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We study a one-dimensional free-boundary problem describing the penetration of carbonation fronts

(free reaction-triggered interfaces) in concrete. Using suitable integral estimates for the free boundary

and involved concentrations, we reach a twofold aim:

(1) We fill a fundamental gap by justifying rigorously the experimentally guessed
p
t asymptotic

behavior. Previously we obtained the upper bound s.t/ 6 C 0
p
t for some constant C 0; now we show

the optimality of the rate by proving the right nontrivial lower estimate, i.e., there exists C 00 > 0 such

that s.t/ > C 00
p
t .

(2) We obtain weak solutions to the free-boundary problem for the case when the measure of the

initial domain vanishes. In this way, we allow for the nucleation of the moving carbonation front – a

scenario that until now was open from the mathematical analysis point of view.
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1. Introduction

1.1 Background

Environmental impact on concrete parts of buildings results in a variety of unwanted chemical

and chemically-induced mechanical changes. The bulk of these changes leads to damaging and

destabilization of the concrete itself or of the reinforcement embedded in the concrete. One

important destabilization factor is the drop in pH near the steel bars induced by carbonation of the

alkaline constituents; see for instance [15, 16, 26] and [23, 24] for technical details. Note however

that, depending on the precise situation, carbonation is not necessarily a bad think to happen to a

building material, on top of this it can also play an important role inCO2 sequestration as mentioned

in [12] and references cited therein. The destabilization is caused by atmospheric carbon dioxide

diffusing in the dry parts and reacting in the wet parts of the concrete pores. The phenomenon is

considered as one of the major processes inducing corrosion in concrete. A particular feature of

carbonation is the formation of macroscopic sharp reaction interfaces or thin reaction layers that

progress into the unsaturated concrete-based materials. The deeper cause for the formation of these

patterns is not quite clear, although the major chemical and physical reasons seem to be known.
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Mathematically, the proposed model is a coupled system of semi-linear partial differential

equations posed in a single 1D moving domains. The moving interface (front position in 1D)

is assumed to be triggered by a fast chemical reaction – the carbonation reaction. Non-linear

transmission conditions of Rankine-Hugoniot type are imposed across the inner boundary that

separates the carbonated regions from the uncarbonated ones. The movement of the carbonated

region is determined via a non-local dynamics law.

Note that our research is in spirit very much aligned with the mathematical investigations by R.

Natalini and co-workers on the restoration of historical monuments; see for instance [5, 13]. Related

mathematical approaches of similar reaction-diffusion scenarios have been reported, for instance,

in [8, 13, 14], focussing on the fast-reaction asymptotics. Note however that the precise structure of

our model has not yet been derived by such arguments, in spite of repeated attempts [9, 17].

1.2 Aim of the paper

As key objectives we wish to prove that a carbonation front can nucleate based on our model

equations and that its penetration depth asymptotics for large times can be predicted. Of course,

other questions like understanding general motions of macroscopic sharp reaction fronts in concrete

[especially in the presence of corners] would be highly interesting both mathematically and from

the civil engineering point of view, but this is for the moment out of reach due to that fact that we

do not know yet the right boundary conditions in 2D and 3D. Possible routes towards this might be

provided by applying a phase-field methodology.

Note that a couple of decades ago, it was observed experimentally that the carbonation

penetration depth versus time curve (say s.t/ vs. t) behaves like s.t/ D C
p
t for sufficiently large

times t > 0 (with C a positive constant). Consequently, many fitting arguments solely based on

this experimental law were used to predict the large-time behavior of carbonation fronts in real

structures, a theoretical justification of the
p
t -law being lacking until now.

A fundamental result stating when the
p
t-law is expected to hold is really needed especially if

one looks to the large amount of current engineering literature reporting on tˇ behaviors, where ˇ

is typically a parameter fluctuating around 1
2

. The summary of experimentally expected asymptotic

behaviors [for various types of cements and various boundary (environmental) conditions] reported

in Table 2.2, pp. 30–31 [23] shows luck of agreement and general confusion.

This is the place where our paper contributes: We want to fill this gap by justifying rigorously

the experimentally discovered asymptotic behavior; see, e.g., [24] for the case when one can ensure

that carbonation does not significantly affect the porosity of the concrete.

