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An adhesive unilateral contact problem between visco-elastic heat-conductive bodies in linear

Kelvin-Voigt rheology is scrutinized. The flow-rule for debonding the adhesive is considered

rate-independent, unidirectional, and non-associative due to dependence on the mixity of modes

of delamination, namely of Mode I (opening) and of Mode II (shearing). Such mode-mixity

dependence of delamination is a very pronounced (and experimentally confirmed) phenomenon

typically considered in engineering models. An anisothermal, thermodynamically consistent model is

derived, considering a heat-conductive viscoelastic material and the coupling via thermal expansion

and adhesion-depending heat transition through the contact surface. We prove the existence of weak

solutions by passing to the limit in a carefully designed semi-implicit time-discretization scheme.
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1. Introduction

Nonlinear contact mechanics is an important part of mechanical engineering and receives still

growing attention due to its numerous applications. We focus on the modelling and analysis of

an inelastic process called delamination (sometimes also referred to as debonding), between two

elastic bodies, glued together along a prescribed delamination surface. “Microscopically” speaking,

some macromolecules in the adhesive may break upon loading and we assume that they can never

be glued back, i.e., no “healing” is possible. This makes the process unidirectional, viz. irreversible.

On the glued surface, we consider the delamination process as rate-independent and, in the bulk,

we also take into account rate-dependent inertial, viscous, and heat-transfer effects. The ultimate

phenomenon counted in engineering modelling (and so far mostly ignored in the mathematical

literature), is the dependence of this process on the modes under which it proceeds. Indeed, Mode

I (=opening) usually dissipates much less energy than Mode II (=shearing). The difference may be

tens or even hundreds of percents, cf. [1, 22, 23, 47]. Moreover, the delamination process rarely

follows such pure modes: in general, the mixed mode is favored. Microscopically, this difference

is explained either by some roughness of the glued surface (to be overcome in Mode II but not

in Mode I, cf. [11]) or by some plastification, either in the adhesive or in a narrow strip around the
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delaminating surface, before the delamination itself is triggered (and, as usual in plasticity involving

trace-free plastic strain, again only shearing in Mode II can trigger this plastification, not opening

in Mode I, cf. [22, 51]).

In this article, we focus on a standard engineering model which, however, was never rigorously

analyzed so far. Even for the isothermal variant of this model, existence of solutions has not yet

been proved, although computational simulations are routinely launched and successfully used in

applications. In particular, we extend the analysis of [20, 35] to the mixity-sensitive case. For other

results on models for rate-independent adhesive contact, we refer to [26, 44]. The analysis of models

featuring a rate-dependent evolution for the delamination variable was carried out in [4–8, 32, 33],

cf. also the monographs [10, 46] for further references.

The initial-boundary-value problem we are going to analyze is written down in its classical

formulation in Section 2. In the following lines, we just highlight the main features of the model,

in particular focusing on the mixity of delamination modes. We confine ourselves to small strains

and, just for the sake of notational simplicity, we restrict the analysis to the case of two (instead of

several) bodies ˝C and ˝� glued together along the contact surface �C. The material in the bulk

is taken to be heat conductive, and thus the system is completed by the nonlinear heat equation in a

thermodynamically consistent way. The contact surface is considered infinitesimally thin, so that the

thermal capacity of the adhesive is naturally neglected. The coupling of the mechanical and thermal

effects thus results from thermal expansion, dissipative/adiabatic heat production/consumption

(depending, in particular, on the mode mixity on �C), and here also from the possible dependence of

the heat transfer through the contact surface �C on the delamination itself, and on the possible slot

between the bodies if the contact is debonded.

We consider an elastic response of the adhesive, and then one speaks about adhesive contact

(in contrast to brittle contact where a mixity-dependent model seems to be particularly difficult to

analyze). The elastic response in the adhesive will be assumed linear, determined by the (positive-

definite) matrix of elastic moduli A. At a current time, the “volume fraction” of debonded molecular

links will be “macroscopically” described by the scalar delamination parameter z W �C ! Œ0; 1�,

which can be referred to the modelling approach by M. Frémond, see [13, 14]. The state z.x/ D 1

means that the adhesive is still 100% undestroyed and thus fully effective, while the intermediate

state 0 < z.x/ < 1 means that there are some molecular links which have been broken but the

remaining ones are effective, and eventually z.x/ D 0 means that the surface is already completely

debonded at x 2 �C. In some simplification, based on the Griffith concept [16], it is assumed that

a specific phenomenologically prescribed energy a (in J/m2, in 3-dimensional situations) is needed

to break the macromolecular structure of the adhesive, independently of the rate of this process.

Thus, delamination is a rate-independent and activated phenomenon, governed by the maximum

dissipation principle, and we shall accordingly consider a rate-independent flow rule for z.

Let us now comment on the main new feature of the model presently analyzed, i.e., its mixity-

sensitivity. An immediate reflection of the standard engineering approach as, e.g., in [17, 48, 49]

is to make the activation energy a D a. G/ depend on the so-called mode-mixity angle  G. For

instance, if �C D .0; 0; 1/ at some x 2 �C (with �C the unit normal to �C, oriented from ˝C to ˝�),

and A D diag.�n; �t; �t/, the mode-mixity angle is defined as

 G D  G

���
u

���
WD arc tan

vuut �t

ˇ̌
ŒŒu��t

ˇ̌2

�n

ˇ̌
ŒŒu��n

ˇ̌2
(1.1)

where ŒŒu��t and ŒŒu��n stand for the tangential and the normal jump of displacement. They give
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the decomposition of the jump of displacement across the boundary �C as ŒŒu�� D ŒŒu��n�C C ŒŒu��t,

with ŒŒu��n D ŒŒu�� � �C. In fact, to satisfy natural analytical requirements (viz. the continuity of the

function a1 below, cf. (1.3)), one should rather consider a suitable regularization of (1.1) to avoid

discontinuity at 0. For example, it is sufficient to take

 G.
��
u

��
/ D arc tan

vuut �t

ˇ̌
ŒŒu��t

ˇ̌2

�n

ˇ̌
ŒŒu��n

ˇ̌2 C �
with a small � > 0.

The coefficient �t is often smaller than �n, and a typical phenomenological form of a.�/ used in

engineering [17] is, e.g.,

a. G/ WD aI

�
1C tan2

�
.1��/ G

��
: (1.2)

In (1.2), aI D a.0/ is the activation threshold for delamination mode I and � is the so-

called delamination-mode-sensitivity parameter. Note that moderately strong delamination-mode

sensitivity occurs when the ratio aII=aI is about 5–10 (where aII D a.90ı/ is the activation threshold

for the pure delamination mode II). Then, one has � about 0.2–0.3; cf. [49].

In the thermodynamical context, the energy a needed for delamination is dissipated by the

system in two ways: one part a1 is spent to the chaotic vibration of the atomic lattice of both sides of

the delaminating surface �C, which leads “macroscopically” to heat production (cf. also [44, Remark

4.2]), while another part a0 is spent to create a new delaminated surface (or, “microscopically”

speaking, to break the macromolecules of the adhesive). Thus a D a0 C a1. Consistently with the

dissipation, Mode II also heats up considerably more than Mode I, as experimentally documented

in [34]. In view of (1.2), an option suggested already in [42] is

a0

���
u

���
WD aI; a1

���
u

���
WD aItan2

�
.1��/ G

���
u

����
; (1.3)

meaning that plain delamination does not trigger heat production at all, and only the additional

dissipation related with Mode II contributes to the heat production on the delaminating surface.

Moreover, taking a0 constant reflects the phenomenon that the energy stored during delamination

cannot further be changed during subsequent evolution. Anyhow, in what follows we will consider

also this contribution to the stored energy dependent on ŒŒu�� as it does not bring any mathematical

problems and as, being premultiplied by z, cf. (2.12a) below, it anyhow does not influence the stored

energy after complete delamination even if it depends on ŒŒu��.

We summarize the features of these particular modes in Table 1.

The mathematical difficulties attached to the analysis of the PDE system for the present

mixity-sensitive delamination model arise both from the proper thermodynamical coupling, and

from hosting an inelastic rate-independent process on �C. Models combining thermal and rate-

independent effects have already been successfully analyzed in [39] for inelastic processes in

the bulk, and in [35] for surface delamination. The essential ingredient for the analysis is the

satisfaction of the energy balance. In this direction, the concept of energetic solutions to rate-

independent systems recently developed in [24, 27–29] and adapted to systems with inertia and

viscosity in [38] appears truly essential. Here, additional difficulties are related with the mixity-

dependence of the dissipation, which makes it non-associative, in contrast to the mixity-insensitive

case and to another model recently devised and analyzed in the isothermal case in [42, 43]. Here



4 R. ROSSI AND T. ROUBÍČEK

TABLE 1. Schematic summary of particular modes

Features

Energy dissipation Heat generation Mode-mixity angle  G

Mode I (opening) small small or none 0ı

Mixed mode moderate moderate in between 0ı and 90ı

Mode II (shearing) large large 90ı

“non-associative” means that there is no unique activation threshold associated with the dissipation

mechanism. (Sometimes, however, the meaning of the adjective “non-associative” rather means that

the dissipative forces do not have any potential.) This analytical feature has led us to resort to a

higher-order gradient in the momentum equation via the concept of the so-called hyperstresses,

already justified and used in the theoretical-mechanical literature, in relation with the concept of

so-called nonsimple materials, cf. e.g. [15, 31, 50]. Such a regularization brings various inevitable

technicalities into the classical formulation of the problem, cf. (2.6) and (3.3) later on.

The main result of this paper is the existence of solutions to the initial-boundary value problem

associated with the mixity-sensitive model under investigation. The proof is performed by passing

to the limit in a suitably devised semi-implicit discretization scheme, cf. (5.4). Let us mention that

such a kind of scheme (already applied in [21, Sect.3.1] for a special dynamic isothermal fracture

problem) leads to considerable analytical simplifications, in comparison with the fully implicit

scheme used in [35]. In the existence proof we shall distinguish the dynamic case, involving inertial

terms in the momentum equation, and the quasistatic one, where inertia is neglected. In the latter

situation, we will be able to tackle fairly general contact conditions for the displacement variable

u, in particular including (a generalization of) the Signorini frictionless contact law. For further

explanations and comments, we refer to Remark 4.3.

Let us emphasize, not to create any confusion, that analytically the problem exhibits a lot

of difficulties and there is probably not much freedom in developing a model that would be

mathematically justified, although engineers routinely run computational simulations where e.g.

the mode-mixity angle  G depends on traction stresses, which hardly can guarantee continuity

of the corresponding Nemytskiı̆ mapping in any sense. Having doubly nonlinear structure of

delamination with constraints both on
.
z and on z, introducing a (small) viscosity into the flow

rule does not seem trivial or even possible, cf. [19]. Yet, considering the flow rule for z without

viscosity (i.e., rate-independent),
.
z is controlled only as a measure on ˙ C. Then, in our mode-

sensitive delamination, u must have traces on ˙C continuous on ˙C, cf. (6.6) below. It is in order

to have this, in our 3-dimensional framework, that we need to resort to the concept of nonsimple

materials (i.e., hyperstresses). More precisely, simple materials would work but only in (practically

not interesting) 1-dimensional problems. Having elastic hyperstresses, we also need corresponding

viscous hyperstresses, which makes the acceleration in duality with velocity and thus guarantees

the energy preservation. This is how the rigorously justified mode-sensitive model presented in

Section 2 has been gradually built, possibly without much freedom for other options. And, after

all, still a practically important case (namely inertia combined with unilateral contact) remains

uncovered, which documents nontriviality of the whole issue.
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The plan of the paper is as follows: in Section 2 we formulate the initial-boundary-value problem

in its classical formulation. We also briefly sketch its derivation, referring to [35] for more details.

Hence, in Sec. 3, after introducing a suitable transformation for the heat equation, we advance a

suitably devised weak formulation of our PDE system, and comment on its relation to the classical

formulation of Sec. 2. We state our main existence result in Sec. 4, and set up the approximation

via a semi-implicit time-discretization scheme in Sec. 5. For the discrete solutions, suitable a priori

estimates are obtained, which allow us to pass to the limit in the time-discrete approximation, and

conclude the existence of solutions in Sec. 6.

2. The model and its derivation

Hereafter, we suppose that the elastic body occupies a bounded Lipschitz domain ˝ � R3 and is

composed by two disjoint Lipschitz subdomains˝C and˝�, by �C their common boundary, which

represents a prescribed surface where delamination may occur, i.e.

˝ D ˝C [ �C [˝� :

We denote by � the outward unit normal to @˝ , and by �C the unit normal to �C, which we consider

oriented from ˝C to ˝�. Moreover, given v 2 W 1;2.˝n�C/, v
C (respectively, v�) signifies the

restriction of v to ˝C (to ˝�, resp.). We further suppose that the boundary @˝ of ˝ splits as

@˝ D �D [ �N [ �0

with �D and �N open subsets in the relative topology of @˝ , disjoint one from each other, and �0

with zero 2-dimensional measure. Considering T > 0 a fixed time horizon, we set

Q WD .0; T / �˝; ˙ WD .0; T / � @˝; ˙C WD .0; T / � �C; ˙D WD .0; T / � �D;

˙N WD .0; T / � �N:

For the reader’s convenience, let us summarize the basic notation used in Table 2.

The state is formed by the triple .u; �; z/. We use Kelvin–Voigt’s rheology and thermal

expansion. As a further contribution to the stress � W .0; T / � ˝ ! R3�3, we also consider the

hyperstress h W .0; T / � ˝ ! R3�3�3, which accounts for “capillarity-like” effects supposed

to occur in so-called nonsimple materials. Mimicking Kelvin-Voigt’s rheology, we incorporate

the corresponding dissipation contribution to the hyperstress h. Hence we assume the stress � W
.0; T / �˝ ! R3�3 in the form:

� D �.u;
.
u; �/ WD De.

