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Well-posedness of the linearized plasma-vacuum interface problem
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We consider the free boundary problem for the plasma-vacuum interface in ideal compressible

magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible

MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic

field. At the free-interface we assume that the total pressure is continuous and that the magnetic field

is tangent to the boundary. The plasma density does not go to zero continuously at the interface, but

has a jump, meaning that it is bounded away from zero in the plasma region and it is identically zero

in the vacuum region. Under a suitable stability condition satisfied at each point of the plasma-

vacuum interface, we prove the well-posedness of the linearized problem in conormal Sobolev

spaces.
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1. Introduction

Consider the equations of ideal compressible MHD:

8
ˆ̂̂
<
ˆ̂̂
:

@t � C div .�v/ D 0;

@t .�v/ C div .�v ˝ v � H ˝ H/ C rq D 0;

@t H � r � .v�H/ D 0;

@t

�
�e C 1

2
jH j2

�
C div

�
.�e C p/v C H�.v�H/

�
D 0;

(1.1)

where � denotes density, v 2 R
3 plasma velocity, H 2 R

3 magnetic field, p D p.�; S/ pressure,

q D p C 1
2
jH j2 total pressure, S entropy, e D E C 1

2
jvj2 total energy, and E D E.�; S/ internal

energy. With a state equation of gas, � D �.p; S/, and the first principle of thermodynamics, (1.1)

is a closed system.

System (1.1) is supplemented by the divergence constraint

div H D 0 (1.2)
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on the initial data. As is known, taking into account (1.2), we can easily symmetrize system (1.1)

by rewriting it in the nonconservative form

8
ˆ̂<
ˆ̂:

�p

�

dp

dt
C div v D 0; �

dv

dt
� .H � r/H C rq D 0;

dH

dt
� .H � r/v C H div v D 0;

dS

dt
D 0;

(1.3)

where �p � @�=@p and d=dt D @t C .v � r/. A different symmetrization is obtained if we consider

q instead of p. In terms of q the equation for the pressure in (1.3) takes the form

�p

�

�
dq

dt
� H � dH

dt

�
C div v D 0; (1.4)

where it is understood that now � D �.q � jH j2=2; S/ and similarly for �p . Then we derive div v

from (1.4) and rewrite the equation for the magnetic field in (1.3) as

dH

dt
� .H � r/v � �p

�
H

�
dq

dt
� H � dH

dt

�
D 0: (1.5)

Substituting (1.4), (1.5) in (1.3) then gives the following symmetric system

0
BB@

�p=� 0 �.�p=�/H 0

0T �I3 03 0T

�.�p=�/H T 03 I3 C .�p=�/H ˝ H 0T

0 0 0 1

1
CCA @t

0
BB@

q

v

H

S

1
CCAC

C

0
BB@

.�p=�/v � r r� �.�p=�/Hv � r 0

r �v � rI3 �H � rI3 0T

�.�p=�/H T v � r �H � rI3 .I3 C .�p=�/H ˝ H/v � r 0T

0 0 0 v � r

1
CCA

0
BB@

q

v

H

S

1
CCA D 0 ;

(1.6)

where 0 D .0; 0; 0/. Given this symmetrization, as the unknown we can choose the vector U D
U.t; x/ D .q; v; H; S/. For the sake of brevity we write system (1.6) in the form

A0.U /@t U C
3X

j D1

Aj .U /@j U D 0; (1.7)

which is symmetric hyperbolic provided the hyperbolicity condition A0 > 0 holds:

� > 0; �p > 0: (1.8)

Plasma-vacuum interface problems for system (1.1) appear in the mathematical modeling of plasma

confinement by magnetic fields (see, e.g., [10]). In this model the plasma is confined inside a

perfectly conducting rigid wall and isolated from it by a vacuum region, due to the effect of strong

magnetic fields. This subject is very popular since the 1950–70’s, but most of theoretical studies

are devoted to finding stability criteria of equilibrium states. The typical work in this direction is
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the classical paper of Bernstein et al. [3]. In astrophysics, the plasma-vacuum interface problem can

be used for modeling the motion of a star or the solar corona when magnetic fields are taken into

account.

According to our knowledge there are still no well-posedness results for full (non-stationary)

plasma-vacuum models. More precisely, an energy a priori estimate in Sobolev spaces for the

linearization of a plasma-vacuum interface problem (see its description just below) was proved

in [23], but the existence of solutions to this problem remained open. In fact, the proof of existence

of solutions is the main goal of the present paper.

Let ˝C.t/ and ˝�.t/ be space-time domains occupied by the plasma and the vacuum

respectively. That is, in the domain ˝C.t/ we consider system (1.1) (or (1.7)) governing the motion

of an ideal plasma and in the domain ˝�.t/ we have the elliptic (div-curl) system

r � H D 0; div H D 0; (1.9)

describing the vacuum magnetic field H 2 R
3. Here, as in [3, 10], we consider so-called pre-

Maxwell dynamics. That is, as usual in nonrelativistic MHD, we neglect the displacement current

.1=c/ @t E , where c is the speed of light and E is the electric field.

Let us assume that the interface between plasma and vacuum is given by a hypersurface

� .t/ D fF.t; x/ D 0g. It is to be determined and moves with the velocity of plasma particles

at the boundary:
dF

dt
D 0 on � .t/ (1.10)

(for all t 2 Œ0; T �). As F is an unknown of the problem, this is a free-boundary problem. The plasma

variable U is connected with the vacuum magnetic field H through the relations [3, 10]

Œq� D 0; H � N D 0; H � N D 0; on � .t/; (1.11)

where N D rF and Œq� D qj� � 1
2
jHj2

j�
denotes the jump of the total pressure across the interface.

These relations together with (1.10) are the boundary conditions at the interface � .t/.

As in [12, 22], we will assume that for problem (1.1), (1.9)–(1.11) the hyperbolicity conditions

(1.8) are assumed to be satisfied in ˝C.t/ up to the boundary � .t/, i.e., the plasma density does

not go to zero continuously, but has a jump (clearly in the vacuum region ˝�.t/ the density is

identically zero). This assumption is compatible with the continuity of the total pressure in (1.11).

For instance, in the case of ideal polytropic gases one has p D A�eS with A > 0;  > 1. Then

the continuity of the total pressure at � requires .A�eS C 1
2
jH j2/j�C

� 1
2
jHj2

j��
D 0, which may

be obtained also for densities � discontinuous across � . Differently, in the absence of the magnetic

field, the continuity of the pressure yields the continuity of the density so that the boundary condition

becomes �j�C
D 0.

Since the interface moves with the velocity of plasma particles at the boundary, by introducing

the Lagrangian coordinates one can reduce the original problem to that in a fixed domain. This

approach has been recently employed with success in a series of papers on the Euler equations in

vacuum, see [6–9, 12]. However, as, for example, for contact discontinuities in various models of

fluid dynamics (e.g., for current-vortex sheets [4, 21]), this approach seems hardly applicable for

problem (1.1), (1.9)–(1.11). Therefore, we will work in the Eulerian coordinates and for technical

simplicity we will assume that the space-time domains ˝˙.t/ have the following form.

Let us assume that the moving interface � .t/ takes the form

� .t/ WD
˚
.x1; x0/ 2 R

3 ; x1 D '.t; x0/
	

;



326 P. SECCHI AND YU. TRAKHININ

where t 2 Œ0; T � and x0 D .x2; x3/. Then we have ˝˙.t/ D fx1 ? '.t; x0/g. With our

parametrization of � .t/, an equivalent formulation of the boundary conditions (1.10), (1.11) at

the interface is

@t ' D vN ; Œq� D 0; HN D 0; HN D 0 on � .t/; (1.12)

where vN D v � N , HN D H � N , HN D H � N , N D .1; �@2'; �@3'/.

System (1.7), (1.9), (1.12) is supplemented with initial conditions

U.0; x/ D U0.x/; x 2 ˝C.0/; '.0; x/ D '0.x/; x 2 �;

H.0; x/ D H0.x/; x 2 ˝�.0/;
(1.13)

From the mathematical point of view, a natural wish is to find conditions on the initial data providing

the existence and uniqueness on some time interval Œ0; T � of a solution .U; H; '/ to problem (1.7),

(1.9), (1.12), (1.13) in Sobolev spaces. Since (1.1) is a system of hyperbolic conservation laws that

can produce shock waves and other types of strong discontinuities (e.g., current-vortex sheets [21]),

it is natural to expect to obtain only local-in-time existence theorems. Notice that (1.7), (1.9) is a

coupled hyperbolic-elliptic system.

We must regard the boundary conditions on H in (1.12) as the restriction on the initial data

(1.13). More precisely, we can prove that a solution of (1.7), (1.12) (if it exists for all t 2 Œ0; T �)

satisfies

div H D 0 in ˝C.t/ and HN D 0 on � .t/;

for all t 2 Œ0; T �, if the latter were satisfied at t D 0, i.e., for the initial data (1.13). In particular, the

fulfillment of div H D 0 implies that systems (1.1) and (1.7) are equivalent on solutions of problem

(1.7), (1.12), (1.13).