1.3 Basic carbonation scenario – a moving one-phase approach

We study a one-dimensional free boundary problem system arising in the modeling of concrete

carbonation problem. We consider that the concrete occupies the infinite interval .0;1/ and that

there exists a sharp interface x D s.t/, t > 0 separating the carbonated from the uncarbonated

zone. The whole process can be seen as a solid-solid phase change; see the two colors in Fig. 1

(left). One color points out to CaCO3 (carbonated phase), while the other one indicates Ca.OH/2
(uncarbonated phase). The zone of interest is only one of the solid phases, namely the carbonated

zone. We denote it by Qs.T / and, in mathematical terms, this is defined by Qs.T / WD f.t; x/ W
0 < t < T; 0 < x < s.t/g for some T > 0. Throughout this paper u and v denote the mass
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concentrations of CO2 in air and water, respectively. In this framework,u and v satisfy the following

system P DP.s0; u0; v0; g; h/ (1.1) � (1.7):

ut � .�1ux/x D f .u; v/ in Qs.T /; (1.1)

vt � .�2vx/x D �f .u; v/ in Qs.T /; (1.2)

u.t; 0/ D g.t/; v.t; 0/ D h.t/ for 0 6 t 6 T; (1.3)

s0.t/ D  .u.t; s.t/// for 0 < t < T; (1.4)

� �1ux.t; s.t// D  .u.t; s.t///C s0.t/u.t; s.t// for 0 < t < T; (1.5)

� �2vx.t; s.t// D s0.t/v.t; s.t// for 0 < t < T; (1.6)

s.0/ D s0 and u.0; x/ D u0; v.0; x/ D v0 for 0 < x < s0; (1.7)

where �1 (resp. �2) is a diffusion constant of CO2 in air (resp. water), f .u; v/ WD ˇ.v � u/

is an effective Henry’s law, where ˇ and  are positive constants, g and h are given functions

corresponding to boundary conditions for u and v, respectively,  .r/ WD ˛jŒr�Cjp for r 2 R

describes the rate of the carbonation reaction, where p > 1 and ˛ is a positive constant�. s0 > 0 is

the initial position of the free boundary, while u0 and v0 are the initial concentrations.

Looking to Fig. 1, one could wonder whether a one-dimensional setting is proper or not when

dealing with this problem. To defend the 1D approach, we just consider a scenario away from

cornersx and have in mind that the actual measurement of the thickness of the width of the colorless

zone is essentially 1D. This measurement of the carbonated width is called phenolphtalein test.

First mathematical models with free boundaries for describing the concrete carbonation process

have been proposed by Muntean and Böhm in [18], where the first mathematical results concerning

the global existence and uniqueness of weak solutions as well as the stability of the solutions with

respect to data and parameters have been investigated. Recently, we have improved their results by

focussing a reduced free-boundary model still able to capturing the basic features of the carbonation

process; see [1, 2] for the list of the new theorems on the existence and uniqueness of weak solutions

to P. This model is in some sense minimal: It includes the transport of species (diffusion), their

averaged transfer across air-water interfaces (the Henry law), as well as fast reaction (with an

indefinitely large chemical compound – “the concrete”). We have used further the advantageous

structure of the reduced model to study the large-time behavior of the penetration depths. Basically,

we started to wonder whether the experimentally known
p
t-law

s.t/ D NC
p
t for t > 0;

where NC is a positive constant, is true or not [20]. Let us comment a bit on the context: It was shown

in [26, 193–199] that the carbonation front behaves like a similarity solution to a one-phase Stefan-

like problem [21]. Using matched-asymptotics techniques, the fast-reaction limit (for large Thiele

moduli) done in [17] for a reaction-diffusion system also led to a
p
t -behavior of the carbonation

front supporting experimental results from, e.g., [15, 16]. On the other hand, experimental results

from [23] indicate that, depending on the type of the cement, a variety of tˇ front behaviors with ˇ ¤
1
2

are possible; see also Fig. 1 (right) where we point out that our model approaches qualitatively

the expected experimental behavior. Furthermore, Souplet, Fila and collaborators (compare [10,

� The exponent p is sometimes called order of the chemical reaction, while the parameter ˛ is just a proportionality

constant. Its sensitivity with respect to the model output .s; u; v/ has been studied numerically in [19].
x We do not know yet how the speed of the carbonation front is affected by the local geometry (e.g., corners).
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FIG. 1. (Left) Typical result of the phenolphthalein test on a partially carbonated sample (Courtesy of Prof. Dr. Max Setzer,

University of Duisburg-Essen, Germany). The dark region indicates the uncarbonated part, while the brighter one points out

the carbonated part. The two regions are separated by a sharp interface moving inwards the material. In this colorimetric

test, this macroscopic interface corresponds to a drop in pH below 10. (Right) Computed interface positions vs. measured

penetration depths [19]. This indicates how the mathematical model approximates the real situation.