.
u/„ƒ‚…

viscous
stress

C C
�
e.u/�E�

�
„ ƒ‚ …

elastic
stress

� div
�
Hre.u/C Gre..u/„ ƒ‚ …

DW h visco-elastic
hyperstress

�
; (2.1)

The G-term will ensure that the acceleration
..
u is in duality with the velocity

.
u, which is needed if

% > 0 is considered. Furthermore, we shall denote by T D T .u; v; �; n/ the traction stress on some

two-dimensional surface � with outward unit normal n, i.e.

T .u;
.
u; �; n/ WD �.u;

.
u; �/

ˇ̌
�
n : (2.2)

Later, we shall take either � D �N and n D �, or � D �C and n D �C.
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TABLE 2. Summary of the main notation used through the paper

u W ˝n�C ! R
3 displacement,

� W ˝n�C ! .0;C1/ absolute temperature,

z W �C ! Œ0; 1� delamination variable,

e D e.u/ D 1
2 ru>C 1

2 ru small strain tensor,

ŒŒu�� D uCj�C
� u�j�C

jump of u across �C,

� stress tensor,

h visco-elastic hyperstress,

# rescaled temperature (enthalpy),

C 2 R
34

elasticity constants,

D 2 R34
viscosity constants,

H 2 R36
elasticity constants for hyperstress,

G 2 R36
viscosity constants for hyperstress,

KDK.e; �/2R3�3 heat-conduction coefficients,

E 2 R3�3 thermal-expansion coefficients,

B WD CE,

A 2 R3�3 elastic coefficients of the adhesive,

% > 0 mass density,

cv D cv.�/ heat capacity,

a0 D a0.ŒŒu��/ energy stored on �C,

a1 D a1.ŒŒu��/ energy dissipated on �C,

�D�.ŒŒu��; z/ heat-transfer coefficient on �C,

F W Q ! R3 applied bulk force,

wD prescribed boundary displacement,

f W ˙N ! R3 applied traction,

G W Q ! R bulk heat source,

g W ˙ ! R external heat flux,

 ’s (bulk and surface) free energies,

�’s (pseudo)potentials of dissipative forces,

�’s (bulk and surface) rates of dissipation.

We address a generalization of the standard frictionless Signorini conditions on �C for the

displacement u. This is rendered through a closed, convex coneK.x/ � R3, possibly depending on

x 2 �C. In terms of the general cone-valued mappingK W �C � R3, in the case of no adhesion, the

boundary conditions on �C can be given in the complementarity form as

ŒŒu�� � 0;

T .u;
.
u; �; �C/ �� 0;

T .u;
.
u; �; �C/ � ŒŒu�� D 0

9
=
; on �C: (2.3)

In (2.3), � is the ordering induced by the mapping K W �C � R3, in the sense that, for v1; v2 W
�C ! R

3,

v1 � v2 if and only if v1.x/�v2.x/ 2 K.x/ for a.a. x 2 �C. (2.4)

Likewise, �� is the dual ordering induced by the negative polar cone toK , viz. for �1; �2 W �C ! R3,

�1 �� �2 if and only if �1.x/�v > �2.x/�v for all v 2 K.x/, for a.a. x 2 �C.

Possible choices for the cone-valued mappingK W �C � R
3 are

K.x/ D fv 2 R
3I v � �C.x/ > 0g for a.a.x 2 �C; or (2.5a)

K.x/ D R
3 for a.a.x 2 �C: (2.5b)

In the case (2.5a), conditions (2.3) reduce to the standard unilateral frictionless Signorini contact

conditions for the normal displacement. In the case (2.5b), the complementarity problem (2.3)

translates into T .u;
.
u; �; �C/ D 0 on �C. Thus, (2.5b) does not allow for any interaction of the bodies

˝C and ˝� after a complete delamination. In fact, this model is very simplified because it does

not prevent possible interpenetration and delamination can be thus triggered, rather unphysically,

by mere compression. Nevertheless, a model like this may be feasible in specific situations
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and neglecting the interpenetration after developed cracks is often accepted in the mathematical

literature, cf., e.g., [9]. Note that, in (2.5b), K.x/ is a linear manifold for a.a. x 2 �C. Indeed, later

on (cf. Thm. 4.2) we shall have to assume the latter property in the case % > 0. Let us finally mention

that, the complementarity problem (2.3) will take a more complicated form if adhesion is involved,

cf. (2.6i-k) below.

Classical formulation of the adhesive contact problem. Beside the force equilibrium coupled with

the heat equation inside Qn˙C and supplemented with standard boundary conditions, we have two

complementarity problems on ˙C. Altogether, we have the boundary-value problem

%
..
u � div

�
De.

.
u/CCe.u/�B� � div h

�
D F; h D Hre.u/CGre..u/ in Qn˙C; (2.6a)

cv.�/
.
� � div

�
K.e.u/; �/r�

�
D De.

.
u/We..u/ � �BWe..u/C Gre..u/.Wre..u/ in Qn˙C; (2.6b)

u D 0 on ˙D; (2.6c)

T .u;
.
u; �; �/ � div

S
.h � �/ D f on ˙N; (2.6d)

.K.e.u/; �/r�/� D g on ˙; (2.6e)

hW.� ˝ �/ D 0 on ˙D[˙N; (2.6f)
��
De.

.
u/C Ce.u/ � B� � div h

��
�C � div

S
.
��
h
��
�C/ D 0 on ˙C; (2.6g)

hCW.�C ˝ �C/ D h�W.�C ˝ �C/ D 0 on ˙C; (2.6h)
��
u

��
� 0 on ˙C; (2.6i)

T .u;
.
u; �; �C/ � div

S
.h � �C/C zA

��
u

��
�za0

0.
��
u

��
/ �� 0 on ˙C; (2.6j)

�
T .u;

.
u; �; �C/�div

S
.h � �C/CzA

��
u

��
�za0

0.
��
u

��
/
�

�
��
u

��
D 0 on ˙C; (2.6k)

.
z 6 0 on ˙C; (2.6l)

d 6 a0.
��
u

��
/C a1.

��
u

��
/ on ˙C; (2.6m)

.
z

�
d � a0.

��
u

��
/ � a1.

��
u

��
/
�

D 0 on ˙C; (2.6n)

d 2 @IŒ0;1�.z/C 1
2
A

��
u

��
�
��
u

��
on ˙C; (2.6o)

1
2

�
K.e.u/; �/r� jC�C

C K.e.u/; �/r� j��C

�
� �C C �.

��
u

��
; z/

��
�

��
D 0 on ˙C; (2.6p)

��
K.e.u/; �/r�

��
� �C D �a1.

��
u

��
/
.
z on ˙C; (2.6q)

where
.W denotes the tensorial product involving summation over 3 indices, and we have used the

notation hC D hj˝C
and h� D hj˝�

. In (2.6d), we denoted by div
S

the two-dimensional “surface

divergence”, defined by div
S

WD tr.r
S
/; where tr is the trace operator (of a 2�2 matrix), and r

S

denotes the tangential derivative, defined by r
S
v D rv� @v

@�
�:As to the involved tensorial symbols,

K D K.e; �/ is a 2nd-order positive definite tensor, (2.7a)

i.e., a 3�3-matrix, while

C; D W R3�3
sym ! R

3�3
sym are 4th-order positive definite tensors, and

8i; j; k; l D 1; :::; 3 W Cijkl D Cj ikl D Cklij and Dijkl D Dj ikl (2.7b)
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in the sense that the form e 7! CeWe is convex, and similarly for D. In particular, these symmetries

ensure that both Ce.u/ and De.u/ are R3�3
sym -valued, and the operator divCe.u/ has a potential.

Analogously, for the higher-order terms we suppose that

H;G W R3�3�3 ! R
3�3�3 are 6th-order positive definite tensors, and

8i; j; k; l;m; n D 1; : : : ; 3 W Hijklmn D Hikjlmn D Hlmnijk and Gijklmn D Gikjlmn: (2.7c)

In particular, this ensures that both divHre.u/ and divGre.u/ are R3�3
sym -valued, and the operator

div2Hre.u/ has a potential.

The complementarity problem (2.6i)–(2.6k) describes general, possibly unilateral (depending on

the choice of the mappingK W �C � R3) contact. Indeed, for h D 0 and z D 0 (i.e., no hyperstress

contribution, and complete delamination), (2.6i)–(2.6k) reduce to relations (2.3), which in turn

generalize the Signorini conditions. For later reference, we point out that the complementarity

conditions (2.6i)–(2.6k) are equivalent to the subdifferential inclusion

@IK

���
u

���
C T .u;

.
u; �; �C/C zA

��
u

��
� za0

0

���
u

���
3 0 on ˙C, (2.8)

which features the indicator functional IK W L2.�CIR3/ ! Œ0;C1� associated with the multivalued

mappingK W �C � R3, viz.

IK.v/ D
Z

�C

IK.x/

�
v.x/

�
dS for all v 2 L2.�CIR3/, (2.9)

and its subdifferential (in the sense of convex analysis) @IK W L2.�CIR3/ � L2.�CIR3/.

In turn, adhesive contact results from the complementarity conditions (2.6l)–(2.6o), which can

be reformulated as the flow rule

@I.�1;0�.
.
z/C @IŒ0;1�.z/C 1

2
A

��
u

��
�
��
u

��
� a0

���
u

���
� a1

���
u

���
3 0 in ˙C, (2.10)

with the indicator functions I.�1;0�; IŒ0;1� W R ! Œ0;C1� and their (convex analysis)

subdifferentials @I.�1;0�; @IŒ0;1� W R � R.

Some comments on the derivation of the model. In [35], a thorough derivation of the analogue

of system (2.6), in the case when the mode-mixity dependence is neglected in the model, has been

developed. Therefore, we refer the reader to [35, Sec. 3] for all details, and in the next lines we just

highlight the main differences between the system considered in [35] and the present (2.6). Namely,

here the free energy is enhanced by the higher-order term 1
2
Hre.u/.Wre.u/, the dissipation energy

in the bulk is enhanced by Gre. .u/.Wre. .u/, and on the delamination surface �C we have a0 and a1

depending on ŒŒu��.

More specifically, we consider the free energy, the dissipation rate, and the (pseudo)potential of

dissipative forces in the bulk given by

 bulk.e;re; �/ D 1

2
C.e�E�/W.e�E�/C 1

2
Hre.Wre � �2

2
BWE �  0.�/; (2.11a)

�bulk.
.
e;r .

e/ D 2�2.
.
e;r .

e/ with �2.
.
e;r .

e/ WD 1

2
D
.
eW.e C 1

2
Gr .

e
.Wr .
e; (2.11b)
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where  0 W .0;C1/ ! R is a strictly convex function. The free energy and the dissipation rate on

the contact surface are

 surf.v; z/ D
(
z
�

1
2
Av�v � a0.v/

�
if v � 0 and 06z61,

C1 otherwise;
(2.12a)

�surf
�
v;

.
z
�

D �1

�
v;

.
z
�

WD
(
a1.v/

ˇ̌.
z
ˇ̌

if
.
z 6 0;

C1 otherwise:
(2.12b)

The overall free energy and the (pseudo)potential of dissipative forces are then

	.u; z; �/ D
Z

˝n�C

 bulk.e.u/;re.u/; �/ dx C
Z

�C

 surf
���
u

��
; z

�
dS ; (2.13)

�.uI .u; .z/ D
Z

˝n�C

�bulk
�
e.

.
u/;re..u/

�
dx C

Z

�C

�surf
���
u

��
;
.
z
�

dS ; (2.14)

respectively. Considering the specific kinetic energy 1
2
% jvj2 (with % > 0 the mass density), for all

v 2 L2.˝/ we define the overall kinetic energy Tkin and the external mechanical load L by

Tkin.v/ WD 1

2

Z

˝

% jvj2 dx and
˝
L.t/; u

˛
WD

Z

˝

F.t/�udx C
Z

�N

f �udS: (2.15)

The mechanical part of system (2.6), i.e. equations (2.6a, c, d, f–o), is then just the classical

formulation of the abstract evolutionary system

@Tkin

�..
u.t/

�
C @.

.
u;

.
z/�

�
u.t/I e

� .
u.t/

�
;
.
z.t/

�
C @.u;z/	

�
u.t/; z.t/; �.t/

�
3 L.t/ for t 2 .0; T /;

(2.16)

where @ denotes the (convex analysis) subdifferential of the functionals � and 	 , w.r.t. suitable

topologies which we do not specify. The remaining equations in (2.6) yield the heat-transfer

problem, i.e. (2.6b, e, p, q). Its derivation proceeds standardly from postulating the entropy s by

the so-called Gibbs’ relation s D �	 0
�
.u; z; �/, viz. hs; Q�i D �	 0

�
.u; z; � I Q�/ for all Q� , where

	 0
�
.u; z; � I Q�/ is the directional derivative of 	 at .u; z; �/ in the direction Q� . This yields the entropy

in the bulk as

s D s.�; e/ D �@ 
bulk

@�
.e.u/; �/ D BWe.u/C  0

0.�/: (2.17)

Further, we use the so-called entropy equation

�
.
s D �bulk

�
e.

.
u/

�
� div j: (2.18)

Substituting
.
s D BWe. .u/ �  00

0 .�/
.
� , cf. (2.17), into the entropy equation (2.18) yields the heat

equation

cv.�/
.
� C div j D 2�2

�
e.

.
u/

�
� �BWe..u/ with cv.�/ D � 00

0 .�/: (2.19)

Hence, assuming the constitutive relation j WD �K.e.u/; �/r� for the heat flux, i.e. Fourier’s law

in an anisotropic medium, one obtains the heat equation in the form (2.6b).
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Similar, but simpler thermodynamics can also be seen on the contact boundary by involving

 surf and �surf. Since (2.12a) is independent of temperature, the “boundary entropy”=� @
@�
 surf is

simply zero, and the corresponding entropy equation reduces to 0 D �surf.
.
z/ � ŒŒj �� (as an analog

of (2.18)), which then results in (2.6q). Incorporating the analog of the phenomenological Fourier’s

law, we arrive at (2.6p).

