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We consider conservation laws on moving hypersurfaces. In this work the velocity of the surface

is prescribed. But one may think of the velocity to be given by PDEs in the bulk phase. We prove

existence and uniqueness for a scalar conservation law on the moving surface. This is done via a

parabolic regularization of the hyperbolic PDE. We then prove suitable estimates for the solution of

the regularized PDE, that are independent of the regularization parameter. We introduce the concept

of an entropy solution for a scalar conservation law on a moving hypersurface. We also present some

numerical experiments. As in the Euclidean case we expect discontinuous solutions, in particular

shocks. It turns out that in addition to the “Euclidean shocks” geometrically induced shocks may

appear.
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1. Introduction

The theoretical and numerical solution of partial differential equations on stationary or moving

surfaces has become quite important during the last decade. In many applications PDEs in bulk

phases are coupled to PDEs on interfaces between these phases. The modeling of transport processes

for quantities on evolving fluid interfaces with surrounding bulk phases has already been established

in [9] and the references therein. There is a satisfactory analysis and numerical analysis for elliptic

and parabolic equations on stationary or moving surfaces. For references we refer to [14], [15], [16].

Several phenomena like shallow water equations on the earth, relativistic flows, transport processes

on surfaces, transport of oil on the waves of the ocean or the transport on moving interfaces between

two fluids are modeled by transport equations, and thus hyperbolic PDEs, on fixed or moving

surfaces. These equations often are highly nonlinear.

c
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In this work we study scalar conservation laws on moving hypersurfaces without boundary in

R
nC1. The motion of the surface is prescribed. Assume that � .t/ is a family of smooth and compact

hypersurfaces which moves smoothly with time t 2 Œ0; T �. When the scalar material quantity u D

u.x; t/, x 2 � .t/, t 2 Œ0; T �, is propagated with the surface and simultaneously transported via

a given flux f D f ..x; t/; u/ on the surface, then its evolution with respect to prescribed initial

values u0 is governed by the initial value problem

PuC ur� � v C r� � .f .�; u// D 0 on GT ; u.�; 0/ D u0 on �0: (1.1)

Here v denotes the velocity of the surface � , and r� is the surface gradient. The dot stands for a

material derivative, f is the given flux function which we assume to be tangentially divergence free

on � and which is a tangent vector to the surface. By GT we denote the space time surface

GT D
[

t2.0;T /
� .t/ � ftg: (1.2)

The quantities appearing in the PDE (1.1) are well defined for u W GT ! R and do not depend on

the ambient space.

Let us briefly summarize the published results related to this topic. The study of scalar

conservation laws on time independent manifolds was initiated by Panov [33]. The PDE considered

in his paper is independent of the geometry which allows him to reduce the whole problem to

the Euclidean case in order to prove existence and uniqueness. Total variation estimates for time

independent Riemannian manifolds can be found in [22]. The existence proof of entropy solutions

on time independent Riemannian manifolds is considered in [7] by viscous approximation. The

ideas are based on Kruzkov’s and DiPerna’s theories for the Euclidean case. In a forthcoming paper

Lengeler and one of the authors [28] are generalizing the results which we are going to prove

in this contribution to the case of time dependent Riemannian manifolds. They show existence

and uniqueness (in the space of measure-valued entropy solutions) of entropy solutions for initial

values in L1 and derive total variation estimates if the initial values are in BV. Additionally, initial

boundary value problems for this type of PDE seem to be very interesting from the physical point

of view and will be considered in future work. Convergence of finite volume schemes on time

independent Riemannian manifolds can be found in [1]. In the paper [27] LeFloch, Okutmustur

and Neves prove an error estimate of the form jju � uhjjL1 6 ch
1
4 for the scheme in [1]. The

proof generalizes the ideas of the Euclidian case and the convergence rate is the same. This result

was generalized to the time dependent case by Giesselmann [18] under the assumption that an

entropy solution exists, which we are going to prove in this paper. In [2] an error estimate for

hyperbolic conservation laws on an .N C 1/ dimensional manifold (spacetime), whose flux is a

field of differential forms of degree N , is shown. The matter Einstein equation for perfect fluids on

spacetimes in the context of general relativity is considered in [26]. A wave propagation algorithm

for hyperbolic systems on curved manifolds with application in relativistic hydrodynamics and

magnetohydrodynamics have been developed and tested in [32], [4], [5], and a finite volume scheme

on spherical domains, partially with adaptive grid refinement in [8], [5].

This paper is organized as follows. In Section 2 we will summarize the notations and basic

relations for moving hypersurfaces which we need to show existence for (1.1). The PDE in (1.1)

will be derived in Section 3. Since the weak solution of (1.1) is in general not unique we will define

entropy solutions in Section 4. The idea for the existence proof is based on the approximation of the

solution of (1.1) by the solution of a parabolic regularization, which will be presented in Section 5.
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In Section 6 and 7 we prove uniform estimates in the H 1;1-norm of the solution of the parabolic

regularization. This implies compactness in L1 and therefore existence for (1.1), which is the main

subject of Section 8. Since this existence result depends on the special regularization, defined in

Section 5, we have to prove uniqueness of (1.1) in Section 9. With the numerical algorithm described

in Section 10 we have performed some numerical experiments. The results are shown in Section 11.

2. Notations and basic relations for moving hypersurfaces

In this section we present the description of the moving geometry. We use the notion of tangential

or surface gradients.

ASSUMPTIONS 2.1 Let �t D � .t/ � R
nC1 for t 2 Œ0; T � be a time dependent, closed, smooth

hypersurface. The initial surface �0 is transported by the smooth function

˚ W �0 � Œ0; T � ! R
nC1 (2.1)

with ˚.�0; t/ D �t and ˚.�; 0/ D Id . We assume that ˚.�; t/ W �0 ! � .t/ is a diffeomorphism for

every t 2 Œ0; T �. The velocity of the material points is denoted by v WD @t˚ ı ˚�1. The tangential

flow of a conservative material quantity u with u.�; t/ W �t ! R is described by a flux function

f D f ..x; t/; u/ which is a family of vector fields such that f ..x; t/; u/ is a tangent vector at the

surface �t for x 2 �t , t 2 Œ0; T � and u 2 R. We assume that all derivatives of f are bounded and

that r� � f ..�; t/; s/ D 0 for all fixed t 2 R
C; s 2 R. The definition of r� � is given below.

2.1 Tangential derivatives and geometry

Let us assume that � is a compact C 2-hypersurface in R
nC1 with normal vector field �.

DEFINITION 2.2 For a differentiable function g W � ! R we define its tangential gradient as

r� g D rg � rg � � �; (2.2)

where g is an extension of g to a neighborhood of � . We denote the components of the gradient by

r� g D
�
D1g; : : : ;DnC1g

�
:

The Laplace-Beltrami operator then is given by

�� g D r� � r� g D

nC1X

jD1
DjDjg:

It is well known that the tangential gradient only depends on the values of g on � . For more

information about this concept we refer to [13]. With the help of tangential gradients we can describe

the geometric properties of � . The matrix

H D r� �; Hij D .r� �/ij D Di�j D Dj �i .i; j D 1; : : : ; nC 1/

has a zero eigenvalue in normal direction: H� D 0. The remaining eigenvalues �1; : : : ; �n are the

principal curvatures of � . We can view the matrix H as an extended Weingarten map. The mean
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curvatureH of � is given as the trace of H,

H D

nC1X

jD1
Hjj D

nX

jD1
�j ;

where we note, that this definition of the mean curvature differs from the common definition by a

factor 1
n

. Integration by parts on a hypersurface � is given by the following formula. A proof for

surfaces without boundary can be found in [19]. The extension to surfaces with boundary is easily

obtained. By � we denote the conormal to @� .

LEMMA 2.3 Z

�

r� g D

Z

�

gH� C

Z

@�

g� : (2.3)

Higher order tangential derivatives do not commute. But we have the following law for second

derivatives. Here and in the following we use the summation convention that we sum over doubly

appearing indices.

LEMMA 2.4 For a function g 2 C 2.� / we have for i; k D 1; : : : ; nC 1, that

DiDkg D DkDig C HklDlg�i � Hi lDlg�k: (2.4)

For the convenience of the reader we give a short proof for this relation.

Proof. We use the definition (2.2) of the tangential gradient and extend g constantly in normal

direction to obtain g. Then

DiDkg �DkDig D Di

�
gxk

� gxl
�l�k

�
�Dk

�
gxi

� gxm
�m�i

�

D gxkxi
� gxkxr

�r�i �
�
gxlxi

� gxlxs
�s�i

�
�l�k � gxl

.Hi l�k C �lHik/

� gxixk
C gxixr

�r�k C
�
gxmxk

� gxmxs
�s�k

�
�m�i

C gxm
.Hmk�i C �mHik/

D gxm
Hmk�i � gxl

Hi l�k D Hkl�iDlg � Hi l�kDlg:

In the last step we have used that H� D 0.

2.2 Material derivatives

In this section we work with moving surfaces.

DEFINITION 2.5 For a differentiable function g W GT ! R we define the material derivative

Pg D
@g

@t
C v � rg: (2.5)

Note that the material derivative only depends on the values of g on the space-time surface

GT . In our proofs we will frequently use the following formula for the commutation of spatial

(tangential) derivatives and (material) time derivatives. A proof is given in the Appendix.
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LEMMA 2.6 For g 2 C 2.GT / we have that

.Dlg/P D Dl Pg � Alr .v/Drg (2.6)

with the matrix

Alr .v/ D Dlvr � �s�lDrvs .l; r D 1; : : : ; nC 1/:

3. Derivation of the PDE

We derive the conservation law, which we are going to solve in this paper. To this end we need the

following transport theorem on moving surfaces respectively on portions 
.t/ of � .t/ which move

in time according to the prescribed velocity v. A proof can be found in [14].