25]) have shown that, under certain conditions, non-homogeneous Stefan-like problem can lead to

asymptotics like s.t/ � t
1
3 . Somehow, the major question remains:

What is the correct asymptotics of the carbonation front propagation?

The main result of our preliminary investigations (based on the reduced FBP) is reported in [3]

and supports the fact that

s.t/ ! 1 as t ! 1 and s.t/ 6 C 0
p
t for t > 0;

where C 0 is a positive constant. Moreover, in this paper we establish as main result (see

Theorem 2.3) a lower bound on the position of the free boundary s as follows: For some positive

constant c

s.t/ > c
p
t for t > 0: (1.8)

This estimate combined with the corresponding lower one would immediately guarantee the

correctness of the
p
t-law from a mathematical modeling point of view. In Section 2 we derive

the missing lower bound. Our results here are not trivial extensions of the analysis presented in [3]

– conceptually better ideas were needed to improve in an essential manner the available results.

In particular, note that since, generally, k1 � k2 and v ¤ u, the system (1.1)–(1.7) cannot

be reduced to a scalar equation, where the use of Green functions representation [6, 21] would

very much facilitate the obtaining of non-trivial lower bounds on concentrations, and hence, on the

free boundary velocity. Furthermore, by using the similar method as the one used in the proof of

(1.8), we can construct a weak solution to P satisfying s0 D 0. It is worth mentioning that Fasano

and Primicerio (cf., e.g., [11]) have investigated a one-phase Stefan problem when the measure of

the initial domain vanishes. In their proof the comparison principle is used in an essential manner.

However, for our problem P we do not have any comparison theorem for the free boundary. Our idea

here is to develop a method to obtain improved uniform estimates for solutions and then use these

estimates to prove the existence of weak solutions for the case s0 D 0 (nucleation of the carbonation

front). This program is realized in section 3. There are neither physical nor mathematical reasons to

believe that uniqueness of weak solutions for the case s0 D 0 would not hold. However, since our

fixing-domain technique is not applicable anymore, the uniqueness seems to be difficult to prove.
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2. Large-time behavior of the free boundary

In order to give a statement of our result on the large-time behavior of (weak) solutions, we consider

the problem P posed in the cylindrical domain Q.T / WD .0; T / � .0; 1/. To this end, we use the

following change of variables:

Let

Nu.t; y/ D u.t; s.t/y/ and Nv.t; y/ D v.t; s.t/y/ for .t; y/ 2 Q.T /: (2.1)

Then, it holds that

Nut � �1

s2
Nuyy � s0

s
y Nuy D f . Nu; Nv/ in Q.T /;

Nvt � �2

s2
Nvyy � s0

s
y Nvy D �f . Nu; Nv/ in Q.T /;

Nu.0; t/ D g.t/; Nv.0; t/ D h.t/ for 0 < t < T;

s0.t/ D  
�

Nu.t; 1/
�

for 0 < t < T;

� �1

s.t/
Nuy.t; 1/ D s0.t/ Nu.t; 1/C s0.t/ for 0 < t < T;

� �2

s.t/
Nvy.t; 1/ D s0.t/ Nv.t; 1/ for 0 < t < T;

s.0/ D s0; Nu.0; y/ D Nu0.y/; Nv.0; y/ D Nv0.y/ for 0 < y < 1;

where Nu0.y/ D u0.s0y/ and Nv0.y/ D v0.s0y/ for y 2 Œ0; 1�.
For simplicity, we introduce some notations as follows: H WD L2.0; 1/, X WD fz 2 H 1.0; 1/ W

z.0/ D 0g, X� is the dual space of X ,

V.T / WD L1.0; T IH/ \ L2.0; T IH 1.0; 1//

and

V0.T / WD V.T / \ L2.0; T IX/;
and .�; �/H and h�; �iX denote the usual inner product of H and the duality pairing between X and

X�, respectively.