We emphasize that the model is thermodynamically consistent, in the sense that it conserves the

total energy, i.e., here

d

dt

� Z

˝n�C

%

2
j.uj2 C 1

2
Ce.u/We.u/C 1

2
Hre.u/.Wre.u/C h.�/ dx

„ ƒ‚ …
kinetic, elastic, and thermal energies

C
Z

�C

z

2
A

��
u

��
�
��
u

��
� a0.

��
u

��
/z dS

„ ƒ‚ …
mechanical energy

in the adhesive

�

D
Z

˝

F �.u dx

„ ƒ‚ …
power of bulk

mechanical load

C
Z

�

g dS C
Z

�N

f �.u dS

„ ƒ‚ …
power of surface heat
and mechanical load

; (2.20)

and it satisfies the Clausius–Duhem’s entropy inequality:

d

dt

Z

˝

s dx D
Z

˝

div.Kr�/
�

dx D
Z

˝

Kr� � r�
�2

dx C
Z

@˝

g

�
dS > 0; (2.21)

as well as non-negativity of the temperature under suitable natural conditions, cf. Theorem 4.2.

REMARK 2.1 The general theory of heat transfer in the bulk and across interfaces rather uses

the coldness 1=� as a driving force than temperature � itself, as discussed in [18], cf. also [25].

Since we allow for a dependence of K on � , we can easily write K.e; �/r� as � QK.e; �/r.1=�/
for QK.e; �/ WD K.e; �/�2. The transmission condition (2.6p) should then contain the term

�Q�.ŒŒu��; z/ŒŒ1=��� rather than �.ŒŒu��; z/ŒŒ���. Obviously, our term �.ŒŒu��; z/ŒŒ��� could be written as

�Q�.ŒŒu��; z; �Cj�C
; ��j�C

/ŒŒ1=��� with Q�.ŒŒu��; z; �C ; ��/ WD �.ŒŒu��; z/�C��. Conversely, Q�.ŒŒu��; z/
would yield �.ŒŒu��; z; �C; ��/ D Q�.ŒŒu��; z/=.�C��/. This reveals that we should allow for the

coefficient � to depend on the traces of �Cj�C
and ��j�C

as well. This additional dependence, also

subject to the transformation in Sect. 3 below, would lead to rather straightforward modifications in

a lot of formulas, assumptions, estimates, and limit passages. The latter should anyhow be possible

due to the strong convergence of the traces of the (transformed) temperature, cf. (6.9) below. That

is why, we dare omit to explore this generalization.

REMARK 2.2 Alternatively, in the lines of [6] and [25, Sec. 4.2], we could write entropy production

due to heat transfer as a part of the dissipation potential, so that the heat flux can be seen as a gradient

of this augmented potential with respect to the temperature gradients (or differences). Namely, we

could incorporate the contribution 1
2
K.e; �/r� �r� into �bulk in (2.11b), and 1

2
�.ŒŒu��; z/jŒŒ���j2 into

�surf in (2.12b). Then the heat flux K.e; �/r� would turn out to be @�bulk=@.r�/ and the boundary

heat flux �.ŒŒu��; z/ŒŒ��� would be @�surf=@.ŒŒ���/.
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3. Enthalpy transformation and energetic solution

In what follows we are going to tackle a reformulation of the PDE system (2.6), in which we

replace the heat equation (2.6b) with an enthalpy equation. Namely, we switch from the absolute

temperature � , to the enthalpy # , defined via the so-called enthalpy transformation, viz.

# D h.�/ WD
Z �

0

cv.r/ dr: (3.1)

Thus, h is a primitive function of cv, normalized in such a way that h.0/ D 0. We will assume in

(4.1a) below that cv is strictly positive, hence h is strictly increasing. Thus, we are entitled to define

�.#/ WD
�
h�1.#/ if # > 0;

0 if # < 0;
K.e; #/ WD K.e;�.#//

cv.�.#//
; (3.2)

where h�1 denotes the inverse function to h.

With transformation (3.1) and the related (3.2), also taking into account the subdifferential

formulations (2.8) and (2.10), the PDE system (2.6) turns into

%
..
u � div

�
De.

.
u/CCe.u/�B�.#/�div h

�
D F; h D Hre.u/C Gre. .u/

.
# � div

�
K.e.u/; #/r#

�
D De.

.
u/We. .u/ ��.#/BWe. .u/C Gre. .u/.Wre. .u/

)
in Qn˙C; (3.3a)

u D 0 on ˙D; (3.3b)
�
K

�
e.u/; #

�
r#

�
� D g

T .u;
.
u; #; �/ � div

S
.h � �/ D f

)
on ˙N; (3.3c)

hW.� ˝ �/ D 0 on ˙D [˙N; (3.3d)

ŒŒDe.
.
u/C Ce.u/ � B�.#/ � div h���C � div

S
.ŒŒh���C/ D 0

hCW.�C ˝ �C/ D h�W.�C ˝ �C/ D 0

@IK .ŒŒu��/C T .u;
.
u; #; �C/ � div

S
.h � �C/C zAŒŒu�� � za0

0.ŒŒu��/ 3 0
@I.�1;0�.

.
z/C @IŒ0;1�.z/C 1

2
AŒŒu���ŒŒu�� � a0.ŒŒu��/ � a1.ŒŒu��/ 3 0

1
2

�
K.e.u/; #/r#jC�C

C K.e.u/; #/r#j��C

�
��C C �.ŒŒu��; z/ŒŒ�.#/�� D 0

ŒŒK.e.u/; #/r#�� � �C D �a1.ŒŒu��/
.
z

9
>>>>>>>>>=
>>>>>>>>>;

on ˙C; (3.3e)

with
T .u; v; #; n/ W D T .u; v;�.#/; n/

D
�
De.v/C Ce.u/ � B�.#/ � div

�
Hre.u/C Gre.v/

��ˇ̌
�
n

(3.3f)

where again we take as n the unit normal � to �N of � D �N, and n D �C if � D �C.

REMARK 3.1 The reformulation of the heat equation (2.6b), viz. the second of (3.3a), shows the

advantage of the enthalpy transformation (3.1). Indeed, by means of (3.1), the nonlinear term

cv.�/
.
� in (2.6b) has been replaced by the linear contribution

.
# . This makes the second of (3.3a)

amenable to the time-discretization procedure developed in Section 5. Such a procedure would be

more troublesome, if directly implemented on the heat equation (2.6b), also taking into account the

growth conditions on the heat capacity function cv, which we shall impose in (4.1b) (for analogous

assumptions, see [35, 37, 39], and [10, Sect.5.4.2] for contact problems in thermo-viscoelasticity).
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Functional setup. Throughout the paper, we shall extensively exploit that, in our 3-dimensional case,

W 2;2.˝/ � W 1;p.˝/ continuously for 1 6 p 6 6; and

u 7! uj� W W 2;2.˝/ ! C.� / compactly,
(3.4)

with � D @˝ , or � D �C, or � D �N. Moreover, for  2 Œ2;1/ we will adopt the notation

W
2;

�D
.˝n�CIR3/ WD

˚
v 2 W 2; .˝n�CIR3/ W v D 0 on �D

	
;

and denote by h�; �i the duality pairing between the spacesW
2;

�D
.˝n�CIR3/� andW

2;
�D
.˝n�CIR3/.

Furthermore, in the case K.x/ is a linear subspace of R3 for almost all x 2 �C, we shall use the

notation

W
2;2

K .˝n�CIR3/ WD
n
v 2 W 2;2

�D
.˝n�CIR3/ W

��
v.x/

��
2 K.x/ for a.a.x 2 �C

o
: (3.5)

We will work with the space of measures M.˝/ WD C.˝/�. Finally, let X be a (separable) Banach

space: we denote by M.Œ0; T �IX/, Bw�.Œ0; T �IX/, Cw.Œ0; T �IX/; andBV.Œ0; T �IX/, respectively,

the Banach spaces of the measures on Œ0; T � with values in X , of the functions from Œ0; T � with

values in X that are bounded and weakly* measurable (if X has a predual), of the functions from

Œ0; T � with values in X that are weakly continuous, and of the functions that have bounded variation

on Œ0; T �. Notice that the functions in Bw�.Œ0; T �IX/ and BV.Œ0; T �IX/ are defined everywhere on

Œ0; T �.

Loading qualification. Hereafter, the external mechanical and thermal loading F , f , and g will be

qualified by

F 2 L1
�
0; T IL2.˝IR3/

�
; (3.6a)

f 2 W 1;1
�
0; T IL4=3.�NIR3/

�
; (3.6b)

g 2 L1.˙/; g > 0 a.e. in ˙ : (3.6c)

Initial data qualification. As for the initial data, we impose the following

u0 2 W 2;2
�D
.˝n�CIR3/ ;

��
u0

��
� 0 on �C, (3.7a)

.
u0 2 L2.˝IR3/ if % > 0 ; (3.7b)

z0 2 L1.�C/; 0 6 z0 6 1 a.e. on�C ; (3.7c)

�0 2 L!.˝/ ; �0 > 0 a.e. in ˝; (3.7d)

where ! is as in (4.1b) below.

Weak formulation. The energetic formulation associated with system (3.3) hinges on the following

energy functional ˚ , which is in fact the mechanical part of the free energy (2.13), and on the
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dissipation metric R:

˚.u; z/ WD 1

2

Z

˝n�C

Ce.u/We.u/C Hre.u/.Wre.u/ dx C IK.
��
u

��
/C

Z

�C

z˛0

���
u

���
C IŒ0;1�.z/ dS;

with the abbreviation ˛0

���
u

���
WD 1

2
A

��
u

��
�
��
u

��
� a0.

��
u

��
/; (3.8)

R
�
u;

.
z/ WD

8
<
:

Z

�C

a1.
��
u

��
/j.zj dS if

.
z 6 0 a.e. in �C,

C1 otherwise.
(3.9)

We are now in the position of introducing the notion of weak solution to system (3.3) which shall

be analyzed throughout this paper.

DEFINITION 3.2 (Energetic solution of the adhesive contact problem) Given a quadruple of initial

data .u0;
.
u0; z0; �0/ satisfying conditions (3.7), we call a triple .u; z; #/ an energetic solution to the

Cauchy problem for (the enthalpy reformulation of) system (3.3) if

u 2 W 1;2
�
0; T IW 2;2

�D
.˝n�CIR3/

�
; (3.10a)

u 2 W 1;1
�
0; T IL2.˝IR3// with

.
u 2 Cw.Œ0; T �IL2.˝IR3/

�
if % > 0, (3.10b)

z 2 L1.˙C/ \ BV
�
Œ0; T �IL1.�C/

�
; z.�; x/ nonincreasing on Œ0; T � for a.a. x 2 �C; (3.10c)

# 2 Lr .0; T IW 1;r.˝n�C// \ L1.0; T IL1.˝// \ Bw�

�
Œ0; T �I M.˝/

�
;

# 2 BV.Œ0; T �IW 1;r0

.˝n�C/
�/

�
for any 1 6 r <

5

4
;

(3.10d)

with r 0 denoting the conjugate exponent r
r�1

of r , and the triple .u; z; #/ complies with:

(i) (weak formulation of the) momentum inclusion, i.e.:

��
u

��
� 0 on ˙C, and (3.11a)

%

Z

˝

.
u.T / �

�
v.T /�u.T /

�
dx C

Z

Q

�
De.

.
u/C Ce.u/ � B�.#/

�
We.v�u/� %

.
u�

�.
v� .
u

�

C
�
Hre.u/CGre..u/

�.Wre.v�u/ dxdt C
Z

˙C

z˛0
0

���
u

���
�
��
v�u

��
dSdt

> %

Z

˝

.
u0�

�
v.0/�u.0/

�
dx C

Z

Q

F �.v�u/ dxdt C
Z

˙N

f �.v�u/ dSdt (3.11b)

for all v in L2.0; T IW 2;2
�D
.˝n�CIR3// with ŒŒv�� � 0 on ˙C and, if % > 0, also in

W 1;1.0; T IL2.˝IR3//,

(ii) total energy balance

Tkin

�.
u.T /

�
C ˚

�
u.T /; z.T /

�
C

Z

˝

#.T /.dx/ D Tkin

�.
u0

�
C ˚

�
u0; z0

�
C

Z

˝

#0 dx

C
Z

Q

F �.u dxdt C
Z

˙N

f �.u dSdt C
Z

˙

g dSdt; (3.11c)
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(iii) semistability for a.a. t 2 .0; T /

8Qz 2 L1.�C/ W ˚
�
u.t/; z.t/

�
6 ˚

�
u.t/; Qz

�
C R

�
u.t/; Qz � z.t/

�
; (3.11d)

(iv) (weak formulation of the) enthalpy equation:

Z

˝

w.T /#.T /.dx/C
Z

Q

K.e.u/; #/r# � rw � #
.
w dxdt C

Z

˙C

�
���
u

��
; z

���
�.#/

����
w

��
dSdt

D
Z

Q

�
De.

.
u/We..u/��.#/BWe..u/C Gre..u/.Wre..u/

�
w dxdt

�
Z

˙C

wjC�C
Cwj��C

2
a1.

