense of [6].
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Proof. First let n = 3. Then by interpolation

H'(J:L2(2)) N Ly(J; H*(2)) — La(J: H%(Q)) N Ly(J; H*(R))
> Lg(J: H*(R2)) = Lqg(J: W, (2))

n n 3 1 n (1 1 1
s=14=-——€e(=Z,2), ===[===)€e(0,—
2 p 2 g 2\2 p p

since3 < p < 1—30andn = 3.If n = 2, we use that

where

H'(J: L2(2)) N La(J: H2(R)) <> La(J: W (R2)) > La(J: W, (82)).

Hence 7 € C!(Ag g x BH(% (0,R); Ly(J; Wp1 (£2)) for some g > p. The rest of the first statement
follows from the trace theorem, the fact that

> vy € CI(B]ELT(O, R). BUC([0. T; cl(ﬁ))),

and that O |xex=0: X — [pisa Cz-diffeomorphism.

Finally, the Volterra property follows easily from the fact that the solution of (3.6)—(3.11) on a
time interval (0, T') is also a solution of (3.6)—(3.11)on (0, T’) forany 0 < T’ < T (after restriction)
and the uniqueness of the solution. o

4. Local Well-Posedness

In this section we show that the system (1.1)—(1.10) admits a unique local-in-time solution by
reducing the whole system to a single quasilinear evolution equation for the height function 4. For
this purpose we use the solution operator obtained in the previous section and the solution operator
for the (transformed) chemical potential coming from (4.6)—(4.8).

We transform (1.3), (1.5), (1.6) and (1.8) to the fixed domain 2\ X, with ¥ C £ as in the
previous section, by means of the Hanzawa transform. This yields

mApn =0 in 27\ X1, “.1)

dth — (v - u) o (Opli=0)|x = —m[vy - Vin] on Xr, (4.2)
Nl = oK(h) on X7, (4.3)

v -mVn=20 on 0827, (4.4)

hli=0 = ho on ¥, (4.5)

where X7 = (0,7) x X, n(t,x) = p(Frn(x),t) and K(h) denotes the transformed mean
curvature operator. Assume that we already know a solution (u, h) € Y} x Eq,r. Then we may
use Corollary 3.4 to write (vj - u) o (O|r=0)|x = 97 (h; vo). Consider the elliptic (time dependent)
problem

mApn =0 in Q7\Xr, 4.6)

nls = oK(h) onXr, 4.7
ve -mVn=0 on 0827. (4.8)
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If
heBYr :={heEyr:h(0.T]) €U},

where U C Wp4_4/ ?(X) is a sufficiently small neighborhood of zero, then (4.6)—(4.8) admits a
unique solution n =: S(h)K(h) € L,(0,T; WPZ(Q\E)). Defining B(h)n := m[vy - Vin] we may
reduce (4.1)—(4.5) to a single equation for A:

dth + B(h)S(h)K(h) = Sr(h;up) on X7, h(0) = hp on X.
Employing the decomposition from Lemma 2.1 we may write
dth + Q(h)h = Fi,7(h) + F2(h) on X1, h(0) = hoon X, (4.9)

where Q(h) := B(h)S(h)P(h), F1,7(h) := S7(h;vo) and F»(h) := —B(h)S(h)Q(h). Note that
@ and F, are nonlocal in x but local in ¢, whereas Fj 7 is nonlocal operator in ¢ and x, but it has

the Volterra property with respect to ¢. Firstly we show that F, € C1(U; Wpl_l/ ?(X)). By Lemma
2.1 we have

0 e CHU:wZ P (m)).
Next we show that S € C1(U:; £L(W,"/?(X), W2(£2\ X))). Writing
n—1 n—1
Ap = Z a]}-lkajak + Za}’&,
Jk=1 j=1

with coefficients
aly = ap (e VhV2), al = ay(x.h, VR, V2R,

J
depending smoothly on (x, 2, Vi, V2h), it is not hard to see that
al (- h.Vh.V?h).al(-.h,Vh,V?h) € BUC(2\X)?,
for all 1 € U. Here we used the embedding
W24P(2) = C(2)
whenever p > (n 4 3)/2. This in turn yields that
his A € C1<U; £(W§(9\2),L,,(9))).

We can now write
S(h)g = (An. v, yn2) "' (0,5,0)

for some function g € sz_l/ ?(X). Here y denotes the trace operator to X and YN, stands for
the Neumann derivative on 952. Since the mapping i — (Ap, ¥, yn,352) belongs to

CI(U; L(WEHR\D), Lp(2) x WFVP(2) x W;—I/P(am)),
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and inversion is smooth, we may conclude that

Se cl(U; LW2Vr (), W;(sz\z))).

Finally, we show that B € C'(U;&(W2(2\X). W, "?(X))). We may write B(h) =
27;} b;’)/a_,-, where the coefficients b}’ = bj(x, h, Vh) depend smoothly on (x, i, V). This yields

b;(-.h,Vh) € C1(X), for each h € U since W, */? (%) <> C(X) for p > (n + 3)/2. It follows
readily that

I by e CI(U; L(W2(2\2), Wpl_l/”(E))).
Summarizing we have shown that
F e CHU:w)}~YP(x)),

hence the desired assertion.
Concerning the mapping & — ®(h), we would like to show that

his Qh) € CI(U; LW (z), W;—l/l’(z))).
But this is an immediate consequence of Lemma 2.1, since
his P(h) e cl(U; £(X1, sz_l/p(E))).

It has been shown in [27, Proof of Theorem 4.1] that @ (0) has the property of maximal L ,-regularity
in Xo = Wpl_l/p(E), that is for each given f € L,(0,7T; Xy) there exists a unique solution
he le (0,7;X0) N Lp(0,T; Xy1) of the problem

9:h(1) + R(O)a (1) = f(1), t€(0.T), h(0)=0,

where X; = Wp4_1/ P(2).1fU C Wp4_4/ P(X) is a sufficiently small neighborhood of zero, then,
by a perturbation argument, also & (h¢) has maximal L,-regularity, whenever ip € U.
Note that the principal part in (4.9) is local in time. Furthermore, by Corollary 3.4, we have

Fi.r € CY(Aer X Bying,  (0.R): Lg(0.T: Xo)),

for some g > p. This means that the nonlocal term F,7 is somehow of lower order with respect to
t. Based on this fact we are in a situation to apply existence and uniqueness results for quasilinear
evolution equations with main part being local in time. We show that the nonlocal term F 7 satisfies
the Lipschitz estimate

| F1,7(h1) — Fi,r(h2)llL,0,1:x0) < K(T) A1 — h2llg, + (4.10)
forall hy,hy € Byg, -, where k(T) — 04 as T — 04 and

B’a]EI,T = {]’Z S EI,T : ||]’l _h*”]El,T <r, h(O) = I’lo}, r e (O, 1]
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Here h« € Eq 7, solves the linear Cauchy problem

0th«(t) + Q(0)h4(t) =0, t €(0,Tp), h«(0) = hy,
foreach Ty > 0. Let T € (0, Tp), § > O such that ||h0||Wp474/p(Z) < 6. It follows that