The remainder of the paper is organized as follows. In the next section we introduce an

equivalent formulation in the fixed domain with flat boundary. In Section 2 we formulate the

linearized problem associated to (1.17)–(1.19) and introduce suitable decompositions of the

magnetic fields to reduce it to that with homogeneous boundary conditions and homogeneous

linearized “vacuum” equations. In fact, for proving the basic a priori energy estimate, it is convenient

to have the vacuum magnetic field satisfying homogeneous equations and boundary conditions as

in (2.14), and the plasma magnetic field satisfying homogeneous constraints (2.23), (2.24). Thus we

introduce the decomposition PH D H0 C H00 in the vacuum side, with H0 solution of (2.14), and H00

taking all the nonhomogeneous part (2.13), and the decomposition (2.21) in the plasma side.

The main result of the paper is stated in Section 4. We prove the existence of a unique solution

to the linearized hyperbolic-elliptic problem (2.29) satisfying the a priori estimate (4.2). The a priori

estimate (4.2) improves the similar estimate firstly proved in [23].

In Section 5 we introduce a fully hyperbolic regularization (5.1) of the coupled hyperbolic-

elliptic system (2.29). In Section 6 we show an a priori estimate of solutions uniform in the small

parameter " of regularization. In Section 7 we prove the existence of the solution to the hyperbolic

regularizing problem (5.1). For it one main difficulty is the fact that the problem is non standard,

due to the coupling with the front, and that the Kreiss-Lopatinskii condition doesn’t hold uniformly,

so that for instance the approach of [2] does not apply. Other difficulties are due to the characteristic

boundary and the lack of reflexivity (in the sense of Ohkubo [17], [2]). In Section 7 we find

a relatively simple proof of existence by means of an alternative formulation and a fixed point

argument. In Section 8 we conclude the proof of Theorem 4.1 by passing to the limit as " ! 0.

Sections 9, 10, 11 are devoted to the proof of some technical results.
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1.1 An equivalent formulation in the fixed domain

Let us denote

˝˙ WD R
3 \ fx1 ? 0g ; � WD R

3 \ fx1 D 0g :

We want to reduce the free boundary problem (1.7), (1.9), (1.12), (1.13) to the fixed domains ˝˙.

For this purpose we introduce a suitable change of variables that is inspired by Lannes [11]. In

all what follows, H s.!/ denotes the Sobolev space of order s on a domain !. The following

lemma shows how to lift functions from � to R
3. An important point is the regularization of one

half derivative of the lifting function 	 w.r.t. the given function '. For instance, there is no such

regularization in the lifting function chosen in [13, 14].

LEMMA 1.1 Let m > 3. For all � > 0 there exists a continuous linear map ' 2 H m�0:5.R2/ 7!
	 2 H m.R3/ such that 	.0; x0/ D '.x0/, @1	.0; x0/ D 0 on � , and

k@1	kL1.R3/ 6 � k'kH 2.R2/: (1.14)

We give the proof of Lemma 1.1 in Section 10 at the end of this article. The following lemma gives

the time-dependent version of Lemma 1.1.

LEMMA 1.2 Let m > 3 be an integer and let T > 0. For all � > 0 there exists a continuous

linear map ' 2 \m�1
j D0 Cj .Œ0; T �I H m�j �0:5.R2// 7! 	 2 \m�1

j D0 Cj .Œ0; T �I H m�j .R3// such that

	.t; 0; x0/ D '.t; x0/, @1	.t; 0; x0/ D 0 on � , and

k@1	kC.Œ0;T �IL1.R3// 6 � k'kC.Œ0;T �IH 2.R2//: (1.15)

Furthermore, there exists a constant C > 0 that is independent of T and only depends on m, such

that

8 ' 2 \m�1
j D0 C

j .Œ0; T �I H m�j �0:5.R2// ; 8 j D 0; : : : ; m � 1 ; 8 t 2 Œ0; T � ;

k@
j
t 	.t; �/kH m�j .R3/ 6 C k@

j
t '.t; �/kH m�j �0:5.R2/ :

The proof of Lemma 1.2 is also postponed to Section 10. The diffeomorphism that reduces the free

boundary problem (1.7), (1.12), (1.13) to the fixed domains ˝˙ is given in the following lemma.

LEMMA 1.3 Let m > 3 be an integer. For all T > 0, and for all ' 2
\m�1

j D0 Cj .Œ0; T �I H m�j �0:5.R2//, satisfying without loss of generality k'kC.Œ0;T �IH 2.R2// 6 1, there

exists a function 	 2 \m�1
j D0 Cj .Œ0; T �I H m�j .R3// such that the function

˚.t; x/ WD
�
x1 C 	.t; x/; x0

�
; .t; x/ 2 Œ0; T � � R

3 ; (1.16)

defines an H m-diffeomorphism of R
3 for all t 2 Œ0; T �. Moreover, there holds @

j
t .˚ � Id/ 2

C.Œ0; T �I H m�j .R3// for j D 0; : : : ; m � 1, ˚.t; 0; x0/ D .'.t; x0/; x0/, @1˚.t; 0; x0/ D .1; 0; 0/.

Proof of Lemma 1.3. The proof follows directly from Lemma 1.2 because

@1˚1.t; x/ D 1 C @1	.t; x/ > 1 � k@1	.t; �/kC.Œ0;T �IL1.R3// > 1 � � k'k
C

�
Œ0;T �IH 2.R2/

� > 1=2 ;

provided � is taken sufficiently small, e.g. � < 1=2. The other properties of ˚ follow directly from

Lemma 1.2.
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We introduce the change of independent variables defined by (1.16) by setting

eU .t; x/ WD U
�
t; ˚.t; x/

�
; eH.t; x/ WD H

�
t; ˚.t; x/

�
:

Dropping for convenience tildes in eU and eH, problem (1.7), (1.9) (1.12), (1.13) can be reformulated

on the fixed reference domains ˝˙ as

P.U; 	/ D 0 in Œ0; T � � ˝C; V.H; 	/ D 0 in Œ0; T � � ˝�; (1.17)

B.U; H; '/ D 0 on Œ0; T � � �; (1.18)

.U; H/jtD0 D .U0; H0/ in ˝C � ˝�; 'jtD0 D '0 on �; (1.19)

where P.U; 	/ D P.U; 	/U ,

P.U; 	/ D A0.U /@t CeA1.U; 	/@1 C A2.U /@2 C A3.U /@3;

eA1.U; 	/ D 1

@1˚1

�
A1.U / � A0.U /@t 	 �

3X

kD2

Ak.U /@k	
�
;

V.H; 	/ D
� r � H

div h

�
;

H D .H1@1˚1; H�2
; H�3

/; h D .HN ; H2@1˚1; H3@1˚1/;

HN D H1 � H2@2	 � H3@3	; H�i
D H1@i 	 C Hi ; i D 2; 3;

B.U; H; '/ D

0
@

@t ' � vN jx1D0

Œq�

HN jx1D0

1
A ; Œq� D qjx1D0 � 1

2
jHj2x1D0;

vN D v1 � v2@2	 � v3@3	:

To avoid an overload of notation we have denoted by the same symbols vN ; HN here above and

vN ; HN as in (1.12). Notice that vN jx1D0 D v1�v2@2'�v3@3'; HN jx1D0 D H1�H2@2'�H3@3',

as in the previous definition in (1.12).

We did not include in problem (1.17)–(1.19) the equation

div h D 0 in Œ0; T � � ˝C; (1.20)

and the boundary condition

HN D 0 on Œ0; T � � �; (1.21)

where h D .HN ; H2@1˚1; H3@1˚1/, HN D H1 � H2@2	 � H3@3	 , because they are just

restrictions on the initial data (1.19). More precisely, referring to [21] for the proof, we have the

following proposition.

PROPOSITION 1.4 Let the initial data (1.19) satisfy (1.20) and (1.21) for t D 0. If .U; H; '/ is a

solution of problem (1.17)–(1.19), then this solution satisfies (1.20) and (1.21) for all t 2 Œ0; T �.

Note that Proposition 1.4 stays valid if in (1.17) we replace system P.U; 	/ D 0 by system

(1.1) in the straightened variables. This means that these systems are equivalent on solutions of our

plasma-vacuum interface problem and we may justifiably replace the conservation laws (1.1) by

their nonconservative form (1.7).
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2. The linearized problem

2.1 Basic state

Let us denote

Q˙
T WD .�1; T � � ˝˙; !T WD .�1; T � � �:

Let

.bU .t; x/;bH.t; x/; O'.t; x0// (2.1)

be a given sufficiently smooth vector-function with bU D . Oq; Ov; bH;bS/, respectively defined on

QC
T ; Q�

T ; !T , with

kbU k
W 2;1.Q

C

T
/
C k@1

bU k
W 2;1.Q

C

T
/

C kbHkW 2;1.Q�
T

/ C k O'kW 3;1.Œ0;T ��R2/ 6 K;

k O'kC.Œ0;T �IH 2.R2// 6 1;

(2.2)

where K > 0 is a constant. Corresponding to the given O' we construct O	 and the diffeomorphism
O̊ as in Lemmata 1.2 and 1.3 such that

@1
b̊

1 > 1=2:

We assume that the basic state (2.1) satisfies (for some positive �0; �1 2 R)

�. Op;bS/ > �0 > 0; �p. Op;bS/ > �1 > 0 in Q
C

T ; (2.3)

@t
bH C 1

@1
b̊

1

n
. Ow � r/bH � . Oh � r/ Ov C bHdiv Ou

o
D 0 in QC

T ; (2.4)

div Oh D 0 in Q�
T ; (2.5)

@t O' � OvN D 0; bHN D 0 on !T ; (2.6)

where all the “hat” values are determined like corresponding values for .U; H; '/, i.e.,

bH D .bH1@1
b̊

1;bH�2
;bH�3

/; Oh D . OHN ; OH2@1
b̊

1; OH3@1
b̊

1/; Oh D . OHN ; OH2@1
O̊

1; OH3@1
O̊
1/;

Op D Oq � j OH j2=2; OvN D Ov1 � Ov2@2
O	 � Ov3@3

O	; OHN D OH1 � OH2@2
O	 � OH3@3

O	;

and where

Ou D . OvN ; Ov2@1
b̊

1; Ov3@1
b̊

1/; Ow D Ou � .@t
b	; 0; 0/:

Note that (2.2) yields

krt;x
b	kW 2;1.Œ0;T ��R3/ 6 C.K/;

where rt;x D .@t ; r/ and C D C.K/ > 0 is a constant depending on K .

