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We study a polygonal analogue of the Hele–Shaw moving boundary problem with surface tension

based on a framework of polygonal motion proposed by Beneš et al. [5]. A key idea is to introduce

a polygonal Dirichlet-to-Neumann map. We study variational properties of the polygonal Dirichlet-

to-Neumann map and show that our polygonal Hele–Shaw problem is a polygonal analogue of the

original problem. Local solvability of a polygonal Hele–Shaw problem is also proved by means of

the variational structure.
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1. Introduction

We consider a mathematical model for moving boundaries in one phase Hele–Shaw flow. The Hele–

Shaw flow is two-dimensional slow flow of viscous fluid between two parallel horizontal plates with

a thin gap. It was studied by H. S. Hele–Shaw [14] experimentally at first, and some mathematical

models have been proposed in several papers [20–22, 24].

We suppose that the viscous fluid occupies a bounded domain ˝.t/ � R
m at time t . Although

the Hele–Shaw flow is a two dimensional flow, we consider our mathematical model in general

dimension m > 2. We assume that � .t/ WD @˝.t/ is sufficiently smooth and moves smoothly. We

suppose that the outward normal velocity of � .t/ is denoted by V.x; t/. A standard mathematical
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model is as follows:
8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

u.x; t/ D �rp.x; t/ .x 2 ˝.t/; t 2 Œ0; T //

div u.x; t/ D 0 .x 2 ˝.t/; t 2 Œ0; T //

p.x; t/ D ��.x; t/ .x 2 � .t/; t 2 Œ0; T //

V .x; t/ D n � u.x; t/ .x 2 � .t/; t 2 Œ0; T //

� .0/ D �0;

(1.1)

where p.x; t/ 2 R and u.x; t/ 2 R
m .x 2 ˝.t// are a normalized pressure field and a velocity field,

respectively. The velocity field is proportional to the gradient of pressure [20]. The third equation

represents a surface tension effect, where � > 0 is a surface tension which is a given fixed constant

and � denotes sum of principal curvatures of � .t/. If ˝.t/ is convex then � > 0.

The Hele–Shaw problem is one of the simplest typical moving boundary problems and it

admits several variational structures which will be shown in Theorem 2.4 below. So far, there

are many different mathematical approaches to analyze this problem. Duchon and Robert [7]

gave a mathematical interpretation of surface tension as corresponding to the coefficient of the

principal part of a nonlinear third order parabolic integro-differential equation and proved a time

local existence of the unique solution in graph setting without source term. The parabolicity of

the equation is a mathematical expression of the stabilizing effect of surface tension. Their result

was then extended in [16] to more wider class of geometry with source terms. A mathematical

relation between the fingering phenomena and the surface tension effect was also discussed in terms

of mathematical ill/well-posedness in [16]. Escher and Simonett [8] studied the multi-dimensional

case using an abstract theory for nonlinear parabolic semigroups and proved short-time existence of

the moving boundary with a driving force. Chen et al. [6] also proved existence of the solution of

the Hele–Shaw problem with surface tension by a forth order regularization technique.

The variational structure of the Hele–Shaw problem often plays an essential role not only

in the analysis but also in the numerical analysis. For instance, preservation of such variational

structures in numerical simulation deeply concerns its stability and accuracy. Although there are a

great number of numerical schemes for this problem (see [1, 15, 23] and references therein), most

of them realize variational structures approximately. In contrast to them, our polygonal analogue

Hele–Shaw flow preserves the variational structures and is regarded as a semi-discrete numerical

scheme, that is, it is continuous in time and discrete in space.

Beneš et al. [5] proposed a polygonal motion in R
2 with a notion of a polygonal curvature.

It is a generalization of the crystalline motion which is a mathematical model of crystal growth.

They applied their polygonal motion not only to the curvature flow but also to wider classes of

moving boundary problems and showed that the polygonal motion preserves the original variational

structures almost perfectly.

In this paper, we consider a polygonal Hele–Shaw problem based on the idea of [5], and show

that it is a polygonal analogue of the original problem (1.1). This is not the first attempt to apply

the crystalline motion to the Hele–Shaw problem (see [3, 10, 11]). Particularly in [10, 11], they

proposed a crystal growth model of a three dimensional cylindrical domain similar to our polygonal

Hele–Shaw problem, and they made good use of the variational structures. Our motivation, however,

is different from these papers, because our view point is to construct polygonal version of a

moving boundary problem preserving the variational structures, and we have chosen the Hele–Shaw

problem as typical model.

The outline of this paper is as follows. In Section 2, we review a standard Dirichlet-to-Neumann

map in a smooth domain and show the variational structures of the Hele–Shaw problem such as
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volume preservation and surface decreasing properties. It is also shown that the center of gravity

does not move. In Section 3, we consider polygonal motions mainly in two dimensional space.

We study some properties of a polygonal Dirichlet-to-Neumann map in Section 3.1, and we briefly

review the polygonal motion proposed in [5] in Section 3.2. In Section 3.3, we construct a polygonal

version of the Hele–Shaw problem and show its variational structure. Finally, time local solvability

and uniqueness of the solution of polygonal Hele–Shaw problem are proved in Section 4.