1O Ny-+7 5y < I0E) = haOll 570 gy + Via(0) = Bollyaa70 sy + o0 5,

SMr+ sup |he(t) = hollya-a/p 5y + 8
1€[0,Tp] ’ Wy &

Sa_ga

forall h € Byg, 1, provided that r, To, 8 > 0 are sufficiently small. Here a > 0 denotes the number
in the definition of the set A g in Theorem 3.2.
Choosing R = r + ||h,,<||]};1’TO we obtain that By g, . C Ag g forall T € (0, Tp). It holds that

1
Fir(hy) — Fir(hy) = [/o DFy,1(hy + 0(h1 — hz))de} (h1 —h2).
Hence

| F1,7(h1) — F1,7 (h2)llL,0.7:x0) < | F1,10(e(h1)) — F1,10(e(h2)) ||, (0,T0;X0)

<
< Clle(hy) —e(h2)g, 4,
< CM |\l = halls, 7 + CM [[11(0) = h2 (0)llya—s/p )

forall hy, hy € By g, 1, where
C = sup{” DFy 1,(h) ||£(E1,TO;L4(0,T0;X0)) che B’JEI,TO} > 0,

and e denotes an appropriate linear extension operator from Eq 7 to Eq,7,, T < Tp, such that

Lz, 5, <M (Wil + 10Oy -2,

holds forall # € Ey,r and M > 0 does not depend on T < Ty and & (see e.g. [6, Lemma 7.2]).
Since g > p, an application of Holder’s inequality yields

q—p
| F1.7(h1) = Fi,r(h2) ||Lp(0,T;XO) <T »a |Fyr(hy)— FlaT(hZ)HLq(O,T;XO)
< T% CM||hy — hallg, ,
for all hy,hy € By g, . Therefore we can choose «(T) = 7% CM.In particular, the nonlocal

term F 7(h) is a small perturbation in L, (0, T'; X) provided that 7 > 0 is small enough. This can
be seen as follows

I Fi,r (WL, 0,7:x0) < I F1,7(h) — F1,7(h:)llL,0,7:%0) + 171,17 () ||, 0,7:X0)
a=p
<«k(D)r +T 7a | Fi,r(h) Ly 0.7:%0)
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for all h € By g, , and the right side of the last inequality can be made as small as we wish, by
decreasing 7' > 0.

We may now follow e.g. the lines of the proof of [24, Theorem 2.1] to conclude that for each
initial value hy € U there exists a possibly small 7 > 0 such that (4.9) admits a unique solution
h e Hl} (0,T;X0) N Ly(0,T; X;) which depends (locally) Lipschitz continuously on the initial
data hyg.

We have proven the following result.

THEOREM 4.1 Let3 < p < 2n +2)/n,n = 2,3, R > 0and U = BW4—4/p(E)(0,8). Then
D

there exist a sufficiently small § > 0 and 7 > 0 such that the (transformed) system (3.6)—(3.11),
(4.1)—(4.5) has a unique solution

(w.q.n.h) € Y7 x Y7 x Lp(0.T: W} (2\X)) x Eyr 7,

provided that hp € U and vg € H} (2)" N L2,6(2), |[vollz1 < R.

5. Qualitative Behavior

This section is devoted to the long-time behavior of solutions to (1.1)—(1.10) starting close to
equilibria. We will study the spectrum of the full linearization of the transformed two-phase
Navier-Stokes/Mullins—Sekerka equations around an equilibrium. Since, among other things, the
divergence-free-condition for the velocity field v is destroyed under the Hanzawa transform, we
have to split the solutions into two parts, one part which is divergence free and the remaining
part which is not. The treatment of the first part is done by considering the so-called normal form
of the equations in exponentially weighted spaces and the fact that the set of equilibria can be
parameterized over the kernel of the linearization. The remaining part, which is not divergence free
can be handled by the implicit function theorem.

For simplicity we assume that the dispersive phase is connected. Moreover, we assume for
simplicity that m = 1. (By a simple scaling in time one can always reduce to that case.) Note that the
pressure p as well as the chemical potential ; may be reconstructed by the semiflow (v(¢), I'(¢))
as follows:

(VpIVe), = (WFAv—v- Vu|Ve), for all ¢ € W, (£2),
[p] = 2[u=(Dv)vre) - vr]l +0H  on I'(t),

and

mAp =0, t>0, xe€2%@),
wreo=0H, t>0,xel(),
ve-mVu =0, t>0, x €0£2.

Therefore we may concentrate on the set of equilibria & for the flux (v(¢), I"(¢)) which is given by

g = {(0 SR(xo)), Sr(xp) C 2isa sphere}.



60 H. ABELS AND M. WILKE

The linearization of the (transformed) two-phase Navier—Stokes-Mullins—Sekerka problem around

an equilibrium (0, X') € € reads as follows:

B,M—uiAu+Vq=fu, >0, xeQF,
divu = fz, t>0, x e 2%,
=2[pEDulvs + [qlvs —o(@sh)vs =gu, >0, x€ X,
[u] =0, >0, xeX,
u=0, t>0, x€ds,
0h—u-vyg—[0vsn]l =gn t>0 xeX, (5.1
An = fy, >0, xeRF,
Ny +Q@sh=gy,, t>0,xeX,
dyn =0, t>0,xedf2,
u0) =ug, x¢€ Qi,
h(0) = hg, xe€ X,
where Ry = ”R;zll + Ay and Ay denotes the Laplace-Beltrami operator on Y. We want to

reformulate (5.1) as an abstract evolution equation. To this end we introduce the Banach spaces

Xo = Lo (2) x W) ™2(2) and Xy 1= (Lo (2) N WA\ X)) x Wy P (X), where

Loo(2) = Tu € C(2y - divu = 0} 2.

Define a linear operator A : D(A) C X1 — X, by means of

AQu.h) = (= = Au+ Vg, —u - vs — [9, 2 7]).

with domain

D(A) = {(u,h) € X;:u=00n0d£2, [u] =0on E}.
Here g € H(lo)(.Q\Z‘) and n € W;(Q\E) are determined as the solutions of the elliptic

transmission problems

(Vq|Ve),, = (;ﬁmmv(p)L2 forall p € H' (),

4] = 2[u*(Du)vs -vs] +0@sh on X,

and

An=0, t>0, xeR2\X,

ns +Q@sh=0, t>0 xeX,

0n=0, t>0,xcdn.

In the sequel we will use the solution formula

Vg = 51(n* Au) + H2[* (Duyvs - vz]).
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Setting z = (u, h) and f = (fu, gn) We may rewrite (5.1) as
z(t) + Az(t) = f(t), t >0, 2z(0) = z¢ := (uo, ho), (5.2)

provided that f; = g, = f; = g = 0. The operator A has the following properties.

PROPOSITION 5.1 Letn = 2,3, p € (3,2(n + 2)/n), u*= > 0,0 > 0 be constants and let X, and

A be defined as above. Then the following assertions hold.

(1) The linear operator —A generates an analytic Co-semigroup e 4’ in X which has the property
of maximal L,-regularity.

(2) The spectrum of A consists of countably many eigenvalues with finite algebraic multiplicity and
is independent of p.

(3) —A has no eigenvalues A with nonnegative real part other than A = 0.