First of all, we define a weak solution of P.s0; u0; v0; g; h/. To do this, we use a similar concept

of weak solution as the one introduced in [1].

DEFINITION 2.1 Let s be a function on Œ0; T � and u, v be functions on Qs.T / for 0 < T < 1,

and Nu and Nv be functions defined by (2.1). We call that a triplet fs; u; vg is a weak solution of P on

Œ0; T � if the conditions (S1) � (S5) hold:

(S1) s 2 W 1;1.0; T / with s > 0 on Œ0; T �, . Nu; Nv/ 2
�

W 1;2.0; T IX�/ \ V.T / \ L1
�

Q.T /
�

�2

.

(S2) Nu � g; Nv � h 2 L2.0; T IX/, u.0/ D u0 and v.0/ D v0.

(S3) s0.t/ D  .u.t; s.t// for a.e. t 2 Œ0; T � and s.0/ D s0.

(S4)

Z T

0

h Nut ; ziXdt C
Z

Q.T /

�1

s2
Nuyzydydt C

Z T

0

s0

s
. Nu.�; 1/C 1/z.�; 1/dt

D
Z

Q.T /

.f . Nu; Nv/C s0

s
y Nuy/zdydt for z 2 V0.T /:
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(S5)

Z T

0

h Nvt ; ziXdt C
Z

Q.T /

�2

s2
Nvyzydydt C

Z T

0

s0

s
Nv.�; 1/z.�; 1/dt

D
Z

Q.T /

.�f . Nu; Nv/C s0

s
y Nvy/zdydt for z 2 V0.T /:

Moreover, let s be a function on Œ0;1/, and u and v be functions on Qs WD f.t; x/jt > 0; 0 < x <
s.t/g. We say that fs; u; vg is a weak solution of P on Œ0;1/ if for any T > 0 the triplet fs; u; vg is

a weak solution of P on Œ0; T �.

Before recalling our results concerning the global existence and uniqueness of weak solutions

to P on the time interval Œ0; T �, T > 0, we give the following assumptions for the involved data and

model parameters:

(A1) f .u; v/ D ˇ.v � u/ for any .u; v/ 2 R2 where ˇ and  are positive constants.

(A2) g; h 2 W 1;2
loc
.Œ0;1// \ L1.0;1/, and g > 0 and h > 0 on .0;1/.

(A3) u0 2 L1.0; s0/ and v0 2 L1.0; s0/ with u0 > 0 and v0 > 0 on .0; s0/.

THEOREM 2.2 (cf. [1, Theorems 1.1 and 1.2, Lemma 4.1]) If (A1) � (A3) hold, then P has one and

only one weak nonnegative solution on Œ0;1/.

The next theorem is the main result of this paper.

THEOREM 2.3 If g.t/ D g�, h.t/ D h� for t 2 Œ0;1/, where g� and h� are positive constants

with h� D g�, and (A1) and (A3) hold, then there exists a positive constant c such that

s.t/ > c
p
t for t > 0:

The proof of Theorem 2.3 relies on the following technical lemma containing integral estimates

for both the concentrations and position of the free boundary, positive and uniformly bounded

concentrations, and also, that an energy-like inequality holds.

LEMMA 2.4 (cf. [3, Lemmas 3.2, 3.3 and 3.4]) If (A1) � (A3) hold, then a weak solution fs; u; vg
on Œ0;1/ satisfies

Z s.t/

0

xu.t/dxC 1

2

ˇ

ˇs.t/
ˇ

ˇ

2 C�1

Z t

0

u
�

�; s.�/
�

d�C
Z s.t/

0

xv.t/dxC�2

Z t

0

Z s.�/

0

vx.�; x/dxd�

D
Z s0

0

xu0dx C 1

2
js0j2 C

Z s0

0

xv0dx C �1

Z t

0

g.�/d� for t > 0;
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and

1

2

Z s.t/

0

ju.t/ � g�j2dx C 

2

Z s.t/

0

jv.t/ � h�j2dx C 1

2

Z t

0

js0.�/j1C2=pd�

C �1

Z t

0

Z s.�/

0

jux.�/j2dxd� C �2

Z t

0

Z s.�/

0

jvx.�/j2dxd�

6
1

2

Z s0

0

ju0 � g�j2dx C 

2

Z s0

0

jv0 � h�j2dx

C
Z t

0

s0.�/.
1

2
jg�j2 C g� C 

2
jh�j2/d� for t > 0:

Moreover, if positive numbers g� and h� satisfying u0 6 g�, v0 6 h� on Œ0; s0�, g 6 g�, h 6 h�

on Œ0;1/ and g� D h�, then it holds that

0 6 u 6 g�; 0 6 v 6 h� onQs :

2.1 Proof of Theorem 2.3.

In this section, we give the proof of our main result.