2. Motion of smooth surfaces

2.1 Dirichlet-to-Neumann map

As a preliminary in studying the Hele–Shaw problem, we define the Dirichlet-to-Neumann map

and study its properties. Let ˝ be a bounded Lipschitz domain in R
m .m 2 N; m > 2/ with its

boundary � WD @˝ . We define a bilinear form on the Sobolev space H 1.˝/ by

a.u; v/ WD

Z

˝

ru � rv dx
�

u; v 2 H 1.˝/
�

:

For a function v 2 H 1.˝/, we define a trace operator 0v WD vj� . It is known that 0 is a bounded

operator from H 1.˝/ onto H
1
2 .� / (see [13]). We denote the dual space of H

1
2 .� / by H � 1

2 .� / WD

.H
1
2 .� //0. For g 2 H

1
2 .� /, there exists a unique weak solution u 2 H 1.˝/ to the following

boundary value problem:

�

�u D 0 in ˝;

u D g on �:
(2.1)

We define an affine space:

X.g/ WD fv 2 H 1.˝/I 0v D gg
�

g 2 H
1
2 .� /

�

:

A weak form of (2.1) is as follows:

u 2 X.g/ s:t: a.u; v/ D 0
�8

v 2 X.0/
�

; (2.2)

and it is equivalent with the following minimization problem:

Find u D arg min
v2X.g/

a.v; v/; (2.3)

which means

Find u 2 X.g/ s:t: a.u; u/ 6 a.v; v/
�8

v 2 X.g/
�

:

It is well-known that there exists a unique solution to (2.2) or (2.3). We consider a Dirichlet-to-

Neumann map �� by

�� g D
@u

@n
;
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where u is the weak solution of (2.2) and n denotes the outward unit normal vector on � . Formally,

for an arbitrary v 2 H 1.˝/, it satisfies

Z

�

.�� g/v dH m�1 D

Z

�

@u

@n
v dH m�1 D

Z

˝

div.vru/ dx D a.u; v/;

where dH m�1 denotes the .m � 1/-dimensional Hausdorff measure. A precise definition and

properties of �� are given in the next theorem. We omit its proof, but it is not difficult to show

the following theorem from a standard argument as in [13].

THEOREM 2.1 (Dirichlet-to-Neumann map) There exists �� 2 B.H
1
2 .� /; H � 1

2 .� // such that

H
�

1
2 .� /

h�� g; 0vi
H

1
2 .� /

D a.u; v/
�8

g 2 H
1
2 .� /; 8v 2 H 1.˝/

�

;

where u is the solution of (2.2). Moreover, �� is a symmetric operator, i.e., �0
� D �� and satisfies

Ker.�� / D
˚

g 2 H
1
2 .� /I g � const:

	

;

Im.�� / D
˚

� 2 H � 1
2 .� /I

H
�

1
2 .� /

h�; 1i
H

1
2 .� /

D 0
	

:

2.2 General motion and variational formulas

We consider motion of smooth hypersurfaces in R
m .m 2 N; m > 2/ in this section. Let ˝.t/ be

a bounded domain in R
m moving in time t 2 I , where I is an interval. We denote the boundary

of ˝.t/ by � .t/ and call M WD
S

t2I .� .t/ � ftg/ a moving boundary. We suppose that M is

sufficiently smooth, e.g., M is a C 2;1-class moving boundary (which means the outward unit normal

vector field n of � .t/ belongs to C 1.M IRm/ [18]). Then we can define the outward normal velocity

V 2 C 0.M IR/ and sum of principal curvatures � 2 C 0.M IR/.

The m-dimensional measure of ˝.t/ and the .m � 1/-dimensional Hausdorff measure of � .t/

are denoted by j˝.t/j and j� .t/j, respectively. We define the center of gravity of ˝.t/ by

c.t/ WD
1

j˝.t/j

Z

˝.t/

x dx:

The following results are easily derived from standard variational formulas. See [18] for further

details.

THEOREM 2.2 If M is a C 2;1-class moving boundary, then j˝.t/j, j� .t/j and c.t/ belong to C 1.I /

with respect to t and the following formulas hold for t 2 I .

1.
d

dt
j˝.t/j D

Z

� .t/

V dH m�1:

2.
d

dt
j� .t/j D

Z

� .t/

�V dH m�1:

3. If j˝.t/j is constant in time,
d

dt
c.t/ D

1

j˝j

Z

� .t/

xV dH m�1:
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2.3 Hele–Shaw problem with surface tension

In this section, we consider a C 2;1-class moving boundary

M WD
[

06t<T

�

� .t/ � ftg
�

;

and suppose that, for each t 2 Œ0; T /, � .t/ is a boundary of a bounded domain ˝.t/ � R
m. For

simplicity, we write V.t/ WD V j� .t/ and �.t/ WD �j� .t/. We denote the bilinear forms on ˝.t/ and

� .t/ by

at .u; v/ WD

Z

˝.t/

ru � rv dx; hu; vit WD
H

�
1
2 .� .t//

˝

u; vi
H

1
2 .� .t//

:

The trace operator from H 1.˝.t// to H
1
2 .� .t// is, however, always denoted just by 0.