(4) A = 01is a semi-simple eigenvalue with multiplicity n + 1, i.e. Xo = N(A) ® R(A).

(5) The kernel N(A) is isomorphic to the tangent space 77, & of &€ at the given equilibrium z, =
0,X) e &.

(6) The restriction of e 4? to R(A) is exponentially stable.

Proof. Consider (5.1) with f; = g4 = f;, = gy =0andlet J = (0,T), T > 0. Suppose that
he W (J; Wy "VP () N Ly(J; WmVP (%))

is known. Then solve problem (5.1),-(5.1)5 with initial value ug € Hy (£2)" N L5 +(£2) by Theorem
A.1 with g = a = 0 to obtain a unique solution

u=Sr(h) € H(0,T;Ls4(£2)) N Loo(0, T; Hy (£2)") N L2 (0, T; H*(2 \ X)),

foreach T > 0. Plugging u = Sy, (h) into (5.1)¢ and denoting by n = Sa(—QRxh) = —S2(R@xh)
the unique solution to (5.1); g 9, we obtain the linear nonlocal problem

0ch —m[0y 5 S2(QRxh)] = S1,7(h) + gron X7, h(0) = hpon X. (5.3)

By [27, Proof of Theorem 4.1] the operator [i +— m[0,  S2(® xh)]] has maximal L,-regularity.
Furthermore it holds that Sy, 7(h) € L4(0,T; Wpl_l/ 7 (X)) for some g > p which means that this
term is of lower order in L, (0, T'; Xo) compared to m[d, .. S2(® x/)]]. This can be seen as in the
proof of Corollary 3.4.

Hence, by perturbation arguments we may conclude that (5.3) has for each given hy €

Wp4_4/ P (%) a unique solution
1(7.pl-1 a1
he WH(I; Wy VP () N Ly(J; Wi VP(X)).
In other words, we have shown that for each 7 > 0 and for each given f = (fu.gn) €

Ly(J; Ly 6(82)) X Lp(J; Wpl_l/p(E)) there exists a unique solution z = (u, ) of (5.2) with
ue H'(0.T:L2(2)) N Loo(0.T; Hy (£2)") N Ly (0, T5 H*(2\ X)),

and
he WH(J: W, VP (2)) 0 Ly(J: Wi VP (D)),
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provided that ug € L 5(£2) N Hy (£2)" and ho € Wp4_4/p ).

Mimicking the proof of [26, Proposition 1.2] it follows that the operator —A generates an
analytic semigroup in Xo = L3+ (£2) x Wpl_l/p(Z‘).

By compact embedding, the resolvent of A is compact and therefore the spectrum o (A) of A
consists of countably many eigenvalues with finite algebraic multiplicity and o (A) does not depend
on p, by classical results. Let A € o(—A) with eigenfunctions (u, ). Then the corresponding
eigenvalue problem is

Am—Au+Vg=0, xe\ZX,

divu=0, xef\X,
—2[u* (Dwlvs + [glvs —o(@shvs =0, x€ %,
[ul =0, xeX,

Ah—u-vy —[0,:n] =0, x€X, (5.4

An=0, xefR\ZX,
N +@sh=0 xeX,
dyn =0, x€0iL2,
u=0, xe€ais.

Taking the inner product of equation (5.4),; with u, integrating by parts and invoking the boundary
as well as the transmission conditions, we obtain

Mluell3 + 21w Dull3 + oI Val3 = oM@ shlh) L,y = 0. (5.5

If A # 0, then

A/ hdo:/ vg-ud0+/[[8,,2n]|do=/ divudx =0,
= = z Q+

hence & has mean value zero. It is well-known that the operator @ x = "R;zl + Ay is negative
definite on L; (9)(£2). Taking real parts in (5.5) it follows that n = const and Du = 0, hence
u = 0 by Korn’s inequality since u|3e; = 0. This in turn yields 4 = 0 by (5.4)5, showing that there
are no eigenvalues A # 0 of —A4 with Re A = 0. Next we show that A = 0 is an eigenvalue of A.
If A = 0, then (5.5) implies n = ne = const and Du = 0. Hence, as before, u = 0 by Korn’s
inequality. Since ¢ is constant by (5.4), it follows from (5.4); ; that

:M:n—l
o R?

which is a linear second order partial differential equation for & on X. Note that a special solution
to this linear equation is given by the constant function s, = 1o R?/(n — 1). The solution space
&L of the corresponding homogeneous equation @ x4 = 0 is given by

&£ = span{Yi,..., Y},

where Y;, j € {1,...,n}, are the spherical harmonics of degree one. Furthermore it holds that
dim £ = n. Since the constant 1o, = [¢]/0 is arbitrary, we see that dim N(A) = n + 1.
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Let z; € N(A) such that Az = z;. The corresponding problem for z = (u, k)" is given by

—Au+Vg=0, xef2\X,
divu =0, xe\2X,
—2[uDu]vs + [¢glvs —o(@zh)vy =0, x € X,
[u] =0, xeX,
—u-vy —[dven] =h, xeX, (5.6)
An=0, xeR\X,
Nz +Q®sh=0, xeX,
dyn =0, xedif2,
u=0, xe€as,

since z; = (0, hy) and hy = Z;-’:O a;Y;, Yo := 1. From the divergence condition we obtain

0:/ divudx:/ (u'vg—i—[[avZn]l)do:—/ hido,
2 b)) b))

hence /; has mean value zero and this in turn implies @ xh; = 0. Multiplying (5.6); by u,
integrating by parts and taking into account the boundary and transmission conditions, we obtain

2|w* Dull3 + olVl3 + o (@shlh)Lys) = 0. (5.7)

Since @ x is self-adjoint in L, (X)) it follows that the last term in (5.7) vanishes and then, as before,
n = const and u = 0, by Korn’s inequality. In this case (5.6)5 yields #; = 0,i.e. z € N(A), hence
N(A?%) = N(A). Since A has compact resolvent, it follows that R(A) is closed in Xo and A = 0 is
a pole of (A — A)~!. Therefore [25, Remark A.2.4] yields that A = 0 is semisimple, in particular
it holds that Xo = N(A4) @ R(A). Moreover, the restricted semigroup e =4/ R(A) 1s exponentially
stable, since we have a spectral gap.

Finally we show that the tangent space 7,,8 of & at z, = (0, Y) € & coincides with N(A).
This can be seen as follows. Assume w.l.0.g. that X is centered at the origin of R” with radius R.
Suppose $ is a sphere that is sufficiently close to X'. Denote by (y1, ..., y») the center of 8 and let
R + yo be the corresponding radius of S. Then by [12, Section 6] the sphere S can be parametrized
over X by the distance function

2

n n n
d) = Y —R+ [0t | +®R+y2-3 )2
j=1 J=1

j=1
Denoting by O a sufficiently small neighborhood of 0 in R"*1, the mapping d : O — W, '/?(5)
is smooth and the derivative at 0 is given by
n
d'Oyw = "w,;Y;, forallweR""". (5.8)
Jj=0

Therefore, near X, the set of equilibria & is a smooth manifold in X 1 of dimension n + 1 and
T;.8 = N(A) by (5.8).
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Since Xo = N(A) & R(A) and o(A|ga)) C Cy it follows that the restricted semigroup
e R(4) 1s exponentially stable. The proof is complete. O

We are now ready to prove the main result of this section. Note that the transformed equations
near an equilibrium (0, X') € € read as follows.