Proof. Let fs; u; vg be a weak solution of P on Œ0;1/, and g� and h� be positive constants defined

in Lemma 2.4. First, Lemma 2.4 implies that

�2

Z t

0

Z s.�/

0

ˇ

ˇvx.�/
ˇ

ˇ

2
dxd�

6
1

2

Z s0

0

.ju0 � g�j2 C  jv0 � h�j2/dx C
Z t

0

s0.�/.
1

2
jg�j2 C g� C 

2
jh�j2/d�

6
1

2

Z s0

0

.ju0 � g�j2 C  jv0 � h�j2/dx C
�1

2
jg�j2 C g� C 

2
jh�j2

�

.s.t/ � s0/ for t > 0:

Hence, there is a positive constant depending on u0; v0; g�; h� and s0 such that

Z t

0

Z s.�/

0

ˇ

ˇvx.�/
ˇ

ˇ

2
dxd� 6 C1 C C1s.t/ for t > 0:

Next, on account of Lemma 2.4 we see that

Z s.t/

0

xu.t/dx C 1

2
js.t/j2 C �1

Z t

0

u
�

�; s.�/
�

d� C
Z s.t/

0

xv.t/dx C �2

Z t

0

Z s.�/

0

vx.�; x/dxd�

D
Z s0

0

xu0dx C 1

2
js0j2 C

Z s0

0

xv0dx C �1

Z t

0

g.�/d�

> �1g�t for t > 0:

Here, we note that

u
�

t; s.t/
�

D .
s0.t/

˛
/1=p for t > 0:
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Then, by puttingM D maxfg�; h�g we obtain

�1g�t 6 2M

Z s.t/

0

xdx C 1

2
js.t/j2 C �1

˛1=p

Z t

0

.s0.�//1=pd�

C �2.

Z

Qs.t/

jvxj2dxd�/1=2.

Z

Qs.t/

dxd�/1=2 for t > 0:

In order to apply the Young inequality,

ab 6 Cp;"a
p C "b1�1=p for a; b > 0; p > 1 and " > 0;

where Cp;" is a positive constant depending on ", let " > 0. Then, it is clear that

�1

˛1=p

Z t

0

.s0.�//1=pd� 6
�1

˛1=p
.

Z t

0

s0.�/d�/1=pt1�1=p

6
�1

˛1=p
s.t/1=pt1�1=p

6 "t C Cp;"

�
p
1

˛
s.t/ for t > 0:

By taking " D 1
4
�1g�, we have

�1

˛1=p

Z t

0

.s0.�//1=pd� 6
1

4
�1g�t C C2s.t/; (2.2)

where C2 D Cp;".
�1

˛1=p /
p , and

�2.

Z

Qs.t/

jvxj2dxd�/1=2.

Z

Qs.t/

dxd�/1=2
6 �2C

1=2
1 .1C s.t//1=2t1=2s.t/1=2

6
1

4
�1g�y C C3.s.t/C s.t/2/ for t > 0;

where C3 is some positive constant.

From the above inequalities we can get

1

2
�1g�t 6

�

M C 1

2
C C3

�

ˇ

ˇs.t/
ˇ

ˇ

2 C .C2 C C3/s.t/ for t > 0:

Now, let t > 1. In this case by applying the Young inequality, again, we see that

.C2 C C3/s.t/ 6
1

4
�1g�t C C4

ˇ

ˇs.t/
ˇ

ˇ

2
for t > 1;

where C4 is some positive constant so that we have

1

2
�1g�t 6

�

M C 1

2
C C3

�

ˇ

ˇs.t/
ˇ

ˇ

2 C C4

ˇ

ˇs.t/
ˇ

ˇ

2 C 1

4
�1g�t for t > 0:
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Thus it is easy to get

1

4
�1g�t 6 .M C 1C C3 C C4/

ˇ

ˇs.t/
ˇ

ˇ

2
;

�

�1g�

4.M C 1C C3 C C4/
t

�1=2

6 s.t/ for t > 1:

In case 0 6 t 6 1, we have s0
p
t 6 s.t/.