The Hele–Shaw problem (1.1) is described by using the Dirichlet-to-Neumann map.

PROBLEM 2.3 For a given bounded domain ˝0 in R
m with a smooth boundary �0 D @˝0, find a

C 2;1-class moving boundary M with �.t/ 2 H
1
2 .� .t// for t 2 Œ0; T / such that

�

V.t/ D ���� .t/

�

�.t/
� �

t 2 Œ0; T /
�

� .0/ D �0
(2.4)

Under the condition (2.4), for each t 2 Œ0; T /, the pressure field p.t/ D p.�; t/ and the velocity

field u.t/ D u.�; t/ are constructed in the following spaces.

p.t/ 2 H 1.˝.t// s:t:

(

at

�

p.t/; v
�

D 0
�8

v 2 H 1
0

�

˝.t/
�

�

0p.t/ D ��.t/ on � .t/

u.t/ D �rp.t/ 2 L2
�

˝.t/IRm
�

(2.5)

The solution satisfies the following properties.

THEOREM 2.4 If M is a solution of Problem 2.3, the following properties hold.

1.
d

dt
j˝.t/j D 0

2.
d

dt
j� .t/j D �

1

�

Z

˝.t/

ju.x; t/j2 dx 6 0

3.
d

dt
c.t/ D 0

Proof. From the formulas of Theorem 2.2, we obtain the area preserving property:

d

dt
j˝.t/j D

Z

� .t/

V dH m�1 D hV.t/; 1it D h���� .t/

�

�.t/
�

; 1it D �at

�

p.t/; 1
�

D 0:

The second property also follows.

d

dt
j� .t/j D

Z

� .t/

�V dHm�1 D �h�� .t/

�

�.t/
�

; 0p.t/it

D �
1

�
at

�

p.t/; p.t/
�

D �
1

�

Z

˝.t/

ju.x; t/j2dx:
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For the center of gravity, from property 1, we can use formula 3 of Theorem 2.2. Let c.t/ D

.c1.t/; � � � ; cm.t//T. We define an identity map ˇ.x/ WD x, and ˇi .x/ WD xi . For i D 1; 2; � � � ; m,

we have

j˝.0/j
d

dt
ci .t/ D

Z

� .t/

ˇiV dH m�1 D �h��� .t/

�

�.t/
�

; ˇi it

D �at

�

p.t/; ˇi

�

D �

Z

˝.t/

@p

@xi

.x; t/ dx:

Hence, we have

j˝.0/j
d

dt
c.t/ D �

Z

˝.t/

rp.x; t/ dx D �

Z

� .t/

pn dH m�1 D ��

Z

� .t/

�n dH m�1 D 0: (2.6)

The last equality holds for any bounded C 2 closed hypersurface � . We have used the formula:

Z

�

.�� u/v dH m�1 D �

Z

�

r� u � r� v dH m�1
�8

u 2 C 2.� /; 8v 2 C 1.� /
�

;

where �� and r� are the Laplace-Beltrami operator and the gradient operator on � , respectively

(see [18]). In particular, if v � 1, we have

Z

�

�� u dH m�1 D 0
�8

u 2 C 2.� /
�

:

Since �� ˇ D ��n holds on � [18], we have

Z

�

�n dH m�1 D �

Z

�

�� ˇ dH m�1 D 0:

3. Motion of polygons

In the following two sections, we proceed the argument in two dimensional case.

3.1 Polygonal Dirichlet-to-Neumann map

For a polygonal domain, we define a discrete Dirichlet-to Neumann map for our construction of

a polygonal Hele–Shaw problem. Let ˝ be a bounded polygonal domain in R
2 with a polygonal

boundary � D @˝ . We suppose � is an N -polygon and the N edges (open line segments) are

denoted by �j for .j D 1; 2; � � � ; N /. We denote the characteristic function of �j by

�j .x/ D

�

1 .x 2 �j /;

0 .x 2 � n �j /;

and define an N -dimensional subspace of L2.� / as

W.� / WD spanh�1; �2; � � � ; �N i � L2.� /:
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We define a polygonal trace operator N0 : H 1.˝/ ! W.� / by

N0v WD

N
X

j D1

 

Z

�
�j

v dH 1

!

�j 2 W.� /
�

v 2 H 1.˝/
�

;

where
R

�
�j

F dH 1 WD .
R

�j
F dH 1/=j�j j and j�j j WD H 1.�j /.

We recall that the purpose of this paper is to analyze a polygonal version of the original Hele–

Shaw problem (1.1), which will be formulated as Problem 3.6 below. To this end, we propose a

polygonal version of (2.1) as follows. For given Ng 2 W.� /, we consider the following boundary

value problem in ˝:

8

ˆ

ˆ

<

ˆ

ˆ

:

�u D 0 in ˝

N0u D Ng on �
@u

@nj

ˇ

ˇ

ˇ

ˇ

�j

D const. .j D 1; 2; � � � ; N /;
(3.1)

where nj 2 R
2 denotes the outward unit normal vector of �j .