8,u—uiAu+V7t:Fu(u,n,h), t >0, xe.Qi,
divu = Fy(u,h), t>0, x € 2%,
—[(Vu + Vu)vs + [7]vs —o(@sh)vs = G, (u,h), >0, x€ X,
[u] =0, >0, xe X,
0ch—u-vy —[0ven] = Gu(u,n,h), t>0,xeX,
An = Fy,(n.h), t>0, xeF, (5.9)
nls +Q@sh=Gyh), t>0,xe€X,
dyn =0, >0, x € 082,
u=0, t>0, x€df,
u(0) =up, x€ .Qi,
h(0) = hy, x€ X,

t
t

where the derivatives of the nonlinearities on the right hand side with respect to (u, &) vanish at
(u, h) = (0, 0) for constant 7 and constant 7.

THEOREM 5.2 The equilibrium (0, X') € & is stable in the sense that for each ¢ > 0 there exists
some (&) > 0 such that for all initial values (u¢, 1¢) subject to

”hO ” W;_4/p(2) + ||M0 ”Hd Q)" < 8(8)
there exists a unique global solution (u(¢), i(¢)) of (5.9) and it satisfies

||h(t)||W;74/p(2) + ||u(t)||H(} (@ S ¢ forall £ =0.

Moreover, there exists some hoo € Wp4_1/p (%) such that @, X' = 0Bg(x) C §2 forsome R > 0,
X € £2, and

lim (||h(z) —hoollyys-4/n 5 + (@l (rz)") =0

The convergence is at an exponential rate.

Proof. The nonlinear phase manifold for the semiflow is given by
P = {(u.h) € H} ()" x W}=*/?(X) : divu = Fy(u,h)}.
In a first step we want to parametrize @ Til over its tangent space at (0, 0), that is

PMo := {(u,h) € H} (2)" x W=*P(2) : divu = 0}.
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To this end we consider the generalized Stokes equation

—Au+Var =0 1in$2,
divu = f in £, (5.10)
u=0 onads2

for which we have the following existence and uniqueness result.

PROPOSITION 5.3 For every f € L%O)(.Q) ={uel?>N): fQ udx = 0} the Stokes problem
(5.10) admits a unique solution (u,7) € Hy(2)" x L?

: ©
/€L (9).

Proof. The proposition is a special case of [33, Theorem III.1.4.1]. O

(£2), which depends continuously on

With the help of this result we may continue as follows. For a given (i, h) € @M, with a
sufficiently small norm, we solve the auxiliary problem

—Aii+ V7 =0 ing,
divii = PoFy(ii +ii,h) in £2, (5.11)
u=0 onoas2,

where Py : L2(2) — L%o) (£2) is definedby Py f = f— ﬁ Jo fdx. Since the Fréchet derivatives

of the nonlinearities vanish in (0, 0), the implicit function theorem yields the existence of a ball
B(0,r) C H}(2)" N Wp4_4/p (") and a unique solution

(@.7) = §(i.h) € Hy(2) x Ly (%)

with a function ¢ € C'(B(0,r)) such that ¢’(0) = 0. Define O;(x) as in (2.8) with & replaced by
h, which does not depend on ¢. Let v(x) := (u + ﬁ)(@;l (x)). Thenv € HO1 (£2)" and

divvo(x) = Tr [D@};T(x)V(a +1)(0;' ()]
=Tr[(DO:T (x) = )V + ) (0; ' (x))] + div(i + @) (63 (x))
= —Fa(ii + 11, h)(0; ' (¥)) + PoFa (it + i, 1) (07" (x))

_ _ﬁ /Q Faii + i, h)(x) dx.

since divii = 0. Because of 0 = [, divv(x)dx, it follows that Py Fy (it + 1, hy = Fy(i + i1, h).
Let

P:Hy ()" x Ly (2) - Hy ()", P(u,7) = u,
and set ¢ (i, ﬁ) = P¢(i, ﬁ). It is not difficult to see that

(u,h) = (i1, h) + (¢, h),0) € L.
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Note that this mapping is injective. For the final construction of the parametrization we have to show
that this mapping is also surjective. For that purpose we solve the linear problem

—Au+Vr =0 in$2,
divit = PoFy(u,h) in $2, (5.12)
u=0 onads2,

for given functions (1, h) € ®WL. Setting (if, 1) = (u — 1, h) we obtain that 7 € Hj (£2)" and
1
divii = Fg(u,h) — PoFg(u,h) = ﬁ/ Fq(u,h)dx.
9}

Since 0 = [, diviidx this yields PoFy(u,h) = Fy(u,h).

Furthermore it holds that (i, ﬁ) € PMp and u = ¢(u, ﬁ) by injectivity. This in turn proves
surjectivity. Observe that also ¢ (0) = 0. This can be seen as follows. Suppose that i = h = 0.
Then obviously u = 0 and & = const. is a solution of (5.11). By the uniqueness it follows that
¢(0) = 0. Furthermore, if (400, oo, Moo Noo) 18 an equilibrium of (5.9), then U, = 0 and

Noo = [eol/0 = K (hoo) = const.

Since Fy (0, hoo) = 0, the unique solvability of (5.11) implies that ¢ (0, i) = 0. This is reasonable
since the equilibria are contained in the linear phase manifold ®il,.

Let (1o, ho) = (tig, ho)+ (¢ (o, ho),0) € ®T and let (u, h, 7, ) be the solution of (5.9) to this
initial value on some interval [0, a]. With the help of the map ¢ we want to derive a decomposition
for (u, h). To be precise we want to write

(U, h) = (oo hoo) + (i1, h) + (i1, h),

where (i, ﬁ)(z) € PM forallt € [0,a] and (Yoo, Moo, oo, o) 18 an equilibrium of (5.9). Consider
the two coupled systems
wil + 3,1 — pF Al + V7 = Fy(u, 7, h)
divi = Fy(u,h)
—Px[u(Vii + Vi)vs = G (u. h)
—([p= Vit + Vi)vs|vs) + [7] = 0@sh = Gy (u, h) + Gy (h) — Gy (hoo)

[u] =0
iilag = 0 (5.13)
wh+ dh—1ii-vy — [0vs7] = Gr(u,n, h)
An = Fy(n.h)
iz + @zh = Gy(h) — Gy(heo)
dillae =0

i1(0) = ¢(ilo. ho).  7(0) =0,
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and

Qi —puTAT+Vi=wi >0, x€2\X
divi=0 >0, xe\X¥

—Ps[uF(Vi+Vi)vs =0 >0, xeX

—([n(Vii + ViDvs) vy + [7] —0@sh =0 >0, x€X

[i]=0 >0, xeXx (5.14)

u=~0 t>0, x €082

dh—ii-vy —[dyeil =wh t>0,xeX

An =0 t>0,xeX

ils +@sh=0 >0, xeX

0,1 =0 t>0, x €942

with initial values 1 (0) = 1o and };(0) = ho — hoo. Here 1 = oo + 7 + 7 and nN= 1o +17+17.
We recall that us, = 0 and 7, oo are constants and it holds that

Noo = [ecl/0 = R (hco).
With the help of the operator A introduced above, we may rewrite problem (5.14) as
Z(t) + AZ(t) = R(Z)(t) fort € (0,T), 2(0) = Zo — Zoo, (5.15)
where Z := (ilp, ﬁo), Zoo = (0,h), Z = (1, fz) and Z = (i1, h). Here the mapping R is given by
R(Z) = (o(I — T1)it, wh).