Therefore, by putting �0 D minfs0;
�

�1g�

4.MC1CC3CC4/

�1=2

g we conclude that

�0

p
t 6 s.t/ for t > 0:

3. Nucleation of the carbonation front: The case s0 D 0

The aim of this section is to prove a result concerning the existence of weak solutions to P for

the case s0 D 0. This is the case when the free boundary starts off moving precisely from the

outer boundary [exposed to CO2]. This refers to the stage often called in Landau’s theory of phase

transitions as the nucleation phase.

Before giving the statement of the theorem, we denote for simplicity

C0

�

.0; T �IX
�

D
˚

z 2 C
�

Œ0; T � W X
�

W z D 0 on Œ0; ız/ for some ız > 0
	

:

THEOREM 3.1 Let T > 0, and g and h be functions on Œ0; T � satisfying g; h 2 W 1;2.0; T / and

g.t/ > g0 > 0 and h > 0 for t 2 Œ0; T �, where g0 is a given positive constant. Then under (A1) there

exists a triplet fs; u; vg of functions such that s 2 W 1;1.0; T /, s.0/ D 0, s.t/ > 0 for t 2 .0; T �,

Nu; Nv 2 L1.Q.T //, Nu � g; Nv � h 2 L2.0; T IX/, Nu; Nv 2 C..0; T �IH/, Nu; Nv 2 W 1;2

loc
..0; T �IX�/,

s0.t/ D  
�

Nu.t; 1/
�

for a.e. t 2 Œ0; T �; (3.1)
Z T

0

h Nut ; ziXdt C
Z

Q.T /

�1

s2
Nuyzydydt C

Z T

0

s0

s
z.�; 1/dt

D
Z

Q.T /

.f . Nu; Nv/ � s0

s
y Nuy/zdydt for z 2 C0

�

.0; T �IX
�

;

(3.2)

Z T

0

h Nvt ; ziXdt C
Z

Q.T /

�2

s2
Nvyzydydt

D �
Z

Q.T /

.f . Nu; Nv/C s0

s
y Nvy/zdydt for z 2 C0

�

.0; T �IX
�

;

(3.3)

where Nu and Nv are functions defined by (2.1).

Proof. First, let fs0ng be a sequence satisfying s0n > 0 for each n and s0n ! 0 as n ! 1 and put

u0n D g.0/ and v0n D h.0/ on Œ0; s0n�. Then, Theorem 2.2 guarantees that P.s0n; u0n; v0n; g; h/

has a unique weak solution fsn; un; vng on Œ0; T �. Here, we denote by Nun and Nvn the functions

defined by (2.1) with s D sn, u D un and v D vn for each n. Since we can take positive constants
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g� and h� such that g 6 g� and h 6 h� on Œ0; T �, u0n 6 g� and v0n 6 h� on Œ0; s0n� for n and

g� D h�, Lemma 2.4 implies that

0 6 un 6 g�; 0 6 vn 6 h� on Qsn
.T / for any n: (3.4)

By (S3) and this shows that js0
n.t/j 6  .g�/ for t 2 Œ0; T � and n so that the set fsng is bounded in

W 1;1.0; T /. Clearly, there exists a positive constant L1 such that 0 6 sn.t/ 6 L1 for t 2 Œ0; T �

and n.

Next, the following estimate is a direct consequence of [1, Lemma 4.2]: For each n

�1

Z t

0

Z sn.�/

0

junxj2dxd� C �2

Z t

0

Z sn.�/

0

jvnxj2dxd�

6 2.C 2
f C 1/

Z t

0

Z sn.�/

0

�
ˇ

ˇun.�/ � g.�/
ˇ

ˇ

2 C
ˇ

ˇvn.�/ � h.�/
ˇ

ˇ

2�
dxd�

C 2

Z t

0

sn.�/
�

ˇ

ˇf
�

g.�/; h.�/
�
ˇ

ˇ

2 C jg� .�/j2 C
ˇ

ˇh� .�/
ˇ

ˇ

2
�

d�

C
Z t

0

s0
n.�/

�

3
ˇ

ˇg.�/
ˇ

ˇ

2 C
ˇ

ˇg.�/
ˇ

ˇC
ˇ

ˇh.�/
ˇ

ˇ

2
�

d� for t 2 Œ0; T �;

where Cf WD ˇ . Because of the boundedness of fsng and (3.4) there exists a positive constantM2

such that
Z T

0

Z sn.�/

0

junx j2dxd� C
Z T

0

Z sn.�/

0

jvnxj2dxd� 6 M2 for n:

Then, easily, we can obtain that f Nunyg and f Nvnyg are bounded in L2.Q.T //.