For Ng 2 W.� /, we define an affine subspace of H 1.˝/:

XN . Ng/ WD
˚

v 2 H 1.˝/I N0v D Ng
	

;

and define XN WD XN .0/. A weak formulation of the problem (3.1) is given as follows:

Find u 2 XN . Ng/ s.t.

�

a.u; v/ D 0
�8

v 2 H 1
0 .˝/

�

;

�� .0u/ 2 W.� /:
(3.2)

We can construct an equivalent minimization problem similarly to (2.2):

Find u D arg min
v2XN . Ng/

a.v; v/ (3.3)

THEOREM 3.1 Problem (3.2) has a solution u 2 XN . Ng/ and it is unique. Moreover, the solution u

is a unique minimizer of (3.3).

Proof. We denote the dual map
H

�
1
2 .� /

h�; �i
H

1
2 .� /

simply by h�; �i. We first prove the uniqueness of

a solution of (3.2). Let u1 2 XN . Ng/ and u2 2 XN . Ng/ be solutions of (3.2) and let w WD u1 �u2. We

remark that w 2 XN , a.w; v/ D 0 for v 2 H 1
0 .˝/, and �� .0w/ D

PN
j D1 �j �j , where �j 2 R.

From these relations, we obtain

a.w; w/ D h�� .0w/; 0wi D

N
X

j D1

�j h�j ; 0wi D

N
X

j D1

�j

Z

�j

w dH1 D 0;

and it implies that w D 0, namely, u1 D u2.

Since XN . Ng/ is a closed affine subspace in H 1.˝/, it is clear that there exists a unique

minimizer u 2 XN . Ng/ of problem (3.3). Its first variation gives the following weak form:

a.u; v/ D 0 .8v 2 XN /: (3.4)
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We define its Neumann boundary value � WD �� .0u/ 2 H � 1
2 .� /. From the definition of the

Dirichlet-to-Neumann map,

h�; 0vi D a.u; v/
�8

v 2 H 1.˝/
�

(3.5)

holds. For each j D 1; 2; � � � ; N , we choose vj 2 XN .�j / and define

�j WD
1

j�j j
h�; 0vj i .j D 1; 2; � � � ; N /: (3.6)

For arbitrary v 2 H 1.˝/, we define pj WD
R

�
�j

v dH 1 and Qv WD
PN

j D1 pj vj . Since v � Qv 2 XN ,

from (3.4), we have

h�; 0vi D a.u; v/ D a.u; Qv/ D h�; 0 Qvi D

N
X

j D1

pj h�; 0vj i

D

N
X

j D1

�j pj j�j j D

N
X

j D1

�j

Z

�j

v dH1 D
D

N
X

j D1

�j �j ; 0v
E

:

Hence,

�� .0u/ D

N
X

j D1

�j �j 2 W.� /;

holds and u is a unique solution of problem (3.2). This also shows that (3.3) admits a unique

minimizer.

DEFINITION 3.2 (Polygonal Dirichlet-to-Neumann map) Let � be a bounded N -polygon in R
2.

We define a polygonal Dirichlet-to-Neumann map N�� , which is a linear operator from W.� / to

W.� /, as follows. For Ng 2 W.� / and for a solution u 2 XN . Ng/ of (3.2), we define N�� and its j -th

component �j by

N�� . Ng/ WD

N
X

j D1

�j . Ng/�j WD �� .0u/ 2 W.� /:

The following theorem is a polygonal analogue of Theorem 2.1.

THEOREM 3.3 The polygonal Dirichlet-to-Neumann map N�� is symmetric with respect to L2.� /

inner product, i.e.,
�

N�� . Ng/; Nh
�

L2.� /
D
�

Ng; N�� . Nh/
�

L2.� /

�

Ng; Nh 2 W.� /
�

: (3.7)

Furthermore, it has the following properties:

�j . Ng/ D
a.u; vj /

j�j j

�

Ng 2 W.� /; vj 2 XN .�j /; j D 1; 2; � � � ; N
�

; (3.8)

where u is a solution of (3.2), and

Ker. N�� / D
˚

constant on �
	

; Im. N�� / D
n

N� 2 W.� /I

Z

�

N� dH 1 D 0
o

: (3.9)
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Proof. For Ng; Nh 2 W.� /, the solutions of problem (3.2) for boundary values Ng and Nh are denoted

by u 2 XN . Ng/ and w 2 XN . Nh/, respectively. Then we obtain

�

N�� . Ng/; Nh
�

L2.� /
D

N
X

j D1

�j . Ng/

Z

�j

Nh dH1 D

N
X

j D1

�j . Ng/

Z

�j

w dH 1

D
�

�� .0u/; 0w
�

L2.� /
D a.u; w/;

and similarly we have . Ng; N�� . Nh//L2.� / D a.u; w/. These imply the symmetry (3.7). The equality

(3.8) follows from (3.5) and (3.6).