Thanks to Proposition 5.1 we have the decomposition Xo = N(A) & R(A). Let P¢ denote the
spectral projection corresponding to o.(A) = {0} and set P* = [ — P¢. Then R(P¢) = N(A)
and R(P’) = R(A). Following the lines of [27, Remark 2.2 (b)] we may parametrize the set of
equilibria near 0 over N(A) via a C2 map [X +— X + ¥ (X)] such that ¥(0) = ¥’(0) = 0 and
R(y) C D(Ay), where A; = AP®. This is true, since the nonlinearities on the right side in (5.9)
are bilinear and smooth.

For z, sufficiently close to O there exists Xoo such that zo := Xoo + ¥ (Xoo). Introducing the
new variables X := P¢Z and

Y= P2 — Y (Xoo + PZ) + ¥ (Xeo)
we obtain from (5.15) the so-called normal form

x=T(2), X(0) =X — Xoo,
Y+ Ay = S(Xo0. X, Z),  Y(0) =Yo. (5.16)

where T (z) = P°R(2),

S(Xoo. X, 2) = P*R(Z) — As (¥ (Xoo +X) = ¥ (Xoo)) = ¥/ (Xeo +X)T(Z).
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and Xg := P¢Zy, Yo := P*Zo — ¥ (Xo) with Zo = (i, EO). Observe that S(0) = S'(0) = 0 by the
properties of the function i and since 7'(0) = 0.
Let

Ei(Ry) := H' (R4 Lyo(2)) N La(Ry; H*(2\ X)),
Ex(Ry) := W, (Ry: W) Y2(2)) N Ly (R WiYVP(X)).

and let

Ei(R+,8) = {v € La(Ry; La(2)) : 570 € E1(R4)},
Ex(Ry,8) 1= {v € Lp(R4: Ly(2)) : ¥'v € Ex(R4)},

where § € (0,8p) and §o > O depends on the spectral bound of the operator A5 (see Proposition
5.1). Clearly, T : E(R4, §) — E°(R+, §), where

E(R+,8) = El(R+,8) X Ez(R+, 5)

and E¢(R4, §) := P°E(R+,§). For given (Xo, Yo, Z) we want to solve (5.16) for (X, Y, Xso). First,
for given (Xo,Z) € X§ x E(Ry,§) with X§ := P¢ X, we define

Xoo := Xo + /OO T(Z)(s)ds = KI(X(),E) € Xg
0
Then -~
X(t) = —/ T(2)(s)ds =: K»2(2)

solves the first differential equation in (5.16) and

o0
x(0) = —/ T(Z)(s)ds = Xo — Xoo-
0
Observe that by Young’s inequality we have
X € Pc[Hl(R+,5; Lyo(2)) x W) (R4, 6; Wpl_l/p(E))].

These exponentially weighted function spaces are defined in exactly the same way as E; (R4, 6).
Substituting the expressions for X and X into the function S, we obtain

y+ Asy = S1(X0.2),  y(0) = Yo,

where
S1(Xo,Z) := S(K1(Xo0,2), K2(2), 2),

and yo € X3 N ®Tlo. If one takes into account that the first component of ¥ is identically zero, it
follows easily from the definition of S and the smoothness of i that

S1(X0,2) : X5 x ER4,8) — X (R4, 8)
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where
X (R, 8) := P [La(Ry.8; L2, (2)) x Lp(Ry, 8 W, 1P (2))].

Here X := P*Xj. Since 0(4s) C C4, we obtain for § > 0 sufficiently small
d _1
y= (E + As,tr) (S1(x0.2).Yo) € E* (R4, ),

where tr v := v(0) and
E'(R4,68) := P'E(R4, ).

Here § > 0 depends on the growth bound of the semigroup. Putting things together, we see that
Z = 6(X0.¥0.2) 1= X + Y (X + Xoo) = ¥(Xeo) +Y

and

We turn our attention to (5.13). Let LL,, be the linear operator defined by the left side of (5.13). Then
we can rewrite (5.13) in the shorter form

Low = N(Woo + W + W) — N(Weo). (5.17)

with initial value w(0) = W := (¢ (ilg. ho), 0).

Here we have set Woo = (Yoo oo, 0, 0). Due to the first part of the proof, the nonlinearities
on the right hand side of (5.13) depend only on (Xo, Yo, W), where w = (%, h, 7, 7)) since weo =
(Soo (X0, Yo, 1, 1), 0,0) and since there exists a function ¥ such that

W = (i, h, 7,7) = R(Xo, Yo, i, ).

This follows from the considerations above, as (7, 77) can be written in terms of (u, h) and (i, };) =
Z = 9(Xo, Yo, Z). Moreover, the right hand sides in (5.13) do not depend on (7, s0), Since these
quantities are constant.

In order to solve (5.13) we define

M (Xo, Yo, 0) := N (weo + W + exts[ (¢ (io, f10), 0) — (@(0),1(0))] + 1) — N(weo),

where
exts : {Hg(2)" N La,o(2)} x W47 () — ER+. ) x {0} x {0},

such that (extsz)(0) = (z1, 22,0, 0) with z = (27, z2). We want to solve the equation
Lo® = M(Xo.Yo. @), (01,12)(0) = (¢ (do. ho).0), (5.18)
by the implicit function theorem. Let
E(R+,8) := E(R+.8) x La(R+., 8: Hy (2\2)) x Lp (R, 8: W (2\X))

and define ~
K(x0. Yo, 1) i= 1 = (Lo 1) (M(Xo.Yo. ). (¢ (0. f0). 0)).
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The mapping K : B(r,§) — E(Ry,8) is well defined, provided that @ > 0 is sufficiently large
since (M (Xo, Yo, W), (¢ (lio, ho), 0)) satisfies all relevant compatibility conditions at 7 = 0. To be
precise, we have [¢ (tig, ho)] = 0, ¢ (tio, ho)|ge = 0 as well as

div ¢ (iio, ho) = div (iio + ¢ (fio, ho)) = Fa(iio + ¢ (o, ho), ho),
since diviig = 0. Here we have set
B(r,8) := {(Xo, Yo, W) € X§ x (X§ N CWo) x ER+,8) : [|(X0, Yo. D) [jprmo2xir..s) <}

where r > 0 is sufficiently small.
Note that M(0,0,0) = M’'(0,0,0) = 0 since ¢(0,0) = ¢’(0,0) = 0. Therefore the implicit
function theorem yields a ball

B(0,p) C X§ x (Xg N PMy)

and a unique solution 1 = ®(Xo, Yo) of (5.18), where @ € C1(B(0, p)). Note that by construction,
w is a solution of (5.13).