��
u

��
/
.
z.dSdt/C

Z

˙

gw dSdt C
Z

˝

#0w.0/ dx (3.11e)

for all w 2 C.Œ0; T �IW 1;r0

.˝n�C// \ W 1;r0

.0; T ILr0

.˝//, where #0 WD h0.�0/, and #.T /

and
.
z are considered as measures on ˝ and˙ C, respectively,

(v) and the remaining initial conditions (beside
.
u.0/ D Pu0, which is already enforced in (3.11b)),

i.e.

u.0/ D u0 a.e. in ˝; z.0/ D z0 a.e. in �C; #.0/ D #0 a.e. in ˝: (3.11f)

REMARK 3.3 (The weak formulation (3.11b) of the momentum inclusion) In order to (partially)

justify (3.11b) and its link with the classical formulation (2.6a,c,d,f-k) of the (boundary-value

problem for the) momentum inclusion, we may observe that, upon multiplying (2.6a) by v�u (with

v an admissible test function in the sense of Definition 3.2) and integrating on Q, one has to deal

with the term

�
Z

Q

div � � .v�u/ dxdt D �
Z T

0

Z

˝

div �
KV

�.v�u/ dxdt C
Z T

0

Z

˝

div2h�.v�u/ dxdt;

where �
KV

is a placeholder for the “Kelvin-Voigt” stress De.
.
u/CCe.u/�B� . The treatment of

the first integral term on the right-hand side involves a standard integration by parts. As for the

second one, let us observe (neglecting time-integration and integrating by parts twice, with the zero

Dirichlet condition on �D), that

Z

˝

div2h � .v�u/ dx D �
Z

˝C

�
divh

�
Wr.v�u/ dx �

Z

˝�

�
divh

�
Wr.v�u/ dx

C
Z

�N

.divh/W
�
.v�u/˝ �

�
dS C

Z

�C

.divh/CW
�
.vC�uC/˝ �C

�
dS

�
Z

�C

.divh/�W
�
.v��u�/˝ �C

�
dS

D
Z

˝C

h
.Wr2.v�u/ dx C

Z

˝�

h
.Wr2.v�u/ dx

C I.�N; u; v; �/C I.�C; u
C; vC; �C/ � I.�C; u

�; v�; �C/; (3.12)
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where we have used the short-hand notation I. Q� ; Qu; Qv; Q�/ WD
R

Q� .divh/W.. Qv� Qu/˝ Q�/�h
.W.r. Qv� Qu/˝

Q�/ dS . Then, the calculations developed in [36, 2nd ed., Sect.2.4.4], [40] and based on the

decomposition rv D r
S
v C @v

@n
n yield the following formula

I. Q� ; Qu; Qv; Q�/ D
Z

Q�

�
.divh/� Q�Cdiv

S
.h� Q�/�.div

S
Q�/

�
hW. Q�˝Q�/

��
�. Qv� Qu/ �

�
hW. Q�˝Q�/

�
�@. Qv� Qu/
@ Q� dS;

which we plug in (3.12). Then, we combine the resulting integrals on �N and �C with the integrals

derived from the by-part integration of
R

˝
div�

KV
�.v�u/ dx, rely on the boundary conditions (2.6d,f-

k), take into account the enthalpy transformation (3.1), and finally use that div2h � .v�u/ D
h

.Wre.v�u/, since h is symmetric, being so G and H. In this way, we obtain the second and the

third term on the left-hand side of (3.11b). The remaining terms either follow from an integration

by parts in time, or are trivial.

REMARK 3.4 (The “weak” formulation of the flow rule (2.10)) In [24, 27, 29], a global stability

condition combined with energy conservation was shown to provide the correct “weak” formulation

of rate-independent flow rules [24, 27–29]. Here, the concept of energy-preserving solutions (i.e.,

of energetic solutions) is crucial for mathematically treating the full thermodynamics, cf. Step 5 in

Section 6 below. We point out that (3.11c) is the integrated version of the total energy balance (2.20).

Here the energy conservation involves also the mechanical equilibrium (3.11b), and the semistability

(3.11d) plays the role of the global stability condition of [24, 27, 29]. We refer to [39, Prop. 3.2]

for some justification of the energetic-solution concept of Definition 3.2 in the framework of

general thermodynamical rate-independent processes. In general, energetic solutions may exhibit

unphysical jumps, but this does not occur if the driving energy ˚.u; �/ is convex, as it is indeed the

case considered here, see (3.8). Then there is also a close link to the conventional weak definition

of the flow rule (2.10), see [29].

REMARK 3.5 (The weak formulation (3.11e) of the enthalpy equation) A few comments on the

first term on the left-hand side and on the second term on the right-hand side of (3.11e) are in order.

First, since # 2 BV.Œ0; T �IW 1;r0

.˝n�C/
�/, then for all t 2 Œ0; T � one has #.t/ well-defined as an

element of W 1;r0

.˝n�C/
�. Combining this with the fact that # 2 L1.0; T IL1.˝// one sees that

even #.t/ 2 M.˝/ for all t 2 Œ0; T �. However, note that the function t 7! #.t/ may jump. Second,

let us observe that due to (3.10c),
.
z is a negative Radon measure on˙ C. Since we shall impose that

the function a1 W R3 ! R is continuous (cf. (4.1h)), and since the map .t; x/ 7! ŒŒu.t; x/�� is also

continuous because of (3.10a) and (3.4), it turns out that .t; x/ 7! a1.ŒŒu.t; x/��/ is a continuous

function. Thus, a1.ŒŒu��/
.
z is a well-defined measure on˙ C.

REMARK 3.6 (Mechanical energy equality) Subtracting (3.11e) tested by 1 from (3.11c) reveals

that energetic solutions comply with the mechanical energy equality:

T
%

kin

�.
u.T /

�
C ˚

�
u.T /; z.T /

�
C

Z

Q

�
De.

.
u/We..u/CGre..u/.Wre..u/

�
dxdt C VarR

�
u; zI Œ0; T �

�

D T
%

kin

�.
u0

�
C ˚

�
u0; z0

�
C

Z

Q

F �.uC�.#/BWe..u/ dxdt C
Z

˙N

f �.u dSdt; (3.13)

where we have used the notation

VarR

�
u; zI Œt1; t2�

�
WD

Z t2

t1

Z

� C

a1.
��
u

��
/j.zj.dSdt/ for Œt1; t2� � Œ0; T �: (3.14)
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4. Main result

We now enlist our conditions on the functions cv, K, �, a0, a1, and the loading.

Assumptions. We suppose that

cv W Œ0;C1/ ! .0;C1/ continuous; (4.1a)

9!1 > ! > 6
5
; c1 > c0 > 0 8� 2 .0;C1/ W c0.1C�/!�1

6 cv.�/ 6 c1.1C�/!1�1; (4.1b)

K W R3�3 � R ! R
3�3 is bounded, continuous, and (4.1c)

inf
.e;#;�/2R3�3

sym �R�R3; j�jD1
K.e; #/�W� DW k > 0: (4.1d)

We also require that �.x; v; �/ is a non-negative affine function of the delamination parameter z 2
Œ0; 1�, and, following [35], we assume that

�.x; v; z/ D �1.x; v/z C �0.x; v/ for �1; �0 W �C�R3 ! Œ0;C1/ Carathéodory s.t.

9C� > 0 8 .x; v/ 2 �C�R3 W j�0.x; v/j C j�1.x; v/j 6 C�.jvj4=3 C 1/I
(4.1e)

As for the functions a0 W R3 ! R and a1 W R3 ! R, we suppose that

a0 2 C 1.R3IR/; 9Ca0
; C 0

a0
> 0 8 v2R

3 W ja0.v/j 6 Ca0
jvj C C 0

a0
; (4.1f)

the map u 7! 1

2
Au�u � a0.u/ DW ˛0.u/ is convex; (4.1g)

a1 2 C.R3IR/; 9Ca1
> 0 8 v 2 R

3 W a1.v/ > Ca1
> 0: (4.1h)

REMARK 4.1 Let us comment on conditions (4.1). First of all, it is immediate to deduce from (4.1b)

that

9C 1
� ; C

2
� > 0 8w 2 Œ0;C1/ W .C 1

� wC1/1=!1 � 1 6 �.w/ 6 .C 2
� wC1/1=! � 1: (4.2)

In fact, the slight growth condition (4.1b) for cv is needed for the interpolation estimate (5.28),

which in turn is taken from [37, 39] on models for simple materials. To weaken (4.1b), one might

impose the heat conductivity K to depend on r� with a certain growth, cf. [10]. Alternatively, one

might use a finer interpolation exploiting the higher terms of the nonsimple materials as devised

in [40]. However, this would make the basic energetics essentially dependent on these higher order

terms, which perhaps would not be much physical. Furthermore, it obviously follows from (4.1c)

that

9CK > 0 8 �; � 2 R
3 W jK.e; #/�W�j 6 CKj�jj�j : (4.3)

Moreover, let us observe that the functional u 7! ˚.u; z/ is convex thanks to (4.1g). Note that

a0 itself need not be concave, and the possible violation of concavity depends on the positive-

definiteness of A. Actually, we could even allow for bigger violation (namely for a0 semi-concave),

if the discretization scheme were slightly modified, like for example in [36, 2nd ed., Rem. 8.2.4].

However, we have chosen not to explore this option, since in real-world applications A is large.

THEOREM 4.2 (Existence for the adhesive contact problem) Let us assume (3.6), (4.1), (3.7) and

(i) if % D 0, suppose also

F 2 W 1;1
�
0; T IL6=5.˝IR3/

�
; (4.4a)

H
2 .@˝C \ �D/ > 0; H

2 .@˝� \ �D/ > 0; (4.4b)



ADHESIVE CONTACT DELAMINATING 17

where H
2 denotes the two-dimensional Hausdorff measure, and

(ii) if % > 0, suppose also that

K.x/ is a linear subspace of R3 for a.a.x 2 �C: (4.5)

Then, there exists an energetic solution .u; z; #/ to the adhesive contact problem (in the sense of

Definition 3.2), with the additional regularity

.
u 2 W 1;2.0; T IW 2;2

K .˝n�CIR3/�/ if % > 0. (4.6)

Furthermore, in both cases % > 0 and % D 0, the positivity of the initial temperature

inf
x2˝

�0 DW �� > 0 (4.7)

implies inf.t;x/2Q � D inf.t;x/2Q�.#.t; x// > 0; in particular, � is a.e. positive on Q.

Let us observe that
.
u 2 L1.0; T IL2.˝IR3// \ W 1;2.0; T IW 2;2

K .˝n�CIR3/�/ yields also that
.
u2Cw.Œ0; T �IL2.˝IR3// as required in (3.10b), so that

.
u.T / in (3.11b,c) makes sense.

REMARK 4.3 The analytical reason why in the presence of inertial terms in the momentum equation

we need to restrict to “linear” contact conditions on �C is ultimately that, if % > 0, only (4.5) makes

it possible to test the (weak formulation of the) momentum equation by the velocity
.
u. This is

needed for obtaining the mechanical energy equality (3.13), which in turn is a crucial step in the

proof of Theorem 4.2.

Indeed, the analysis of the momentum equilibrium equation in which inertia interacts with

Signorini boundary conditions is remarkably difficult. It has indeed been an open problem for a

long time. In this connection, we may mention the recent results obtained in [30] for the (uncoupled)

dynamical viscoelastic equation with Signorini contact conditions in the one- and three-dimensional

case on unbounded domains. In such a context, these existence results have been proved with refined

Fourier analysis techniques.

In what follows, we shall denote by the symbols C , C 0 most of the (positive) constants occurring in

calculations and estimates.

5. Semi-implicit time discretization

We perform a semi-implicit time-discretization using an equidistant partition of Œ0; T �, with time-

step � > 0 and nodes tk� WD k� , k D 0; : : : ; K� . Hereafter, given any sequence f�j gj >1, we will

denote the backward difference operator and its iteration by, respectively,

Dt�
k WD �k��k�1

�
; D2

t �
k WD Dt

�
Dt�

k
�

D�k�2�k�1C�k�2

�2
: (5.1)

We approximate the data F , f by local means, i.e. setting for all k D 1; : : : ; K�

F k
� WD 1

�

Z tk
�

tk�1
�

F.s/ ds ; f k
� WD 1

�

Z tk
�

tk�1
�

f .s/ ds :
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Furthermore, we approximate g by suitably constructed discrete data fgk
� gK�

kD1
� H 1=2.@˝/� such

that (5.9) below holds, and the initial datum u0 by a sequence fu0;�g � W
2;

�D
.˝n�CIR3/ (with

 > maxf4; 2!
!�1

g as assumed in Problem 5.1) such that

lim
�#0

�1= kre.u0;� /kL .˝IR3�3�3/ D 0; u0;� ! u0 in W 2;2.˝IR3/ as � ! 0. (5.2)

We are now in the position of formulating the time-discrete problem, which we again write in the

classical formulation for notational simplicity. While referring to the forthcoming Remark 5.2 for

all details, we may mention in advance that in Problem 5.1 a careful choice of the terms to be kept

implicit vs. explicit has been made in order to guarantee positivity of the (discrete) temperature #k
�

on the one hand, and some simplifications in the a priori estimates on the other hand. Furthermore,

a regularizing term has been added to the momentum equation.