LEMMA 3.1
d

dt

Z


.t/

g D

Z


.t/

Pg C gr� � v : (3.1)

Let u.�; t/ be a scalar quantity, defined on � .t/, which is conserved. The conservation law which

we are going to solve is given in integral form by

d

dt

Z


.t/

u D

Z

@
.t/

Q � � : (3.2)

Here, Q is a flux, which we will parametrize later. Obviously normal parts of Q do not enter the

conservation law, because the conormal � on @
 is a tangent vector. Thus we may assume that Q

is a tangent vector to � . But note, that even if we choose Q as a vector with a normal part, then

Q � � D PQ � � with the projection Pij D ıij � �i�j (i; j D 1; : : : ; nC 1). We apply integration

by parts (2.3) to the right hand side of (3.2),

Z

@
.t/

Q � � D

Z


.t/

r� �Q �

Z


.t/

HQ � � D

Z


.t/

r� �Q :

To the left hand side of (3.2) we apply the transport theorem from Lemma 3.1. This leads to

d

dt

Z


.t/

u D

Z


.t/

PuC ur� � v :

Thus the equation (3.2) is equivalent to

Z


.t/

PuC ur� � v � r� �Q D 0;

and since 
 is an arbitrary subregion of � , we arrive at the PDE

PuC ur� � v � r� �Q D 0: (3.3)

Throughout this paper we assume, that Q has the form

Q D �f
�
.x; t/; u

� �
x 2 � .t/

�
;
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where we assume that

f .�; u/ � � D 0 (3.4)

for all u 2 R on � . With this parametrization of the flux the PDE (3.3) reads

PuC ur� � v C r� � f .�; u/ D 0 on GT ; (3.5)

where here, and in the following, by the divergence of f we mean the ‘total’ divergence

r� � f .�; u/ D

nC1X

jD1
Djfj .�; u/C

nC1X

jD1

@fj

@u
.�; u/Dju

D .r� � f /.�; u/C fu.�; u/ � r� u

REMARK 3.2 Note, that because of the condition (3.4) it is in general not possible to choose the

flux f independently of x and t . If we start with a flux of the formQ D Qf .u/ in the law (3.2), then

the PDE changes to

PuC ur� � v C r� � P Qf .u/ D 0

and we have f ..x; t/; u/ D P.x; t/ Qf .u/ in (3.5).

4. Definition of entropy solutions

As in the Euclidean case classical solutions of (1.1) do not exist globally in time in general.

Therefore we have to introduce the notion of a weak solution.

DEFINITION 4.1 A function u 2 L1.GT / is called a weak solution of (1.1) if

Z T

0

Z

�

u P' C f .�; u/ � r� ' C

Z

�0

u0'.�; 0/ D 0 (4.1)

for all test functions ' 2 C 1.GT / with '.�; T / D 0.

In general weak solutions are not unique. Therefore we select the entropy solution which will

be introduced in Definition 4.3. For the motivation of the entropy condition given in (4.4), let us

consider the following Lemma. Here and in the following we assume that u0" 2 H 2;1.�0/\L
1.�0/

and

ku0"kL1.�0/ C kr�0
u0"kL1.�0/

C "kr2
�0
u0"kL1.�0/

6 c0 (4.2)

with a constant c0 which is independent of the parameter 0 < " 6 1, where the Sobolev space is

given by

H 2;1.�0/ D
n
� 2 L1.�0/

ˇ̌
r�0

� 2 L1.�0/
nC1; r2

�0
� 2 L1.�0/

.nC1/�.nC1/
o
:

LEMMA 4.2 Let f D .f1; : : : ; fnC1/, q D .q1; : : : ; qnC1/, � 2 C 2.R/, �00
> 0. Define ql.�; s/ WDR s

s0
�0.�/flu.�; �/d� for l D 1; : : : ; nC1 and let u0 2 L1.�0/. Assume that u" is a smooth solution

of

Pu" C u"r� � v C r� � f .�; u"/ � "�� u" D 0 on GT ; u".�; 0/ D u0" on �0: (4.3)
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If u" ! u a.e. on GT and u0" ! u0 a.e. on �0 for " ! 0 and u 2 L1.GT /, then u satisfies the

entropy condition

�

Z

�0

�.u0/�.�; 0/C

Z T

0

Z

�t

�
��.u/ P�.�; t/�q.�; u/ � r� �Cr� �v.u�0.u/��.u//�

�
6 0 (4.4)

for all test functions � 2 H 1.GT / with � > 0 and �.�; T / D 0.

Proof. Let � and q be defined as above. We multiply (1.1) by �0.u"/ and obtain

Pu"�
0.u"/C u"r� � v�0.u"/C r� � f .�; u"/�

0.u"/ � "�� u"�
0.u"/ D 0 on GT : (4.5)

This implies

P�.u"/C u"r� � v�0.u"/C f 0
l .�; u"/Dlu"�

0.u"/ � "�� �.u"/C "�00.u"/.Dlu"/
2 D 0 on GT :

We multiply by a smooth test function � such that � > 0; �.�; T / D 0 and integrate. This gives

Z T

0

Z

�t

P�.u"/�Cu"r� �v�0.u"/�Cf 0
l Dlu�

0.u"/��"�� �.u"/�C"�00.u"/.Dlu"/
2� D 0: (4.6)

Since

R WD �

Z

�0

�.u".�; 0//�.�; 0/ D

Z T

0

d

dt

Z

�t

�.u".�; t//�.�; t/

D

Z T

0

Z

�t

�
�.u".�; t//�.�; t/

��
C

Z T

0

Z

�t

�.u"/�r� � v

D

Z T

0

Z

�t

�
�.u".�; t//

��.�; t/C �.u".�; t// P�.�; t/
�

C

Z T

0

Z

�t

�.u"/�r� � v;

we obtain from (4.6):

R �

Z T

0

Z

�t

�.u".�; t// P�.�; t/

�

Z T

0

Z

�t

�
�.u"/�r� � v � u"r� � v�0.u"/� � fluDlu"�

0.u"/� C "�.u"/�� �
�

D R �

Z T

0

Z

�t

�
�
u".�; t/

�
P�.�; t/

�

Z T

0

Z

�t

�
�.u"/�r� � v � u"r� � v�0.u"/� C q.u"/ � r� � C "�.u"/�� �

�
6 0:

This means that we have the inequality

�

Z

�0

�.u0"/�.�; 0/�

Z T

0

Z

�t

�.u".�; s// P�.�; s/ (4.7)

�

Z T

0

Z

�t

�
�.u"/�r� � v � u"r� � v�0.u"/� C q.u"/ � r� � C "�.u"/�� �

�
6 0;
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and for " ! 0 we obtain in the limit

�

Z

�0

�.u0/�.�; 0/�

Z T

0

Z

�t

�.u.�; s// P�.�; s/ (4.8)

�

Z T

0

Z

�t

�
�.u/�r� � v � ur� � v�0.u/� C q.u/ � r� �

�
6 0:

This finally proves the Lemma.

Now we use the property (4.4) for the definition of an entropy solution.

DEFINITION 4.3 Let �; ql and u0 be as in Lemma 4.2. Then u 2 L1.GT / is an entropy solution

(admissible weak solution) of (1.1) if

�

Z

�0

�.u0/�.�; 0/C

Z T

0

Z

�t

�
��.u/ P�.�; t/�q.�; u/ � r� �C�r� �v.u�0.u/��.u//

�
6 0 (4.9)

holds for all test functions � 2 H 1.GT / with � > 0 and �.�; T / D 0 and for all � and q with the

properties, mentioned above.

REMARK 4.4 If we choose �.u/ D u in Definition 4.3, then this implies q.�; u/ D f .�; u/C const ,

u�0.u/ � �.u/ D 0 and that u is a weak solution of (1.1).

The following definition of Kruzkov entropy solutions is equivalent to Definition 4.3.

DEFINITION 4.5 A function u 2 L1.GT / is called Kruzkov entropy solution of (1.1) if

Z T

0

Z

�

ju � kj P' � sign.u � k/ k r� � v ' C sign.u � k/.f .�; u/ � f .�; k// � r� '

C

Z

�0

ju0 � kj'.�; 0/ > 0 (4.10)

for all k 2 R and all test functions ' 2 C 1.GT / with ' > 0 and '.�; T / D 0.

REMARK 4.6 An entropy solution is a Kruzkov entropy solution. This can be seen by a

regularization of the Kruzkov entropy–entropy flux pair. See for example [24].

5. The regularized problem

In order to solve the conservation law (1.1) we solve the initial value problem (4.3) and consider u"
for " ! 0. For technical reasons let us consider the following regularized PDE

Pu" C u"r� � v C r� � f .�; u"/ � "r� � .Br� u"/ D 0 (5.1)

onGT with initial data u".�; 0/ D u0" on �0 with u0" ! u0 a.e. on �0 and (4.2). Here B D B.x; t/

is a symmetric diffusion matrix which maps the tangent space of � .t/ into the tangent space at the

point x 2 � .t/, so that we have B� D 0 and ��B D 0. Assume also that B is positive definite on

the tangent space. Similarly as in Lemma 4.2 it can be shown that u is an entropy solution if u" ! u

for " ! 0. In the proofs of the following Section we will use the fact that

BP D PB D B: (5.2)

The main purpose of the next section is to prove a priori bounds for u" which are independent of ".
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6. A priori estimates for the regularized problem

In this section we replace u" by u for better readability. The aim of this section is the derivation of

a priori estimates which are independent of ". The initial value problem

PuC ur� � v C r� � f .�; u/ � "r� � .Br� u/ D 0; u.�; 0/ D u0" (6.1)

has a unique smooth solution. This is shown by dovetailing the cut-off technique of Kruzkov with

the Galerkin ansatz from [14]. The proof is quite straight forward and so we omit the details here.