It is clear that Ker. N�� / � fconstant on � g. For Ng 2 Ker. N�� /, the solution u 2 XN . Ng/ of (3.2)

satisfies �� .0u/ D 0. From Theorem 2.1, u is constant on � (and so in ˝). Thus, it holds that

Ker. N�� / D fconstant on � g.

For the image of N�� , it satisfies that

Im. N�� / � Im.�� / \ W.� / D
n

N� 2 W.� /I

Z

�

N� dH 1 D 0
o

:

Since dim Im. N�� / D dim W.� / � dim Ker. N�� / D N � 1, we obtain the latter formula of (3.9).

REMARK 3.4 The extension to the three dimensional case of the above story follows from the

parallel argument.

3.2 General polygonal motion and variational formulas

In this section, we briefly review a polygonal motion which was proposed in [5]. We consider

polygons in R
2. Let P be the set of polygonal Jordan curves in R

2. In this note, � 2 P is simply

called a polygon. For two polygons � and ˙ 2 P , we say � � ˙ , if their numbers of edges are

same (let it be N ) and their j -th outward unit normal vector nj coincides, nj .� / D nj .˙/ for all

j D 1; 2; � � � ; N after choosing suitable counterclockwise numbering for � and ˙ .

We fix an N -polygon � � 2 P and let P � WD f� 2 P I � � � �g. For � 2 P , we define a

height function h.� / D .h1.� /; h2.� /; � � � ; hN .� //T 2 R
N , where hj .� / is the height from the

origin to the j -th edge �j of � .

We consider a polygon � .t/ 2 P � parametrized by time t 2 I , and we call M WD
S

t2I .� .t/�

ftg/ a polygonal motion in P �. This kind of motion has been studied in the context of crystal growth

model, where it is called a crystalline motion. See [2, 9, 12, 25–30] and references therein.

For a polygon � .t/ 2 P �, we denote its interior domain by ˝.t/ with @˝.t/ D � .t/, and

denote its height function simply by h.t/ D .h1.t/; h2.t/; � � � ; hN .t//T 2 R
N . A polygonal motion

M D
S

t2I .� .t/ � ftg/ is called of C k-class if h 2 C k.I ;RN /. If M is a C 1-class polygonal

motion, the normal velocity Vj of �j .t/ is a constant on each �j .t/ and it is given by Vj .t/ D Phj .t/.

We define a normal velocity of � .t/ by NV .t/ WD
PN

j D1 Vj .t/�j .t/ 2 W.� .t//, where �j .t/ denotes

the characteristic function of �j .t/.

Let the j -th vertex of � 2 P � be wj and let its outer angle be 'j 2 .��; �/ n f0g, with

cos 'j D nj C1 � nj as shown in Figure 1. For � 2 P �, a polygonal curvature �j .� / of the j -th

edge �j is defined by

�j .� / WD
�j

j�j j
;
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where �j WD tan.'j =2/ C tan.'j �1=2/. For a polygon � .t/ 2 P �, we define

N�.t/ WD

N
X

j D1

�j

�

� .t/
�

�j .t/ 2 W
�

� .t/
�

:

We have the following polygonal version of variational formulas similar to Theorem 2.2. For a proof

of this theorem, see [4, 5].

THEOREM 3.5 If M D
S

t2I .� .t/ � ftg/ is a C 1-class polygonal motion in P �, then j˝.t/j,

j� .t/j and c.t/ belong to C 1.I / with respect to t and the following formulas hold for t 2 I .

1.
d

dt
j˝.t/j D

N
X

j D1

j�j .t/jVj .t/ D

Z

� .t/

NV dH 1:

2.
d

dt
j� .t/j D

N
X

j D1

j�j .t/j�j

�

� .t/
�

Vj .t/ D

Z

� .t/

N� NV dH 1:

3. If j˝.t/j is constant in time,
d

dt
c.t/ D

1

j˝j

Z

� .t/

x NV dH 1:

3.3 Polygonal Hele–Shaw problem with surface tension

We consider a polygonal analogue of the Hele–Shaw problem with surface tension (1.1) in this

section. Its naive form is given as follows.

PROBLEM 3.6 (Polygonal Hele–Shaw problem) Let � > 0 and an N -polygon � � 2 P � be given.

Find a C 1-class polygonal motion M D
S

06t<T .� .t/ � ftg/ in P � and a pressure filed p.x; t/

and a velocity field u.x; t/ for x 2 ˝.t/, such that, for each t 2 Œ0; T /,

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Vj .t/ D nj � u.x; t/
�

x 2 �j .t/; j D 1; 2; � � � ; N
�

;

div u.x; t/ D 0
�

x 2 ˝.t/
�

;

u.x; t/ D �rp.x; t/
�

x 2 ˝.t/
�

;
Z

�
�j .t/

p.x; t/ dH 1 D ��j

�

� .t/
�

.j D 1; 2; � � � ; N /;

� .0/ D � �:

wj tj

nj

wj-1ϕj

|ϕj-1|

Γj

hj

O
Ω

FIG. 1. Outer angles and height around the j -th edge �j . The j -th height is defined as hj D wj � nj D wj�1 � nj .
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Using the polygonal Dirichlet-to-Neumann map defined in Section 3.1, we can describe it in the

following weak form.