PROBLEM 5.1 Let  > maxf4; 2!
!�1

g. Given

u0
� D u0;� ; u�1

� D u0;� � �
.
u0; z0

� D z0; #0
� D #0; (5.3)

find
˚
.uk

� ; #
k
� ; z

k
� /

	K�

kD1
fulfilling, for k D 1; : : : ; K� , the recursive scheme consisting of the discrete

momentum equation in ˝n�C:

%D2
t u

k
� � div

�
De

�
Dtu

k
�

�
C Ce.uk

� /�B�.#k
� /C �

ˇ̌
e.uk

� /
ˇ̌�2

e.uk
� / � divhk

�

�

D F k
� with hk

� D
�
H C �

ˇ̌
re.uk

� /
ˇ̌�2

I
�
re.uk

� /CGr
�
e.Dtu

k
� /

�
)

in ˝n�C, (5.4a)

where I W R3�3�3 ! R3�3�3 denotes the 6th-order identity tensor, with the boundary conditions

uk
� D 0 on �D ; (5.4b)

�
De

�
Dtu

k
�

�
C Ce.uk

� / ��.#k
� /B

C �
ˇ̌
e.uk

� /
ˇ̌�2

e.uk
� / � div hk

�

�
� � div

S
.hk

� � �/ D f k
� on �N ; (5.4c)

hk
� W.� ˝ �/ D 0 on �D [ �N , (5.4d)

and the conditions on the contact boundary

ŒŒDe.Dtu
k
� /C Ce.uk

� /��.#k
� /B C �

ˇ̌
e.uk

� /
ˇ̌�2

e.uk
� / � div.hk

� /���C

�div
S
.ŒŒhk

� ���C/ D 0 ;

.hk
� /

CW.�C ˝ �C/ D .hk
� /

�W.�C ˝ �C/ D 0 ;

zk�1
� ˛0

0

�
ŒŒuk

� ��
�

C @IK.ŒŒu
k
� ��/C

�
De.Dtu

k
� /C Ce.uk

� /��.#k
� /B

C�
ˇ̌
e.uk

� /
ˇ̌�2

e.uk
� / � divhk

�

�
�C � div

S
.hk

� � �C/ D 0;

9
>>>>>>>>>=
>>>>>>>>>;

on �CI (5.4e)

further, the discrete enthalpy equation:

Dt#
k
� � div

�
K.#k

� ; e.u
k
� //r#k

�

�
D De

�
Dtu

k
�

�
We

�
Dtu

k
�

�

��.#k
� /BWe

�
Dtu

k
�

�
C Gre

�
Dtu

k
�

�.Wre
�
Dtu

k
�

�
in ˝n�C, (5.4f)
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with the boundary conditions

�
K.#k

� ; e.u
k
� //r#k

�

�
�� D gk

� on �D [ �N, (5.4g)

and the conditions on the contact boundary

1

2

�
K.#k

� ; e.u
k
� //r#k

� jC�C
C K.#k

� ; e.u
k
� //r#k

� j��C

�
��C

C�
�
ŒŒuk�1

� ��;zk
�

�
ŒŒ�.#k

� /�� D 0 ;

ŒŒK.#k
� ; e.u

k
� //r#k

� ���C D �a1

�
ŒŒuk

� ��
�
Dtz

k
�

9
>>=
>>;

on �C; (5.4h)

and also the discrete flow rule for the delamination parameter

@vF .zk�1
� I zk

� /C ˛0

���
uk

�

���
� a1

���
uk

�

���
3 0 on �C, (5.4i)

where F .zk�1
� I �/ W R ! Œ0;C1� is the convex functional

F .zk�1
� I v/ D I.�1;0�

�v�zk�1
�

�

�
C IŒ0;1�.v/: (5.5)

In the last condition in (5.4e), traces of the overall stress either from ˝C or from ˝� can be

considered with the same effect, thanks to the first boundary condition in (5.4e).

REMARK 5.2 Let us highlight the main features of the time-discrete scheme (5.4).

First, the discrete version (5.4f) of the enthalpy equation is fully implicit, and in particular on the

right-hand side the term �.#k
� /BWe

�
Dtu

k
�

�
appears, instead of �.#k�1

� /BWe
�
Dtu

k
�

�
. This is crucial

to obtain the positivity of the temperature, i.e., #k
� > 0 a.e. in ˝ , cf. Lemma 5.4. Notice that the

term B�.#k
� / occurs on the left-hand side of (5.4a): therefore, (5.4a) and (5.4f) are coupled.

Second, the boundary conditions (5.4h) on �C for the discrete enthalpy equation involve zk
� .

In this way, (5.4f) is coupled with (5.4i), hence the whole system is coupled. Nonetheless, the

mechanical part of system (5.4) (viz., (5.4a-e,i)) can be reformulated in terms of the subdifferential

inclusion

@Tkin.D
2
t u

k
� /C @.

.
u;

.
z/�.u

k
� I e.Dtu

k
� /;Dtz

k
� /C @.u;z/	.u

k
� ; z

k�1
� ; #k

� / 3 Lk
� (5.6)

(cf. (2.16)), i.e. it is semi-implicit w.r.t. the variable z. This will allow for some simplifications in

the a priori estimates, see Lemma 5.5.

Third, we have added the term �div2.jre.uk
� /j�2Ire.uk

� // � �div.je.uk
� /j�2e.uk

� // to the

momentum equation in the bulk and to the corresponding boundary/contact conditions, too. Its role

is to compensate the quadratic growth of the right-hand side of the enthalpy equation (5.4f) when

 is chosen large enough, cf. the proof of Lemma 5.4. Being premultiplied by the factor � , this

higher-homogeneity regularization will vanish when passing � ! 0. Because of this term, we also

need to regularize the initial condition u0 in (5.3), cf. (5.2).

REMARK 5.3 The time-discrete scheme (5.4) is simpler than the one devised in [35], where the first

term on the right-hand side of (5.4f) was multiplied by the coefficient .1�
p
�/, and additional terms

(featuring monotone functions of z and ŒŒu��) were added to the discrete flow rule and to the boundary

conditions on �C for u. Such terms were used in the derivation of the discrete a priori estimates (in
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particular, of the discrete energy inequalities) via auxiliary minimization problems. Instead, here we

adopt a more direct approach in the proof of the discrete mechanical and total energy inequalities,

cf. (5.16) and (5.13) below. Indeed, we strongly rely on the semi-implicit character of (5.6) and on

the convexity of ˛0.

LEMMA 5.4 (Existence of weak solutions to Problem 5.1) Under the assumptions of Theorem 4.2,

for every k D 1; : : : ; K� , there exists a triple .uk
� ; z

k
� ; #

k
� / 2 W

2;
�D
.˝n�CIR3/ � L1.�C/ �

W 1;2.˝n�C/, fulfilling the weak formulation of the boundary value problem (5.4a)–(5.4i).

Moreover, #k
� > 0 a.e. in ˝ . If, in addition, (4.7) holds, then there exists some constant �� > 0

such that, for sufficiently small � ,

#k
� > �� > 0 a.e. in ˝ for every k D 1; : : : ; K� . (5.7)

Sketch of the proof. We may argue along the very same lines as in the proof of [35, Lemma

7.4]. Indeed, the existence of a weak solution to Problem 5.1 follows from the theory of

pseudomonotone set-valued operators (see e.g. [36, Chap. 2]), and in particular from Leray–

Lions type theorems, like [36, Chap. 5, Cor. 5.17]. To apply such results, one has to verify the

strict monotonicity of the main part of the elliptic operator, involved in the weak formulation

of problem (5.4a)–(5.4i). One has also to show that this operator is coercive w.r.t. the norm of

W
2;

�D
.˝n�CIR3/ � L1.�C/ � W 1;2.˝n�C/. For this, the term �div2.jre.uk

� /j�2Ire.uk
� // �

�div.je.uk
� /j�2e.uk

� // on the left-hand side of (5.4a) plays a crucial role, in that it counteracts

the quadratic nonlinearities in e.uk
� / and in re.uk

� / on the right-hand side of (5.4f): for

this , we need  > maxf4; 2!
!�1

g. All the calculations for proving this strict monotonicity

and coercivity in the present setting are very similar to those carried out in the proof of

[35, Lemma 7.4]. The argument for the strict positivity (5.7), for which the growth property

(4.2) is crucial, is also taken from [35, Lemma 7.4], to which we refer for all details (the

reader should not be confused by an an unfortunate typo in [35, Formula (5.2)], though).

�

Approximate solutions. For � > 0 fixed, the left-continuous and right-continuous piecewise

constant, and the piecewise linear interpolants of the discrete solutions fuk
� gK�

kD1
are respectively

the functions u� W .0; T / ! W
2;

�D
.˝n�CIR3/, u� W .0; T / ! W

2;
�D
.˝n�CIR3/, and u� W .0; T / !

W
2;

�D
.˝n�CIR3/ defined by u� .t/ WD uk

� ; u� .t/ WD uk�1
� ; u� .t/ WD t�tk�1

�

�
uk

� C tk
� �t

�
uk�1

� for t 2
.tk�1

� ; tk� �. In the same way, we shall denote by #� , #� , and z� , the piecewise constant interpolants

of the elements f#k
� gK�

kD1
and fzk

� gK�

kD1
, and the related piecewise linear interpolants by #� and

z� . Furthermore, we shall use the notation t� and t� for the left-continuous and right-continuous

piecewise constant interpolants associated with the partition, i.e. Nt� .t/ D tk� if tk�1
� < t 6 tk� and

t� .t/ D tk�1
� if tk�1

� 6 t < tk� .

We shall also consider the interpolants F� , f � , and f� , of the K� -tuples fF k
� gK�

kD1
, ff k

� gK�

kD1
. In

view of (3.6a)–(3.6b) and (4.4a), the following estimates and strong convergences hold as � ! 0:

F� ! F

�
in L1

�
0; T IL2.˝IR3/

�
if % D 0,

in Lp
�
0; T IL6=5.˝IR3/

�
for all 1 6 p < 1 if % > 0;

(5.8a)
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9C > 0 8 � > 0 W kf � kL1.0;T IL4=3.�NIR3// 6 Ckf kL1.0;T IL4=3.�NIR3// ;

f � ! f in Lp
�
0; T IL4=3.�NIR3/

�
for all 1 6 p < 1 as � ! 0 ;

9C > 0 8 � > 0 W k
.
f � kL1.0;T IL4=3.�NIR3// 6 2k

.
f kL1.0;T IL4=3.�NIR3// ;

9C > 0 8 � > 0 W k
.
F�kL1.0;T IL6=5.˝IR3// 6 2k

.
F kL1.0;T IL6=5.˝IR3// if % > 0.

(5.8b)

Finally, we shall construct the discrete data fgk
� gK�

kD1
� H 1=2.@˝/� in such a way that the related

piecewise constant interpolants g� fulfill

g� ! g in L1.˙/ as � ! 0 : (5.9)

Using the interpolants so far introduced, we now state the discrete versions of the weak formulation

(3.11b) of the momentum inclusion, the total energy balance (3.11c), the semistability (3.11d), the

weak formulation (3.11e) of the enthalpy equation. For the momentum inclusion, we introduce

“discrete test functions”, viz.K� -tuples

fvk
� gK�

kD1
� W

2;2
�D
.˝n�CIR3/ fulfilling

��
vk

�

��
� 0 on �C, (5.10)

and we denote by v� and v� their interpolants. Furthermore, referring to the definition (3.8) of ˚ ,

we shall use the notation

˚� .u; z/ WD ˚.u; z/C �



Z

˝n�C

je.u/j C jre.u/j dx: (5.11)

Hence, the approximate solutions .u� ; u� ; #� ; #� ; z� ; u� ; #� ; z� / fulfill the discrete (weak) momentum

inclusion

Z

Q

��
De.

.
u� /C Ce.u� / � B�.#� /C � je.u� /j�2e.u� /

�
We.v� �u� /

C
�
.H C � jre.u� /j�2

I/re.u� /C Gre..u� /
�.Wre.v��u� /

�
dxdt

C
Z

˙C

z�˛
0
0.

��
u�

��
/�

��
v� �u�

��
dxdt �

Z T

�

Z

˝

%
.
u� .� � �/�..v� �.

u� / dxdt

C
Z

˝

%
.
u� .T /�.v� .T /�u� .T // dx

>

Z

˝

%
.
u0�.v� .�/�u� .�// dx C

Z

Q

F� �.v� � u� / dxdt C
Z

˙N

f � �.v� � u� / dSdt I (5.12)

for all K� -tuples fvk
� gK�

kD1
� W

2;2
�D
.˝n�CIR3/ fulfilling (5.10);

the discrete total energy inequality

Tkin

�.
u� .t/

�
C ˚�

�
u� .t/; z� .t/

�
C

Z

˝

#� .t/ dx 6 Tkin

�.
u0/C ˚�

�
u0;� ; z0/

C
Z

˝

#0 dx C
Z Nt� .t/

0

� Z

˝

F� �.u� dx C
Z

�N

f � �.u� dS C
Z

@˝

g� dS

�
dsI (5.13)
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(see (2.15) for the definition of Tkin), the discrete semistability for a.a. t 2 .0; T /

˚�

�
u� .t/; z� .t/

�
6 ˚�

�
u� .t/; Qz

�
C R

���
u� .t/

��
; Qz � z� .t/

�
for all Qz 2 L1.�C/I (5.14)

the discrete (weak) enthalpy equation

Z

˝

#� .T /w.T / dx C
Z

Q

K.e.u� /; #� /r#� �rw� #�
.
w dxdt C

Z

˙C

�.
��
u�

��
;z� /

��
�.#� /

����
w

��
dSdt

D
Z

Q

�
De.

.
u� /We.

.
u� / ��.#� /BWe..u� /C Gre..u� /

.Wre..u� /
�
wdxdt

�
Z

˙C

a1.
��
u�

��
/
.
z�

wjC�C
Cwj��C

2
dSdt C

Z

˝

#0w.0/ dx C
Z

˙

g�wdSdt : (5.15)

with w qualified as in (3.11e). Inequality (5.12) can be obtained from (5.4a-e), by using a suitable

discrete “by-part” summation formula, cf. [39, Formula (4.49)]. We now prove (5.13) and (5.14).

LEMMA 5.5 (Approximate energetics) Let % > 0. Under the assumptions of Theorem 4.2, for all

� > 0 the approximate solutions .u� ; u� ; #� ; z� ; u� ; #� ; z� / fulfill the following discrete mechanical

energy inequality

Tkin

�.
u� .t/

�
C ˚�

�
u� .t/; z� .t/

�

C
Z Nt� .t/

0

� Z

˝

De
�.
u�

�
We

�.
u�

�
C Gre

�.
u�

�.Wre
�.
u�

�
dx C

Z

�C

�1

���
u�

��
;
.
z�

�
dS

�
ds

6 Tkin

�.
u0/C ˚�

�
u0;� ; z0/

C
Z Nt� .t/

0

� Z

˝

�.#� /BWe
�.
u�

�
dx C

Z

˝

F� �.u� dx C
Z

�N

f � �.u� dS

�
ds; (5.16)

(see (2.12b) for the definition of �1), the discrete total energy inequality (5.13), and the discrete

semistability (5.14).

