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A capillary surface in a negative gravitational field describes the shape of the surface of a hanging

drop in a capillary tube with wetting material on the bottom. Mathematical modeling leads to the

volume- and obstacle-constrained minimization of a nonconvex nonlinear energy functional of mean

curvature type which is unbounded from below. In 1984 Huisken proved the existence and regularity

of local minimizers of this energy under the condition on gravitation being sufficiently weak. We

prove convergence of a first order finite element approximation of these minimizers. Numerical

results demonstrating the theoretic convergence order are given.
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1. Introduction

Solvability of the capillarity problem in a positive gravitational field was shown in [6], regularity of

such a solution in [7]. Obstacle and volume constraints were treated in [14]. In [13] it was shown

that there exists a local minimizer to the capillarity problem with fixed volume and an obstacle

constraint in a negative gravitational field for sufficiently weak gravitation.

The approximation of minimal surfaces by finite elements has been discussed before, i.e., in [15]

for a two-dimensional surface over a convex domain.

Convergence of the approximation of a two-dimensional capillary surface in a positive

gravitational field by first order finite elements was proven in [19]. The inclusion of a volume

constraint was briefly addressed. Negative gravitation and obstacle constraints have not been

examined in this context.

In [21] optimal rates of the convergence of the finite element method for a greater class of

quasi-linear elliptic systems of second order in arbitrary dimensions were proven using continuation

methods. This covers the approximation of capillary surfaces with small negative gravitation. Some

arguments are quite similar to our own as they deal with possible global nonconvexity by looking at

regions of convexity close to the continuous solutions. However, it is not obvious how to generalize

the methods used to capillary surfaces over obstacles since they are not compatible with variational

inequalities.

There is a wide variety of studies of related problems, which use discretization schemes in

order to numerically compute bifurcation diagrams and study the qualitative behaviour of capillary

surfaces over a range of parameters. One example concerns the shape of capillary surfaces with a

free boundary (instead of surfaces over a fixed domain) studied in [22], where the analyzed problems
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are reduced to ordinary differential equations by looking at solutions over a one-dimensional domain

or axisymmetric solutions over a two-dimensional domain. Another example is the shape of liquid

bridges, i.e., graphs over a 2-dimensional cylinder in an arbitrary gravitational field, studied in

[18]. Unfortunately, in many such studies rigorously proven discretization error estimates are still

missing.

In this work we will consider n-dimensional capillary surfaces of fixed volume over an obstacle

in negative gravitation. We will show existence of constrained minimizers of a first order finite

element discretization of the energy functional as well as convergence of the discrete to the

continuous solution. For n D 2 we show that the constrained minimizers are indeed local solutions

to the discrete problem.

Our method of proof provides the optimal order of approximation although the problem has

global properties usually considered problematic, such as nonlinearity and nonconvexity. This is

possible because we are only interested in the behavior of discrete solutions locally, i.e., near

the continuous ones. We are using a concept of locality specific to the field of partial differential

equations. By using Poincaré’s inequality, we will exploit the higher order of the nonlinearity to

establish regions of convexity for the problem where we can find unique minimizers. Modifications

of the convergence proof of [19] will show that these minimizers in the restricted regions converge

to the continuous solution. Using the boundedness of the continuous solution established in [13]

we then show for n D 2 that we can thus obtain a discrete solution which lies in the interior of a

region of convexity and therefore is a local minimizer of the energy functional. The convergence

result then implies that this discrete solution converges to the continuous one in theW 1;2-norm with

linear dependence on the mesh size.

After a mathematical description of the problem we will give a short overview of previous results

leading to the work of this paper. In the following main part we show existence of solutions to a

finite element discretization of the capillarity problem in a negative gravitational field as well as a

convergence result. We will conclude this paper by giving some numerical results illustrating the

theoretic convergence order.

2. The continuous problem

A capillary surface is a surface of prescribed mean curvature with Neumann boundary conditions.

The name is derived from the typical example of the surface of a liquid rising in a capillary tube.

The principle of energy minimization states that the surface will be in a state of minimal potential

energy. In order to obtain a mathematical expression for the energy we assume that the surface S of

the liquid can be expressed as the graph of a function u W ˝ ! R over the cross section ˝ � R
n

of the tube, where ˝ is a connected and bounded domain. This parametrization of the surface

S D graph.u/ induces a metric g on S defined by

gij .x/ D ıij CDiu.x/Dju.x/;

where

Dku D @u

@xk
; k D 1; : : : ; n;

and ıij denotes the Kronecker symbol.