The proof of smoothness of the weak solution found by this method is a purely local argument.

6.1 Estimate of the solution

We prove that the solution u of the regularized parabolic initial value problem (6.1) is bounded in

the L1-norm in space and time independently of the parameter ".

LEMMA 6.1 Let u be the solution of (6.1). Then

sup
t2.0;T /

ku.�; t/kL1.� .t// 6 c (6.2)

with a constant c which is independent of " but depends on the data of the problem including the

final time T and c0 from (4.2).

Proof. This estimate is a consequence of the maximum principle for parabolic PDEs. Because of

the unusual setting here, we give a proof. The PDE (5.1) can be written in a weak form. Note that

the nonlinearity f ..x; t/; u/ is tangentially divergence free with respect to the x-variable. This is

crucial here. We begin by transforming u:

w.x; t/ D e��tu.x; t/; x 2 � .t/;

where we set � D sup.0;T / k .r� � v/� kL1.� / with .r� � v/� D minfr� � v; 0g. We set g.�; w/ D

e��tf .�; e�tw/ .w/ with a function  2 C 10 .R/ which satisfies  .w/ D 1 for jwj 6 M" and

 .w/ D 0 for jwj >M" C 1. We use M" D kukL1.GT /. Then

ˇ̌
ˇ̌ @g
@w
.�; w/

ˇ̌
ˇ̌ 6 c.M"/: (6.3)

Because of jwj D e��t juj 6M" we then have

Z

�

Pw' C

Z

�

w' .�C r� � v/ �

Z

�

g.�; w/ � r� ' C "

Z

�

Br�w � r� ' D 0 (6.4)

for every '. If we choose ' D .w �M/C D maxfw �M;0g with M D c0 > ku0"kL1.�0/ in this

equation, then we arrive at

1

2

Z

�

�
.w �M/2C

�
P C "

Z

�

Br� .w �M/C � r� .w �M/C

D

Z

�

.g.�; w/ � g.�;M // � r� .w �M/C �

Z

�

w.w �M/C.�C r� � v/:
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Here we have used that g.�;M / � � D 0. For the right hand side of this equation we observe that for

our choice of �

w.w �M/C.�C r� � v/ > 0;

and that

jg.�; w/ � g.�;M /j 6 c.M"/jw �M j:

We use these two estimates together with the ellipticity condition and get with a positive constant c

the estimate

1

2

d

dt

Z

�

.w �M/2C C "c

Z

�

jr� .w �M/Cj2

6
1

2
k.r� � v/CkL1.� /

Z

�

.w �M/2C C c.M"/

Z

�

.w �M/Cjr� .w �M/Cj:

Here we also have used the transport theorem from Lemma 3.1. From the previous estimate we infer

with Young’s inequality that

d

dt

Z

�

.w �M/2C C "c

Z

�

jr� .w �M/Cj2 6 c.M"; "/

Z

�

.w �M/2C:

This implies for the nonnegative function �.t/ D
R
� .t/

.w.�; t/ �M/2C the inequality

�0.t/ 6 c.M"; "/�.t/:

Because of �.0/ D 0 we then obtain with a Gronwall argument that �.t/ D 0. But this says that

.w �M/C D 0 almost everywhere which implies w 6M or

u.�; t/ 6 c.T;M/ on � .t/;

and the constant c.T;M/ does not depend on ". The estimate from below follows similarly.

6.2 Estimate of the spatial gradient

LEMMA 6.2 Assume that u solves the regularized PDE (6.1). Then

sup
.0;T /

Z

�

jr� uj 6 c (6.5)

with a constant c which does not depend on ".

Proof. Set wi D Diu and w D .w1; : : : ; wnC1/. We take the derivativeDi of the regularized PDE

(6.1),

Di PuCDi .ur� � v/CDir� � .f .�; u// � "Dir� � .Br� u/ D 0

and treat the terms separately. With the equation (2.6) we get

Di Pu D .Diu/P C Air.v/Dru D Pwi C Air.v/wr : (6.6)

Clearly

Di .ur� � v/ D wir� � v C uDir� � v: (6.7)
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For the nonlinear term we get with the use of (2.4)

Dir� �
�
f .�; u/

�
D Di

�
Dkfk.�; u/C fku.�; u/Dku

�
(6.8)

D DiDkfk.�; u/CDkfku.�; u/wi CDifku.�; u/wk

C fkuu.�; u/wiwk C fku.�; u/ .Dkwi C Hklwl�i � Hi lwl�k/ :

With (2.4) the second order term can be rewritten as follows:

Dir� � .Br� u/ D DiDk.BkmDmu/ (6.9)

D DkDi .BkmDmu/C HklDl .BkmDmu/�i � Hi lDl .BkmDmu/�k

D Dk.DiBkmDmu/CDk.Bkm.DmDiuC HmlDlu�i � Hi lDlu�m//

C HklDl.BkmDmu/�i � Hi lDl.BkmDmu/�k

D Dk.DiBkmwm/CDk.Bkm.Dmwi C Hmlwl�i � Hi lwl�m//

C HklDl.Bkmwm/�i � Hi lDl.Bkmwm/�k

D Dk.BkmDmwi /CDk.DiBkmwm/CDk.Bkm.Hmlwl�i � Hi lwl�m//

C HklDl.Bkmwm/�i � Hi lDl.Bkmwm/�k

D Dk.BkmDmwi /CDk.DiBkmwm/CDk.BkmHmlwl /�i

CBkmHmlHikwl C HklDl .Bkmwm/�i C Hi lHlkBkmwm:

For the last term we have used Hi lDl.Bkmwm/�k D �Hi lHlkBkmwm. We now collect the

intermediate results (6.6), (6.7), (6.8) and (6.9) to arrive at the following PDE for wi D Diu.

Pwi C Air.v/wr Cwir� � v C uDir� � v CDiDkfk.�; u/CDkfku.�; u/wi

CDifku.�; u/wk C fkuu.�; u/wiwk C fku.�; u/ .Dkwi C Hklwl�i � Hi lwl�k/

� " .Dk.BkmDmwi /CDk.DiBkmwm/CDk.BkmHmlwl /�i /

� " .HikHmlBkmwl C HklDl.Bkmwm/�i C Hi lHlkBkmwm/ D 0:

We multiply this equation by
wi

jw j , sum with respect to i from 1 to n C 1, use the fact that w is a

tangent vector, and get

jwjP C jwjr� � v C jwjDkfku.�; u/C fkuu.�; u/jwjwk C fku.�; u/
wi

jwj
Dkwi

C
wi

jwj
DiDkfk.�; u/CDifku.�; u/

wi

jwj
wk � "

wi

jwj
Dk.BkmDmwi /

D �Divr
wi

jwj
wr C "

wi

jwj
Dk.DiBkmwm/

C "BkmHmlHikwl
wi

jwj
C "BkmHi lHlkwm

wi

jwj
� u

wi

jwj
Dir� � v: (6.10)

Here we also used that fku.�; u/�k D 0 and wi�i D 0. We now observe that

Dkfku.�; u/jwj C fkuu.�; u/wk jwj C fku.�; u/
wi

jwj
Dkwi D Dk.fku.�; u/jwj/: (6.11)
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The result of Lemma 6.1 allows us to estimate some terms in (6.10).

jwjP C jwjr� � v C r� � .fu.�; u/jwj/ � "
wi

jwj
Dk.BkmDmwi /

6 c1 C c2jwj C c3juj C "
wi

jwj
Dk.DiBkmwm/: (6.12)

We rewrite the second order term on the left hand side of this equation (integrated over � ).

�"

Z

�

wi

jwj
Dk .BkmDmwi / D �"

Z

�

wi

jwj
H�kBkmDmwi C "

Z

�

Dk

�
wi

jwj

�
BkmDmwi

D "

Z

�

1

jwj
Qi lBkmDkwlDmwi ;

where we have set

Qi l D ıi l �
wiwl

jwj2
; i; l D 1; : : : ; nC 1:

We now estimate the last term on the right hand side of (6.12) integrated over � .

"

Z

�

wi

jwj
Dk .DiBkmwm/ D "

Z

�

wi

jwj
H�kDiBkmwm � "

Z

�

1

jwj
Qi lDkwlDiBkmwm

D �"

Z

�

wi

jwj
HBkmHikwm � "

Z

�

1

jwj
Qi lDiBkmwmDkwl

6 c4"

Z

�

jwj � "

Z

�

1

jwj
Qi lDiBkmwmDkwl :

Since the matrix Q is positive semidefinite and since B is positive definite on the tangent space we

can estimate the last term on the right hand side. We use the abbreviations

zrl D Drwl ; �is D B�1
sk PkpDiBpmwm:

For any ı > 0 we then have

jQi lDiBkmDkwlwmj D jQi lBrszrl�isj 6
p
Qi lBrszrlzis

p
Qi lBrs�is�rl

6
ı

2
Qi lBrszrlzis C

1

2ı
Qi lBrs�is�rl

6
ı

2
Qi lBrsDrwlDiws C c.ı/jwj2:

The first equation can be obtained as follows:

Qi lBrszrl�is D Qi lBrsDrwlB
�1
sk PkpDiBpmwm D Qi lDrwlPkpDiBpmwmırk

D Qi lDrwlPrpDiBpmwm D Qi lDrwl.ırp � �r�p/DiBpmwm

D Qi lDpwlDiBpmwm:

Now because of

Diws D Dswi C Hspwp�i � Hipwp�s
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we get

Qi lBrsDrwlDiws D Qi lBrsDrwlDswi CQi lBrsHsp�iDrwlwp

and because of Qi l�i D �l , the second term on the right hand side can be rewritten as follows:

Qi lBrsHsp�iDrwlwp D �lBrsHsp�iDrwlwp

D BrsHsp�i .Dr .wl�l/ � wlHrl /wp

D �BrsHspHrl�iwlwp:

Collecting the previous estimates we arrive at

"

Z

�

wi

jwj
Dk.DiBkmwm/ 6 c"

Z

�

jwj C
"

2

Z

�

1

jwj
Qi lBkmDkwlDmwi :

We integrate (6.12) over � and finally get

Z

�

jwjP C jwjr� � v C

Z

�

r� � .fu.�; u/jwj/ 6 �
"

2

Z

�

1

jwj
Qi lBkmDkwlDmwi C c

Z

�

jwj

6 c

Z

�

jwj C c

Z

�

juj C c

Z

�

juj C c;

where we again have used the fact that � is compact. Since

Z

�

r� � .f .�; u/jwj/ D

Z

�

H� � f .�; u/jwj D 0;

we finally get the estimate
d

dt

Z

�

jwj 6 c

Z

�

jwj C c:

Here we have used the bound (6.2) for u. In summary we have proved that

sup
.0;T /

Z

�

jwj 6 c

independently of ". In the last step we used (4.2). Lemma 6.2 is proved.