Proof. Preliminarily, we observe that (5.4i) is the Euler–Lagrange equation for the minimum

problem

zk
� 2 Argminz2L1.�C/

Z

�C

z˛0

���
uk

�

���
� za1

���
uk

�

���
C F .zk�1

� I z/ dS; (5.17)

where F .zk�1
� I z/ is as in (5.5). Therefore, we have

Z

�C

I.1;0�

�zk
� �zk�1

�

�

�
C zk

� ˛0.
��
uk

�

��
/ � zk

� a1.
��
uk

�

��
/C IŒ0;1�.z

k
� / dS

6

Z

�C

zk�1
� ˛0.

��
uk

�

��
/ � zk�1

� a1.
��
uk

�

��
/ dS: (5.18)

To prove (5.16), we test the boundary-value problem (5.4a)–(5.4e) by uk
� � uk�1

� . We add to the
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resulting inequality the previously observed (5.18), thus obtaining

%

Z

˝

D2
t u

k
� �Dtu

k
� dx C

Z

˝

De
�
Dtu

k
�

�
We

�
Dtu

k
�

�
C Gre

�
Dtu

k
�

�.Wre
�
Dtu

k
�

�
dx

C
Z

˝

Ce.uk
� /We

�
Dtu

k
�

�
CHre.uk

� /
.Wre

�
Dtu

k
�

�
dx

C �

Z

˝

je.uk
� /j�2e.uk

� /We
�
Dtu

k
�

�
C jre.uk

� /j�2re.uk
� /

.Wre
�
Dtu

k
�

�
dx

C
Z

�C

zk�1
� ˛0

0.
��
uk

�

��
/�

��
Dtu

k
�

��
C .Dtz

k
� /˛0.

��
uk

�

��
/ dS �

Z

�C

a1.
��
uk

�

��
/.Dtz

k
� / dS

DW I1 C I2 C I3 C I4 C I5 C I6

6 �

Z

˝

B�.#k
� /We.Dtu

k
� / dx C �

Z

˝

F k
� �Dtu

k
� dx C �

Z

�N

f k
� �Dtu

k
� dS: (5.19)

Now, we estimate the terms Ii , i D 1; : : : ; 6. First of all, we observe that

I1 >
%

2�

Z

˝

ˇ̌
Dtu

k
�

ˇ̌2
dx � %

2�

Z

˝

ˇ̌
Dtu

k�1
�

ˇ̌2
dx D %

2
Dt

Z

˝

ˇ̌
Dtu

k
�

ˇ̌2
dx: (5.20)

Clearly, upon summation I2 will yield the third summand on the right-hand side of (5.16), whereas

we observe that

I3 > Dt

Z

˝

1

2

�
Ce.uk

� /We.uk
� /CHr.e.uk

� //
.Wr.e.uk

� //
�

dx;

I4 > Dt

Z

˝

�


je.uk

� /j C �


jre.uk

� /j dx;

9
>>=
>>;

(5.21)

where we have used elementary convex-analysis inequalities. Now, it follows from the convexity of

˛0, cf. (4.1g), that

Z

�C

zk�1
� ˛0

0

���
uk

�

���
�
��
Dtu

k
�

��
dS >

1

�

Z

�C

zk�1
� ˛0

���
uk

�

���
dS � 1

�

Z

�C

zk�1
� ˛0

���
uk�1

�

���
dS:

Hence, taking into account the cancellation of the term
R

�C
zk�1

� ˛0.ŒŒu
k
� ��/, for I5 we conclude the

following inequality

I5 > Dt

Z

�C

zk
� ˛0

���
uk

�

���
dS: (5.22)
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Combining (5.19)–(5.22), rearranging terms and multiplying by � , we obtain

Z

˝

%

2
jDtu

k
� j2C�De

�
Dtu

k
�

�
We

�
Dtu

k
�

�
C�Gre

�
Dtu

k
�

�.Wre
�
Dtu

k
�

�
C1

2
Ce.uk

� /We.uk
� /C

�



ˇ̌
e.uk

� /
ˇ̌

C �


jre.uk

� /j C 1

2
Hr.e.uk

� //
.Wr.e.uk

� // dx C
Z

�C

zk
� ˛0.

��
uk

�

��
/ dS �

Z

�C

�a1.
��
uk

�

��
/.Dtz

k
� / dS

6

Z

˝

%

2
jDtu

k�1
� j2 C 1

2

Z

˝

Ce.uk�1
� /We.uk�1

� /C �


je.uk�1

� /j C �


jre.uk�1

� /j

C 1

2
Hr.e.uk�1

� //
.Wr.e.uk�1

� // dx C
Z

�C

zk�1
� ˛0.

��
uk�1

�

��
/ dS

C �

Z

˝

B�.#k
� /We.Dtu

k
� / dx C �

Z

˝

F k
� �Dtu

k
� dx C �

Z

�N

f k
� �Dtu

k
� dS: (5.23)

Summing over the index k, we conclude (5.16).

In order to obtain (5.13) for a fixed t 2 .0; T /, we test (5.15), integrated on the time-interval

.0; t� .t//, by 1, and add the resulting relation to the mechanical energy equality (5.16). Taking into

account all cancellations, we immediately conclude (5.13).

Eventually, from (5.18) and the degree-1 homogeneity of R.ŒŒuk
� ��; �/, it also follows that

˚� .u
k
� ; z

k
� / 6 ˚� .u

k
� ; Qz/ �

Z

�C

a1.
��
uk

�

��
/.Qz�zk�1

� / dS �
Z

�C

a1.
��
uk

�

��
/.zk�1

� �zk
� / dS

D ˚� .u
k
� ; Qz/ �

Z

�C

a1.
��
uk

�

��
/.Qz�zk

� / dS D ˚� .u
k
� ; Qz/C R.

��
uk

�

��
; Qz�zk

� / (5.24)

for all Qz 6 zk
� a.e. on �C. This is the discrete version of (5.14). �

We conclude this section with a result collecting all the a priori estimates on the approximate

solutions.

LEMMA 5.6 (A priori estimates) Under the assumptions of Theorem 4.2, for all % > 0 and � > 0,

the approximate solutions .u� ; #� ; z� ; u� ; #� ; z� / satisfy

u�


L1.0;T IW 2;2

�D
.˝IR3//

6 S0 ; (5.25a)

u�


W 1;2.0;T IW 2;2

�D
.˝IR3//

6 S0 ; (5.25b)

%1=2
u�


W 1;1.0;T IL2.˝IR3//

6 S0 ; (5.25c)

u�


L1.0;T IW

2;
�D

.˝IR3//
6

S0

�1=
; (5.25d)

z�


L1.˙C/

6 S0 ; (5.25e)
z�


BV.Œ0;T �IL1.�C//

6 S0; (5.25f)
#�


L1.0;T IL1.˝//

6 S0; (5.25g)
#�


Lr .0;T IW 1;r .˝//

6 Sr for any 1 6 r < 5
4
; (5.25h)

 .
#�


L1.0;T IW 1;r0

.˝/�/
6 S0; (5.25i)
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%
.
u�


BV.Œ0;T �IW

2;
�D

.˝IR3/�/
6 S0 ; (5.25j)

for some constants S0 > 0 and Sr > 0 independent of � . Estimates (5.25e, f) hold for z� as well,

and so do estimates (5.25g,h) for #� .

Proof. We only sketch the calculations for proving (5.25), since the argument closely follows the

proof of [35, Lemma 7.7], to which we shall systematically refer.

First of all, we use the “discrete total energy” balance (5.13). Clearly, the first summand on the

left-hand side provides a bound for the quantity %1=2
u�


W 1;1.0;T IL2.˝IR3//

. Secondly, we observe

that (cf. (3.8), (5.11)),

˚� .u; z/ > C
� Z

˝

je.u/j2 C jre.u/j2 C � je.u/j C � jre.u/j dx

C
Z

�C

z
ˇ̌��
u

��ˇ̌2
dS

�
� Ca0

Z

�C

z
ˇ̌��
u

��ˇ̌
dS � C 0

a0

> C
�
kuk2

W 1;2.˝IR3/
C kuk2

W 2;2.˝IR3/
C �kuk

W 2; .˝IR3/
C

Z

�C

z
ˇ̌��
u

��ˇ̌2
dS

�
� C 0;

(5.26)

where we have used the positive-definiteness of A, C, and H, and the growth condition (4.1f), to

derive the first inequality. The second estimate ensues from Korn’s inequality, and from absorbing

the term
R

�C
zjŒŒu��j dx into

R
�C
zjŒŒu��j2 dx, since z 2 Œ0; 1� a.e. on �C. Therefore, the second

term on the left-hand side of (5.13) estimates ku� .t/k2
W 2;2.˝IR3/

and �ku� .t/k

W 2; .˝IR3/
uniformly

w.r.t. t 2 Œ0; T �. Thirdly, #� > 0 a.e. in ˝ thanks to Lemma 5.4, hence the third term estimates

k#� kL1.0;T IL1.˝//. To deal with the right-hand side of (5.13), we use (3.7), (5.2) and, for the last

integral term, (5.8) and (5.9), arguing in the very same way as in the proof of [35, Lemma 7.7].

We conclude applying the discrete Gronwall lemma, and thus obtain estimates (5.25a), (5.25c), and

(5.25g). Since z� 2 Œ0; 1� a.e. on ˙C, we obviously have (5.25e).

Secondly, again arguing as for [39, Prop. 4.2] and [35, Lemma 7.7], we make use of the

technique by Boccardo and Gallouët [3] with the simplification devised in [12], and we test the

heat equation (5.15) by �.#� /, where � W Œ0;C1/ ! Œ0; 1� is the map w 7! �.w/ D 1 � 1
.1Cw/& ,

for & > 0. Since � is Lipschitz continuous, �.#� / 2 W 1;2.˝n�C/ is an admissible test function.

We thus have

& k

Z

Q

jr#� j2

.1C#� /1C&
dxdt 6

Z

Q

K
�
e.u� /; #�

�
r#� �r�.#� / dxdt

C
Z

˙C

�
���
u�

��
; z�

���
�.#� /

����
�.#� /

��
dSdt C

Z

˝

b�
�
#� .T; �/

�
dx

6

Z

˝

b�.#0/ dx C C
�
kDe..u� /We.

.
u� /kL1.Q/C kGre..u� /

.Wre..u� /kL1.Q/

C k�.#� /BWe..u� /kL1.Q/C k�1.
��
u�

��
;
.
z� /kL1.˙C/

�
C kg� kL1.˙/;

(5.27)

where b� is the primitive function of � such that b�.0/ D 0. Note that inequality (5.27) follows

from (4.1d), the fact that �.u� ;z� /ŒŒ�.#� /��ŒŒ�.#� /�� > 0 a.e. in ˙C (by the positivity of � and the
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monotonicity of � and �), from the “discrete chain rule” [39, Formula (4.30)] for b� , and from the

fact 0 6 �.#� / 6 1 a.e. in ˝ . Combining (5.27) and performing the very same calculations as in

the proof of [39, Prop. 4.2], with the Gagliardo–Nirenberg inequality we find for all 1 6 r < 5=4,

that

r#�

r

Lr .QIR3/
6 Cr

�
1C kDe..u� /We.

.
u� /kL1.Q/ C kGre..u� /

.Wre..u� /kL1.Q/

C k�.#� /BWe..u� /kL1.Q/C k�1.
��
u�

��
;
.
z� /kL1.˙C/

�
(5.28)

for some positive constant Cr , depending on r and also on the function �, cf. (4.1e).

Then, we multiply (5.28) by a constant �1 > 0 and add it to (5.16) (in which we set t D T ).

Now, by positive-definiteness of D and G, the third term on the left-hand side of (5.16) is bounded

from below by c.ke. .u� /k2
L2.QIR3�3/

Ckre. .u� /k2
L2.QIR3�3�3/

/, and it controls k�1.ŒŒu� ��;
.
z� /kL1.˙C/.

Thus, we choose �1 small enough in such a way as to absorb the second, the third, and the fifth term

on the right-hand side of (5.28) into the left-hand side of (5.16). Hence, we find

c
�
ke..u� /k2

L2.QIR3�3/
C kre..u� /k2

L2.QIR3�3�3/

�

C .1��1/k�1.
��
u�

��
;
.
z� /kL1.˙C/ C �1

r#�

r

Lr .QIR3/

6 Tkin

�.
u0;� /C ˚�

�
u0;� ; z0;� /C

Z

Q

F� �.u� dx dt

C
Z

˙N

f � �.u� dSdt C .�1CrC1/
�.#� /Be.

.
u� /


L1.Q/

: (5.29)

The first two summands on the right-hand side of (5.29) are estimated in view of (3.7) and (5.2).

Using (5.8), we handle the terms
R

Q
F� � .u� dxdt and

R
˙N
f � � .u� dSdt in the very same way as in the

proof of [35, Lemma 7.7]. Finally, we use

.�1CrC1/k�.#� /BWe..u� /kL1.Q/ 6 �2 ke..u� /k2
L2.QIR3�3//

C C�2
k�.#� /k2

L2.Q/

6 �2 ke..u� /k2
L2.QIR3�3//

C C�2

�
k#� k2=!

L2=!.Q/
C 1

�

6 �2 ke..u� /k2
L2.QIR3�3//

C �3

Z T

0

r#�

r

Lr .˝IR3/
dt C C�3

;

(5.30)

where the last inequality can be proved, via the Gagliardo-Nirenberg inequality, by developing the

same calculations as throughout [39, Formulae (4.39)–(4.43)], and using the restriction on ! in

(4.1b) and the previously proved bound for k#�kL1.0;T IL1.˝//. Then, we plug (5.30) into (5.29),

and choose �2 and �3 in such a way as to absorb the terms ke. .u� /k2
L2.QIR3�3/

and
r#�

r

Lr .QIR3/

into the left-hand side of (5.29). Thus, we conclude estimate (5.25b). We also get an estimate for

k�1.ŒŒu� ��;
.
z� /kL1.˙C/, which yields (5.25f), since a1 is bounded from below, cf. (4.1h). Furthermore,

we also obtain a bound for r#� in Lr .QIR3/. Combining the latter information with the estimate

for #� in L1.0; T IL1.˝//, we infer (5.25h).