It follows from (2.4) that the constraints

div Oh D 0 in QC
T ; bH N D 0 on !T ; (2.7)

are satisfied for the basic state (2.1) if they hold at t D 0 (see [21] for the proof). Thus, for the basic

state we also require the fulfillment of conditions (2.7) at t D 0.
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2.2 Linearized problem

The linearized equations for (1.17), (1.18) read:

P
0.bU ;b	/.ıU; ı	/ WD d

d"
P.U"; 	"/j"D0 D f in QC

T ;

V
0.bH;b	/.ıH; ı	/ WD d

d"
V.H"; 	"/j"D0 D G

0 in Q�
T ;

B
0.bU ;bH; O'/.ıU; ıH; ı'/ WD d

d"
B.U"; H"; '"/j"D0 D g on !T ;

where U" D bU C " ıU , H" D bH C " ıH, '" D O' C " ı'; ı	 is constructed from ı' as in Lemma

1.2 and 	" D O	 C " ı	 .

Here we introduce the source terms f D .f1; : : : ; f8/, G0 D .�; �/, � D .�1; �2; �3/, and

g D .g1; g2; g3/ to make the interior equations and the boundary conditions inhomogeneous.

We compute the exact form of the linearized equations (below we drop ı):

P
0.bU ;b	/.U; 	/ D P.bU ;b	/U C C.bU ;b	/U �

˚
P.bU ;b	/	

	 @1
bU

@1
b̊

1

D f;

V
0.bH;b	/.H; 	/ D V.H;b	/ C

0
BBB@

rbH1 � r	

r �

0
@

0

�bH3

bH2

1
A � r	

1
CCCA D G

0;

B
0.bU ;bH; O'/.U; H; '/ D

0
B@

@t ' C Ov2@2' C Ov3@3' � vN

q � bH � H

HN � bH2@2' � bH3@3'

1
CA

jx1D0

D g;

where q WD p C bH � H , vN WD v1 � v2@2
b	 � v3@3

b	 , and the matrix C.bU ;b	/ is determined as

follows:

C.bU ;b	/Y D .Y; ryA0.bU //@t
bU C .Y; ry

eA1.bU ;b	//@1
bU

C.Y; ryA2.bU //@2
bU C .Y; ryA3.bU //@3

bU ;

.Y; ryA.bU // WD
8X

iD1

yi

�
@A.Y /

@yi

ˇ̌
ˇ̌
Y DbU

�
; Y D .y1; : : : ; y8/:

Since the differential operators P0.bU ;b	/ and V
0.bH;b	/ are first-order operators in 	 , as in [1] the

linearized problem is rewritten in terms of the “good unknown”

PU WD U � 	

@1
b̊

1

@1
bU ; PH WD H � 	

@1
b̊

1

@1
bH: (2.8)

Taking into account assumptions (2.6) and omitting detailed calculations, we rewrite our linearized
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equations in terms of the new unknowns (2.8):

P.bU ;b	/ PU C C.bU ;b	/ PU C 	

@1
b̊

1

@1

˚
P.bU ;b	/

	
D f;

V. PH;b	/ C 	

@1
b̊

1

@1

˚
V.bH;b	/

	
D G

0:

(2.9)

B
0.bU ;bH; O'/. PU ; PH; '/ WD B

0.bU ;bH; O'/.U; H; '/

D

0
B@

@t ' C Ov2@2' C Ov3@3' � PvN � ' @1 OvN

Pq � bH � PH C Œ@1 Oq�'

PHN � @2

�bH2'
�

� @3

�bH3'
�

1
CA

jx1D0

D g; (2.10)

where PvN D Pv1 � Pv2@2
O	 � Pv3@3

O	 , PHN D PH1 � PH2@2
O	 � PH3@3

O	 , and

Œ@1 Oq� D .@1 Oq/jx1D0 � .bH � @1
bH/jx1D0:

We used assumption (2.5) taken at x1 D 0 while writing down the last boundary condition in (2.10).

As in [1, 5, 21], we drop the zeroth-order terms in 	 in (2.9) and consider the effective linear

operators

P
0
e.bU ;b	/ PU WD P.bU ;b	/ PU C C.bU ;b	/ PU D f:

In the future nonlinear analysis the dropped terms in (2.9) should be considered as error terms. The

new form of our linearized problem for . PU ; PH; '/ reads:

bA0@t
PU C

3X

j D1

bAj @j
PU CbC PU D f in QC

T ; (2.11a)

r � PH D �; div Ph D � in Q�
T ; (2.11b)

@t ' D PvN � Ov2@2' � Ov3@3' C ' @1 OvN C g1; (2.11c)

Pq D bH � PH � Œ@1 Oq�' C g2; (2.11d)

PHN D @2

�bH2'
�

C @3

�bH3'
�

C g3 on !T ; (2.11e)

. PU ; PH; '/ D 0 for t < 0; (2.11f)

where

bA˛ DW A˛.bU /; ˛ D 0; 2; 3; bA1 DW eA1.bU ;b	/; bC WD C.bU ;b	/;

PH D . PH1@1
b̊

1; PH�2
; PH�3

/; Ph D . PHN ; PH2@1
b̊

1; PH3@1
b̊

1/;

PHN D PH1 � PH2@2
b	 � PH3@3

b	; PH�i
D PH1@i

b	 C PHi ; i D 2; 3:

The source term � of the first equation in (2.11b) should satisfy the constraint div � D 0. For

the resolution of the elliptic problem (2.11b), (2.11e) the data �; g3 must satisfy the necessary

compatibility condition Z

˝�

� dx D
Z

�

g3 dx0; (2.12)
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which follows from the double integration by parts
Z

˝�

� dx D
Z

˝�

div Ph dx D
Z

�

Ph1 dx0 D
Z

�

f@2

�bH2'
�

C @3

�bH3'
�

C g3g dx0 D
Z

�

g3 dx0:

We assume that the source terms f; �; � and the boundary datum g vanish in the past and consider

the case of zero initial data. We postpone the case of nonzero initial data to the nonlinear analysis

(see e.g. [5, 21]).

2.3 Reduction to homogeneous constraints in the “vacuum part”

We decompose PH in (2.11) as PH D H0 C H00 (and accordingly PH D H0 C H00, Ph D h0 C h00), where

H00 is required to solve for each t the elliptic problem

r � H00 D �; div h00 D � in ˝�;

h00
1 D H00

N D g3 on �:
(2.13)

The source term � of the first equation should satisfy the constraint div � D 0. For the resolution of

(2.13) the data �; g3 must satisfy the necessary compatibility condition (2.12). By classical results

of the elliptic theory we have the following result.

LEMMA 2.1 Assume that the data .�; �; g3/ in (2.13), vanishing in appropriate way as x goes to

infinity, satisfy the constraint div � D 0 and the compatibility condition (2.12). Then there exists a

unique solution H00 of (2.13) vanishing at infinity.

REMARK In the statement of the lemma above we intentionally leave unspecified the description

of the regularity and the behavior at infinity of the data and consequently of the solution. This point

will be faced in the forthcoming paper on the resolution of the nonlinear problem.

Given H00, now we look for H0 such that

r � H0 D 0; div h0 D 0 in Q�
T ;

q D bH � H0 � Œ@1 Oq�' C g0
2;

H0
N D @2

�bH2'
�

C @3

�bH3'
�

on !T ;

(2.14)

where we have denoted g0
2 D g2 C bH � H00. If H00 solves (2.13) and H0 is a solution of (2.14) then

PH D H0 C H00 clearly solves (2.11b), (2.11d), (2.11e).

From (2.11), (2.14), the new form of the reduced linearized problem with unknowns (U; H0)

reads (we drop for convenience the 0 in H0; g0
2)

bA0@t
PU C

3X

j D1

bAj @j
PU CbC PU D f in QC

T ; (2.15a)

r � H D 0; div h D 0 in Q�
T ; (2.15b)

@t ' D PvN � Ov2@2' � Ov3@3' C ' @1 OvN C g1; (2.15c)

Pq D bH � H � Œ@1 Oq�' C g2; (2.15d)

HN D @2

�bH2'
�

C @3

�bH3'
�

on !T ; (2.15e)

. PU ; H; '/ D 0 for t < 0: (2.15f)
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2.4 Reduction to homogeneous constraints in the “plasma part”

From problem (2.15) we can deduce nonhomogeneous equations associated with the divergence

constraint div Ph D 0 and the “redundant” boundary conditions PHN jx1D0 D 0 for the nonlinear

problem. More precisely, with reference to [21, Proposition 2] for the proof, we have the following.