The shape of the surface is then given by a minimizer of the energy functional, i.e., the capillarity

problem reads

u 2 K W J.u/ 6 J.v/; 8v 2 K; (1)
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where K is a suitable function set and J is given by

J.v/ D
Z

˝

p

1C jDvj2 dx C
Z

˝

Z v.x/

0

H.x; t/ dt dx C
Z

@˝

ˇv dHn�1: (2)

Here the first term models the cohesive energy as proportional to the area of the surface. The second

term describes the gravitational energy, where H 2 C 0;1.Rn � R/ describes the gravitational

potential. The third term is related to the adhesive energy at the boundary of the capillary tube.

The Euler–Lagrange equation corresponding to (1) has the form

AuCH.x; u/ D 0; in ˝ (3)

�
n
X

iD1

ai .Du/ �i D ˇ; on @˝; (4)

where ai .Du/ D Diup
1CjDuj2

and � denotes the outer normal to @˝ . Note that

Au D �
n
X

iD1

Di
�

ai .Du/
�

is an expression for the mean curvature of S , and that the left hand side of the boundary condition

(4) gives the cosine of the contact angle.

Following the work of Huisken [13] we are concerned with the capillarity problem over an

obstacle in a gravitational field. For modeling we consider the surface of a liquid of fixed volume V

in a capillary tube. We assume that the bottom of the tube can be represented by an obstacle function

 and is of a material which is perfectly wetting, i.e., it is completely covered by a thin film of the

liquid and thus does not add to the energy functional. This situation is depicted on the left hand

side of Figure 1. We may also consider the liquid being in an upside down capillary tube. This is

depicted on the right hand side of Figure 1. In the latter case we will then reverse the coordinate

system so that we are again in the setting of a capillary surface over an obstacle.

The capillarity problem is given by (1) with

K D W 1;1.˝/\ fv >  g \
n

Z

˝

.v �  / dx D V
o

; (5)

and a gravitational potential of the form

H.x; t/ D �� t; (6)

where �� > 0 in the case of a “sitting” liquid, and �� < 0 in the case of a “hanging” liquid. The

focus of this work is the setting in negative gravitation, i.e. �� < 0. Note that in [13] Huisken

considered a more general gravitational potential of the form H.x; t/ D �� t C QH.x; t/ with
@ QH
@t

> 0. The above approximation (6) of the gravitational field as constant is possible in many

physically important cases like gravity on Earth. Generalizations of our method to other applications

like centrifuges should be possible (using suitable cut-offs) but rather technical.

We assume furthermore ˇ 2 C 0;1.@˝/ with

jˇj 6 1 � a; a > 0 : (7)
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FIG. 1. Liquid in a capillary tube

To motivate the last condition, note that ˇ > 1 means that the liquid will be in a state of lesser

energy if it pulls back from the tube (lotus effect), and ˇ 6 �1 means that the material of the tube

is perfectly wetting (just as the obstacles considered in this work). Our model will not account for

such situations.

Because of the negative quadratic term the energy functional J defined by (2) with (6) may be

neither convex nor bounded from below. This can be easily seen in the following example.

EXAMPLE Assume  � 0 and V D 1. Consider the mollifier functions

�� WD 1

�n
�
�x

�

�

for � > 0 on the unit ball ˝ D B1.0/ � R
n for n > 2 (cf. [4]). The standard mollifier � is defined

by

�.x/ WD C exp
� 1

jxj2 � 1

�

;

where the constant C > 0 is chosen such that
R

˝ � dx D 1. Hence, �� 2 K , where K is defined by

(5), and J.��/ ! �1 as � ! 0.

Thus, we cannot generally expect the minimization problem (1) to have global minimizers.

Nevertheless, we can study local minimizers which are solutions to the corresponding variational

inequality

Z

˝

Du �D.v � u/
p

1C jDuj2
dx � �

Z

˝

u .v � u/ dx C
Z

@˝

ˇ .v � u/ dHn�1 > 0; 8v 2 K: (8)

Even in the context of positive gravitational fields, i.e., @H
@t
> 0, we cannot expect the existence of
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a bounded capillary surfaces if @˝ has vertices (cf. [5]). Thus, we will assume that @˝ is of class

C 2;˛.

Various results on the well-posedness of capillarity problems can be found in the literature.

Relying solely on BV -techniques Gerhardt proved in [6] existence and uniqueness of solutions to

(1) without a volume or obstacle constraint in a positive gravitational field, i.e., under the assumption
@H
@t
> 0. Using a different approach, he showed the following global regularity result in [7].

THEOREM 2.1 Let @˝ 2 C 2;˛,H;ˇ 2 C 1;˛ and @H
@t
> 0. The capillarity problem (1) has a unique

solution u 2 C 2;#.˝/, where # , 0 < # < 1, is determined byH , ˇ, and ˝ .

The proof relies on a rather technical a priori estimate for the gradient (cf. [14, Section 2]).