PROBLEM 3.7 (weak form of polygonal HS problem) Let � > 0 and an N -polygon � � 2 P � be

given. Find a C 1-class polygonal motion M D
S

06t<T .� .t/ � ftg/ in P � such that

�

NV .t/ D �� N�� .t/

�

N�.t/
�

.0 6 t < T /;

� .0/ D � �:

For a solution of Problem 3.7, for each t 2 Œ0; T /, the pressure field p.t/ D p.�; t/ is constructed

as

p.t/ 2 H 1
�

˝.t/
�

s.t.

(

at .p.t/; v/ D 0
�8

v 2 H 1
0

�

˝.t/
�

�

;

N0p.t/ D � N�.t/ on � .t/

and the velocity field u.t/ D u.�; t/ is given by (2.5).

This is a polygonal analogue of the original Hele–Shaw problem with a smooth moving

boundary.

THEOREM 3.8 If � .t/ .0 6 t < T / is a solution of Problem 3.7, the following properties hold.

1.
d

dt
j˝.t/j D 0

2.
d

dt
j� .t/j D �

1

�

Z

˝.t/

ju.x; t/j2 dx 6 0

3.
d

dt
c.t/ D �� j˝j

N
X

j D1

�j nj

Proof. From the formulas of Theorem 3.5, we obtain the area preserving property:

d

dt
j˝.t/j D

Z

� .t/

NV dH 1 D h NV .t/; 1it D h��� .t/

�

0p.t/
�

; 1it D �at

�

p.t/; 1
�

D 0:

The second property holds as follows.

d

dt
j� .t/j D

Z

� .t/

N� NV dH 1 D

N
X

j D1

Vj .t/

Z

�j .t/

N� dH 1

D
1

�

N
X

j D1

Vj .t/

Z

�j .t/

p dH 1 D
1

�

Z

� .t/

NV p dH 1

D �
1

�
h�� .t/.0p.t//; 0p.t/it D �

1

�
at

�

p.t/; p.t/
�

D �
1

�

Z

˝.t/

ju.x; t/j2 dx:

For the center of gravity, from property 1, we can use formula 3 of Theorem 3.5. For i D

1; 2; � � � ; m, similarly to a proof of Theorem 2.4, we have

d

dt
ci .t/ D

Z

� .t/

ˇi
NV dH 1 D �h�� .t/

�

0p.t/
�

; ˇi it D �at .p.t/; ˇi / D �

Z

˝.t/

@p

@xi

.x; t/ dx:
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Hence, we have

d

dt
c.t/ D �

Z

˝.t/

rp.x; t/ dx D �

Z

� .t/

pn dH 1 D �

N
X

j D1

��j

�

� .t/
�

j�j .t/jnj D ��

N
X

j D1

�j nj :

REMARK 3.9 We remark that if we choose our polygon class P � with the condition
PN

j D1 �j nj D

0, then
d

dt
c.t/ D 0

holds.

4. Local solvability of polygonal Hele–Shaw problem

In this section, we prove time local solvability and uniqueness of the solution of polygonal Hele–

Shaw problem (Problem 3.7). We first prepare some necessary notation and lemmas.

For a fixed � � 2 P , we define an open set:

O� WD
˚

h.� /I � � � �
	

� R
N :

Then P � and O� correspond to each other by the mapping P � 3 � 7! h.� / 2 O�. The inverse

mapping from O� to P � is denoted by

� .h/ WD �
�

h 2 O�; h D h.� /; � 2 P �
�

:

The j -th vertex of � .h/ is denoted by wj .h/ 2 R
2, and the interior domain of � .h/ is denoted by

˝.h/. For h 2 O�, we also denote the polygonal curvature of � D � .h/ 2 P � by

N�.h/ D

N
X

j D1

�j .h/�j 2 W.� /:

It is clear that �j 2 C 1.O�/ .j D 1; 2; � � � ; N /.

Similarly to Proposition 2.1 of [4], we can construct a family of Lipschitz mappings ˚.h/ D

˚.�; h/ from a fixed domain to ˝.h/. We take Oh 2 O� arbitrarily and fix it. We define O� WD � . Oh/

and denote the interior polygonal domain of O� by Ő . The closure of Ő is denoted by ˝O

LEMMA 4.1 For Oh 2 O� and a bounded domain Q � ˝O, there exist an open set O � O� with
Oh 2 O and a family of domain mapping ˚ 2 C 1.O; W 1;1.Q;R2//, and they satisfy the following

conditions.

1. ˚.h/ is a bi-Lipschitz transform from Q onto itself, i.e., ˚.h/ is bijective from Q onto itself

and ˚.h/ and ˚.h/�1 are both Lipschitz continuous on Q.

2. ˚.x; h/ D x for x in a neighborhood of @Q for h 2 O .