PROPOSITION 2.2 ( [21]) Let the basic state (2.1) satisfies assumptions (2.2)–(2.7). Then solutions

of problem (2.15) satisfy

div Ph D r in QC
T ; (2.16)

bH 2@2' C bH 3@3' � PHN � ' @1
bH N D R on !T : (2.17)

Here
Ph D . PHN ; PH2@1

b̊
1; PH3@1

b̊
1/; PHN D PH1 � PH2@2

b	 � PH3@3
b	:

The functions r D r.t; x/ and R D R.t; x0/, which vanish in the past, are determined by the source

terms and the basic state as solutions to the linear inhomogeneous equations

@t a C 1

@1
b̊

1

f Ow � ra C a div Oug D FH in QC
T ; (2.18)

@t R C Ov2@2R C Ov3@3R C .@2 Ov2 C @3 Ov3/ R D Q on !T ; (2.19)

where a D r=@1
b̊

1; FH D .div fH /=@1
b̊

1,

fH D .fN ; f6; f7/; fN D f5 � f6@2
b	 � f7@3

b	; Q D ˚
@2

�bH 2g1

�C @3

�bH 3g1

�� fN

	ˇ̌
x1D0

:

Let us reduce (2.15) to a problem with homogeneous boundary conditions (2.15c), (2.15d) (i.e.,

g1 D g2 D 0) and homogeneous constraints (2.16) and (2.17) (i.e., r D R D 0). More precisely,

we describe a “lifting” function as follows:

eU D . Qq; Qv1; 0; 0; eH; 0/;

where Qq D g2; Qv1 D �g1 on !T , and where eH solves the equation for PH contained in (2.15a) with

Pv D . Qv1; 0; 0/:

@t
eH C 1

@1
b̊

1

n
. Ow � r/eH � . Qh � r/ Ov C eHdiv Ow

o
D fH in QC

T ; (2.20)

where Qh D .eH 1 �eH 2@2
O	 �eH 3@3

O	; eH 2; eH 3/, fH D .f5; f6; f7/. It is very important that, in view

of (2.6), we have Ow1jx1D0 D 0; therefore the linear equation (2.20) does not need any boundary

condition. Then the new unknown

U \ D PU � eU ; H
\ D H (2.21)

satisfies problem (2.15) with f D F , where

F D .F1; : : : ; F8/ D f � P
0
e.bU ;b	/eU :

In view of (2.20), FH D .F5; F6; F7/ D 0, and it follows from Proposition 2.2 that U \ satisfies

(2.16) and (2.17) with r D R D 0.
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Dropping for convenience the indices \ in (2.21), the new form of our reduced linearized problem

now reads

bA0@t U C
3X

j D1

bAj @j U CbCU D F in QC
T ; (2.22a)

r � H D 0; div h D 0 in Q�
T ; (2.22b)

@t ' D vN � Ov2@2' � Ov3@3' C ' @1 OvN ; (2.22c)

q D bH � H � Œ@1 Oq�'; (2.22d)

HN D @2

�bH2'
�

C @3

�bH3'
�

on !T ; (2.22e)

.U; H; '/ D 0 for t < 0: (2.22f)

and solutions should satisfy

div h D 0 in QC
T ; (2.23)

HN D bH 2@2' C bH 3@3' � ' @1
bH N on !T : (2.24)

All the notations here for U and H (e.g., h, H, h, etc.) are analogous to the corresponding ones for
PU and PH introduced above.

2.5 An equivalent formulation of (2.22)

In the following analysis it is convenient to make use of different “plasma” variables and an

equivalent form of equations (2.22a). We define the matrix

O� D

0
B@

1 �@2
b	 �@3

b	
0 @1

b̊
1 0

0 0 @1
b̊

1

1
CA :

It follows that

u D .vN ; v2@1
b̊

1; v3@1
b̊

1/ D O� v; h D .HN ; H2@1
b̊

1; H3@1
b̊

1/ D O� H: (2.25)

Multiplying (2.22a) on the left side by the matrix

bR D

0
BB@

1 0 0 0

0T O� 03 0T

0T 03 O� 0T

0 0T 0T 1

1
CCA ;
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after some calculations we get the symmetric hyperbolic system for the new vector of unknowns

U D .q; u; h; S/ (compare with (1.6), (2.22a)):

@1
b̊

1

0
BB@

O�p= O� 0 �. O�p= O�/ Oh 0

0T O� Oa0 03 0T

�. O�p= O�/ OhT 03 Oa0 C . O�p= O�/ Oh ˝ Oh 0T

0 0 0 1

1
CCA @t

0
BB@

q

u

h

S

1
CCAC

0
BB@

0 r� 0 0

r 03 03 0T

0T 03 03 0T

0 0 0 0

1
CCA

0
BB@

q

u

h

S

1
CCA

C@1
b̊

1

0
BB@

. O�p= O�/ Ow � r r� �. O�p= O�/ Oh Ow � r 0

r O� Oa0 Ow � r �Oa0
Oh � r 0T

�. O�p= O�/ OhT Ow � r �Oa0
Oh � r . Oa0 C . O�p= O�/ Oh ˝ Oh/ Ow � r 0T

0 0 0 Ow � r

1
CCA

0
BB@

q

u

h

S

1
CCACbC0U D F ;

(2.26)

where Oa0 is the symmetric and positive definite matrix

Oa0 D . O��1/T O��1;

with a new matrix bC0 in the zero-order term (whose precise form has no importance) and where we

have set F D @1
b̊

1
bRF: We write system (2.26) in compact form as

bA0@t U C
3X

j D1

.bAj C E1j C1/@j U CbC0
U D F ; (2.27)

where

E12 D

0
BBBBBBB@

0 1 0 0 � � � 0

1 0 0 0 � � � 0

0 0 0 0 � � � 0

0 0 0 0 � � � 0
:::

:::
:::

:::
:::

0 0 0 0 � � � 0

1
CCCCCCCA

; E13 D

0
BBBBBBB@

0 0 1 0 � � � 0

0 0 0 0 � � � 0

1 0 0 0 � � � 0

0 0 0 0 � � � 0
:::

:::
:::

:::
:::

0 0 0 0 � � � 0

1
CCCCCCCA

;

E14 D

0
BBBBBBB@

0 0 0 1 � � � 0

0 0 0 0 � � � 0

0 0 0 0 � � � 0

1 0 0 0 � � � 0
:::

:::
:::

:::
:::

0 0 0 0 � � � 0

1
CCCCCCCA

:

The formulation (2.27) has the advantage of the form of the boundary matrix of the system bA1CE12,

with
bA1 D 0 on !T ; (2.28)

because Ow1 D Oh1 D 0, and E12 a constant matrix. Thus system (2.27) is symmetric hyperbolic with

characteristic boundary of constant multiplicity (see [18–20] for maximally dissipative boundary
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conditions). Thus, the final form of our reduced linearized problem is

bA0@t U C
3X

j D1

.bAj C E1j C1/@j U CbC0
U D F ; in QC

T ; (2.29a)

r � H D 0; div h D 0 in Q�
T ; (2.29b)

@t ' D u1 � Ov2@2' � Ov3@3' C ' @1 OvN ; (2.29c)

q D bH � H � Œ@1 Oq�'; (2.29d)

HN D @2

�bH2'
�

C @3

�bH3'
�

on !T ; (2.29e)

.U; H; '/ D 0 for t < 0; (2.29f)

under the constraints (2.23), (2.24).

3. Function spaces

Now we introduce the main function spaces to be used in the following. Let us denote

Q˙ WD Rt � ˝˙; ! WD Rt � �: (3.1)

3.1 Weighted Sobolev spaces

For  > 1 and s 2 R, we set

�s;.�/ WD .2 C j�j2/s=2

and, in particular, �s;1 WD �s.

Throughout the paper, for real  > 1 and n > 2, H s
 .Rn/ will denote the Sobolev space of order s,

equipped with the �depending norm jj � jjs; defined by

jjujj2s; WD .2�/�n

Z

Rn

�2s;.�/jbu.�/j2d� ; (3.2)

bu being the Fourier transform of u. The norms defined by (3.2), with different values of the

parameter  , are equivalent each other. For  D 1 we set for brevity jj � jjs WD jj � jjs;1 (and,

accordingly, the standard Sobolev space H s.Rn/ WD H s
1 .Rn/). For s 2 N, the norm in (3.2) turns

to be equivalent, uniformly with respect to  , to the norm jj � jjH s
 .Rn/ defined by

jjujj2
H s

 .Rn/
WD

X

j˛j6s

2.s�j˛j/jj@˛ujj2
L2.Rn/

:

For functions defined over Q�
T we will consider the weighted Sobolev spaces H m

 .Q�
T / equipped

with the  -depending norm

jjujj2H m
 .Q�

T
/ WD

X

j˛j6m

2.m�j˛j/jj@˛ujj2
L2.Q�

T
/
:

Similar weighted Sobolev spaces will be considered for functions defined on Q�.
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3.2 Conormal Sobolev spaces

Let us introduce some classes of function spaces of Sobolev type, defined over the half-space QC
T .