7. Estimate of the time derivative

Assume that the matrix B D .Bik/i;kD1;:::;nC1 satisfies

PB D BA.v/C A.v/�B C �B; B.�; 0/ D B0 (7.1)

where � > 0 is a constant and B0 is a symmetric and tangentially positive definite .nC1/� .nC1/

matrix.

LEMMA 7.1 There is a symmetric .nC1/� .nC1/ matrix which is positive definite on the tangent

space and solves (7.1).
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Proof. The existence ofB follows easily from ODE theory, since (7.1) is a linear transport equation.

Let us show, that B is symmetric. The transposed matrix solves the ODE

PB� D A.v/�B� C B�A.v/C �B�:

If we subtract this equation from (7.1), we get

.B � B�/P D .B � B�/A.v/C A.v/�.B � B�/C �.B � B�/:

Since .B � B�/.�; 0/ D 0 by assumption, we have that B � B� D 0 for all times.

The coercivity is seen as follows.

�
e��tB

�P
D e��t � PB � �B

�
D e��t �BA.v/C A.v/�B

�
:

Thus

B.�; t/ D e�t
�
B0 C

Z t

0

e��s �BA.v/C A.v/�B
�
ds

�

and from this we get for � 2 R
nC1 with the coercivity of B0, B0� � � > d0j�j

2 (d0 > 0), and the

smoothness of A.v/ and B:

B.�; t/� � � > e�tB0� � � � ce�t j�j2
Z t

0

e��s ds >
�
e�t .d0 �

c

�
/C

c

�

�
j�j2:

So, B is positive definite if we choose � big enough. Now observe that QB D PBP is also a solution

of the ODE by using PP D ŒP; A.v/� which can be seen by P�k D ��lDkvl and where Œ�; �� is the

commutator. We denote QB again by B .

LEMMA 7.2 Assume that u solves the regularized PDE (5.1). Then

sup
.0;T /

Z

�

j Puj 6 c (7.2)

with a constant c which does not depend on ".

Proof. We take the material derivative of (6.1) and set z D Pu,

RuC Pur� � v C u.r� � v/ PC
�
r� �

�
f .�; u/

��
P � "

�
r� � .Br� u/

�
P D 0:

We use (2.6) and treat the terms separately. Clearly

RuC Pur� � v D Pz C zr� � v: (7.3)

For the nonlinear terms we get

�
r� � f .�; u/

�
P D

�
Dlfl .�; u/C flu.�; u/Dlu

�
P (7.4)

D DlPfl.�; u/� Alr .v/Drfl.�; u/C Pflu.�; u/DluC fluu.�; u/zDlu

C flu.�; u/
�
Dlz �Alr .v/Dru

�
:
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We calculate the material derivative of the second order term.

�
r� � .Br� u/

�
P D

�
Dk.BklDlu/

�
P

D Dk.BklDlu/P �Akr .v/Dr.BklDlu/

D Dk

�
Bkl .Dlz � Alr .v/Dru/C PBklDlu

�
�Akr .v/Dr.BklDlu/

D r� � .Br� z/ �Dk

��
BkrArl .v/ � PBkl C Ark.v/Brl

�
Dlu

�

C BrlDluDk.Ark.v//

Now choose the matrix B such that it satisfies (7.1). Then

�
r� � .Br� u/

�
P D r� � .Br� z/C �Dk.BklDlu/C BrlDluDk

�
Ark.v/

�
: (7.5)

We collect the terms (7.3), (7.4) and (7.5) to get

Pz C zr� � v C u.r� � v/� CDl
Pfl .�; u/� Alr.v/Drfl .�; u/C Pflu.�; u/Dlu

C fluu.�; u/zDluC flu.�; u/Dlz �Alr .v/flu.�; u/Dru

� "r� � .Br� z/ � "BrlDluDk.Akr .v// � �
�
z C ur� � v C r� � f .�; u/

�
D 0: (7.6)

We observe that similarly as in (6.11) we have

z

jzj

�
flu.�; u/Dlz C zfluu.�; u/Dlu

�
D r� �

�
fu.�; u/jzj

�
�Dlflu.�; u/jzj:

Multiplying (7.6) with sign.z/ we get (correctly: use zp
ı2Cz2

for ı ! 0 etc.)

jzjP C jzjr� � v C r� �
�
fu.�; u/jzj

�
6 " sign.z/ r� � .Br� z/C c1 C c2jr� uj C c3jzj:

Here we have used the boundedness of u uniformly with respect to the regularization parameter

0 < " 6 1. With the same arguments as in the proof of Lemma 6.2 after integration over � we get

the inequality
d

dt

Z

�

jzj 6 c1 C c2

Z

�

jr� uj C c3

Z

�

jzj;

and Lemma 6.2 implies

sup
.0;T /

Z

�

jzj 6 c

with a constant c, which does not depend on ", since we can use (4.2).

8. Existence for the conservation law

THEOREM 8.1 Assume Assumptions 2.1, (7.1) and let u0 2 L1.�0/. Then there exists an entropy

solution of (1.1).

Proof. Let u" be the solution of (5.1) with u".�; 0/ D u0" on �0 and u0" ! u0 a.e. on �0 , ˚ as in

Assumption 2.1, and

w".y; t/ WD u"
�
˚.y; t/; t

�
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for y 2 �0 and t 2 Œ0; T �. Then due to the Lemmata 6.2 and 7.2 and the properties of ˚ (see

Assumption 2.1) we obtain

Z T

0

Z

�0

ˇ̌
ˇ @
@t
w"

ˇ̌
ˇ 6 const: (8.1)

Z T

0

Z

�0

jr�0
w"j 6 const: (8.2)

uniformly in ": This implies that w" is uniformly bounded in H 1;1.�0 � Œ0; T �/. Then due to the

Kondrakov-Theorem (see Aubin [3]) we have a convergent subsequence w"0 and w 2 L1.�0 �

Œ0; T �/ such that

w"0 ! w in L1
�
�0 � Œ0; T �

�
:

Define ˚t .x/ WD ˚.x; t/. Since u".x; t/ D w".˚
�1
t .x/; t/ and due to the properties of ˚ (see

Assumption 2.1) we have

u"0.x; t/ ! u.x; t/ WD w
�
˚�1
t .x/; t

�
in L1.GT /:

Then we proceed as in the proof for Lemma 4.2 to prove that u is an entropy solution of (1.1). Note

that Lemma 6.1 ensures the boundedness of u in L1.GT /.

9. Uniqueness for the conservation law

In this section we are going to prove uniqueness of entropy solutions (see Theorem 9.4) as defined

in Definition 4.3 or 4.5. For the sake of brevity we suppress the integration elements dx, dy, dt and

d� the in this section. Integration is meant to be done over each of these variables that occur in the

respective integral.

We will need that the initial data is approached in the following sense, which is a fine property of

scalar conversation laws. Related analysis considering divergence measure fields and its applications

to conservation laws posed in the Euclidean setting can be found in [10–12].

LEMMA 9.1 An entropy solution u D u.x; t/ approaches its initial values in the following sense.

ess lim
t&0

Z

�0

ju.˚.x; t/; t/ � u0.x/j
2 D 0: (9.1)

Proof. Recall that an entropy solution is a weak solution. Hence we use (4.1) with '.x; t/ WD

��;Q�.t/�..˚.�; t//�1.x//, where

��;Q�.t/ WD

8
<
:

1 for 0 6 t 6 �;

1 � .t � �/= Q� for � < t 6 � C Q�;

0 else,

and � 2 C1.�0/ is arbitrary in order to obtain for Q� & 0 and almost every �

�

Z

� .�/

u.x; �/�
��
˚.�; �/

��1
.x/
�

C

Z

�0

u0.x/�.x/ D O.�/: (9.2)
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Invoking the density of C1.�0/ in L1.�0/ we see that (9.2) is even true for � 2 L1.�0/. Similarly,

by choosing �.x; t/ WD ��;Q�.t/ as a test function in (4.9) we get for almost every �

�

Z

�0

�
�
u0.x/

�
C

Z

� .�/

�
�
u.x; �/

�
6 O.�/: (9.3)

A combination of (9.2) and (9.3) yields

ess lim sup
�&0

Z

�0

�.u.˚.x; �/; �//j detD˚.x; �/j � �
�
u0.x/

�

� �0�u0.x/
��
u
�
˚.x; �/; �

�
j detD˚.x; �/j � u0.x/

�
6 0:

By choosing �.u/ D u2 and using the fact that j detD˚.x; �/j D 1C O.�/ the proof is completed.

For the proof of uniqueness we need some technical definitions and basic facts from differential

geometry. For a parametrization Q W U ! Q .U / of a subset Q .U / � �0 with U � R
n open we

have the following properties.