Estimate (5.25i) follows from a comparison in (5.15), and the related calculations are a trivial

adaptation of the ones in the proof of [35, Lemma 7.7].

Finally, for (5.25j) we use that
..
u� is a measure on Œ0; T �, supported at the jumps of

.
u� , and we

estimate %k..
u� k

M.0;T IW
2;

�D
.˝n�CIR3/�/

by comparison in (5.12). �
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6. Proof of Theorem 4.2

In what follows, we develop the proof of the passage to the limit in the time-discrete scheme as

� ! 0 unifying the cases % > 0 and % D 0; we shall take a sequence of time-steps, i.e., we

understand .�/ as countable family of indexes with the accumulation point 0.

For the reader’s convenience, we briefly describe the strategy. After a careful selection of

converging subsequences is made in Step 0 below, by passing to the limit as � ! 0 in (5.12) we will

obtain the weak formulation (3.11b) of the momentum inclusion. Then, we will proceed to proving

the semistability condition (3.11d), hence the total energy inequality by lower semicontinuity

arguments. By the same tokens we will also obtain the mechanical energy inequality. We will then

show that the latter in fact holds as an equality, by combining a chain rule-type argument (cf. (6.19)),

with a test of (3.11b) by
.
u. To perform the latter, it will be essential for

.
u to have the regularity (6.28).

This motivates the dissipative contribution Gre. .u/ to the hyperstress. Hence, we will exploit the

mechanical energy equality to conclude, via a suitable comparison argument, the convergence of the

quadratic terms in the right-hand side of (5.15). This will allow us to pass to the limit, and conclude

the weak formulation (3.11e) of the enthalpy equation and, ultimately, also the total energy balance

(3.11c).

Step 0: Selection of convergent subsequences. First of all, it follows from estimates (5.25b), (5.25c),

and (5.25j), from the Banach selection principle, the infinite-dimensional Ascoli and the Aubin-

Lions theorems (see, e.g., [45, Thm. 5, Cor. 4]), that there exist a (not relabeled) sequence � ! 0

and a limit function u 2 W 1;2.0; T IW 2;2
�D
.˝n�CIR3// such that the following convergences hold

as � ! 0:

u�*u in W 1;2.0; T IW 2;2
�D
.˝n�CIR3//; (6.1a)

u� ! u in C.Œ0; T �IW 2��;2
�D

.˝n�CIR3// 8 � 2 .0; 2�; (6.1b)

%u�

�
* %u in W 1;1.0; T IL2.˝IR3//. (6.1c)

Estimate (5.25j) and a generalization of the Aubin-Lions theorem to the case of time derivatives as

measures (cf. e.g. [36, Cor. 7.9]) also yield that
.
u 2 BV.Œ0; T �IW 2;

�D
.˝n�CIR3/�/ and that

%
.
u� ! %

.
u in L2.0; T IW 2��;2

�D
.˝n�CIR3// for all � 2 .0; 2�. (6.1d)

Moreover, a generalization of Helly’s principle (see [2] as well as [29, Thm. 6.1]) implies that.
u� .t/*

.
u.t/ inW

2;
�D
.˝n�CIR3/� for all t 2 Œ0; T �. In view of estimate (5.25c), with an elementary

compactness argument we conclude

%
.
u� .t/*%

.
u.t/ in L2.˝IR3/ for all t 2 Œ0; T �. (6.1e)

Next, we observe that

ku��u� k
L1.0;T IW 2;2

�D
.˝n�CIR3//

6 �1=2k.
u�k

L2.0;T IW 2;2
�D

.˝n�CIR3//
6 S0�

1=2 ! 0 as � ! 0:

(6.1f)
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Therefore, estimate (5.25a) and (6.1a)–(6.1b) yield for all � 2 .0; 1�

u�

�
* u in L1

�
0; T IW 2;2

�D
.˝n�CIR3/

�
, (6.1g)

u� ! u in L1
�
0; T IW 2��;2

�D
.˝n�CIR3/

�
, (6.1h)

u� .t/ ! u.t/ in W
2��;2

�D
.˝n�CIR3// for all t 2 Œ0; T �. (6.1i)

Taking into account the compact embedding (3.4), from (6.1b) and (6.1h) we deduce respectively

��
u�

��
!

��
u

��
in C.˙CIR3/; (6.1j)

��
u�

��
!

��
u

��
in L1.˙CIR3/. (6.1k)

In fact, the above convergences are also in C.Œ0; T �IC.� CIR3// and in L1.0; T IL1.�CIR3//,

respectively. Convergences (6.1g-i,k) hold for u� , too. Also note that, in view of (5.25d), we have

�
je.u� /j�2e.u� /


L=.�1/.QIR3�3/

6 S0�
1= ! 0 and

�
jre.u� /j�2re.u� /


L=.�1/.QIR3�3�3/

6 S0�
1= ! 0

)
as � ! 0. (6.1l)

Estimates (5.25e) and (5.25f), and the very same compactness arguments as in [35, Sec. 8] (based on

[29, Thm. 6.1, Prop. 6.2]), also guarantee that there exists a function z 2 L1.˙C/\BV.Œ0; T �I Z/

(where Z is any reflexive space such that L1.�C/ � Z with a continuous embedding), such that,

possibly along a subsequence,

z�

�
* z in L1.˙C/, z� .t/

�
* z.t/ in L1.�C/ for all t 2 Œ0; T �. (6.2)

We now prove that

VarR

�
u; zI Œs; t �

�
6 lim inf

�!0

Z t

s

Z

�C

�1

���
u�

��
;
.
z�

�
dSdr for all 0 6 s 6 t 6 T . (6.3)

Indeed,

Z t

s

Z

�C

�1

���
u�

��
;
.
z�

�
dSdr D

Z t

s

Z

�C

a1.
��
u�

��
/j.z� j dSdr

D
Z t

s

Z

�C

a1.
��
u�

��
/j.z� j dSdr C

Z t

s

Z

�C

.a1.
��
u�

��
/ � a1.

��
u�

��
//j.z� j dSdr: (6.4)

Now, from (6.1j, k) and the continuity of a1 it follows

a1

���
u�

���
� a1

���
u�

���
! 0 in L1

�
0; T IC.� C/

�
. (6.5)

Since .
.
z� /�>0 is bounded in L1.˙C/, we then conclude that the second term on the right-hand side

of (6.4) tends to zero as � ! 0. To pass to the limit in the first term, we use (6.1j) and again the

continuity of a1. Since j .z� j ! j .zj weakly* in the sense of measures on ˙ C, we conclude that

a1

���
u�

���
j.z� j ! a1

���
u

���
j.zj weakly* in the sense of measures on ˙C, (6.6)
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where j .zj denotes the variation of the measure
.
z; in fact, here simply j .zj D � .

z, since
.
z 6 0. Then,

(6.3) follows. Taking into account that a1 is bounded from below by (4.1h), (6.3) and the definition

(3.14) of VarR imply z 2 BV.Œ0; T �IL1.�C//.

With the same compactness tools as in the above lines, we conclude from estimates (5.25g),

(5.25h), and (5.25i) that there exists # 2 Lr .0; T IW 1;r.˝n�C// \ BV.Œ0; T �IW 1;r0

.˝n�C/
�/ s.t.

#� * # and #� * # in Lr
�
0; T IW 1;r.˝n�C/

�
for 1 6 r <

5

4
, (6.7a)

#� ; #� ! # in Lr
�
0; T IW 1��;r .˝n�C/

�
for all � 2 .0; 1�: (6.7b)

The latter convergence yields that #� ; #� ! # in Lr .0; T IL15=7��.˝// for all � 2 .0; 8=7�. Taking

into account estimate (5.25g) in L1.0; T IL1.˝// and arguing by interpolation, we conclude

#� ; #� ! # in L5=3��.Q/ for all � 2
�
0; 2

3

�
: (6.7c)

Notice that, under condition (4.7) on �0, (5.7) and (6.7c) imply the strict positivity of # . Moreover,

Helly’s selection principle and the a priori bound for .#� /� in L1.0; T IL1.˝// yield

#� .t/
�
* #.t/ in M.˝/ for all t 2 Œ0; T �. (6.7d)

Combining (6.7c) with (4.2), it is immediate to deduce

�.#� / ! �.#/ in L2.Q/: (6.8)

Furthermore, it follows from (6.7b), the trace theorem # 7! ŒŒ#�� W W 1��;r .˝n�C/ ! L10=7��.�C/

for all � 2 .0; 3=7�, and (4.2), that

��
�.#� /

��
!

��
�.#/

��
in Lr!.0; T IL!.10=7��/.�C// 8 � 2

�
0; 5

7

�
: (6.9)

Exploiting (6.1i), (6.2), and (6.1k), which in particular yields lim�!0

R
�C
z� .t/˛0.ŒŒu� .t/��/ dS DR

�C
z.t/˛0.ŒŒu.t/��/ dS for all t 2 Œ0; T �, we conclude by lower semicontinuity arguments that

˚
�
u.t/; z.t/

�
6 lim inf

�!0
˚�

�
u� .t/; z� .t/

�
for all t 2 Œ0; T �: (6.10)

Step 1: Passage to the limit in the momentum equation. At first, we take the limit as � ! 0 of the

discrete momentum equation (5.12) with smooth test functions v 2 C1.QIR3/, fulfilling ŒŒv�� � 0

on ˙C. We approximate them with discrete approximations fvk
� g such that ŒŒvk

� �� � 0 on ˙C and the

related piecewise constant and linear interpolants fulfill, as � ! 0,

v� ! v in W 1;1
�
0; T IL2.˝IR3/

�
,

v� ! v in L2
�
0; T IW 2;2.˝n�CIR3/

�
,

kre.v� /kL .QIR3�3�3/ 6 C :

9
=
; (6.11)

In order to pass to the limit in the first integral term on the left-hand side of (5.12), we use (6.1a),

(6.1b), and (6.8), combined with (6.11). The regularizing  -terms in (5.12) vanish in the limit due to

the last of (6.1l). Notice that (6.1k) and the continuity of ˛0
0 (cf. (4.1f)) imply ˛0

0.ŒŒu� ��/ ! ˛0
0.ŒŒu��/ in

L1.˙C/. Therefore, taking (6.2) into account, we deduce that z�˛
0
0.ŒŒu� ��/

�
* z˛0

0.ŒŒu��/ in L1.˙C/.
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This convergence and (6.11) allow us to pass to the limit in the second integral term on the left-

hand side of (5.12). To take the limit of the third and fourth terms (in the case % > 0), we use

(6.1d) and (6.1e) as well as the first of (6.11). The latter allows us also to take the limit of the

first term on the right-hand side of (5.12). The convergence of the other two integrals ensues from

(5.8), (6.1a), and (6.11). Thus, we have proved that the triple .u; z; #/ fulfills equation (3.11b)

with smooth test functions. With a density argument, we conclude (3.11b) with test functions v 2
L2.0; T IW 2;2

�D
.˝n�CIR3//\W 1;1.0; T IL2.˝IR3//. For later convenience, let us observe that, in

the caseK.x/ is a linear subspace for almost all x 2 �C (cf. (4.5)), taking test functions Qv D uC�v

with v any admissible test function satisfying ŒŒv�� � 0 on ˙C and � an arbitrary real number, we

obtain (3.11b) in the form

Z

˝

%
.
u.T /�v.T / dx C

Z

Q

�
De.

.
u/CCe.u/�B�.#/

�
We.v/

C
�
Hre.u/CGre..u/

�.Wre.v/ � %.u�.v dxdt C
Z

˙C

z˛0
0.

��
u

��
/�

��
v
��

dSdt

D
Z

˝

%
.
u0�v.0/dx C

Z

Q

F �v dxdt �
Z

˙N

f �v dSdt (6.12)

for any v 2 L2.0; T IW 2;2
K .˝n�CIR3// \W 1;1.0; T IL2.˝IR3//.

Step 2: Passage to the limit in the semistability condition. We consider a subset N � .0; T / of full

measure such that for all t 2 N the approximate stability condition (5.14) holds for the (countably

many) considered �’s. Then we fix t 2 N and Qz 2 L1.�C/. We may suppose without loss of

generality that R.u.t/; Qz�z.t// < C1, hence

Qz.x/ 6 z.t; x/ for a.a. x 2 �C : (6.13)

Then, we construct the following recovery sequence

Qz� .t; x/ WD

8
<
:
z� .t; x/

Qz.x/
z.t; x/

where z.t; x/ > 0;

0 where z.t; x/ D 0:

(6.14)

Now, using (6.13) and (6.2) one immediately sees that

Qz� .t; �/ 6 z� .t; �/ a.e. in�C; Qz� .t/
�
* Qz in L1.�C/. (6.15)

Plugging Qz� in (5.14) and using (6.1k), (6.2), and (6.15), we find

0 6 lim
�!0

�
˚�

�
u� .t/; Qz� .t/

�
CR

�
u� .t/; Qz� .t/ � z� .t/

�
�˚�

�
u� .t/; z� .t/

��

D lim
�!0

Z

�C

�
˛0

���
u� .t/

���
�a1

���
u� .t/

�����
Qz� .t/�z� .t/

�
dS

D
Z

�C

�
˛0

���
u.t/

���
�a1

���
u.t/

�����
Qz.t/�z.t/

�
dS

D ˚
�
u.t/; Qz.t/

�
CR.u.t/; Qz.t/�z.t//�˚

�
u.t/; z.t/

�
: (6.16)
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Step 3: Passage to the limit in the mechanical and total energy inequalities. Using (6.1a), (6.1e),

(6.3), and (6.10), we pass to the limit on the left-hand side of the discrete mechanical energy

inequality (5.16) by weak lower semicontinuity. To take the limit of the right-hand side, we

employ (5.2) (which in particular yields ˚�

�
u0;� ; z0/ ! ˚.u0; z0/), the weak convergence (6.1a)

and the strong convergence (6.8), which give

�.#� /BWe..u� / * �.#/BWe..u/ weakly in L1.Q/. (6.17)

We pass to the limit in the two remaining terms by (5.8a)–(5.8b). Hence, the triple .u; z; #/ complies

for all t 2 Œ0; T � with

Tkin

�.
u.t/

�
C ˚

�
u.t/; z.t/

�
C

Z t

0

Z

˝

De
�.
u.s/

�
We

�.
u.s/

�
CGre

�.
u.s/

�.Wre
�.
u.s/

�
dxds

C VarR.u; zI Œ0; t �/ 6 Tkin

�.
u0/C ˚

�
u0; z0/

C
Z t

0

� Z

˝

�.#.s//BWe
�.
u.s/

�
dx C

Z

˝

F.s/�.u.s/ dx C
Z

�N

f .s/� .u.s/ dS

�
ds : (6.18)

By the very same lower semicontinuity arguments (also using (6.7d) and (5.9)), we also pass to the

limit in the discrete total energy inequality (5.13).