Finally this shows that (z(¢), fz(l)) as well as (ii(¢), h(t)) converge in H}(£2)" x Wp4_4/p(2)
to zero as ¢ tends to infinity at an exponential rate.

Therefore (u(1), (1)) — (Uoo,loo) in H(£2)" x Wp4_4/p(2) as t — oo, where the
equilibrium (U0, foo) is determined by (ug, fg). O

Appendix A. Maximal Regularity for the Linear Stokes System
For the following let 2,7, £2 be bounded domains with C3-boundary such that Iy := 8{23' C 2

and let 25 = 2\ .Qg'. Recall that H(IO)(.Q) =HY(Q2)N L 0)(§2) and H(B)l (£2) = H(IO) (£2).
In this appendix we consider the unique solvability of the system
du—ptAu+Vg=f inQFx(0,T), (A1)
divu =g inQFx(0,T), (A2)
[ul =0 onlyx(0,7), (A3)
v, T(u,9)l=a onlyx(0,T)=:1Tyr, (A4)
ulpg, =0 ondf2y x (0,7), (AS5)
ul;=0 = vo on §2o, (A6)

where T'(u,q) = u*Du —qI in .Qgt.
THEOREM A.l Let 0 < T < Ty < oo, n = 2,and 2 C R"” be a bounded domain
with C3-boundary. For every vo € H}(2)", f € L(Q1)".g € L2(0,T; H'(£2 \ Ip)) with
g€ HY(0,T; Hg' (2),

ae H(0,T; Ly(Ip)) N Ly(0,T; H? (Iy)) = H¥ 3 (Fo1)

such that
divvg = glr=0, / g(t,x)dx =0 foralmostallz € (0,7) (A7)
Q
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the system (A 1)—(A6) has a unique solution
ue H'(0,T; La(2)") N Loo(0,T; Hy (2)") N Lo(0, T; H*(2\ To)").
Moreover, there is some constant C independent of T € (0, Ty], u, f, g, a, vo such that

2
1302, Vi) Ly ;2020 + ; (VU VD 1y 100

<Gy (”(fs Vg)”Lz(QT) + ||atg||L2(J;HO—1(Q)) + ”a”HTIP%(FO - + ||U0||H1(Q))

where J = [0, T].

REMARK A.2 The result follows from a result announced by Shimizu [31], where a general L9-
theory is discussed. In the case ¢ = 2, the proof is much simpler since Hilbert-space methods are
available and the result basically follows from the resolvent estimate proved by Shibata and Shimizu
in [30]. For the convenience of the reader we include a proof.

Proof of Theorem A.1: First we consider the case g = a = vy = 0. We can assume without loss
of generality that ' € L,(0,T; L, +(§2)). Otherwise we replace f by Py f and g by ¢ — g1, where
Vg1 = f — Py f. Then (A1)-(A6) are equivalent to the abstract evolution equation

%u(l) + Au(t) = f(1), te€(0,7), (A8)
u(0) = 0, (A9)
where A: D(A) — L, »(§2) with
Aulge = —vEAu + Vg
D(A) = {u € HY(2)" N Loo(2) : Viulgs € LX(23). v - p* Dol = o}

where g € L ()(§2) with Vq'-‘?(?_L € Lz(Qat)" is uniquely defined by

Ag =0 in 2,
l¢] = 215 8,v,] on I,
dqlag =v-u Aulpe  onds2.

Because of [30, Theorem 1.1], A is a generator of an exponentially decaying analytic semi-group
and the graph norm |[[u| 9(4) is equivalent to

lullziiay + D 1V2ull, -
+

Since L, (£2) is a Hilbert space, for every f € L,(0,T;L5s) there is a unique u €
HY0,T;Las)N L0, T; D(A)) solving (A8)—(A9) and

+ 14Ul 10,7525 0) < CILS ILa00,7:L5 4)

E
—Uu
dt |l L,0.7:L2.0)
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with some C > 0 independent of T € (0, 0o]. In the case T = oo this statement follows from [9]
or [11, Theorem 4.4], part “(ii) implies (i)”, where we note that ®-boundedness of an operator
family on a Hilbert space coincides with uniform boundedness, cf. [11, Segtion 3.1]. The case
T < oo follows from the latter case by extending f: (0, 7) — H by zero to f:(0,00) — H. This
proves the theorem in the case g = a = vy = 0.
The general case can be reduced to the latter case as follows: First we reduce to the case
(/. &, vo)| o+ = 0. To this end let
0
vt e HY(0,T: La(25)") N Lo (0. T; H*(24)"). ¢ € L*(0.T; H'(27))
be the solution of
dovt —ptavt + Vgt = flo+ inR2f x(0.7),
0
divot =glo+  in Q¢ x(0.7),
0
vy - utDvt —gt) =0 on Iy x (0,7T),
+ _ ot
V' |i=0 = v0|95r in 2.
The existence of such a v follows from well known results for the instationary Stokes system with

Neumann boundary conditions, cf. e.g. [3]. Moreover, there is some constant C > 0 such that for
every0 < T < o0

|@v*, Vot V2ot vg™h) ||L2(J;Lz(rzo+))

< (G (”(fs Vg)”Lz(JX_Q(')"') + ”atg”Lz(‘];H—l(Qg')) + ”UO”HI(_Q(-)‘F)) .
Now we extend v+ and g™ to some functions
it € L(0,T: H*(20))" N H'(0,T; L2(20))", G € L*(0.T; H'(2{))
satisfying an analogous estimate as before. Now subtracting (o7, ¢ ™) from (u, ¢) we reduce to the
case (/. g, vo)| o+ = 0. Next we observe that
(0]
1 .g-lio-
glay € H'(0,T: Hy) (27))
because of

| stnpwax = [ stengeods

2, 20
for every ¢ € H(lo) (.QS' ), where ¢ € H (10) (£20) is an arbitrary extension of ¢ to £2¢. Hence there
are some

vT e H'(0,T;L2(29)") N L2(0, T H*(25)"). ¢~ € L*(0.T: H'(27))
solving
0v” —pu"AvT + Vg = flg;  inf25 x(0,7),
divv™ =glg; in£2 x(0,7),
vV =0 onlyx(0,7),
Uolgo— in £2,.

U_h=0
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Existence of such a solution together with analogous estimates as for (vt,g™") follows e.g. from
[3, 13, 16, 17, 34]. Now extending v~ and ¢~ by zero to £2¢ and subtracting the extensions from
(u, p) we can reduce to the case (f, g,vg9) = 0.

In order to reduce to the case, where also a; = 0, we construct some A € HI(O, T; LZ(QS')) N
L»(0, T; H?(£2{)) such that

” (A,0;4,VA, VZA) ”LZ(QJTr) s¢ ||a”H%’% (Io.7)

and
Alt=o = Alr, =0, (vr,-2u"DA)¢|r, = ar, divA =0 in 2.

This can be done as follows: Choose some
Ae H'(0,T; Lo(25)") N Lo (0, T; H*(225)")

such that

14,804, VA V2D, g Cllal,

< 11
x(0,7)) 42 (Io.1)

and
Alry = Aly=0 =0, (vr,-2uTDA);|r, = a., divA|p, =0.