The proof itself is done by a method of continuity and uses standard theory of uniformly elliptic

differential equations (cf. [17], [8, Thm. 17.30]).

Relying on Theorem 2.1 Huisken extended the theory to the capillarity problem with an

obstacle constraint in a positive gravitational field [14], and to the capillarity problem in a negative

gravitational field [13]. For the latter case he showed that for sufficiently weak gravity, i.e.,

sufficiently small � > 0, the variational inequality (8) admits a solution.

THEOREM 2.2 Let @˝ be of the class C 2;˛,  2 C 2.˝/ and H; ˇ 2 C 1;˛ with the properties (6)

and (7). There exists a �0 such that for 0 < � < �0 the following applies:

1. The capillarity problem in a negative gravitational field (8) admits a solution

u 2 W 1;1.˝/ \W 2;2.˝/ \W
2;1
loc

.˝/

with continuous tangential derivatives at the boundary.

2. If n D 2 then u 2 C 1.˝/.
3. If we assume that @˝ is of class C 3;˛, ˇ 2 C 1;1.@˝/, and  satisfies

� Di 
p

1C jD j2
�i > ˇ; on @˝

then

u 2 W 2;1.˝/:

4. For � small enough the solution u is is unique in the class of functions satisfying kukC1.˝/ 6 M .

3. Discretization

In order to give a numerical approximation of capillary surfaces we will employ a first order finite

element method which is also used by Mittelmann for the case of positive gravitational fields [19].

We will extend his results to the case of a negative gravitational field, where J is non-convex.

For each h, 0 < h < h0, let ˝h D
SL.h/
jD1 Tj be a finite collection of n-simplices with disjoint

interiors such that each face of a simplex is either the face of another simplex or has its vertices on

@˝ . We assume the triangulation to be shape regular in the sense that each simplex is contained in

a ball of radius h and contains a ball of radius 
h for a fixed 0 < 
 < 1. Since in general ˝h 6� ˝

we assume that any solution u of the capillarity problem (8) may be extended to a domain Q̋ � R
n

with ˝ � Q̋ and˝h � Q̋ , such that the extension is of the same class as u, coincides with u in ˝ ,

and the extension operator is continuous. Existence of such an operator was shown in [20, Ch. 2].

For simplicity the extension will again be denoted by u.
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Let Sh denote the space of linear finite elements on Q̋ , i.e.,

Sh D
˚

v 2 C. Q̋ / W vjTj
is linear; j D 1; : : : ; L.h/; and piecewise linearly extended outside ˝h

	

:

The finite element space Sh is spanned by the nodal basis

�h WD
˚

�p 2 Shj p 2 Nh
	

; �p.q/ D ıpq 8p; q 2 Nh ;

whereNh denotes the set of all vertices corresponding to the triangulation˝h. For every continuous

function v W ˝ ! R we define its interpolation vI 2 Sh by

vI .x/ WD
X

p2Nh

v.p/ �p.x/: (9)

For the interpolation error the following estimates hold [2].

THEOREM 3.1 Let h be sufficiently small, and u 2 W kC1;p.˝/, k > 0, 1 6 p 6 1 with

.k C 1/p > n. Then there exists a constant C1 such that the linear interpolation error for m D 0; 1

can be estimated by

ju� uI jm;p;˝h
6 C1


�mhkC1�mjujkC1;p;˝h
:

Here and below

jvjk;p;˝ D
�

X

j˛jDk

Z

˝

jD˛vjp dx
�

1
p

;

kvkk;p;˝ D
X

l6k

jvjl;p;˝

denote the Sobolev (semi) norms for k 2 N and 1 6 p 6 1 with the usual modification when

p D 1. If k D 0 this index may be omitted.

In the following we will assume that the setting is such that Theorem 2.2 (3) holds, i.e., that

there exists a solution

u 2 W 2;1. Q̋ /
to (8) where H is given by (6) and K is defined by (5). Note that Morrey’s inequality (cf. e.g. [4])

implies for p > n that

W 1;p.˝/ � C 0;1� n
p .˝/:

Therefore, interpolation is well defined for u 2 W 1;1.˝/.

For n > 4 we will especially need the higher regularity assumptions of Theorem 2.2 (3) in order

to employ Theorem 3.1 to estimate the interpolation error by

ju � uI j0;2;˝h
6 C h2;

where the constant depends on juj
2;1; Q̋ .

REMARK 3.2 The case n > 3 is often covered only implicitly in related works like [15] and [19].