For j D 0; : : : ; 3, we set

Z0 D @t ; Z1 WD �.x1/@1 ; Zj WD @j ; for j D 2; 3 ;

where �.x1/ 2 C 1.RC/ is a monotone increasing function such that �.x1/ D x1 in a neighborhood

of the origin and �.x1/ D 1 for x1 large enough. Then, for every multi-index ˛ D .˛0; : : : ; ˛3/ 2
N

4, the conormal derivative Z˛ is defined by

Z˛ WD Z
˛0

0 : : : Z
˛3

3 I

we also write @˛ D @
˛0

0 : : : @
˛3

3 for the usual partial derivative corresponding to ˛.

Given an integer m > 1, the conormal Sobolev space H m
tan.QC

T / is defined as the set of

functions u 2 L2.QC
T / such that Z˛u 2 L2.QC

T /, for all multi-indices ˛ with j˛j 6 m (see

[15, 16]). Agreeing with the notations set for the usual Sobolev spaces, for  > 1, H m
tan; .QC

T / will

denote the conormal space of order m equipped with the  -depending norm

jjujj2
H m

tan;.Q
C

T
/

WD
X

j˛j6m

2.m�j˛j/jjZ˛ujj2
L2.Q

C

T
/

(3.3)

and we have H m
tan.QC

T / WD H m
tan;1.QC

T /. Similar conormal Sobolev spaces with  -depending

norms will be considered for functions defined on QC.

We will use the same notation for spaces of scalar and vector-valued functions.

4. The main result

We are now in a position to state the main result of this paper. Recall that U D .q; u; h; S/, where

u and h were defined in (2.25).

MAIN THEOREM 4.1 Let T > 0. Let the basic state (2.1) satisfies assumptions (2.2)–(2.7) and

jbH � bHj > ı > 0 on !T ; (4.1)

where ı is a fixed constant. There exists 0 > 1 such that for all  > 0 and for all F 2
H 1

tan; .QC
T /, vanishing in the past, namely for t < 0, problem (2.29) has a unique solution

.U ; H ; ' / 2 H 1
tan; .QC

T / � H 1
 .Q�

T / � H 1
 .!T / with trace .q ; u1 ; h1 /j!T

2 H
1=2
 .!T /,

H j!T
2 H

1=2
 .!T /. Moreover, the solution obeys the a priori estimate



�
kU k2

H 1
tan;.Q

C

T
/

C kH k2

H 1
 .Q�

T
/

C k.q ; u1 ; h1 /j!T
k2

H
1=2
 .!T /

C kH j!T
k2

H
1=2
 .!T /

�

C 2k' k2

H 1
 .!T /

6
C


kF k2

H 1
tan;.Q

C

T
/
; (4.2)

where we have set U D e�t U; H D e�t H; ' D e�t ' and so on. Here C D C.K; T; ı/ >

0 is a constant independent of the data F and  .
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The a priori estimate (4.2) improves the similar estimate firstly proved in [23].

REMARK Strictly speaking, the uniqueness of the solution to problem (2.29) follows from the a

priori estimate (42) derived in [23], provided that our solution belongs to H 2. We do not present

here a formal proof of the existence of solutions with a higher degree of regularity (in particular,

H 2) and postpone this part to the future work on the nonlinear problem (see e.g. [5, 21]).

The remainder of the paper is organized as follows. In Section 5 we introduce a fully hyperbolic

regularization of the coupled hyperbolic-elliptic system (2.29). In Section 6 we show an a priori

estimate of solutions uniform in the small parameter " of regularization. In Section 7 we show

the well-posedness of the hyperbolic regularization and in Section 8 we conclude the proof of

Theorem 4.1 by passing to the limit as " ! 0. Sections 9, 10, and 11 are devoted to the proof

of some technical results.

5. Hyperbolic regularization of the reduced problem

The problem (2.29) is a nonstandard initial-boundary value problem for a coupled hyperbolic-

elliptic system. For its resolution we introduce a “hyperbolic” regularization of the elliptic system

(2.29b). We will prove the existence of solutions for such regularized problem by referring to

the well-posedness theory for linear symmetric hyperbolic systems with characteristic boundary

and maximally nonnegative boundary conditions [19, 20]. After showing suitable a priori estimate

uniform in ", we will pass to the limit as " ! 0, to get the solution of (2.29).

The regularization of problem (2.29) is inspired by a corresponding problem in relativistic MHD

[24]. In our non-relativistic case the displacement current .1=c/@t E is neglected in the vacuum

Maxwell equations, where c is the speed of light and E is the electric field. Now, in some sense, we

restore this neglected term. Namely, we consider a “hyperbolic” regularization of the elliptic system

(2.29b) by introducing a new auxiliary unknown E" which plays a role of the vacuum electric field,

and the small parameter of regularization " is associated with the physical parameter 1=c. We also

regularize the second boundary condition in (2.29d) and introduce two boundary conditions for the

unknown E".

Let us denote V " D .H"; E"/. Given a small parameter " > 0, we consider the following

regularized problem for the unknown .U"; V "; '"/:

bA0@t U
" C

3X

j D1

.bAj C E1j C1/@j U
" CbC0

U
" D F in QC

T ; (5.1a)

"@th
" C r � E" D 0; "@t e

" � r � H" D 0 in Q�
T ; (5.1b)

@t '
" D u"

1 � Ov2@2'" � Ov3@3'" C '"@1 OvN ; (5.1c)

q" D bH � H
" � Œ@1 Oq�'" � "bE � E"; (5.1d)

E"
�2

D " @t .bH3'"/ � " @2.bE1'"/; (5.1e)

E"
�3

D �" @t .bH2'"/ � " @3.bE1'"/ on !T ; (5.1f)

.U"; V "; '"/ D 0 for t < 0; (5.1g)
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where

E" D .E"
1; E"

2; E"
3/; bE D .bE1;bE2;bE3/; E" D .E"

1@1
b̊

1; E"
�2

; E"
�3

/;

e" D .E"
N ; E"

2@1
b̊

1; E"
3@1

b̊
1/; E"

N D E"
1 � E"

2@2
b	 � E"

3@3
b	;

E"
�k

D E"
1@k

b	 C E"
k; k D 2; 3;

the coefficients bEj are given functions which will be chosen later on. All the other notations for H"

(e.g., H", h") are analogous to those for H.

If 	 D 0; ˚1 D x1, then h" D H" D H" ; e" D E" D E", and when " D 1 (5.1b) turns out to be

nothing else than the Maxwell equations.

It is noteworthy that solutions to problem (5.1) satisfy

div h" D 0 in QC
T ; (5.2)

div h" D 0; div e" D 0 in Q�
T ; (5.3)

h"
1 D bH 2@2'" C bH 3@3'" � '"@1

bH N ; (5.4)

H
"
N D @2

�bH2'"
�

C @3

�bH3'"
�

on !T ; (5.5)

because (5.2)–(5.5) are just restrictions on the initial data which are automatically satisfied in view

of (5.1g). Indeed, the derivation of (5.2) and (5.4) is absolutely the same as that of (2.23) and

(2.24). Equations (5.3) trivially follow from (5.1b), (5.1g). Moreover, condition (5.5) is obtained by

considering the first component of the first equation in (5.1b) at x1 D 0 and taking into account

(5.1e)–(5.1g).

5.1 An equivalent formulation of (5.1)

In the following analysis it is convenient to make use of a different formulation of the approximating

problem (5.1), as far as the vacuum part is concerned.

First we introduce the matrices which are coefficients of the space derivatives in (5.1b) (for

" D 1 the matrices below are those for the vacuum Maxwell equations):

B"
1 D "�1

0
BBBBBB@

0 0 0 0 0 0

0 0 0 0 0 �1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

0 �1 0 0 0 0

1
CCCCCCA

; B"
2 D "�1

0
BBBBBB@

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 �1 0 0

0 0 �1 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

1
CCCCCCA

;

B"
3 D "�1

0
BBBBBB@

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 0 0 0 0

1
CCCCCCA

:
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Then system (5.1b) can be written in terms of the “curved” unknown W " D .H";E"/ as

B0@t W
" C

3X

j D1

B"
j @j W " C B4W " D 0; (5.6)

where

B0 D .@1
b̊

1/�1 KKT > 0; K D I2 ˝ O�; B4 D @t B0;

and the matrices B0 and K are found from the relations

h" D O� H
" D .@1

b̊
1/�1 O� O�T H"; e" D O� E" D .@1

b̊
1/�1 O� O�T E";

so that �
h"

e"

�
D .@1

b̊
1/�1

� O� O�T 03

03 O� O�T

��
H"

E"

�
D B0W ":

System (5.6) is symmetric hyperbolic. The convenience of the use of variables .H";E"/ rather than

.H"; E"/ stays mainly in that the matrices B"
j of (5.6), containing the singular multiplier "�1, are

constant.

Finally, we write the boundary conditions (5.1c)–(5.1f) in terms of .U"; W "/, where we observe

that (recalling that @1
b̊

1 D 1 on !T ):

bH � H
" D bHN H

"
1 C bH2H

"
�2

C bH3H
"
�3

D Oh � H";

bE � E" D bEN E"
1 C bE2E"

�2
C bE3E"

�3
D Oe � E":

(5.7)

Concerning the first line above in (5.7) we notice that Oh1 D bHN D 0 on !T , so that H"
1 does not

appear in the boundary condition.