The existence of such an A e.g. follows from [3, Lemma 2.4]. Moreover, C > 0 in the estimate
above can be chosen independently of 0 < T < Ty for any 7y > 0. Since div /I| o = 0,
divA e H{ (.QSL) and we can apply the Bogovski operator B, cf. e.g. [14], to div A. Then we
obtain B(div A) € L2(J; HZ(2¢) N LY (24)) and

| B(div A)”Lz(‘];HZ(_Q(‘)"')) < C||A||L2(J;H2(Q(')"))'
Moreover, due to [15, Theorem 2.5] we also have
. e . e / -
||B(d1V A)”HI(J;LZ(Q(‘)*‘)) < C” leA||H1(J;H(6>1 (Q(-)‘r)) <C ”A”Hl(J;Lz(Q(‘)F))-

Since the Bogovski operator is independent of time, the latter constant can be chosen independently

of 0 < T < Tp for any Ty > 0. Altogether, we obtain that A := A — B(div A) has the properties

stated above. Replacing u by u — Ay ,+, we can finally reduce to the case vo = g = a; = 0.
0

Finally, we can also reduce to the case a, = 0 by subtracting a suitable extension of a, from the
pressure q. O

Acknowledgments. We are grateful to the anonymous referees and Stefan Schaubeck for careful
reading previous versions of this work and many comments, which improved the paper. Moreover,
the authors acknowledge support from the German Science Foundation through Grant Nos.
AB285/3-1 and AB285/4-1.

M.W. would like to express his thanks to Gieri Simonett for inspiring discussions concerning
the proof of the stability result.



74

H. ABELS AND M. WILKE

REFERENCES

. ABELS, H., The initial value problem for the Navier-Stokes equations with a free surface in LZ-Sobolev

spaces, Adv. Diff- Eq. 10 (2005), 45-64. Zb11105.35072 MR2106120

. ABELS, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with

matched densities, Arch. Rat. Mech. Anal. 194 (2009), 463-506. Zb11254.76158 MR2563636
, Nonstationary Stokes system with variable viscosity in bounded and unbounded domains,
Discrete Contin. Dyn. Syst. Ser. S 3 (2010), no. 2, 141-157. Zb11191.76038 MR2610556

. ABELS, H., GARCKE, H. AND GRUN, G., Thermodynamically consistent, frame indifferent diffuse

interface models for incompressible two-phase flows with different densities, Math. Models Methods App!.
Sci., 22 (2012). Zb11242.76342 MR2890451

. ABELS, H. AND ROGER, M., Existence of weak solutions for a non-classical sharp interface model for

a two-phase flow of viscous, incompressible fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009),
2403-2424. 7b11181.35343 MR2569901

. AMANN, H., Quasilinear parabolic problems via maximal regularity, Adv. Differential Equations 10

(2005), 1081-1110. Zb11103.35059 MR2162362

7. BERGH, J. AND LOFSTROM, J., Interpolation spaces, Springer, 1976. Zb10344.46071 MR0482275

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. BOYER, F., Mathematical study of multi-phase flow under shear through order parameter formulation,

Asymptot. Anal. 20 (1999), 175-212. Zb10937.35123 MR1700669

. SIMON, L. DE, Un’applicazione della teoria degli integrali singolari allo studio delle equazioni

differenziali lineari astratte del primo ordine, Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223.
Zb10196.44803 MR0176192

DENISOVA, I. V. AND SOLONNIKOV, V. A., Solvability in Holder spaces of a model initial-boundary
value problem generated by a problem on the motion of two fluids, Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI) 188 (1991), no. Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 22,
5-44, 186. Zb10756.35067 MR1111467

DENK, R., HIEBER, M. AND PRUSS, J., R-boundedness, Fourier multipliers and problems of elliptic and
parabolic type, Mem. Amer. Math. Soc. 166 (2003). Zblpre02021354 MR2006641

ESCHER, J. AND SIMONETT, G., A center manifold analysis for the Mullins-Sekerka model, J.
Differential Equations 143 (1998), 267-292. Zb10896.35142 MR1607952

FROHLICH, A., The Stokes operator in weighted L7 -spaces. II. Weighted resolvent estimates and maximal
LP-regularity, Math. Ann. 339 (2007), 287-316. Zb11126.35041 MR2324721

GALDI, G. P, An introduction to the mathematical theory of the Navier-Stokes equations, volume 1,
Springer, 1994. Zb10949.35004 MR1284205

GEISSERT, M., HECK, H. AND HIEBER, M., On the equation divu = g and Bogovskii’s operator in
Sobolev spaces of negative order, Partial differential equations and functional analysis, Oper. Theory Adv.
Appl. 168 (2006), 113-121. Zb11218.35073

GEISSERT, M., HESS, M., HIEBER, M., SCHWARZ, C. AND STAVRAKIDIS, K., Maximal L? — L9-
estimates for the Stokes equation: a short proof of Solonnikov’s theorem, J. Math. Fluid Mech. 12 (2010),
no. 1, 47-60. MR2602914

GIGA, Y. AND SOHR, H., Abstract L? estimates for the cauchy problem with applications to the navier-
stokes equations in exterior domains, J. Funct. Anal. 102 (1991), 72-94. Zb10739.35067 MR1138838
GRASSELLI, M. AND PRAZAK, D., Longtime behavior of a diffuse interface model for binary fluid
mixtures with shear dependent viscosity, Interfaces Free Bound. 13 (2011), 507-530. Zb11243.35026
MR2863469

GURTIN, M.-E., POLIGNONE, D. AND VINALS, J., Two-phase binary fluids and immiscible fluids
described by an order parameter, Math. Models Methods Appl. Sci. 6 (1996), 815-831. Zb10857.76008
MR1404829