The restriction on the dimension in Theorem 3.1 can be overcome by the stronger regularity

assumption on the continuous solution. This generalization works similarly in [15] and [19].
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Let  I denote the linear interpolation of the obstacle function  . Let furthermore

V h WD V �
Z

˝h

 I dx C
Z

˝

 dx

denote the discrete prescribed volume. We approximate the function set K by

Kh WD Sh \ fvh >  I g \
n

Z

˝h

.vh �  I / dx D V h
o

: (10)

The discrete energy functional is defined by

Jh.vh/ WD ��
2
ah.vh; vh/ � lh.vh/C �h.vh/ ; (11)

with

ah.vh; wh/ D
Z

˝h

vh wh dx ;

lh.vh/ D �
Z

@˝h

ˇI vh dsh ;

�h.vh/ D
Z

˝h

p

1C jDvhj2 dx ;

for vh; wh 2 Kh. The choice of the sign of � depends on the direction of the gravitational force,

i.e., � > 0 for negative gravitation, � < 0 for positive gravitation. Note that we can view @˝h as a

triangulation of @˝ and that ˇ 2 C 0;1.@˝/ implies that the finite element interpolation ˇI on the

boundary is well-defined.

As in the continuous case, we cannot expect a solution to the global minimization problem

uh 2 Kh W Jh.uh/ 6 Jh.vh/ 8vh 2 Kh ; (12)

to exist for general � > 0 because of the non-convex term � �
2

R

˝h
v2
h
dx. We consider instead the

corresponding variational inequality for critical points (we concentrate on local minima)

Z

˝h

Duh �D.vh � uh/
p

1C jDuhj2
dx � �ah.uh; vh � uh/ � lh.vh � uh/ > 0; 8vh 2 Kh: (13)

In the case of positive gravitation, i.e., for the problem (12) with � < 0 and Kh D Sh, uniqueness

and existence of solutions follow by the direct method of the calculus of variations (cf., e.g., [16]).

In [19] the following convergence result for the difference of the discrete solution uh and the

interpolation uI of the continuous solution is proven.

THEOREM 3.3 Let ˝ � R
2 be a bounded domain with @˝ 2 C 2. If the continuous problem (1)

without an obstacle bound and H.x; t/ D � t has a solution u 2 W 2;2. Q̋ / \W 1;1. Q̋ /, then

kuh � uI k1;2;˝h
6 C2h; (14)

for all 0 < h < h0, h0 sufficiently small, where the constant C2 is independent of h.
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In the following we will need two lemmas used also in [19] to analyze the variational crimes

due to the difference between˝ and ˝h and their boundaries. We denote

! WD .˝ �˝h/ [ .˝h �˝/:

LEMMA 3.4 For sufficiently small h there exists a constantC3 D C3.˝/ such that we may estimate

for vh 2 Sh
kvhk1;! 6 C3h

2kvhk1;1;˝h
:

LEMMA 3.5 For sufficiently small h there exists a constant C4 D C4.
/ such that for any function

vh 2 Sh

jvhj1;1;! 6 C4h jvhj1;1;˝h
: (15)

Furthermore, we can estimate

jl.vh/ � lh.vh/j 6 C5hkvhk1;1;˝h
; (16)

where C5 depends on @˝ , kˇk1;1, and 
 .

Proof. The proofs of Lemma 3.4 and the first part of Lemma 3.5 rely on the fact that the distance

of @˝ and @˝h is in O.h2/ and that Dvh is piecewise constant. They can be found in [19]. The

proof of the second part of Lemma 3.5 in [19] does not directly transfer to arbitrary n and does not

include a ˇ which is not constant. However, we may salvage the proof by some minor changes.

Let @˝h be parametrized over @˝ by Nx D x C �.x/�.x/. Then

ˇ

ˇl.vh/ � lh.vh/
ˇ

ˇ 6

ˇ

ˇ

ˇ

Z

@˝

�

ˇI . Nx/�h.x/
�

vh.x/ � vh. Nx/
�

�

C
�

ˇ.x/ � ˇI . Nx/
�

vh.x/C ˇI . Nx/ .1 � �h.x// vh.x/ ds
ˇ

ˇ

ˇ
;

where �h ds D dsh. Note that k�h � 1k1;@˝ 6 C h (cf. e.g. [3]). Thus we may estimate

ˇ

ˇl.vh/ � lh.vh/
ˇ

ˇ 6 C

Z

!

ˇ

ˇDvh.x/
ˇ

ˇ dx C C h

Z

@˝

ˇ

ˇvh.x/
ˇ

ˇ ds

6 C h kvhk1;1; Q̋ ;

where we estimated the second term by a lemma proven in [6]. Using (15) and Lemma 3.4 the

assertion follows.