Step 4: Mechanical energy equality. First of all, we observe that the following chain rule-type

inequality holds for all t 2 Œ0; T �

˚
�
u.t/; z.t/

�
� ˚

�
u0; z0/C VarR

�
u; zI Œ0; t �

�
>

Z t

0

h�; .ui ds

for any � 2 L2.0; T IW 2;2.˝n�CIR3/�/ with �.t/ 2 @u˚
�
u.t/; z.t/

�
for a.a. t 2 .0; T /,

(6.19)

where @u˚ W W 2;2.˝n�CIR3/ � W 2;2.˝n�CIR3/� denotes the subdifferential w.r.t. u of the

functional ˚ W W 2;2.˝n�CIR3/ � L1.�C/ ! R defined in (3.8). Easy calculations show that the

operator @u˚ is given by

� 2 @u˚.u; z/ if and only if 9 ` 2 @IK.u/ 8 v 2 W 2;2.˝n�CIR3/ W

h�; vi D
Z

˝

Ce.u/We.v/CHre.u/.Wre.v/ dx C
Z

�C

z˛0
0

���
u

���
�
��
v
��

dS C h`; vi; (6.20)

where, for notational convenience, we have introduced the functional IK W W 2;2.˝n�CIR3/ !
Œ0;C1� defined by IK.u/ D IK.ŒŒu��/ (cf. (2.9)), and its subdifferential @IK W W 2;2.˝n�CIR3/ �

W 2;2.˝n�CIR3/�. In order to prove (6.19) for a fixed selection �.t/ 2 @u˚.u.t/; z.t//, we exploit

a technique, combining Riemann sums and the already proved semistability condition (3.11d),

which is well-known in the analysis of rate-independent systems and dates back to [9]. The main

difficulty here is to adapt such a trick to the case of a Stieltjes integral (cf. (6.25) below), and to

do so we will mimic the argument in the proof of [41, Prop. 3]. For any n > 0, we take a suitable

partition 0 D tn0 < t
n
1 < : : : < t

n
Nn

D T with maxiD1;:::;Nn
.tni �tni�1/ 6 1=n, in such a way that the

functions An W Œ0; T � ! L1.�C/ given by An.t/ WD a1.ŒŒu.t
n
i�1/��/ for t 2 .tni�1; t

n
i � fulfill

An ! a1

���
u

���
in L1.˙C/ as n ! 1. (6.21)



32 R. ROSSI AND T. ROUBÍČEK

The existence of such partitions follows from the fact that u W Œ0; T � ! W 2;2.˝n�CIR3/ is

continuous, since u 2 W 1;2.0; T IW 2;2.˝n�CIR3//. Thus it is also uniformly continuous, and

so is the mapping ŒŒu�� W Œ0; T � ! L1.�C/. Then, we use that uniformly continuous mappings admit

uniform approximation by piecewise constant interpolants. In fact, (6.21) holds for all partitions

of Œ0; T � whose fineness tends to 0, therefore we can choose our partition in such a way that the

semistability (3.11d) holds at all points ftni W i D 0; : : : ; Nn�1; n 2 Ng. Hence, we write (3.11d)

at tni�1 tested by Qz D z.tni /, thus obtaining

˚
�
u.tni�1/; z.t

n
i�1/

�
6 ˚

�
u.tni�1/; z.t

n
i /

�
C R

�
u.tni�1/; z.t

n
i /�z.tni�1/

�

D ˚
�
u.tni /; z.t

n
i /

�
C

Z

�C

a1

���
u.tni�1/

���ˇ̌
z.tni /�z.tni�1/

ˇ̌
dS �

Z tn
i

tn
i�1

h�n.s/;
.
u.s/i ds

for any selection �n.t/ 2 @u˚.u.t/; z.t
n
i // for a.a. t 2 .tni�1; t

n
i �, i D 1; :::; Nn, where we have also

used the chain rule for the convex functional u 7! ˚.u; z.tni //, cf. [52, Prop. XI.4.11]. In particular,

taking into account formula (6.20) for @u˚ , we choose

�n.t/ D �.t/ � �n.t/ with �n.t/ 2 W 2;2.˝n�CIR3/� given by

h�n.t/; vi WD
Z

�C

.z.t/�z.tni //˛0
0.

��
u.t/

��
/ �

��
v
��

dS:
(6.22)

Summing for i D 1; : : : ; Nn, we obtain

˚
�
u.T /; z.T /

�
� ˚

�
u0; z0

�
C

NnX

iD1

Z tn
i

tn
i�1

Z

� C

Anj.zj.dSdt/ >

NnX

iD1

Z tn
i

tn
i�1

h�n.s/;
.
u.s/i ds: (6.23)

Now, reproducing the calculations throughout [39, Formulae (4.70)–(4.74)], it can be shown that

lim inf
n!1

NnX

iD1

Z tn
i

tn
i�1

h�n.s/;
.
u.s/i ds >

Z t

0

h�.s/; .u.s/i ds: (6.24)

On the other hand, it follows from (6.21) that

lim
n!1

NnX

iD1

Z tn
i

tn
i�1

Z

� C

Anj.zj.dSdt/ D
Z

˙C

a1.
��
u

��
/
.
z.dS; dt/ D VarR.u; zI Œ0; T �/: (6.25)

Indeed,
.
z 2 C.˙ C/

� can be extended toL1.˙C/
� by the Hahn-Banach principle, and then tested by

An � a1.ŒŒu��/ 2 L1.˙C/ which converges to zero by (6.21). Combining (6.23)–(6.25), we obtain

(6.19).

In order to make (6.19) more explicit, we may observe that

Z t

0

˝
`;

.
u

˛
ds D IK.u.t// � IK.u.0// D IK

���
u.t/

���
� IK

���
u.0/

���
D 0

for all ` 2 L2.0; T IW 2;2.˝n�CIR3/�/ such that `.s/ 2 @IK.u.s// for a.a. s 2 .0; T /, (6.26)
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by the chain rule for the convex functional IK (cf. again [52, Prop. XI.4.11]), and by (3.7a)

and (3.11a). Therefore, in view of (6.19)–(6.26), we conclude the following inequality for all

t 2 Œ0; T �

˚
�
u.t/; z.t/

�
� ˚

�
u0; z0/C VarR.u; zI Œ0; t �/

>

Z t

0

� Z

˝

Ce.u/We..u/CHre.u/.Wre..u/ dx C
Z

�C

z˛0
0.

��
u

��
/�

��.
u

��
dS

�
ds : (6.27)

In order to develop the test of (3.11b) by
.
u, we need to distinguish the quasistatic case % D 0 and

the dynamical case % > 0.

Case % > 0. First of all, let us observe that, under (4.5), the qualification v 2
W 1;2.0; T IL2.˝IRd // for the test functions in (3.11b) might be relaxed to

v 2 L2.0; T IW 2;2
K .˝n�CIR3// \W 1;2.0; T IW 2;2

K .˝n�CIRd /�/; (6.28)

cf. notation (3.5). Indeed, thanks to (3.11a) and to the linearity of K.x/ for almost all x 2 �C,

the function u fulfilling (3.11b) is such that
.
u 2 L2.0; T IW 2;2

K .˝n�CIRd //: Note that (6.28) is

sufficient to give meaning to the term
R

Q

.
u� .v dxdt , because the spacesL2.0; T IW 2;2

K .˝n�CIRd /�/

and L2.0; T IW 2;2
K .˝n�CIRd // are in duality.

Now, a comparison in (6.12) yields that
..
u 2 L2.0; T IW 2;2

K .˝n�CIR3/�/. Therefore, (4.6)

ensues, and
.
u is an admissible test function for the momentum balance inclusion (3.11b), since it

fulfills (6.28). Then, upon proceeding with such a test we conclude for all t 2 Œ0; T � that

%

2

Z

˝

j.u.t/j2 dx C
Z t

0

Z

˝

De.
.
u/We..u/CGre..u/.Wre..u/ dxds

C
Z t

0

Z

˝

Ce.u/We..u/CHre.u/.Wre..u/ dxds C
Z t

0

Z

�C

z˛0
0

���
u

���
�
��.
u

��
dSds

D %

2

Z

˝

j.u0j2 dx C
Z t

0

� Z

˝

�.#/BWe
�.
u

�
dx C

Z

˝

F �.u dx C
Z

�N

f �.u dS

�
ds : (6.29)

Combining (6.29) with (6.27), we get the converse of inequality (6.18), hence the desired

mechanical energy equality (3.13) ensues.

Case % D 0: A comparison in (3.11b) with % D 0 shows that the functional

` W v 7!
Z

Q

�
De.

.
u/CCe.u/�B�.#/

�
We.v/C

�
Gre..u/CHre.u/

�.Wre.v/ dxdt

C
Z

˙C

z˛0
0.

��
u

��
/�

��
v
��

dSdt �
Z

Q

F �v dxdt �
Z

˙N

f �v dSdt (6.30)

is in L2.0; T IW 2;2.˝n�CIR3/�/, and fulfills

Z T

0

IK

���
v
���

dt >

Z T

0

IK

���
u

���
dt C

Z T

0

˝
`; v�u

˛
dt: (6.31)
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Hence, `.t/ 2 @IK.u.t// for almost all t 2 .0; T /. Thus, (6.26) yields
R t

0 h`; .ui ds D 0 for all

t 2 Œ0; T �, which is just relation (6.29) with % D 0. Again, we combine the latter with (6.27), and

conclude the mechanical energy equality (3.13).

Step 5: Passage to the limit in the enthalpy equation. First of all, we observe the following chain of

inequalities for all t 2 Œ0; T �:

VarR

�
u; zI Œ0; t �

�
C

Z t

0

Z

˝

De.
.
u/We..u/CGre..u/.Wre..u/ dxds

6 lim inf
�!0

Z t

0

Z

�C

�1

���
u�

��
;
.
z�

�
dSds C

Z t

0

Z

˝

De.
.
u� /We.

.
u� /CGre..u� /

.Wre..u� / dxds

6 lim sup
�!0

Tkin.
.
u0;� /C ˚� .u0;� ; z0/ � Tkin.

.
u� .t// � ˚�

�
u� .t/; z� .t/

�

C
Z t

0

�Z

˝

�.#� /BWe
�.
u�

�
C

Z

˝

F� �.u� dx C
Z

�N

f � �.u� dS

�
ds

6 Tkin.
.
u0/C ˚.u0; z0/ � Tkin

�.
u.t/

�
� ˚

�
u.t/; z.t/

�

C
Z t

0

� Z

˝

�.#/BWe
�.
u

�
C F �.u dx C

Z

�N

f �.u dS

�
ds

D DissR.u; zI Œ0; t �/ C
Z t

0

Z

˝

De.
.
u/We..u/CGre..u/.Wre..u/ dxds: (6.32)

Indeed, the first inequality ensues from (6.1a) and (6.3), the second one from the discrete mechanical

energy inequality (5.16), the third one from (5.2), (6.1e), (6.10), (6.17), and from (5.8a)–(5.8b), cf.

also Step 3. Finally, the last equality ensues from the mechanical energy equality (3.13) proved in

Step 4. Thus, all of the above inequalities turn out to hold as equalities. By a standard liminf/limsup

argument, we find in particular

De.
.
u� /We.

.
u� / ! De.

.
u/We..u/ and Gre..u� /

.Wre..u� / ! Gre..u/.Wre..u/ strongly in L1.Q/.

Combining these convergences with (6.17) we pass to the limit in the first term on the right-hand

side of the discrete enthalpy equation (5.15). To take the limit of the second right-hand-side term,

we observe that

lim
�!0

Z

˙C

a1.
��
u�

��
/
.
z�v dSdt D lim

�!0

Z

˙C

�
a1.

��
u�

��
/�a1.

��
u�

��
/
�.
z�v dSdt

C lim
�!0

Z

˙C

a1.
��
u�

��
/
.
z�v dSdt D 0C

Z

˙C

a1.
��
u

��
/v

.
z.dSdt/ (6.33)

for any v 2 C.˙C/, and in particular for v D w j
C

�C
Cw j�

�C

2
; here we used respectively (6.5), (6.6),

and (5.25f). Then, we pass to the limit in the left-hand side of (5.15) by exploiting (6.1b), (6.7a),

(6.7b), (6.7d), (6.9), as well as properties (4.1c) for K and (4.1e) for �, and by arguing in the very

same way as in the proof of [35, Thm. 5.1], to which we refer for all details.

In the end, employing (5.9), we take the limit of the last term on the right-hand side of (5.15),

thus finding that the triple .u; z; #/ fulfils the weak formulation (3.11e) of the enthalpy equation.

Step 6: Total energy identity. We test the weak formulation (3.11e) of the enthalpy equation by 1

and add it to the mechanical energy equality. This gives the total energy balance (3.11c). �
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