(a) For t > 0 a parametrization of ˚. Q .U /; t/ � � .t/ is given by the map  .�; t/ W U !  .U /

where

 .x; t/ WD ˚
�

Q .x/; t
�
: (9.4)

(b) For a function ' 2 C 1.GT / the material derivative has the local form

P'
�
 .x; t/; t

�
D
�
'
�
 .x; t/; t

��
t
: (9.5)

(c) For the local representation W D Wi . xi
.�; t/ ı  .�; t/�1/ of a tangential vector field W on

� .t/ we have

.W � r� .t/'/ ı  .�; t/ D
�
Wi ı  .t; �/

��
' ı  .�; t/

�
xi

(9.6)

for all ' 2 C 1.� .t//.

(d) For any function ˛ 2 L1.� .t// we have the following local computation of the integral over a

subset  .V; t/ � � .t/ where V � U .

Z

 .V;t/

˛ D

Z

V

˛ ı  .�; t/

q
det

�
D .�; t/T D .�; t/

�
: (9.7)

Here D denotes the Jacobian operator w.r.t. the spatial coordinate x 2 U � R
n.

We introduce a function ı 2 C1.R/ satisfying ı > 0, supp ı � Œ�1; 1� and
R
R
ı.�/d� D 1.

For h > 0 we set ıh.�/ WD 1
h
ı.�
h
/, then ıh 2 C1.R/, supp ıh � Œ�h; h�, ı0

h
6

C
h

andR
R
ıh.�/d� D 1 for some constant C . We need the following two Lemmata whose proofs can be

found in [25].

LEMMA 9.2 If a functionF.u/ satisfies a Lipschitz condition on an interval Œ�M;M�with constant

L, then the functionH.u; Nu/ WD sign.u� Nu/ŒF.u/ � F. Nu/� also satisfies the Lipschitz condition in

u and Nu with the constant L.
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LEMMA 9.3 Let the function Nu.x; t/ be bounded and measurable in some cylinder Br .0/ � Œ0; T �.

If for some � 2 .0;min.r; T // and any number h 2 .0; �/ we set

Vh WD
1

hnC1

ZZZZ
j t��

2 j6h; �6
tC�

2
6T��;

k x�y
2 k6h;




xCy
2




6r��

ˇ̌
Nu.x; t/ � Nu.y; �/

ˇ̌
dxdtdyd�; (9.8)

then limh!0 Vh D 0.

THEOREM 9.4 Assume Assumptions 2.1 and r� .t/ �v 2 L1.GT / and Pf and r� .t/f are Lipschitz

continuous with respect to u. Then the Kruzkov entropy solution of Definition 4.5 is unique.

Proof. The proof we give here is in the same spirit as Kruzkov’s uniqueness proof [25] and can be

seen as its extension to moving surfaces. Let u; Nu be two Kruzkov entropy solutions with initial data

u0; Nu0. Furthermore let  be as in (9.4) with  .�; t/ W BR.0/ !  .BR.0/; t/ where BR.0/ � R
n

and  .BR.0/; t/ � � .t/. Choose normal coordinates for instance. For some 0 < r < R we define

˝ WD Br .0/ and ˝T WD Br .0/ � Œ0; T �. Let now ' 2 C1.GT / be a test function with ' > 0 and

supp ' b
S
t2.�;T�2�/  .˝; t/ � ftg where � > 0 is a small real number. We know because of

(a)–(d) that then

Z

GT

ju.x; t/ � kj P' � sign
�
u.x; t/ � k

�
k r� .t/ � v.x; t/ '.x; t/

C sign
�
u.x; t/ � k

��
f
�
x; t; u.x; t/

�
� f .x; t; k/

�
� r� .t/'.x; t/C

Z

�0

ju0.x/ � kj '.x; 0/

D

Z T

0

Z

˝

h ˇ̌
u
�
 .x; t/; t

�
� k

ˇ̌
.'
�
 .x; t/; t

�
t

� sign
�
u
�
 .x; t/; t

�
� k

�
k .r� .t/ � v/

�
 .x; t/; t

�
'
�
 .x; t/; t

�
C sign

�
u
�
 .x; t/; t

�
� k

�

�
�
fi

�
 .x; t/; t; u

�
 .x; t/; t

��
� fi

�
 .x; t/; t; k

���
'
�
 .x; t/; t

��
xi

ip
det.g.x; t// (9.9)

where fi is locally defined by f D fi � . xi
.�; t/ ı .�; t/�1/ and g.x; t/ WD D .x; t/T D .x; t/,

where D .x; t/ denotes the Jacobian of  .x; t/ with respect to x. For better readability we will

suppress the composition with  .�; t/ in the following, i.e. we introduce new functions which live

on ˝ � Œ0; T � and which we mainly again denote by the names of the original functions. By this

we mean to do the following replacements. u. .x; t/; t/  u.x; t/, '. .x; t/; t/  '.x; t/,

.r� .t/ � v/. .x; t/; t/ q.x; t/ and fi . .x; t/; t; �/ fi .x; t; �/.

In Definition 4.5 we choose a test function

Q' D Q'.x; t; y; �/ > 0 with supp Q' b
� [

t2.�;T�2�/
 .˝; t/ � ftg

�2
;

set k D Nu.y; �/, multiply with
p

det.g.y; �// and integrate over ˝T WD ˝ � Œ0; T � with respect to
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.y; �/. Using (9.9) we arrive at

Z

˝2
T

h
ju.x; t/ � Nu.y; �/j Q't .x; t; y; �/ � sign

�
u.x; t/ � Nu.y; �/

�
Nu.y; �/ q.x; t/ Q'.x; t; y; �/

C sign
�
u.x; t/ � Nu.y; �/

��
fi
�
x; t; u.x; t/

�
� fi

�
x; t; Nu.y; �/

��
Q'xi
.x; t; y; �/

i

q
det
�
g.x; t/

�q
det
�
g.y; �/

�
> 0: (9.10)

Proceeding analogously for the corresponding version of (4.10) for the entropy solution Nu D Nu.y; �/

we get

Z

˝2
T

h
ju.x; t/ � Nu.y; �/j Q'� .x; t; y; �/C sign

�
u.x; t/ � Nu.y; �/

�
u.x; t/ q.y; �/ Q'.x; t; y; �/

C sign
�
u.x; t/ � Nu.y; �/

��
fi
�
y; �; u.x; t/

�
� fi

�
y; �; Nu.y; �/

��
Q'yi
.x; t; y; �/

i

q
det
�
g.x; t/

�q
det
�
g.y; �/

�
> 0: (9.11)

Summing up (9.10) and (9.11) one sees

Z

˝2
T

h
ju.x; t/ � Nu.y; �/j

�
Q't .x; t; y; �/C Q'� .x; t; y; �/

�

C sign
�
u.x; t/ � Nu.y; �/

��
fi
�
x; t; u.x; t/

�
� fi

�
y; �; Nu.y; �/

���
Q'xi
.x; t; y; �/C Q'yi

.x; t; y; �/
�

C sign
�
u.x; t/ � Nu.y; �/

��
fi
�
y; �; Nu.y; �/

�
� fi

�
x; t; Nu.y; �/

��
Q'xi
.x; t; y; �/

„ ƒ‚ …
DWR1

C sign
�
u.x; t/ � Nu.y; �/

��
fi
�
y; �; u.x; t/

�
� fi

�
x; t; u.x; t/

��
Q'yi
.x; t; y; �/

„ ƒ‚ …
DWR2

C sign
�
u.x; t/ � Nu.y; �/

��
u.x; t/q.y; �/ � Nu.y; �/q.x; t/

�
„ ƒ‚ …

DWQ

Q'.x; t; y; �/
i

q
det
�
g.x; t/

�q
det
�
g.y; �/

�
> 0: (9.12)

For a test function ' D '.x; t/ > 0 satisfying supp ' b
S
t2.�;T�2�/  .˝; t/� ftg we set (in local

coordinates)

Q'.x; t; y; �/ WD '

�
x C y

2
;
t C �

2

�
ıh

�
t � �

2

� nY

iD1
ıh

�xi � yi

2

�
DW '.� � � /�h

� :::
�

(9.13)

where

.� � � / D

�
x C y

2
;
t C �

2

�
;

� :::
�

D

�
x � y

2
;
t � �

2

�
(9.14)
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and h is sufficiently small, such that supp Q' b .
S
t2.�;T�2�/  .˝; t/ � ftg/2. For the partial

derivatives of Q' the following identities are trivial.