Zbl 1105.35072
http://www.emis.de/MATH-item?1105.35072
MR 2106120
http://www.ams.org/mathscinet-getitem?mr=2106120
Zbl 1254.76158
http://www.emis.de/MATH-item?1254.76158
MR 2563636
http://www.ams.org/mathscinet-getitem?mr=2563636
Zbl 1191.76038
http://www.emis.de/MATH-item?1191.76038
MR 2610556
http://www.ams.org/mathscinet-getitem?mr=2610556
Zbl 1242.76342
http://www.emis.de/MATH-item?1242.76342
MR 2890451
http://www.ams.org/mathscinet-getitem?mr=2890451
Zbl 1181.35343
http://www.emis.de/MATH-item?1181.35343
MR 2569901
http://www.ams.org/mathscinet-getitem?mr=2569901
Zbl 1103.35059
http://www.emis.de/MATH-item?1103.35059
MR 2162362
http://www.ams.org/mathscinet-getitem?mr=2162362
Zbl 0344.46071
http://www.emis.de/MATH-item?0344.46071
MR 0482275
http://www.ams.org/mathscinet-getitem?mr=0482275
Zbl 0937.35123
http://www.emis.de/MATH-item?0937.35123
MR 1700669
http://www.ams.org/mathscinet-getitem?mr=1700669
Zbl 0196.44803
http://www.emis.de/MATH-item?0196.44803
MR 0176192
http://www.ams.org/mathscinet-getitem?mr=0176192
Zbl 0756.35067
http://www.emis.de/MATH-item?0756.35067
MR 1111467
http://www.ams.org/mathscinet-getitem?mr=1111467
Zbl pre02021354
http://www.emis.de/MATH-item?pre02021354
MR 2006641
http://www.ams.org/mathscinet-getitem?mr=2006641
Zbl 0896.35142
http://www.emis.de/MATH-item?0896.35142
MR 1607952
http://www.ams.org/mathscinet-getitem?mr=1607952
Zbl 1126.35041
http://www.emis.de/MATH-item?1126.35041
MR 2324721
http://www.ams.org/mathscinet-getitem?mr=2324721
Zbl 0949.35004
http://www.emis.de/MATH-item?0949.35004
MR 1284205
http://www.ams.org/mathscinet-getitem?mr=1284205
Zbl 1218.35073
http://www.emis.de/MATH-item?1218.35073
MR 2602914
http://www.ams.org/mathscinet-getitem?mr=2602914
Zbl 0739.35067
http://www.emis.de/MATH-item?0739.35067
MR 1138838
http://www.ams.org/mathscinet-getitem?mr=1138838
Zbl 1243.35026
http://www.emis.de/MATH-item?1243.35026
MR 2863469
http://www.ams.org/mathscinet-getitem?mr=2863469
Zbl 0857.76008
http://www.emis.de/MATH-item?0857.76008
MR 1404829
http://www.ams.org/mathscinet-getitem?mr=1404829

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

TWO-PHASE NAVIER—-STOKES-MULLINS—SEKERKA EQUATIONS 75

HOHENBERG, P.C. AND HALPERIN, B.I., Theory of dynamic critical phenomena., Rev. Mod. Phys. 49
(1977), 435-479.

JOHNSEN, J., Pointwise multiplication of Besov and Triebel-Lizorkin spaces, Math. Nachr. 175 (1995),
85-133. Zb10839.46026 MR1355014

KiM, N., CONSIGLIERI, L. AND RODRIGUES, J. F., On non-Newtonian incompressible fluids with phase
transitions, Math. Methods Appl. Sci. 29 (2006), 1523—1541. Zb11101.76004 MR2249576

KOHNE, M., PRUSS, J. AND WILKE, M., Qualitative behaviour of solutions for the two-phase Navier—
Stokes equations with surface tension, to appear in Math. Ann. DOI10.1007/s00208-012-0860-7

, On quasilinear parabolic evolution equations in weighted Lp-spaces, J. Evol. Equ. 10 (2010),
443-463. Zb11239.35075 MR2643804

LUNARDI, A., Analytic semigroups and optimal regularity in parabolic problems, Birkhduser 1995.
Zb10816.35001 MR3012216

PRUSS, J., Maximal regularity for evolution equations in Lp-spaces, Conf. Semin. Mat. Univ. Bari (2002),
1-39 (2003).

PRUSS, J., SIMONETT, G. AND ZACHER, R., On convergence of solutions to equilibria for quasilinear
parabolic problems, J. Differential Equations 246 (2009), 3902-3931. Zb11172.35010 MR2514730
ROUSAR, I. AND NAUMANN, E.B., Spinodal decomposition with surface tension driven flows, Chemical
Engineering Communications 105 (2010), 77-98.

RUNST, T., Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type, Anal.
Math. 12 (1986), 313-346. Zb10644.46022 MRO877164

SHIBATA, Y. AND SHIMIZU, S., On a resolvent estimate of the interface problem for the Stokes system
in a bounded domain, J. Differential Equations 191 (2003), 408-444. Zb11030.35134 MR1978384
SHIMIZU, S., Maximal regularity and viscous incompressible flows with free interface, Parabolic and
Navier-Stokes equations. Part 2, Banach Center Publ., vol. 81, Polish Acad. Sci. Inst. Math., Warsaw,
2008, pp. 471-480. Zb11154 . 35480 MR2548875

SIMON, J., Sobolev, Besov and Nikol’skil fractional spaces: imbeddings and comparisons for vector
valued spaces on an interval, Ann. Mat. Pura Appl. 157 (1990), 117-148. Zb10727.46018

SOHR, H., The Navier-Stokes equations, Birkhduser Advanced Texts: Basler Lehrbiicher. Birkhduser
2001. Zb10983.35004 MR1928881

SOLONNIKOV, V. A., Estimates for solutions of a non-stationary linearized system of Navier-Stokes
equations, Trudy Mat. Inst. Steklov. 70 (1964), 213-317. MR0171094

STEIN, E. M., Singular integrals and differentiability properties of functions, Princeton Hall Press, 1970.
Zb10207.13501 MR0290095

Triebel, H., Interpolation theory, function spaces, differential operators, North-Holland Publishing
Company, 1978. Zb10387.46033 MR0O500580



Zbl 0839.46026
http://www.emis.de/MATH-item?0839.46026
MR 1355014
http://www.ams.org/mathscinet-getitem?mr=1355014
Zbl 1101.76004
http://www.emis.de/MATH-item?1101.76004
MR 2249576
http://www.ams.org/mathscinet-getitem?mr=2249576
DOI 10.1007/s00208-012-0860-7
http://dx.doi.org/10.1007/s00208-012-0860-7
Zbl 1239.35075
http://www.emis.de/MATH-item?1239.35075
MR 2643804
http://www.ams.org/mathscinet-getitem?mr=2643804
Zbl 0816.35001
http://www.emis.de/MATH-item?0816.35001
MR 3012216
http://www.ams.org/mathscinet-getitem?mr=3012216
Zbl 1172.35010
http://www.emis.de/MATH-item?1172.35010
MR 2514730
http://www.ams.org/mathscinet-getitem?mr=2514730
Zbl 0644.46022
http://www.emis.de/MATH-item?0644.46022
MR 0877164
http://www.ams.org/mathscinet-getitem?mr=0877164
Zbl 1030.35134
http://www.emis.de/MATH-item?1030.35134
MR 1978384
http://www.ams.org/mathscinet-getitem?mr=1978384
Zbl 1154.35480
http://www.emis.de/MATH-item?1154.35480
MR 2548875
http://www.ams.org/mathscinet-getitem?mr=2548875
Zbl 0727.46018
http://www.emis.de/MATH-item?0727.46018
Zbl 0983.35004
http://www.emis.de/MATH-item?0983.35004
MR 1928881
http://www.ams.org/mathscinet-getitem?mr=1928881
MR 0171094
http://www.ams.org/mathscinet-getitem?mr=0171094
Zbl 0207.13501
http://www.emis.de/MATH-item?0207.13501
MR 0290095
http://www.ams.org/mathscinet-getitem?mr=0290095
Zbl 0387.46033
http://www.emis.de/MATH-item?0387.46033
MR 0500580
http://www.ams.org/mathscinet-getitem?mr=0500580

	Introduction
	Preliminaries
	Notation and Function Spaces
	Coordinate Transformation and Linearized Curvature Operator

	Two-Phase Navier–Stokes System for Given Interface
	Local Well-Posedness
	Qualitative Behavior
	Maximal Regularity for the Linear Stokes System