4. Discretization of capillary surfaces in a negative gravitational field

Our main result is the following:

THEOREM 4.1 For n D 2 there exists a Q� depending on V , ˇ,˝ , and such that for 0 < � < Q� and

for 0 < h < h0 there exists a solution to the discrete capillarity problem in a negative gravitational

field with an obstacle, i.e., a function uh 2 Kh satisfying (13). Furthermore, the discretization error

is bounded by

kuh � uk1;2;˝h
6 C h : (17)



NUMERICAL APPROXIMATION OF CAPILLARY SURFACES 271

The theorem will be proven in several steps. First we prove the existence of constrained

minimizers. We then discuss the convergence of these to the continuous solution. The proof of

Theorem 4.1 is then given in Section 4.3.

Note that the restriction to n D 2 is only necessary to show that the constrained minimizers

are indeed local solutions to the minimization problem. For arbitrary dimension we still obtain

convergence of the constrained minimizers to the continuous solution. However, this convergence

will depend on the constraint.

4.1 Existence of constrained minimizers

Before we can prove existence of solutions to (13) we will prove the following:

LEMMA 4.2 Let M 2 R. There exists �1.n;˝;M/ such that for 0 < � < �1 there exists a unique

solution uM to the discrete problem

uM 2 KM W Jh.uM / 6 Jh.v/; 8v 2 KM ; (18)

where Jh is defined by (11) and

KM WD Kh \
˚

jDvj1;˝h
6 M

	

:

Proof. Note that KM is compact. If we can choose � small enough such that the energy functional

Jh is strictly convex we can apply the direct method of the calculus of variations (cf., e.g., [16]).

Let v;w 2 Sh be in the set of admissible functionsKM , i.e., we assume

Z

˝h

.v �  I / dx D
Z

˝h

.w �  I / dx D V h; kDvk1;˝h
; kDwk1;˝h

6 M; v;w >  I :

The nonlinearity �h can be written as

�h.v/ D
Z

˝h

 .Dv/ dx;

 .x/ D
p

1C jxj2 :

�h is strongly convex, i.e., we have for ! 2 .0; 1/

�h.!v C .1 � !/w/ 6 !�h.v/C .1 � !/�h.w/ � 1

2
m!.1 � !/kD.v � w/k22;˝h

;

where the parameterm is a lower bound on the least eigenvalue ofD2 .Dv/. In particular we may

set

m D 1

.1CM 2/
3
2

:

This yields the estimate

Jh.!v C .1 � !/w/ � !Jh.v/ � .1 � !/Jh.w/

6
1

2
!.1 � !/

�

�kv �wk22;˝h
� 1

2.1CM 2/
3
2

kD.v � w/k22;˝h

�

:
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Using Poincaré’s inequality









f � 1

j˝hj

Z

˝h

f dx









p;˝h

6 C6 .p; n;˝/ kDf kp;˝h
(19)

for p D 2 and f D v �w, we see that Jh is strictly convex if we choose

� < �1 WD 1

2C 26 .1CM 2/
3
2

: (20)

For admissible functions v 2 KM the bound on the gradient combined with (19) also implies

kvkp;˝h
6 C6kDvkp;˝h

C
ˇ

ˇV C
R

˝
 dx

ˇ

ˇ

j˝hj1� 1
p

6 C6j˝hj
1
p

�

M C
ˇ

ˇV C
R

˝
 dx

ˇ

ˇ

j˝hj

�

for any p.

Thus, the energy functional is bounded from below. Since we are considering the minimization

on the compact set KM this is enough to ensure the existence of a unique minimizer.

Note that the restriction of the function set to KM is similar to the approach in [13] where the

existence of a solution was then obtained by a fixed point argument combined with a priori bounds.

4.2 Convergence

In this section we will extend the convergence proof for capillary surfaces in positive gravitational

fields as stated in Theorem 3.3 and [19] to the KM -bounded solutions uM (cf. Lemma 4.2).

Throughout the section we will use the abbreviations

W WD
p

1C jDuj2; and WM WD
p

1C jDuM j2:

We will need a priori bounds for uM . However, we need to make sure that they do not depend on

��1. Following the approach of [19] will not yield this independence. Instead, we impose the a

priori bounds by force, i.e., we restrict the function set KM further by setting

VM WD KM \
˚

kvk2;˝h
6 kuI k2;˝h

C 1
	

\
˚

kvk1;1;˝h
6 kuIk1;1;˝h

C 1
	

:

Note that this will not influence the solvability result in Lemma 4.2 since VM is a closed convex

subset ofKM .

The solution to the corresponding minimization problem, i.e., (18) with KM replaced by VM ,

will again be denoted by uM .

THEOREM 4.3 Let M > kDuI k1;˝h
C 1 be large. Then there exists a �2.˝;M; u/ such that for

0 < � < minf�1; �2g

kuM � uI k1;2;˝h
6 C h jWM j

1
2

1;˝h
6 C h

p
M (21)

for all 0 < h < h0, h0 sufficiently small, where uM 2 VM is a solution to (18) and uI denotes the

interpolation of the continuous solution. Furthermore, for n D 2 we have

juM j1;1;˝h
6 C: (22)

The constants denoted by C and h0 depend on V , ˇ, ˝ ,  , and the continuous solution u, but not

on M , �, or h.