From now on we provide the estimate from below for the free boundary as follows. To do so

from Lemma 2.4 it follows that

�1g0t 6

Z sn.t/

0

xun.t/dx C 1

2

ˇ

ˇsn.t/
ˇ

ˇ

2 C �1

Z t

0

un

�

�; sn.�/
�

d�

C
Z sn.t/

0

xvn.t/dx C �2

Z t

0

Z sn.�/

0

vnx.�; x/dxd�

DW J1n.t/C J2n.t/C J3n.t/C J4n.t/C J5n.t/ for t > 0 and n:

Here, it is obvious that

J1n.t/C J4n.t/ 6
1
2
.g� C h�/

ˇ

ˇsn.t/
ˇ

ˇ

2

J5n.t/ 6 �2M
1=2
2

�

tsn.t/
�1=2

9

=

;

for t 2 Œ0; T � and n:

Similarly to (2.2), by using (1.4) we observe that

J3n.t/ 6
�1

˛1=p

Z t

0

js0
n.�/j1=pd� 6

�1T
1�1=p

˛1=p
sn.t/

1=p for t 2 Œ0; T � and n:
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From the above inequalities we have

�1g0t 6
g� C h� C 1

2
sn.t/

2 C �1T
1�1=p

˛1=p
sn.t/

1=p C �2.M2T /
1=2sn.t/

1=2

6

 

g� C h� C 1

2
L

2��
1 C �1T

1�1=p

˛1=p
L

1=p��
1 C �2.M2T /

1=2L
1=2��
1

!

sn.t/
�

DW M3sn.t/
� for t 2 Œ0; T � and n;

where

� WD minf1=p; 1=2g

so that

sn.t/ > �1t
1=� for t 2 Œ0; T � and n; (3.5)

where �1 is a positive constant independent of n.

As next step, we wish to estimate the time derivative of Nun. Let ı > 0 and � 2 L2.ı; T IX/.
Then (S4) implies that

ˇ

ˇ

ˇ

Z T

ı

˝

Nunt .t/; �.t/
˛

X
dt
ˇ

ˇ

ˇ

6

ˇ

ˇ

ˇ

Z T

ı

�1

s2
n.t/

�

Nuy.t/; �y.t/
�

H
dt
ˇ

ˇ

ˇ
C
ˇ

ˇ

ˇ

Z T

ı

.
s0

n.t/

sn.t/
Nun.t; 1/C s0

n.t/

sn.t/
/�.t; 1/dt

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

Z T

ı

�

f
�

Nun.t/; Nvn.t/
�

; �.t/
�

H
dt
ˇ

ˇ

ˇ
C
ˇ

ˇ

ˇ

Z T

ı

s0
n.t/

sn.t/

�

y Nuny.t/; �.t/
�

H
dt
ˇ

ˇ

ˇ

DW I1n C I2n C I3n C I4n:

Obviously, on account of (3.5) it holds that

I1n 6 �1

Z T

ı

1

�2
1 t

2=�

ˇ

ˇ Nuny.t/
ˇ

ˇ

H
j�y.t/jHdt

6
�1

�2
1ı

2=�
j NunyjL2.ı;T IH/j�y.t/jL2.ı;T IH/I

I2n 6
 .g�/

�1ı1=�

�

j NunjL2.0;T IH 1.0;1// C T 1=2
�

j�jL2.ı;T IX/I

I3n 6 ˇ.h� C g�/T 1=2j�jL2.ı;T IX/I

I4n 6
 .g�/

�1ı1=�
j Nuny jL2.0;T IH/j�jL2.ı;T IX/ for n:

Hence, the set f Nunt g and f Nvntg are bounded in L2.ı; T IX�/ for each ı > 0.