Q't C Q'� D 't .� � � /�h
� :::
�
;

Q'xi
C Q'yi

D 'xi
.� � � /�h

� :::
�
:

(9.15)

The major part of the proof will be to see that with Q' as in (9.13) the following inequality is obtained

from (9.12) for h ! 0:

Z

˝T

h
ju.x; t/ � Nu.x; t/j 't .x; t/

C sign
�
u.x; t/ � Nu.x; t/

��
fi
�
x; t; u.x; t/

�
� fi

�
x; t; Nu.x; t/

��
'xi
.x; t/

� sign
�
u.x; t/ � Nu.x; t/

��
fi xi

�
x; t; u.x; t/

�
� fi xi

�
x; t; Nu.x; t/

��
'.x; t/

C ju.x; t/ � Nu.x; t/jq.x; t/'.x; t/
i

det
�
g.x; t/

�
> 0:

(9.16)

In order to prove (9.16) we define a function

F
�
x; t; y; �; u.x; t/; Nu.y; �/

�
�h
� :::
�

WD
h

ju.x; t/ � Nu.y; �/j 't .� � � /

C sign
�
u.x; t/ � Nu.y; �/

��
fi
�
x; t; u.x; t/

�
� fi

�
y; �; Nu.y; �/

��
'xi
.� � � /

CQ'.� � � /
iq

det
�
g.x; t/

�q
det
�
g.y; �/

�
�h
� :::
�
:

(9.17)

From (9.12) we deduce

0 6

Z

˝2
T

F
�
x; t; y; �; u.x; t/; Nu.y; �/

�
�h
� :::
�

C

Z

˝2
T

ŒR1 CR2�

q
det

�
g.x; t/

�q
det
�
g.y; �/

�

D

Z

˝2
T

�
F
�
x; t; y; �; u.x; t/; Nu.y; �/

�
� F

�
x; t; x; t; u.x; t/; Nu.x; t/

��
�h
� :::
�

C

Z

˝2
T

F
�
x; t; x; t; u.x; t/; Nu.x; t/

�
�h
� :::
�

C

Z

˝2
T

ŒR1 CR2�

q
det

�
g.x; t/

�q
det
�
g.y; �/

�
DW J1.h/C J2 C J3.h/:

(9.18)

We mention that due to Lemma 9.2 and since N̋
T � BR.0/ � Œ0; T � and F is defined on .BR.0/ �

Œ0; T �/2, obviously F is Lipschitz continuous on .˝T /
2 in all its arguments. We then use the fact
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that j�h
� :::
�
j 6 Ch�.nC1/ and Lemma 9.3 to see that

jJ1.h/j 6 C

�
hC

Z

˝2
T

j Nu.y; �/ � Nu.x; t/j�h
� :::
��

! 0 (9.19)

for h ! 0 since Nu is bounded and measurable. By substitution we get for the second term

J2 D

Z

˝T

F
�
x; t; x; t; u.x; t/; Nu.x; t/

� Z

˝T

�h

�
x � y

2
;
t � �

2

�

„ ƒ‚ …
D2nC1

D 2nC1
Z

˝T

F
�
x; t; x; t; u.x; t/; Nu.x; t/

�
dx dt:

(9.20)

Now we turn to the third term

J3.h/ D

Z

˝2
T

h
sign

�
u.x; t/ � Nu.y; �/

��
fi
�
y; �; Nu.y; �/

�
� fi

�
x; t; Nu.y; �/

��

�

�
1

2
'xi
.� � � /�h

� :::
�

C '.� � � /
�
�h
� :::
��
xi

�

C sign
�
u.x; t/ � Nu.y; �/

��
fi
�
y; �; u.x; t/

�
� fi

�
x; t; u.x; t/

��

�
�1
2
'xi
.� � � /�h

� :::
�

C '.� � � /
�
�h
� :::
��
yi

�i

q
det
�
g.x; t/

�q
det
�
g.y; �/

�
:

(9.21)

We notice that those summands of the above integral that contain 'xi
.� � � /�h

� :::
�

as a factor in the

integrand vanish for h ! 0. Consequently, it suffices to show that

OJ3.h/ WD

Z

˝2
T

sign
�
u.x; t/ � Nu.y; �/

�h�
fi
�
y; �; Nu.y; �/

�
� fi

�
x; t; Nu.y; �/

���
�h
� :::
��
xi

C
�
fi
�
y; �; u.x; t/

�
� fi

�
x; t; u.x; t/

���
�h
� :::
��
yi

i
O'.x; t; y; �/

(9.22)

converges to

�2nC1
Z

˝T

sign
�
u.x; t/ � Nu.x; t/

��
fi xi

�
x; t; u.x; t/

�
� fi xi

�
x; t; Nu.x; t/

��
'.x; t/ det

�
g.x; t/

�

(9.23)

for h ! 0, where O'.x; t; y; �/ WD '.� � � /
p

det.g.x; t//
p

det.g.y; �//. For a better readability we

write �xi
instead of

�
�h
� :::
��
xi

and analogously �yi
. Due to the local Lipschitz continuity of fi on

˝T we have

�
fi
�
y; �; Nu.y; �/

�
� fi

�
x; t; Nu.y; �/

��
�xi

D fi �
�
y; �; Nu.y; �/

�
.� � t/�xi

C fiyj

�
y; �; Nu.y; �/

�
.yj � xj /�xi

C �i�xi
(9.24)
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with
�i

d
! 0 for d WD kx � yk C jt � � j ! 0 where k � k denotes the Euclidean norm in R

n.

Analogously, with �xi
D ��yi

we get

�
fi
�
y; �; u.x; t/

�
� fi

�
x; t; u.x; t/

��
�yi

D �fi �
�
y; �; u.x; t/

�
.� � t/�xi

� fiyj

�
y; �; u.x; t/

�
.yj � xj /�xi

C ˇi�xi
(9.25)

with
ˇi

d
! 0 for d ! 0. Thus,

OJ3.h/ D

Z

˝2
T

O'.x; t; y; �/ sign
�
u.x; t/� Nu.y; �/

��
fi �
�
y; �; Nu.y; �/

�
�fi �

�
y; �; u.x; t/

��
.��t/�xi

C

Z

˝2
T

O'.x; t; y; �/ sign
�
u.x; t/� Nu.y; �/

��
fiyj

�
y; �; Nu.y; �/

�
� fiyj

�
y; �; u.x; t/

��
.yj � xj /�xi

C

Z

˝2
T

O'.x; t; y; �/ sign
�
u.x; t/ � Nu.y; �/

�
.�i C ˇi /�xi

DW I1 C I2 C I3:

(9.26)

Obviously, j�xi
j 6 Ch�.nC2/ and using Lemma 9.3 we get jI3j ! 0 as h ! 0. Since

p
det.g/ is

Lipschitz continuous on ˝T we have
ˇ̌
O'.x; t; y; �/ � O'.x; t; x; t/

ˇ̌
6 C

�
kx � yk C jt � � j

�
(9.27)

and obtain

I1 D

Z

˝2
T

h
O'.y; �; y; �/ sign

�
u.x; t/ � Nu.y; �/

�

�
fi �
�
y; �; Nu.y; �/

�
� fi �

�
y; �; u.x; t/

��
.� � t/�xi

i
C 
1.h/

(9.28)

with 
1.h/ ! 0 for h ! 0. Defining

Fi
�
y; �; u.x; t/; Nu.y; �/

�
WD O'.y; �; y; �/ sign

�
u.x; t/ � Nu.y; �/

�
�
fi �
�
y; �; Nu.y; �/

�
� fi �

�
y; �; u.x; t/

��
(9.29)

we see with Lemma 9.2 that Fi is Lipschitz continuous in u on ˝T and obtain according to

Lemma 9.3

jI1j 6

ˇ̌
ˇ̌
ˇ

Z

˝2
T

Fi
�
y; �; u.x; t/; Nu.y; �/

��
.� � t/�

�
xi

ˇ̌
ˇ̌
ˇ C

ˇ̌

1.h/

ˇ̌

D

ˇ̌
ˇ̌
ˇ

Z

˝2
T

�
Fi
�
y; �; u.x; t/; Nu.y; �/

�
� Fi

�
y; �; u.y; �/; Nu.y; �/

���
.� � t/�

�
xi

ˇ̌
ˇ̌
ˇ C j
1.h/j

6 C

Z

˝2
T

ˇ̌
u.x; t/ � u.y; �/

ˇ̌
j.� � t/j„ ƒ‚ …

6h

j�xi
j„ƒ‚…

6Ch�.nC2/

C
ˇ̌

1.h/

ˇ̌
! 0

(9.30)
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for h ! 0. Considering I2 we have

I2 D

Z

˝2
T

O'.x; t; y; �/ sign
�
u.x; t/ � Nu.y; �/

�

�
fiyj

�
y; �; Nu.y; �/

�
� fiyj

�
y; �; u.x; t/

���
.yj � xj /�

�
xi

C

Z

˝2
T

O'.x; t; y; �/ sign
�
u.x; t/ � Nu.y; �/

��
fiyi

�
y; �; Nu.y; �/

�
� fiyi

�
y; �; u.x; t/

��
�

DW I2:1 C I2:2: (9.31)

We see that I2:2 converges for h ! 0 to

2nC1
Z

˝T

sign
�
u.x; t/ � Nu.x; t/

��
fi xi

�
x; t; Nu.x; t/

�
� fi xi

�
x; t; u.x; t/

��
'.x; t/ det

�
g.x; t/

�
;

(9.32)

whereas one can see analogously to I1 that I2:1 converges to zero. Thus, we conclude that

0 6 lim
h!0

�
J1.h/C J2 C J3.h/

�
D 2nC1

Z

˝T

F
�
x; t; x; t; u.x; t/; Nu.x; t/

�

�2nC1
Z

˝T

sign
�
u.x; t/� Nu.x; t/

��
fi xi

�
x; t; u.x; t/

�
�fi xi

�
x; t; Nu.x; t/

��
'.x; t/ det

�
g.x; t/

�

(9.33)

and thereby (9.16).