From (5.6), (5.7) we get the new formulation of problem (5.1) for the unknowns .U"; W "/:

bA0@t U
" C

3X

j D1

.bAj C E1j C1/@j U
" CbC0

U
" D F ; in QC

T ; (5.8a)

B0@t W
" C

3X

j D1

B"
j @j W " C B4W " D 0 in Q�

T ; (5.8b)

@t '
" C Ov2@2'" C Ov3@3'" � '"@1 OvN � u"

1 D 0; (5.8c)

q" C Œ@1 Oq�'" � Oh � H" C " Oe � E" D 0; (5.8d)

E"
2 � " @t .bH3'"/ C " @2.bE1'"/ D 0; (5.8e)

E"
3 C " @t .bH2'"/ C " @3.bE1'"/ D 0 on !T ; (5.8f)

.U"; W "; '"/ D 0 for t < 0: (5.8g)

From (5.2)–(5.5) we get that solutions .U"; W "/ to problem (5.8) satisfy

div h" D 0 in QC
T ; (5.9)

div h" D 0; div e" D 0 in Q�
T ; (5.10)

h"
1 D bH 2@2'" C bH 3@3'" � '"@1

bH N ; (5.11)

h"
1 D @2

�bH2'"
�

C @3

�bH3'"
�

on !T : (5.12)
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REMARK The invertible part of the boundary matrix of a system allows to control the trace at

the boundary of the so-called noncharacteristic component of the vector solution. Thus, with the

system (5.8a) (whose boundary matrix is �E12, because of (2.28)) we have the control of q"; u"
1 at

the boundary; therefore the components of U" appearing in the boundary conditions (5.8c), (5.8d)

are well defined.

The same holds true for (5.8b) where we can get the control of H"
2;H"

3;E"
2;E"

3. The control of

E"
1 (which appears in (5.8d)) is not given from the system (5.8b), but from the constraint (5.10), as

will be shown later on. We recall that H"
1 does not appear in the boundary condition (5.8d) because

Oh1 D OHN D 0.

Before studying problem (5.8) (or equivalently (5.1)), we should be sure that the number of

boundary conditions is in agreement with the number of incoming characteristics for the hyperbolic

systems (5.8). Since one of the four boundary conditions (5.8c)–(5.8f) is needed for determining the

function '".t; x0/, the total number of “incoming” characteristics should be three. Let us check that

this is true.

PROPOSITION 5.1 If 0 < " < 1 system (5.8a) has one incoming characteristic for the boundary !T

of the domain QC
T . If " > 0 is sufficiently small, system (5.8b) has two incoming characteristics for

the boundary !T of the domain Q�
T .

Proof. Consider first system (5.8a). In view of (2.28), the boundary matrix on !T is �E12 which has

one negative (incoming in the domain QC
T ) and one positive eigenvalue, while all other eigenvalues

are zero.

Now consider system (5.8b). The boundary matrix B"
1 has eigenvalues �1;2 D �"�1; �3;4 D

"�1; �5;6 D 0: Thus, system (5.8b) has indeed two incoming characteristics in the domain Q�
T

(�1;2 < 0).

6. Basic a priori estimate for the hyperbolic regularized problem

Our goal now is to justify rigorously the formal limit " ! 0 in (5.1)–(5.5), or alternatively in (5.8)–

(5.12). To this end we will prove the existence of solutions to problem (5.8)–(5.12) and a uniform

in " a priori estimate. This work will be done in several steps.

6.1 The boundary value problem

Assuming that all coefficients and data appearing in (5.8) are extended for all times to the whole

real line, let us consider the boundary value problem (recall the definition of Q˙; ! in (3.1))

bA0@t U
" C

3X

j D1

.bAj C E1j C1/@j U
" CbC0

U
" D F ; in QC; (6.1a)

B0@t W
" C

3X

j D1

B"
j @j W " C B4W " D 0 in Q�; (6.1b)

@t '
" C Ov2@2'" C Ov3@3'" � '"@1 OvN � u"

1 D 0; (6.1c)

q" C Œ@1 Oq�'" � Oh � H" C " Oe � E" D 0; (6.1d)

E"
2 � " @t .bH3'"/ C " @2.bE1'"/ D 0; (6.1e)
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E"
3 C " @t .bH2'"/ C " @3.bE1'"/ D 0 on !; (6.1f)

.U"; W "; '"/ D 0 for t < 0: (6.1g)

In this section we prove a uniform in " a priori estimate of smooth solutions of (6.1).

THEOREM 6.1 Let the basic state (2.1) satisfies assumptions (2.2)–(2.7) and (4.1) for all times.

There exist "0 > 0; 0 > 1 such that if 0 < " < "0 and  > 0 then all sufficiently smooth

solutions .U"; W "; '"/ of problem (6.1) obey the estimate


�
kU

"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

C k.q"
 ; u"

1 ; h"
1 /j!k2

H
1=2
 .!/

C kW "
 j!k2

H
1=2
 .!/

�

C 2k'"
 k2

H 1
 .!/

6
C


kF k2

H 1
tan;.QC/

; (6.2)

where we have set U"
 D e�t U"; W "

 D e�t W "; '"
 D e�t '" and so on, and where C D

C.K; ı/ > 0 is a constant independent of the data F and the parameters ";  .

Passing to the limit " ! 0 in this estimate will give the a priori estimate (4.2).

Since problem (6.1) looks similar to a corresponding one in relativistic MHD [24], for the

deduction of estimate (6.2) we use the same ideas as in [24]. On the one hand, we even have

an advantage, in comparison with the problem in [24], because the coefficients bEj in (6.1b),

(6.1d)–(6.1f) are still arbitrary functions whose choice will be crucial to make boundary conditions

dissipative. On the other hand, we should be more careful with lower-order terms than in [24],

because we must avoid the appearance of terms with "�1 (otherwise, our estimate will not be

uniform in "). Also for this reason we are using the variables .U"; W "/ rather than .U "; V "/.

For the proof of (6.2) we will need a secondary symmetrization of the transformed Maxwell

equations in vacuum (5.1b), (5.3).

6.2 A secondary symmetrization

In order to show how to get the secondary symmetrization, for the sake of simplicity we consider

first a planar unperturbed interface, i.e., the case O' � 0. For this case (5.1b), (5.3) become

@t V
" C

3X

j D1

B"
k@kV " D 0; (6.3)

div H
" D 0; div E" D 0: (6.4)

We write for system (6.3) the following secondary symmetrization (for a similar secondary

symmetrization of the Maxwell equations in vacuum see [24]):

B"
0@t V

" C
3X

j D1

B"
0B"

j @j V " C R1div H
" C R2div E" D B"

0@t V
" C

3X

j D1

B"
j @j V " D 0; (6.5)
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where

B"
0 D

0
BBBBBB@

1 0 0 0 "�3 �"�2

0 1 0 �"�3 0 "�1

0 0 1 "�2 �"�1 0

0 �"�3 "�2 1 0 0

"�3 0 �"�1 0 1 0

�"�2 "�1 0 0 0 1

1
CCCCCCA

; (6.6)

B"
1 D

0
BBBBBB@

�1 �2 �3 0 0 0

�2 ��1 0 0 0 �"�1

�3 0 ��1 0 "�1 0

0 0 0 �1 �2 �3

0 0 "�1 �2 ��1 0

0 �"�1 0 �3 0 ��1

1
CCCCCCA

; B"
2 D

0
BBBBBB@

��2 �1 0 0 0 "�1

�1 �2 �3 0 0 0

0 �3 ��2 �"�1 0 0

0 0 �"�1 ��2 �1 0

0 0 0 �1 �2 �3

"�1 0 0 0 �3 ��2

1
CCCCCCA

;

B"
3 D

0
BBBBBB@

��3 0 �1 0 �"�1 0

0 ��3 �2 "�1 0 0

�1 �2 �3 0 0 0

0 "�1 0 ��3 0 �1

�"�1 0 0 0 ��3 �2

0 0 0 �1 �2 �3

1
CCCCCCA

; R1 D

0
BBBBBB@

�1

�2

�3

0

0

0

1
CCCCCCA

; R2 D

0
BBBBBB@

0

0

0

�1

�2

�3

1
CCCCCCA

:

The arbitrary functions �i .t; x/ will be chosen in appropriate way later on. It may be useful to notice

that system (6.5) can also be written as

.@t H
" C 1

"
r � E"/ � E� � ."@t E

" � r � H
"/ C E� div H

" D 0;

.@t E
" � 1

"
r � H

"/ C E� � ."@t H
" C r � E"/ C E� div E" D 0;

(6.7)

with the vector-function E� D .�1; �2; �3/. The symmetric system (6.5) (or (6.7)) is hyperbolic if

B"
0 > 0, i.e. for

"jE�j < 1: (6.8)

The last inequality is satisfied for any given � and small ". We compute2

det.B"
1/ D �2

1

�
jE�j2 � 1=�2

�2
:

Therefore the boundary is noncharacteristic for system (6.5) (or (6.7)) provided (6.8) and �1 6D 0

hold.