3. ˚.˝O; h/ D ˝.h/ for h 2 O, and ˚.h/ is an affine map from each edge O�j onto �j .h/ with

˚.wj . Oh/; h/ D wj .h/, i.e.,

˚..1 � �/wj �1. Oh/ C�wj . Oh/; h/ D .1 � �/wj �1.h/ C�wj .h/ .j D 1; 2; � � � ; N; � 2 Œ0; 1�/:
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Proof. Without loss of generality, we assume that Q is a bounded polygonal domain. We consider

a triangulation T of Ő and Q which satisfies the following conditions.

(1) T D fKg is a finite collection of closed triangles K � R
2, and Q D

[

K2T

K .

(2) If K; K 0 2 T and K ¤ K 0, K \ K 0 is any one of the empty set, a common vertex or a common

edge of K and K 0.

(3) There exists a subset T 0 � T such that ˝O D
[

K2T 0

K , and N \ O� D fwj . Oh/gN
j D1, where N

denotes the set of all vertices of triangles in T .

(4) There does not exist any K 2 T with K \ O� ¤ ; and K \ @Q ¤ ;.

We assume that ˚.h/ D ˚.�; h/ 2 C 0.Q;R2/ and that it has the following form:

˚.x; h/ D AK.h/

�

x

1

�

.x 2 K 2 T /; (4.1)

where AK.h/ is a 2 � 3 matrix depending on K 2 T and h 2 O . To determine AK.h/, we suppose

the condition:

˚.x; h/ D

�

x if x 2 N n O� ;

wj .h/ if x D wj . Oh/ 2 N \ O� :
(4.2)

For sufficiently small O , ˚.x; h/ is uniquely determined by the conditions (4.1) and (4.2) for h 2

O . It is also clear that ˚.h/ 2 W 1;1.Q;R2/ is bijective from Q onto itself and ˚.x; h/ D x for

x 2 K if K \ O� D ;.

Let us fix K 2 T and let x1, x2, x3 be the three vertices of K . Then, from (4.2), yl.h/ WD

˚.xl ; h/ satisfies the condition yl 2 C 1.O;R2/ for l D 1; 2; 3. Since

yl.h/ D AK.h/

�

xl

1

�

.l D 1; 2; 3/;

we have

AK.h/ D
�

y1.h/; y2.h/; y3.h/
�

�

x1 x2 x3

1 1 1

��1

:

From this expression, we obtain AK 2 C 1.O;R2�3/. By the above construction of ˚ , the three

conditions of the lemma are all satisfied. The regularity condition ˚ 2 C 1.O; W 1;1.Q;R2//

follows from (4.1) and AK 2 C 1.O;R2�3/.

LEMMA 4.2 We define

�ij .h/ WD �i .�j / on � D � .h/ .h 2 O�; i; j D 1; 2; � � � ; N /: (4.3)

Then �ij 2 C 1.O�/ holds for i; j D 1; 2; � � � ; N .

Proof. We fix Oh 2 O� and take O � O� and ˚ 2 C 1.O; W 1;1.Q;R2// as given in Lemma 4.1.

For i; j D 1; 2; � � � ; N , we show that �ij 2 C 1.O/ below. To apply the theory of the polygonal

Dirichlet-to-Neumann map in Section 3.1, we denote a.u; v/ and XN . Ng/ on ˝ by a˝.u; v/ .u; v 2

H 1.˝// and XN . Ng; ˝/ . Ng 2 W.@˝//, respectively. We, however, denote the characteristic function

of �j .h/ by �j 2 W.� .h// for simplicity.
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We define the push-forward operator from Ő onto ˝.h/:

˚.h/� W Ov 7�! v D Ov ı ˚.h/�1
�

Ov D v ı ˚.h/ 2 H 1. Ő /
�

:

We denote the space variables on ˝.h/ and Ő by x and Ox, respectively. Then, for h 2 O, we have

x D ˚. Ox; h/ 2 ˝.h/ . Ox 2 Ő /;

˚.h/� Ov.x/ D Ov. Ox/ . Ov 2 H 1. Ő /; Ox 2 Ő /:

We obtain the formula:

r.˚.h/� Ov/.x/ D A. Ox; h/r Ov. Ox/ . Ov 2 H 1. Ő /; Ox 2 Ő /;

where

A. Ox; h/ WD .r˚. Ox; h/T/
�1

2 R
2�2 . Ox 2 Ő ; h 2 O/:

Since ˚.h/ is a bi-Lipschitz domain mapping from Ő onto ˝.h/, the push-forward operator ˚.h/�

becomes a linear topological isomorphism from H 1. Ő / onto H 1.˝.h//. See Section 3 in [19] or

Section 7 in [17] for further details.

In particular, since ˚.h/ is an affine mapping on each O�j ,

Z

�
O�j

Ov dH 1 D

Z

�
�j .h/

˚.h/� Ov dH 1 . Ov 2 H 1. Ő /; j D 1; 2; � � � ; N /

hold and ˚.h/� becomes a linear topological isomorphism from XN .�i ; Ő / onto XN .�i ; ˝.h//.