NUMERICAL APPROXIMATION OF CAPILLARY SURFACES 273

Proof. We will proceed similarly to the proof of Theorem 3.3 in [19].

Set eh WD uI � uM and consider

A2 WD
Z

˝h

jDehj2
WM

dx :

Note that

A2 D
Z

˝

Deh �Du
W

dx �
Z

˝h

Deh �DuM
WM

dx

C
Z

˝h

Deh �D.uI � u/
WM

dx

C
Z

˝h

Deh �Du
�

1

WM
� 1

W

�

dx

C
Z

˝h�˝

Deh �Du
W

dx �
Z

˝�˝h

Deh �Du
W

dx:

We want to estimate all terms on the right hand side to obtain an inequality of the form A2 6 C h2.

To estimate the first two terms we will use the variational formulations of the continuous and the

discrete problem. The main difference to [19] is that instead of proving a priori estimates on the

discrete solution we need to choose test functions fulfilling the additional bounds on the function

set. This will lead to extra terms which will turn out to be of order h2 and thus do not alter the

convergence result. For completeness we will also carry out the estimates for the remaining terms

which can also be found, e.g., in [19] and [2].

To bound the first term we insert the test function

v WD v C CV .v �  /

into the continuous variational inequality (8), where

v WD uC uM � uI C C ;

C WD k I �  k1; Q̋ C ku � uIk1; Q̋ ;

CV WD �

V � �
;

� WD
Z

˝

uI � u dx C
Z

˝h�˝

uM dx �
Z

˝�˝h

uM dx � C j˝j :

C ensures that v lies above the obstacle. CV enforces the continuous volume constraint.

By Theorem 3.1 and Lemma 3.4 we may estimate j� j 6 C.n; u;˝/ h2 and thus jCV j 6

C.n; u;˝; V;  / h2 < 1 for h0 small enough. Therefore v is an admissible test function for the

continuous problem. The variational inequality (8) then reads

Z

˝

Deh �Du
W

dx 6 �a.u; eh/C l.eh/

C CV




v �  






1;1;˝
� �a

�

u;C C CV .v �  /
�

� l
�

C C CV .v �  /
�

;
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where a.�; �/ and l.�/ are the continuous analoga to ah.�; �/ and lh.�/.
Furthermore

kv �  k2;˝h
6 C;

kv �  k1;1;˝h
6 C

with constants depending on u,  , and˝ , since all parts of v fulfill these bounds. By Theorem 3.1

we have C 6 C h2 since we assume  ; u 2 W 2;1.

The variational inequality then reads
Z

˝

Du �Deh
W

dx 6 �a.u; eh/C l.eh/C C h2 ; (23)

where the constant depends on V , ˇ, ˝ ,  , and u. For the second term we insert the test function

vh WD uI C CV h.uI �  I /

into the discrete variational inequality (13), where

CV h WD �h

V h � �h
;

�h WD
Z

˝h

u � uI dx C
Z

˝�˝h

u dx �
Z

˝h�˝

u dx :

Note that uI does not violate the discrete obstacle constraint. CV enforces compliance with the

volume constraint. By Theorem 3.1 and Lemma 3.4, we have j�hj 6 C h2. Thus choosing h0 small

enough depending on n; u;˝; , and V implies jCV h j 6 C h2 6 1. Therefore vh does not violate

the obstacle constraint. Note furthermore that

kuI �  Ikp;q;˝h
6 C.u; /

for .p; q/ 2 f.1;1/; .1; 1/; .0; 2/g. Thus, in these Sobolev norms we can estimate

kvhkp;q;˝h
6 kuI kp;q;˝h

C C h2 6 kuI kp;q;˝h
C 1

for h0 small enough. This implies vh 2 VM for M > kDuI k1;˝h
C 1. The variational inequality

(13) for vh then reads

�
Z

˝h

DuM �Deh
WM

dx 6 ��ah.uM ; eh/ � lh.eh/

C CV h

�

Z

˝h

DuM �D.uI �  I /
WM

dx � �ah.uM ; uI �  I / � lh.uI �  I /
�

;

which implies

�
Z

˝h

DuM �Deh
WM

dx 6 ��ah.uM ; eh/ � lh.eh/C C h2 : (24)