Consider now a nonplanar unperturbed interface, i.e., the general case when O' is not identically

zero. Similarly to (6.5), from (5.6), (5.3) we get the secondary symmetrization

KB"
0K�1

�
B0@t W

" C
3X

j D1

B"
j @j W " C B4W "

�
C 1

@1
b̊

1

K
�
R1div h" C R2div e"

�
D 0:

2 The manual computation of the determinants is definitely too long. Here we used a free program for symbolic calculus,

with the help of PS’s son Martino.
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We write this system as

M "
0 @t W

" C
3X

j D1

M "
j @j W " C M "

4 W " D 0; (6.9)

where

M "
0 D 1

@1
b̊

1

KB"
0KT > 0; M "

j D 1

@1
b̊

1

KB"
j KT .j D 2; 3/;

M "
1 D 1

@1
b̊

1

KeB"
1KT; eB"

1 D 1

@1
b̊

1

�
B"

1 �
3X

kD2

B"
k@k

b	
�
;

M "
4 D K

�
B"

0@t C eB"
1@1 C B"

2@2 C B"
3@3 C B"

0B4

� � 1

@1
b̊

1

KT

�
:

(6.10)

System (6.9) is symmetric hyperbolic provided that (6.8) holds. We compute

det.M "
1 / D

�
1 C .@2 O'/2 C .@3 O'/2

�2
.�1 � �2@2 O' � �3@3 O'/2

�
jE�j2 � 1=�2

�2
; (6.11)

and so the boundary is noncharacteristic for system (6.9) if and only if (6.8) holds and �1 6D
�2@2 O' C �3@3 O'. System (6.9) originates from a linear combination of equations (5.1b) similar to

(6.7), namely from

.@th
" C 1

"
r � E"/ � O�

�
E� � O��1."@te

" � r � H"/
�

C O� E�
@1
b̊

1

divh" D 0;

.@t e
" � 1

"
r � H"/ C O�

�
E� � O��1."@th

" C r � E"/
�

C O� E�
@1
b̊

1

div e" D 0:

(6.12)

We need to know which is the behavior of the above matrices in (6.10) w.r.t. " as " ! 0. In view

of this, let us denote a generic matrix which is bounded w.r.t. " by O.1/. Looking at (6.12) we

immediately find

M "
0 D O.1/; M "

j D B"
j C O.1/ .j D 1; 2; 3/; M "

4 D O.1/: (6.13)

As the matrices M "
0 and M "

4 do not contain the multiplier "�1, their norms are bounded as " ! 0.

Recalling that the matrices B"
j are constant, we deduce as well that all the possible derivatives (with

respect to t and xj ) of the matrices M "
j have bounded norms as " ! 0.

6.3 Proof of Theorem 6.1

For the proof of our basic a priori estimate (6.2) we will apply the energy method to the symmetric

hyperbolic systems (6.1a) and (6.9). In the sequel 0 > 1 denotes a generic constant sufficiently

large which may increase from formula to formula, and C is a generic constant that may change

from line to line.

First of all we provide some preparatory estimates. In particular, to estimate the weighted

conormal derivative Z1 D �@1 of U" (recall the definition (3.3) of the  -dependent norm of

H 1
tan; ) we do not need any boundary condition because the weight � vanishes on !. Applying

to system (6.1a) the operator Z1 and using standard arguments of the energy method,3 yields the

3 We multiply Z1(6.1a) by e�t Z1U"
 and integrate by parts over QC, then we use the Cauchy-Schwarz inequality.
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inequality

kZ1U
"
 k2

L2.QC/
6

C



n
kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan;.QC/

C kE12@1U
"
 k2

L2.QC/

o
; (6.14)

for  > 0. On the other hand, directly from the equation (6.1a) we have

kE12@1U
"
 k2

L2.QC/
6 C

˚
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

	
; (6.15)

where C is independent of ";  . Thus from (6.14), (6.15) we get

kZ1U
"
 k2

L2.QC/
6

C



˚
kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan;.QC/

	
;  > 0; (6.16)

where C is independent of ";  . Furthermore, using the special structure of the boundary matrix in

(6.1a) (see (2.28)) and the divergence constraint (5.9), we may estimate the normal derivative of the

noncharacteristic part U"
n D e�t .q"; u"

1; h"
1/ of the “plasma” unknown U"

 :

k@1U
"
n k2

L2.QC/
6 C

˚
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

	
; (6.17)

where C is independent of ";  . In a similar way we wish to express the normal derivative of W "

through its tangential derivatives. Here it is convenient to use system (6.1b) rather than (6.9). We

multiply (6.1b) by " and find from the obtained equation an explicit expression for the normal

derivatives of H"
2;H"

3;E"
2;E"

3. An explicit expression for the normal derivatives of H"
1;E"

1 is found

through the divergence constraints (5.10). Thus we can estimate the normal derivatives of all the

components of W " through its tangential derivatives:

k@1W "
 k2

L2.Q�/ 6 C
n
2kW "

 k2
L2.Q�/ C k@t W

"
 k2

L2.Q�/ C
3X

kD2

k@kW "
 k2

L2.Q�/

o
; (6.18)

where C does not depend on " and  , for all " 6 "0.

As for the front function '� we easily obtain from (6.1c) the L2 estimate

k'"
 k2

L2.!/
6

C


ku"

1 k2
L2.!/

;  > 0; (6.19)

where C is independent of  . Furthermore, thanks to our basic assumption (4.1)4 we can resolve

(5.11), (5.12) and (6.1c) for the space-time gradient rt;x0'"
 D .@t '

"
 ; @2'"

 ; @3'"
 /:

rt;x0'"
 D Oa1h"

1 C Oa2h
"
1 C Oa3u"

1 C Oa4'"
 C  Oa5'"

 ; (6.20)

where the vector-functions Oa˛ D a˛.bU j! ;bHj!/ of coefficients can be easily written in explicit form.

From (6.20) we get

krt;x0'"
 kL2.!/ 6 C

�
kU

"
n j!kL2.!/ C kW "

 j!kL2.!/ C k'"
 kL2.!/

�
: (6.21)

4 Under the conditions OHN D OHN D 0 one has j OH � OHj2 D . OH2
OH3 � OH3

OH2/2hr0 O'i2 on !, where we have set

hr0 O'i WD .1 C j@2 O'j2 C j@3 O'j2/1=2.
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Now we prove a L2 energy estimate for .U"; W "/. We multiply (6.1a) by e�t U"
 and (6.9) by

e�t W "
 , integrate by parts over Q˙, then we use the Cauchy-Schwarz inequality. We easily obtain



Z

QC

.bA0U
"
 ; U

"
 / dxdt C 

Z

Q�

.M "
0 W "

 ; W "
 /dxdt C

Z

!

A
" dx0dt

6 C
n 1


kF k2

L2.QC/
C kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

o
; (6.22)

where we have denoted

A
" D �1

2
.E12U

"
 ; U

"
 /j! C 1

2
.M "

1 W "
 ; W "

 /j! :

Thanks to the properties of the matrices M "
˛ (˛ D 0; 4) described in (6.13), the constant C in (6.22)

is uniformly bounded in " and  . Let us calculate the quadratic form A" for the following choice of

the functions �j in the secondary symmetrization5:

�1 D Ov2@2 O' C Ov3@3 O'; �k D Ovk ; k D 2; 3: (6.23)

After long calculations we get (for simplicity we drop the index  )

A
" D �q"u"

1 C "�1.H"
3E

"
2 � H"

2E
"
3/ C . Ov2H

"
2 C Ov3H

"
3/H"

N C . Ov2E
"
2 C Ov3E

"
3/E"

N ; on !: (6.24)

Now we insert the boundary conditions (5.12), (6.1c)–(6.1f) in the quadratic form A", recalling also
OHN j! D 0 and noticing that

Oe � E" D bE1E"
N C bE�2

E"
2 C bE�3

E"
3 D OE � e":

Again after long calculations we get

A
" D

�bE1 C Ov2
bH3 � Ov3

bH2

��
"E"

N @t '
" C H"

2@3'" � H"
3@2'"

�

C
�
"bE�2

E"
2 C "bE�3

E"
3

��
@t '

" C Ov2@2'" C Ov3@3'"
�

C '"
˚

� q" C Œ@1 Oq� u"
1 � @1 OvN .q" C Œ@1 Oq�'"/ C . OH3 C @t

OH3 � @2
OE1/.H"

3 C " Ov2E"
N /

C . OH2 C @t
OH2 C @3

OE1/.H"
2 � " Ov3E"

N / C .@2
OH2 C @3

OH3/. Ov2H
"
2 C Ov3H

"
3/
	

on ! : (6.25)

Thanks to the multiplicative factor " in the boundary condition (6.1e), (6.1f), the critical term with

the multiplier "�1 in (6.24) has been dropped out. We make the following choice of the coefficients
bEj in the boundary conditions (6.1d)–(6.1f):

bE D bH � E�;

where E� is that of (6.23). For this choice

bE1 C Ov2
bH3 � Ov3

bH2 D 0; bE�2
D 0; bE�3

D 0; (6.26)

5 Notice that the choice (6.23) makes the boundary characteristic, see (6.11).
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and this leaves us with

A
" D '"

˚
� .q" C Œ@1 Oq�'"/ C Œ@1 Oq� .u"

1 C '"@1 OvN / C @1 OvN q"

C . OH3 C @t
OH3 � @2

OE1/.H"
3 C " Ov2E"

N / C . OH2 C @t
OH2 C @3

OE1/.H"
2 � " Ov3E"

N /

C .@2
OH2 C @3

OH3/. Ov2H
"
2 C Ov3H

"
3/
	

on ! :

Then we write in more convenient form the terms with coefficient  substituting from (6.1d)

�.q" C Œ@1 Oq�'"/ C OH2H
"
2 C OH3H

"
3 D " Oe � E";

and we notice that

Oe � E" C . Ov2
OH3 � Ov3

OH2/E"
N D OE � e" C . Ov2

OH3 � Ov3
OH2/e"

1 D 0; on !;

again by (6.26). Thus we get

A
" D '"

˚
Œ@1 Oq� .u"

1 C '"@1 OvN / C @1 OvN q"

C .@t
OH3 � @2

OE1/.H"
3 C " Ov2E"

N / C .@t
OH2 C @3

OE1/.H"
2 � " Ov3E"

N /

C .@2
OH2 C @3

OH3/. Ov2H
"
2 C Ov3H

"
3/
	

on ! : (6.27)

From (6.22), (6.27) we obtain (we restore the index  )


�
kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

�
6

C



n
kF k2

L2.QC/
C kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

o

C C
�
kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

�
C k'"

 k2
L2.!/

; (6.28)

where C is independent of ";  . Thus if 0 is large enough we obtain from (6.19), (6.28) the

inequality


�
kU

"
 k2

L2.QC/
C kW "

 k2
L2.Q�/

�

6
C



n
kF k2

L2.QC/
C kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

o
; 0 < " < "0;  > 0; (6.29)

where C is independent of ";  .