In order to continue the proof of the theorem we introduce the following definitions. Let Eu �

Œ0; T � be of L
1-measure zero, such that u.˚.�; t/; t/ ! u0 in L1.�0/ for t ! 0, t 2 Œ0; T �nEu. Let

E Nu be defined analogously. These sets exist because of Lemma 9.1. We set

�.t/ WD

Z

St

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌
det

�
g.x; t/

�
; (9.34)

where St WD
˚
x 2 Br .0/

ˇ̌
jjxjj 6 r �Lt

	
and

L WD max
.x;t/2 N̋

T ;
w6max.kukL1 ;k NukL1 /

 
nX

iD1
@uf

2
i .x; t; w/

! 1
2

(9.35)

By E� � Œ0; T � we denote those points that are not Lebesgue points of the bounded and measurable

function � and set E0 WD Eu [ E Nu [ E�. Obviously, L
1.E0/ D 0. We define

ah.�/ WD

Z �

�1
ıh.�/d� (9.36)

as a regularization of the Heavyside function and see a0
h
.�/ D ıh.�/ > 0. Let now �1; �2 2

.0; T /nE0 with �1 < �2. In order to prove a contraction property we choose the following test

function whose definition is given in local coordinates by

'.x; t/ WD
�
ah.t � �1/ � ah.t � �2/

�
�.x; t/; (9.37)
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where

�.x; t/ WD ��.x; t/ WD 1 � a�
�
kxk C Lt � r C �

�
; � > 0 (9.38)

for .x; t/ 2 ˝T and zero outside. Hence, supp �.�; t/ � St � Br .0/. We compute the derivatives

of � as

�t .x; t/ WD �La0
�

�
kxk C Lt � r C �

�
„ ƒ‚ …

>0

and r�.x; t/ WD �a0
�

�
kxk C Lt � r C �

� x
kxk

(9.39)

and due to the definition of L we conclude with the Cauchy Schwartz inequality

0 D �t .x; t/C Lkr�.x; t/k > �t .x; t/C
fi
�
x; t; u.x; t/

�
� fi

�
x; t; Nu.x; t/

�

u.x; t/ � Nu.x; t/
�xi
.x; t/: (9.40)

If we choose the function ' from (9.37) as a test function in (9.16) we get

Z

˝T

�
ıh.t � �1/ � ıh.t � �2/

�
�.x; t/

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌
det
�
g.x; t/

�

C

Z

˝T

�
ah.t � �1/ � ah.t � �2/

�
„ ƒ‚ …

>0

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌
„ ƒ‚ …

>0

�
�t .x; t/C

fi
�
x; t; u.x; t/

�
� fi

�
x; t; Nu.x; t/

�

u.x; t/ � Nu.x; t/
�xi
.x; t/

�

„ ƒ‚ …
60

det
�
g.x; t/

�
„ ƒ‚ …

>0

�

Z

˝T

sign
�
u.x; t/ � Nu.x; t/

��
fi xi

�
x; t; u.x; t/

�
� fi xi

�
x; t; Nu.x; t/

��

�
�
ah.t � �1/ � ah.t � �2/

�
�.x; t/ det

�
g.x; t/

�

C

Z

˝T

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌
q.x; t/

�
ah.t � �1/ � ah.t � �2/

�
�.x; t/ det

�
g.x; t/

�
> 0:

(9.41)

For � ! 0 we have

Z T

0

�
ıh.t � �1/ � ıh.t � �2/

� Z

St

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌
det

�
g.x; t/

�

�

Z T

0

�
ah.t � �1/ � ah.t � �2/

� Z

St

sign
�
u.x; t/ � Nu.x; t/

�

�
�
fi xi

�
x; t; u.x; t/

�
� fi xi

�
x; t; Nu.x; t/

��
det

�
g.x; t/

�

C

Z T

0

�
ah.t � �1/ � ah.t � �2/

� Z

St

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌
q.x; t/ det

�
g.x; t/

�
> 0:

(9.42)
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If now h ! 0 this implies

�.�2/ D

Z

S�2

ˇ̌
u.x; �2/ � Nu.x; �2/

ˇ̌
det

�
g.x; �2/

�
(9.43)

6

Z

S�1

ˇ̌
u.x; �1/ � Nu.x; �1/

ˇ̌
det
�
g.x; �1/

�
(9.44)

C

Z �2

�1

Z

St

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌�ˇ̌
q.x; t/

ˇ̌
C L.fi xi

/
�

det
�
g.x; t/

�
(9.45)

6 �.�1/C
�
kqkL1 C L.fi xi

/
� Z �2

�1

�.t/; (9.46)

where L.fi xi
/ denotes the local Lipschitz constant of fi xi

on ˝T and by a Gronwall argument we

conclude

�.�2/ 6 �.�1/ exp
��

kqkL1 C L.fi xi
/
�
.�2 � �1/

�
: (9.47)

Using the fact that ˇ̌
ju� Nuj � ju0 � Nu0j

ˇ̌
6 ju0 � uj C j Nu0 � Nuj (9.48)

and that det.g.x; t// is bounded and Lipschitz in t we get with Lemma 9.1 for �1 ! 0 in Œ0; T �nE0

the following estimate

�.�2/ 6 exp
��

kqkL1 C L.fi xi
/
�
�2

� Z

Br .0/

ˇ̌
u0.x/ � Nu0.x/

ˇ̌
det
�
g.x; 0/

�
(9.49)

for all �2 2 Œ0; T �nE0. At this point we are able to show that u D Nu almost everywhere if u0 D Nu0
almost everywhere. To this end we assume that u0 D Nu0 almost everywhere. Let now p 2 �0.

We show that we find an open set QUp � �0 containing p such that u D Nu almost everywhere inS
t2Œ0;Qt� ˚. QUp; t/�ftg for some Qt > 0. To this end let again be as in (9.4) with  .�; t/ W BR.0/ !

 .BR.0/; t/ where BR.0/ � R
n,  .BR.0/; t/ � � .t/ and  .0; 0/ D p. Furthermore we choose

0 < r < R and set Q WD  .�; 0/ and QU WD Q .Br.0// � �0. As in (9.35) we get a local Lipschitz

constant L of f and have for Qt WD r
2L

that

Z

St

ˇ̌
u.x; t/ � Nu.x; t/

ˇ̌
det
�
g.x; t/

�
6 C

Z

Br .0/

ˇ̌
u0.x/ � Nu0.x/

ˇ̌
det
�
g.x; 0/

�
D 0 (9.50)

for all t 2 Œ0; Qt � and therefore u D Nu almost everywhere in
S
t2Œ0;Qt� ˚. QUp; t/ � ftg with QUp WD

Q .B r
2
.0// since SQt D B r

2
.0/. Repeating the above argumentation for every p 2 �0 we get several

sets QUp whose union obviously covers �0. By choosing a finite cover
˚

QUpi
; i D 1; : : : ;M

	
we

get several times Qti such that u D Nu almost everywhere in
S
t2Œ0;Qtmin�

� .t/ � ftg with Qtmin WD

mini2f1;:::;M g Qti . As Qtmin does not depend on time and because of (9.47) we can successively conclude

that u D Nu almost everywhere in GT .

The following Corollary follows immediately from the equivalence of Definition 4.3 and

Definition 4.5 together with Theorem 9.4.

COROLLARY 9.5 Let the assumptions of Theorem 9.4 be satisfied. Then the entropy solution of

Definition 4.3 is unique.
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10. Numerical algorithm

Now we are going to derive a finite volume scheme for the initial value problem (1.1). Up to our

knowledge the first finite volume scheme on evolving surfaces for parabolic equations was proposed

by Lenz et al. [29]. They provide a scheme for diffusion on evolving surfaces. We adapt this scheme

to nonlinear scalar conservation laws on evolving surfaces.

10.1 Notation and preliminaries

Following Dziuk and Elliot [14] the smooth initial surface �0 is approximated by a triangulated

surface �0;h which consists of a set of simplices (triangles for n D 2) such that all its vertices

fx0j gNjD1 sit on �0. Such a set of simplices is called a triangulation T
0
h

of �0;h and h indicates the

maximal diameter of a triangle on the whole family of triangulations. The triangulation Th.t/ and

its � .t/ approximating surface �h.t/ is defined by mapping the set of vertices fx0j gNjD1 with ˚.�; t/

onto � .t/, i.e.,

xj .t/ WD ˚.x0j ; t/;

i.e., they lie on motion trajectories. Thus, all the triangulations Th.t/ share the same grid topology.

By this construction the set of simplices can be written as Th.t/ D fTj .t/jj D 1; : : : ;M g for

t 2 Œ0; T �, where M is the time independent number of simplices. For the derivation of a finite

volume scheme we introduce discrete time steps tk D k� where � denotes the time step size and

k the time step index. For an arbitrary time step tk we have a smooth surface � k WD � .tk/, its

approximation � k
h

WD �h.t
k/ and the corresponding triangulation T

k
h

WD Th.t
k/ with simplices

T kj WD Tj .t
k/. From [14] we know that for sufficiently small h there is a uniquely defined lifting

operator from � k
h

onto � k via the orthogonal projection P
k D P .tk/ in direction of the surface

normal � on � k . For the comparison of quantities on � k and on � k
h

we define curved simplices via

the projection operator, i.e.

T
k
j WD P

kT kj :

Such a projection Tkj propagates during the .k C 1/th time interval Œtk ; tkC1�. We define

T
k
j .t/ WD ˚

��
˚.�; tk/

��1
.Tkj /; t

�

and denote by V kj the n-dimensional measure of T kj .

10.2 Definition of the finite volume scheme

In order to derive a suitable finite volume scheme we integrate (1.1) over the curved simplex Tkj .t/

and the time interval Œtk ; tkC1�. Applying the Leibniz formula and the Gauss theorem we obtain

0 D

Z tkC1

tk

Z

T
k
j
.t/

PuC ur�t
� v C r�t

� f .�; �; u/

D

Z tkC1

tk

d

dt

Z

T
k
j
.t/

uC

Z tkC1

tk

Z

@Tk
j
.t/

f .�; �; u/ � �@Tk
j
.t/
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D

Z

T
k
j
.tkC1/

u �

Z

T
k
j
.tk/

uC

Z tkC1

tk

X

e�@Tk
j
.t/

Z

e

f .�; �; u/ � �@Tk
j
.t/

D

Z

T
k
j
.tkC1/

u �

Z

T
k
j

uC

Z tkC1

tk

X

e�@Tk
j
.t/

Z

e

f .�; �; u/ � �@Tk
j
.t/;

where �@Tk
j
.t/ denotes the unit outer normal along @Tkj .t/ which is tangential to � k and e denotes

an edge of the boundary @Tkj .t/. We introduce the approximations
Z

T
k
j
.tkC1/

u �

Z

T
k
j

u � V kC1
j ukC1

j � V kj u
k
j

and
Z tkC1

tk

X

e�@Tk
j
.t/

Z

e

f .�; �; u/ � �@Tk
j
.t/ � �

X

e�@T k
j

gk
e;T k

j

.ukj ; u
k
l.j;e//;

where ukj 2 R represents the value of u on T
k
j , l.j; e/ is the index of the simplex which shares the

edge e with T kj and the gk
e;@T k

j

are some numerical flux functions which depend on cell number,

edge and time index. We define the finite volume scheme by

ALGORITHM 10.1

ukC1
j WD

1

V kC1
j

�
V kj u

k
j � �

X

e�@Tk
j

gk
e;T k

j

.ukj ; u
k
l.j;e//

�
; (10.1)

u0j WD
1

V 0j

Z

T
0
j

u0: (10.2)

For implementation purposes we introduce the approximated total mass on a cell mkj WD V kj u
k
j .