Adding (23) and (24), we obtain
Z

˝

Deh �Du
W

dx �
Z

˝h

Deh �DuM
WM

dx 6 � .a.u; eh/ � ah.uM ; eh//C l.eh/ � lh.eh/C C h2:
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To estimate the term � .a.u; eh/ � ah.uM ; eh// note that

a.u; eh/ � ah.uM ; eh/ D ah.eh; eh/C
Z

˝h

.u � uI / eh dx C
Z

˝�˝h

u eh dx �
Z

˝h�˝

u eh dx

can be approximated using Lemma 3.4 and Theorem 3.1 by

a.u; eh/ � ah.uM ; eh/ 6 ah.eh; eh/C C h2kehk2;˝h
C C h2kehk1;1;˝h

:

Lemma 3.5 yields

jl.eh/ � lh.eh/j 6 C5 hkehk1;1;˝h
:

The first two terms of A2 can thus be estimated by

Z

˝

Deh �Du
W

dx �
Z

˝h

Deh �DuM
WM

dx 6 �ah.eh; eh/C C h2
�

1C kehk1;1;˝h
C kehk2;˝h

�

C C h kehk1;1;˝h
: (25)

We now need to estimate the remaining terms of the decomposition of A2. The third term can be

estimated using Hölder’s inequality
ˇ

ˇ

ˇ

ˇ

Z

˝h

Deh �D.uI � u/

WM
dx

ˇ

ˇ

ˇ

ˇ

6

Z

˝h

jDehjp
WM

jD.uI � u/j dx

6 AjuI � uj1;2;˝h
:

Using Theorem 3.1, we obtain
ˇ

ˇ

ˇ

ˇ

Z

˝h

Deh �D.uI � u/

WM
dx

ˇ

ˇ

ˇ

ˇ

6 C h A: (26)

To estimate the fourth term note that
ˇ

ˇ

ˇ

ˇ

1

WM
� 1

W

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

W 2 �W 2
M

W WM .W CWM /

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

D.u � uM / �D.uC uM /

W WM .W CWM /

ˇ

ˇ

ˇ

ˇ

6
jD.u � uM /j
W WM

:

Hence, we can estimate using Hölder’s inequality
ˇ

ˇ

ˇ

ˇ

Z

˝h

Deh �Du
�

1

WM
� 1

W

�

dx

ˇ

ˇ

ˇ

ˇ

6

Z

˝h

jDuj
W

jD.u � uM /j jDehj
WM

dx

6 �

Z

˝h

jDehj2 C jD.u � uI /j jDehj
WM

dx

6 �

 

A2 CA
�

Z

˝h

jD.u � uI /j2
WM

dx
�

1
2

!

6 � A
�

AC ju � uI j1;2;˝h

�

;
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where � D max Q̋
jDuj
W

< 1. Taking Theorem 3.1 into account we can furthermore estimate

ˇ

ˇ

ˇ

ˇ

Z

˝h

Deh �Du
�

1

WM
� 1

W

�

dx

ˇ

ˇ

ˇ

ˇ

6 � A .AC C h/ : (27)

Using Lemma 3.5 we can estimate the last terms of A2 by

Z

˝h�˝

Deh �Du
W

dx �
Z

˝�˝h

Deh �Du
W

dx 6 C h jehj1;1;˝h
: (28)

Combining (25), (26), (27), and (28) yields

A2 � �ah.eh; eh/ 6 �A2 C C.1C �/h AC C h2
�

1C kehk1;1;˝h
C kehk2;˝h

�

C C h kehk1;1;˝h
: (29)

uM 2 VM implies that kehk1;1;˝h
and kehk2;˝h

are bounded by a constant independent of h. Using

Young’s inequality we thus obtain

1 � �
2

A2 � �ah.eh; eh/ 6 C h2 C C h kehk1;1;˝h
: (30)

Note that the assumption kDuM k1;˝h
6 M implies

kDehk22;˝h
6

p

1CM 2A2:

Using Poincaré’s inequality (19) and the volume constraint we obtain

�ah.eh; eh/ 6 2 �
�













eh � 1

j˝hj

Z

˝h

eh dx













2

2

C












1

j˝hj

Z

˝h

eh dx













2

2

�

6 2 �
�

C 26 kDehk22 C C h2
�

6 2 �
�

C 26

p

1CM 2A2 C C h2
�

6
1 � �

4
A2 C 2 � C h2

for � small enough depending on M , i.e.,

� 6 �2 WD 1 � �
8 C 26

p
1CM 2

: (31)

Inserting this into (30) yields

A2 6 C h2 C C h kehk1;1;˝h
: (32)

Note that by Poincaré’s inequality and the volume constraint we may estimate

kehk1;1;˝h
6 C jehj1;1;˝h

C C h2 :
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Furthermore, by Hölder’s inequality we have

jehj1;1;˝h
6

�Z

˝h

WM dx

�
1
2

A 6
�

kuI k1;1;˝h
C 1C j˝hj

�
1
2 A:

Using Young’s inequality we obtain

A2 6 C h2:

The desired estimate (21) than follows by

jehj21;2;˝h
6

q

1C jDuM j21;˝h
A2

and Poincaré’s inequality.