We define a pull-back of the bilinear form:

Oa. Ou; Ov; h/ WD a˝.h/.˚.h/� Ou; ˚.h/� Ov/ . Ou; Ov 2 H 1. Ő /; h 2 O/:

Then we have

Oa. Ou; Ov; h/ D

Z

˝.h/

r.˚.h/� Ou/ � r.˚.h/� Ov/ dx

D

Z

Ő
.A. Ox; h/r Ou. Ox// � .A. Ox; h/r Ov. Ox// OJ . Ox; h/ d Ox; (4.4)

where OJ is the Jacobian defined as

OJ . Ox; h/ WD det r˚. Ox; h/T . Ox 2 Ő ; h 2 O/:

We remark that A 2 C 1.O; L1. Ő ;R2�2// and OJ 2 C 1.O; L1. Ő // hold (see [17, 19], again).

From Theorem 3.3, we obtain

�ij .h/ D
a˝.h/

�

uj .h/; vi

�

j�j .h/j
.h 2 O/;

where

uj .h/ WD arg min
v2XN .�j ;˝.h//

a˝.h/.v; v/ .h 2 O/;
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and vi is an arbitrary function satisfying

vi 2 XN

�

�i ; ˝.h/
�

: (4.5)

We denote the pull-back of vi from ˝.h/ to Ő by Ovi D vi ı ˚.h/. Then (4.5) is equivalent to

Ovi 2 XN .�i ; Ő /. We also define Ouj .h/ WD uj .h/ ı ˚.h/. Then we have

Ouj .h/ D arg min
Ov2XN .�j ; Ő /

Oa. Ov; Ov; h/; (4.6)

and

�ij .h/ D
Oa
�

Ouj .h/; Ovi ; h
�

j�j .h/j
.h 2 O/: (4.7)

From the expression (4.4), it follows that the mapping Œ. Ov; h/ 7�! Oa. Ov; Ov; h/� belongs to

C 1.H 1. Ő / � O;R/. Thus we can apply Theorem 2.5 of [19] to the minimization problem (4.6)

and obtain that Ouj 2 C 1.O; H 1. Ő //.

We fix Ovi 2 XN .�i ; Ő /. The assertion �ij 2 C 1.O/ follows from the formula (4.7) and the

regularities:

Œ. Ov; h/ 7�! Oa. Ov; Ovi ; h/� 2 C 1
�

H 1. Ő / � O;R
�

;

Œ h 7�! Ouj .h/� 2 C 1
�

O; H 1. Ő /
�

;

Œ h 7�! j�j .h/j � 2 C 1.O;R/:

Using this lemma, we can show local existence of a solution of the polygonal Hele–Shaw

problem.

THEOREM 4.3 For Problem 3.7, there exists a local solution M D
S

06t<T .� .t/�ftg/ of C 1-class

polygonal motion in P � with some T 2 .0; 1�. Moreover the solution is unique and it becomes a

polygonal motion of C 1-class.

Proof. Problem 3.7 is equivalent to the following initial value problem of a system of ODEs:

8

ˆ

<

ˆ

:

dhi

dt
D ��

N
X

j D1

�ij .h/�j .h/ .i D 1; 2; � � � ; N /

h.0/ D h.� �/;

where �ij .h/ is defined by (4.3). Since �ij and �j belong to C 1.O�/, the assertion of the theorem

follows from the standard theory of ordinary differential equations.

Conclusions

In this paper, we first revealed some precise variational structures of the Hele–Shaw moving

boundary problem with surface tension (1.1) in Section 2, namely, the Dirichlet-to-Neumann map



92 M. KIMURA, D. TAGAMI AND S. YAZAKI

formulation in Problem 2.3 and some variational properties in Theorem 2.4. In the theorem, we have

shown properties of area preservation, curve shortening, and preservation of the center of gravity.

In Section 3, based on the idea of [5], we proposed a polygonal analogue of the Hele–Shaw

problem in Problem 3.6, and we have shown that its weak formulation is given by introducing

the polygonal Dirichlet-to-Neumann map. Furthermore, we have shown in Theorem 3.8 that the

polygonal Hele–Shaw problem admits the same variational structures as ones in Theorem 2.4. In

the last section, we proved time local existence of a unique solution of the polygonal Hele–Shaw

problem.

These results of this paper together with [5] suggest that the method of crystalline motion or

polygonal motion can provide an effective discrete model not only for the classical crystal growth

but also for various moving boundary problems with variational structures. Our polygonal motion

approach enables us to handle the variational structures of the original problem including the

curvature term in an easier semi-discrete system.
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5. BENEŠ, M., KIMURA, M. AND YAZAKI, S., Second order numerical scheme for motion of polygonal

curves with constant area speed. Interfaces and Free Boundaries 11 (2009), 515–536. Zbl1189.65189

MR2576215

6. CHEN, X., HONG, J. AND YI, F., Existence, uniqueness, and regularity of classical solutions of the

Mullins-Sekerka problem. Comm. Partial Diff. Eq. 21 (1996), 1705–1727. MR1421209
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