In terms of these quantities the finite volume scheme (10.1) and (10.2) reads

mkC1
j WD mkj � �

X

e�@T k
j

gk
e;T k

j

 
mkj

V kj
;
mk
l.j;e/

V k
l.j;e/

!
; (10.3)

m0j WD

Z

T
0
j

u0: (10.4)

EXAMPLE 10.2 (Engquist-Osher Numerical Flux) Using the notations from above we define for a

simplex T kj 2 T
k
h

and an edge e � @T kj

ck
e;T k

j

.u/ WD

Z

e

f .�; tk ; u/ � �@Tk
j
; (10.5)

c
k;C
e;T k

j

.u/ WD ck
e;T k

j

.0/C

Z u

0

maxfck
e;T k

j

0
.s/; 0gds; (10.6)

c
k;�
e;T k

j

.u/ WD

Z u

0

minfck
e;T k

j

0
.s/; 0gds: (10.7)
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Then an Engquist-Osher-flux is defined by

g
k;EO

e;T k
j

.u; v/ WD c
k;C
e;T k

j

.u/C c
k;�
e;T k

j

.v/: (10.8)

11. Numerical experiments

The finite volume scheme (10.1) and (10.2) is validated by numerical experiments. To this end we

formulate a linear transport problem on a sphere whose radius decreases exponentially in time.

For this problem we know the exact solution and, thus, can compute some experimental orders of

convergence (EOC). As a second test problem we choose a nonlinear (Burgers-like) flux function

f and state our problem on an ellipsoid which develops a narrowness in time.

Test Problem 1 (Linear)

We define

r.t/ WD exp.�t/;

�t WD
˚
r.t/x j x 2 S

2
	
;

˚.x; t/ WD r.t/x;

V.r.t/x/ WD .�x2; x1; 0/T for x D .x1; x2; x3/ 2 S
2;

f .u/ WD 2�u;

f
�
r.t/x; t; u

�
WD f .u/V.r.t/x/

and consider the initial value problem

PuC ur�t
� v C r�t

� f .�; �; u/ D 0 on GT ; (11.1)

u.x; 0/ D u0.x/ on �0: (11.2)

Since v D Pr.t/�, where � denotes the unit outer normal on S
2, we have r�t

� v D 2 Pr.t/
r.t/

D �2

(cf. [14]). As in [30], one sees that the last term on the left hand side in (11.1) reads in polar

coordinates .r; '; �/
1

r.t/

@

@'
f .u/:

Thus (11.1) is equivalent to

Pu � 2uC exp.t/
@

@'
f .u/ D 0 for ' 2 T

1 WD Œ0; 2�� and t > 0; (11.3)

where ' D 0 and ' D 2� are identified. For given functionseu0 W T1 ! R andbu W .0; �/ ! R we

define in polar coordinates

eu.'; t/ WD exp.2t/eu0
�
' � 2�

�
exp.t/ � 1

��
;

u.'; �; t/ WDeu.'; t/bu.�/;

u0.'; �/ WDeu0.'/bu.�/:
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TABLE 1. Experimental orders of convergence (EOC) for Test Problem 1, where Nh denotes the average diameter of the grid’s

elements.

Elements Nh L1-Error EOC

632 0.21605 1.86 —

2,628 0.10613 1.53 0.27

11,164 0.05145 1.16 0.39

45,102 0.02557 0.76 0.59

187,682 0.01251 0.49 0.61

747,416 0.00627 0.30 0.68

With these definitions one easily sees that u is a solution of the initial value problem (11.1)–

(11.2). For testing our code we define

bu.�/ WD sin2.3�/1fj���=2j<�=6g.�/;

eu0.'/ WD 1f'<�g.'/

and choose an Engquist-Osher numerical flux. For our computations we use surface grids that

approximate the sphere S
2. They consist of flat triangles whose nodes lay on S

2. We get the

experimental orders of convergence which are listed in Table 1.

Test Problem 2 (Nonlinear)

The results of three further experiments are illustrated in Figures 1, 2 and 3, respectively. All three

have the function

u0.x1; x2; x3/ D cos2
�
� .x1 C 2/

�
1fx1<�3=2g.x1/

as initial values. For the first two experiments (see Figures 1 and 2) the flux function f is constructed

by taking a constant vector field which is pointing in direction of the x1-axis and projecting it on the

hypersurface �t . This flux function is not divergence-free. Figure 1 shows the numerical solution of

a Burgers equation on an evolving ellipsoid. You can see a shock that moves from left to right. In

Figure 2 the same equation is considered, but due to fast change of geometry in the middle of the

ellipsoid, the mass is compressed so fast that a second shock riding on the first one is induced. Thus,

this second shock is induced by the change of geometry. For the third experiment (see Figure 3) the

same parameters as in the second one are chosen, only the flux function is different, which is chosen

to be divergence-free. Its construction is based on the following lemma which is a generalization of

the one for the case of S2 developed by Ben-Artzi et al. [6].

LEMMA 11.1 Given a function h D h.x; t; u/ which is defined for t 2 Œ0; T � and u 2 R in

a neighborhood of �t , then the flux function defined by f .x; t; u/ WD �.x; t/ � rh.x; t; u/ is

divergence-free, where the x-dependence of f is assumed to be of class C 2.

Proof. For fixed t 2 Œ0; T �; u 2 R we consider a portion 
.t/ of �t with smooth boundary @
.t/.

Then by the divergence theorem we have

Z


.t/

r�t
� f .x; t; u/ D

Z

@
.t/

�
�.x; t/ � �.x; t/

�
� rh.x; t; u/:
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(a) t=0 (b) t=0.2T

(c) t=0.4T (d) t=0.6T

(e) t=0.8T (f) t=T

FIG. 1. Burgers like shock on an evolving ellipsoid for several time steps. Here, T denotes the end time.

As �.x; t/� �.x; t/ is a unit tangent vector at @
.t/ the integrand is the directional derivative along

@
.t/ und thus the integral vanishes for any smooth portion 
.t/.

For the third experiment a flux corresponding to h.x; t; u/ D �20x3u
2 is chosen. The pictures

from Figure 3 show the evolution of the numerical solution. Here, as in Figure 2 a second shock is

geometrically induced and overtakes the first one.

Appendix

Proof of Lemma 2.6

Proof. It is sufficient to prove this relation locally. For this we use a parametrization X D X.�; t/,

� 2 O over some open set O � R
n. We write U.�; t/ D u.X.�; t/; t/ and V.�; t/ D v.X.�; t/; t/.

We use the notation gij D X�i
�X�j . The uppering of the indices has to be understood in the usual

sense as inverting the matrix: .gij /i;jD1;:::;n D .gij /
�1
i;jD1;:::;n.

Then, by definition of the material derivative (2.5) we have

.Dlu/ P ıX D
@

@t
.Dlu ıX/ D

@

@t

�
gijU�jX

l
�i

�

D
@gij

@t
U�jX

l
�i

C gijUt�jX
l
�i

C gijU�jX
l
t�i

We have that Ut D Pu ıX and Xt D V D v ıX . With the relation

g
ij
t D �gikgjm

�
V�k

�X�m
CX�k

� V�m

�
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(a) t=0 (b) t=0.40T

(c) t=0.50T (d) t=0.54T

(e) t=0.58T (f) t=0.62T

(g) t=0.67T (h) t=0.73T

(i) t=0.91T (j) t=T

FIG. 2. We see a Burgers like shock on an evolving ellipsoid. Caused by the deformation of the ellipsoid a second shock is

produced and overtakes the first one. Here, T denotes the end time.

we get

.Dlu/
P ıX D �gikgjm

�
V r�k

X r�m
CX s�k

V s�m

�
U�jX

l
�i

C gijUt�jX
l
�i

C gijU�jX
l
t�i

D �gikV r�k
X l�i

gjmX r�m
U�j � gikX s�k

X l�i
gjmV s�m

U�j C gijUt�jX
l
�i

C gijU�jV
l
�i

D �Dluvr ıXDru ıX �Dsxl ıXr� vs � r� u ıX

CDl Pu ıX C r� u � r� vl ıX:
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(a) t=0 (b) t=0.02T

(c) t=0.22T (d) t=0.26T

(e) t=0.28T (f) t=0.29T

(g) t=0.33T (h) t=0.40T

(i) t=0.58T (j) t=0.64T

(k) t=0.79T (l) t=T

FIG. 3. As in Figure 2 a second shock is geometrically induced and overtakes the first one. Here, the flux function f is

divergence-free. T denotes the end time.

Because of Dsxl D Psl D ısl � �s�l we finally arrive at

.Dlu/ P D Dl Pu �DlvrDru � PslDrvsDruCDruDrvl

D Dl Pu �Dru .Dlvr C PslDrvs �Drvl / :

The Lemma is proved.
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