From these estimates we can take a subsequence fnj g � fng satisfying snj
! s weakly* in

W 1;1.0; T / and C.Œ0; T �/, and Nunj
! Nu and Nvnj

! Nv weakly* in L1.Q.T // and weakly in
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L2.0; T IH 1.0; 1//, in C.Œı; T �IH/ and weakly in W 1;2.ı; T IX�/ for each ı > 0 as j ! 1,

where s 2 W 1;1.0; T /, Nu; Nv 2 L1.Q.T //, Nu � g; Nv � h 2 L2.0; T IX/ and

Nu; Nv 2 C..0; T �IH/ \W
1;2

loc
..0; T �IX�/:

By (3.5) we have s.t/ > 0 for t > 0. Also, s.0/ D 0.

In order to complete the proof of the Theorem, it is necessary to show that (3.2), (3.3) and (3.1)

hold. Let � 2 C0..0; T �IX/. Then � D 0 on Œ0; ı� for some ı > 0. By taking z D � in (S4) we infer

that

Z T

ı

˝

Nunj t .t/; �.t/
˛

X
dt C

Z T

ı

�1

s2
nj
.t/

�

Nunj y.t/; �y.t/
�

H
dt

C
Z T

ı

�s0
nj
.t/

snj
.t/

Nunj
.t; 1/C

s0
nj
.t/

snj
.t/

�

�.t; 1/dt

D
Z T

ı

�

f
�

Nunj
.t/; Nvnj

.t/
�

C
s0

nj
.t/

snj
.t/
y Nunj y.t/; �.t/

�

H
dt for j:

Elementary calculations yield:

Nunj
.�; 1/ ! Nu.�; 1/ in L4.ı; T / as j ! 1 (3.6)

so that
Z T

ı

s0
nj
.t/

snj
.t/

Nunj
.t; 1/�.t; 1/dt !

Z T

ı

s0.t/

s.t/
Nu.t; 1/�.t; 1/dt as j ! 1:

Moreover, we can obtain s0
nj

! s0 in L4.ı; T / as j ! 1 and

Z T

ı

�s0
nj
.t/

snj
.t/
y Nunj y.t/; �.t/

�

H
dt !

Z T

ı

�s0.t/

s.t/
y Nuy.t/; �.t/

�

H
dt as j ! 1:

Therefore, we can prove that (3.2) holds. Similarly, (3.3) is valid. Finally, by (3.6) we get (3.1).

Thus the proof of this theorem has been finished.

4. More practical comments

Before using in the engineering practice the
p
t information for forecasting purposes, the

practitioner should be aware of the fact that its validity is closely related to the validity of the

underlying free-boundary model P.

ı Relying on our working experience with such FBPs for carbonation (based on, e.g., [19]), we can

say that P captures well accelerated carbonation tests, but it may not be suitable for predicting the

evolution of carbonation scenarios under natural exposure conditions.

ı If the aggressive chemical process (the carbonation reaction in this case) turns our to affect

the microstructure (i.e., the pores of the material), then significant deviations from
p
t -like

penetration depths become suddenly possible. Mathematically, changes in porosity intimately

lead to the occurrence of memory effects (cf., e.g., [4]) that make any large-time asymptotics

very difficult to understand and a rigorous forecast seems to be out of reach.
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ı In civil engineering terms, one case state that Portland cements are most likely prone to satisfy

the
p
t-law, while cements containing pozzolan, fly ash, etc. will deviate from this [22, 24]. For

Portland cements, the expected behavior of the front is

�

s.t/ � c�
p
t
�

D o.t/

for large values of t , but without a quantitative control yet on the size and structure of the material

constant c� > 0.

5. More mathematical comments

The assumptions of Theorem 2.3 may seem restrictive due to the use of constant Dirichlet values

for the two driving concentrations (CO2 and Ca(OH)2). Note however that slight changes in these

Dirichlet values are expected to produce slight changes in the position of the carbonation front,

therefore also in its t ! 1 asymptotics. Essentially, our model is stable with respect to the choice

of data and of parameters. On the other hand, special time-asymptotics of Dirichlet data (or of flux

boundary conditions) as well as the presence of a time-evolving porosity [7] of concrete lead to

mathematical challenges, e.g., when dealing with memory terms. We will treat some of these issues

in a forthcoming publication.
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