For n D 2 we will now use (30) to show that jDuM j1;˝h
is bounded independent of M and h.

For any triangle Tj Theorem 3.1 and (32) yield

Z

Tj

jDuM j2
WM

dx 6 2
�

A2 C
Z

Tj

jDuI j2
WM

dx
�

6 C h2 C C juj21;1;˝ jTj j :

Since DuM is constant on each triangle Tj we obtain

jDuM jTj
j 6

jDuM jTj
j2

q

1C jDuM jTj
j2

C 1 6
1

jTj j

Z

Tj

jDuM j2
WM

dx C 1 6 C
h2

jTj j C C:

For n D 2 this implies due to the shape regularity of the triangulation

jDuM j1;˝h
6 C:

4.3 Proof of Theorem 4.1

We will now prove Theorem 4.1.

For M 2 R Lemma 4.2 provides the existence of a unique solution uM to (18) in KM . If we

can choose QM 2 R such that




Du QM





 < QM , then we can find an � > 0 such that u QMC� D u QM , i.e.,

u QM is a local minimizer of Jh in Kh, and hence a solution to the variational inequality (13).

We will use Theorem 4.3 to show the existence of such an QM . By choosing QM larger than the

constant in (22), we obtain

jDu QM j1;˝ < QM

for the unique solution u QM 2 V QM . Choosing h0 small enough (21) provides

kuI � uMk0;2;˝h
6 C h < 1;

kuI � uM k1;1;˝h
6 C h < 1:
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Thus u QM indeed stays away from the bounds imposed by restricting to V QM and is a local minimizer

of Jh in Kh. The convergence .17/ follows directly from Theorem 4.3.

Note that although the constants in Theorem 4.3 and hence h0 and QM depend on the continuous

solution u which itself depends on �, this is not a circular argument, because we can assume that u

is bounded by a constant for all � smaller than some �0 as proven in [13]. This concludes the proof

for 0 < � < min f�0; �1; �2g.

5. Numerical experiments

Our aim in this section is to numerically illustrate the convergence result stated in Theorem 4.1.

To this end we used a truncated nonsmooth Newton multigrid (TNNMG-) method [12] to solve

the capillarity problem. The implementation was done in C++ using the Distributed and Unified

Numerics Environment (DUNE) [1].

The TNNMG-method consists of two half-steps, namely a nonlinear Gauss-Seidel step and a

Newton correction. In the correction step a truncated approximate linearization is used and evaluated

inexactly by a multigrid step. Numerical experiments usually display fast convergence due to the

Newton step, which is suitably damped and projected in order to preserve the global convergence

of the Gauss-Seidel method.

In [11] the TNNMG-method is introduced for quadratic obstacle problems. Its convergence is

proven for a class of convex problems with nonlinearities which are smooth like the minimal surface

term, decouple in the one-dimensional Euclidean directions like obstacles, or are a combination of

these two types in [9] and [10]. In our case, the negative �� introduces a nonconvexity which is not

covered by this theory. A generalization to problems where convexity holds only locally should be

possible but is not the focus of this work.

We consider the discrete capillarity problem (13) for mesh sizes hk D
p
2 2�.kC1/ for k D

0; : : : ; 8 on a disc of diameter 1 with the parameters �� D �0:1, ˇ D �0:8, a prescribed volume

V D � , and a constant obstacle at height 0. A reference solution uf was computed with a mesh size

of h D
p
2 2�10. The graph of uf can be observed in Figure 2.

The convergence result Theorem 4.1 essentially bounds the approximation error in the

W 1;2.˝h/-seminorm, and the full norm estimate comes from Poincaré’s inequality. Since we want

to observe the order of convergence we will monitor the errors juh � uf j0;2;˝h
and juh � uf j1;2;˝h

as functions of the mesh size parameter h.

The expected linear decay of the error in the W 1;2-seminorm can be observed in Figure 3.

For the approximation error in the L2-norm we observe quadratic decay. This corresponds to the

well-known convergence behavior of minimal surfaces [21].

An essential ingredient in the proof of Theorem 4.1 is the �-independence of the error. We

tested this by repeating the above test for varying �. The reference solution was computed with

FIG. 2. Discrete capillary surface for �� D �0:1
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FIG. 3. Doubly logarithmic plot of the W 1;2-error over the mesh size h for �� D �0:1
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FIG. 4. Doubly logarithmic plot of the error in the W 1;2-seminorm over the mesh size h for varying �

h D
p
2 2�8 and hk is as above with k D 0; : : : ; 6. In the numerical results the discretization error

indeed does not appear to depend on � as can be observed in Figure 4.
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