Now we derive the a priori estimate of tangential derivatives. Differentiating systems (6.1a) and

(6.9) with respect to x0 D t , x2 or x3, using standard arguments of the energy method, and applying

(6.17), (6.18), gives the energy inequality



Z

QC

.bA0Z`U "
 ; Z`U "

 / dxdt C 

Z

Q�

.M "
0 Z`W "

 ; Z`W "
 /dxdt C

Z

!

A
"
` dx0dt

6
C



n
kF k2

H 1
tan; .QC/

C kU
"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

o
; (6.30)

where ` D 0; 2; 3, and where we have denoted

A
"
` D �1

2
.E12Z`U "

 ; Z`U "
 /j! C 1

2
.M "

1 Z`W "
 ; Z`W "

 /j! :
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Thanks to the properties of the matrices M "
˛ (˛ D 0; 4) described in (6.13), the constant C in (6.30)

is uniformly bounded in " and  . We repeat for A
"
` the calculations leading to (6.27) for A

". Clearly,

for the same choices as in (6.23) and (6.26) we obtain (for simplicity we drop again the index  )

A
"
` D Z`'"

˚
Œ@1 Oq� .Z`u"

1 C Z`'"@1 OvN / C @1 OvN Z`q"

C .@t
OH3 � @2

OE1/.Z`H
"
3 C " Ov2Z`E"

N / C .@t
OH2 C @3

OE1/.Z`H
"
2 � " Ov3Z`E"

N /

C .@2
OH2 C @3

OH3/. Ov2Z`H
"
2 C Ov3Z`H

"
3/
	

C l:o:t:; on !; (6.31)

where l.o.t. is the sum of lower-order terms. Using (6.20) we reduce the above terms to those like

Oc h"
1Z`u"

1; Oc h"
1Z`'"; Oc h"

1Z`H
"
j ; Oc h"

1Z`E
"
j ; : : : on !;

terms as above with h"
1; u"

1 instead of h"
1, or even “better” terms like

 Oc'"Z`u"
1;  Oc'"Z`'":

Here and below Oc is the common notation for a generic coefficient depending on the basic state

(2.1). By integration by parts such “better” terms can be reduced to the above ones and terms of

lower order.

The terms like Oc h"
1Z`u"

1jx1D0
are estimated by passing to the volume integral and integrating

by parts:

Z

!

Oc h"
1Z`u"

1jx1D0 dx0 dt

D �
Z

QC

@1

�
Qch"

1Z`u"
1

�
dx dt

D
Z

QC

n
.Z` Qc/h"

1.@1u"
1/ C Qc.Z`h"

1/@1u"
1 � .@1 Qc/h"

1Z`u"
1 � Qc.@1h"

1/Z`u"
1

o
dx dt;

where Qcjx1D0 D Oc. Estimating the right-hand side by the Hölder’s inequality and (6.17) gives

ˇ̌
ˇ̌
Z

!

Oc h"
1Z`u"

1jx1D0 dx0 dt

ˇ̌
ˇ̌ 6 C

n
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

o
: (6.32)

In the same way we estimate the other similar terms Oc h"
1Z`H

"
j ; Oc h"

1Z`E
"
j ; etc. Notice that we

only need to estimate normal derivatives either of components of U"
n or W "

 . For terms like

Oc h"
1Z`u"

1; Oc h"
1Z`E

"
j , etc. we use (6.18) instead of (6.17).

We treat the terms like Oc h"
1jx1D0

Z`'" by substituting (6.20) again:

ˇ̌
ˇ̌
Z

!

Oc h"
1Z`'" dx0 dt

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

!

Oc h"
1

�
Oa1h"

1 C Oa2h
"
1 C Oa3u"

1 C Oa4'" C  Oa5'"
�

dx dt

ˇ̌
ˇ̌

6 C
�
kU

"
nj!k2

L2.!/
C kW "j!k2

L2.!/
C 2k'"k2

L2.!/

�
: (6.33)

Combining (6.30), (6.32), (6.33) and similar inequalities for the other terms of (6.31) yields (we
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restore the index  )


�
kZ`U

"
 k2

L2.QC/
C kZ`W "

 k2
L2.Q�/

�

6 C
n 1


kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan; .QC/

C kW "
 k2

H 1
 .Q�/

C 
�
kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

� o
; 0 < " < "0;  > 0; (6.34)

where C is independent of ";  . Then from (6.16), (6.18), (6.29), (6.34) we obtain


�
kU

"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

�

6 C
n 1


kF k2

H 1
tan;.QC/

C kU
"
 k2

H 1
tan; .QC/

C kW "
 k2

H 1
 .Q�/

C 
�
kU

"
n j!k2

L2.!/
C kW "

 j!k2
L2.!/

� o
; 0 < " < "0;  > 0; (6.35)

where C is independent of ";  . We need the following estimates for the trace of U"
n; W ".

LEMMA 6.2 The functions U"
n; W " satisfy

kU
"
n j!k2

L2.!/
C kU

"
n j!k2

H
1=2
 .!/

6 C
�
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

�
; (6.36)

kW "
 j!k2

L2.!/
C kW "

 j!k2

H
1=2
 .!/

6 C kW "
 k2

H 1
 .Q�/

: (6.37)

The proof of Lemma 6.2 is given in Section 11 at the end of this article. Substituting (6.36),

(6.37) in (6.35) and taking 0 large enough yields


�
kU

"
 k2

H 1
tan;.QC/

C kW "
 k2

H 1
 .Q�/

�
6

C


kF k2

H 1
tan;.QC/

; 0 < " < "0;  > 0; (6.38)

where C is independent of ";  . Finally, from (6.21), (6.36) and (6.38) we get



�
kU

"
n j!k2

H
1=2
 .!/

C kW "
 j!k2

H
1=2
 .!/

�
C 2k'"k2

H 1
 .!/

6
C


kF k2

H 1
tan;.QC/

: (6.39)

Adding (6.38), (6.39) gives (6.2). The proof of Theorem 6.1 is complete.

7. Well-posedness of the hyperbolic regularized problem

In this section we prove the existence of the solution of (6.1). Its restriction to the time interval

.�1; T � will provide the solution of problem (5.8). From now on, in the proof of the existence of

the solution, " is fixed and so we omit it and we simply write U instead of U", W instead of W ", '

instead of '".

In view of the result of Lemma 9.1 (see Section 9) we can consider system (6.9) instead of (6.1b).

First of all, we write the boundary conditions in different form, by eliminating the derivatives of '.
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We substitute (6.1c) in the boundary conditions for E2;E3 and take account of the constraint (5.12)

and the choices (6.23), (6.26). We get

q � Oh2H2 � Oh3H3 C " OE1EN C Œ@1 Oq�' D 0;

E2 � "bH3u1 C " Ov3HN C "a1' D 0;

E3 C "bH2u1 � " Ov2HN C "a2' D 0; on !;

(7.1)

where the precise form of the coefficients a1; a2 is not important. For later use we observe that

(5.12), (6.1c)–(6.1f) is equivalent to (5.12), (6.1c), (7.1). Notice that the last two equations in (7.1)

yield

" OE1u1 C Ov2E2 C Ov3E3 C "a3' D 0; (7.2)

where a3 D a1 Ov2 C a2 Ov3.

Let us write the system (6.1a), (6.9), (7.1) in compact form as

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

L

 
U

W

!
D
 

F

0

!
on QC � Q�;

M

 
U

W

!
C b ' D 0; in !;

.U; W; '/ D 0 for t < 0;

(7.3)

where the matrix M and the vector b are implicitly defined by (7.1).

Let us multiply (7.3) by e�t with  > 1; according to the rule e�t @t u D . C@t /e
�t u, (7.3)

becomes equivalent to
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

L

 
U

W

!
D
 

F

0

!
on QC � Q�;

M

 
U

W

!
C b ' D 0 in !;

.U ; W ; ' / D 0 for t < 0:

(7.4)

where

L WD 

� OA0 0

0 M "
0

�
C L;

U D e�t U; W D e�t W; ' D e�t ', etc.

First we solve (7.4) under the assumption that ' is given.

LEMMA 7.1 There exists 0 > 0 such that for all  > 0 and for all given F 2 etH 1
tan; .QC/

and ' 2 etH
3=2
 .!/ vanishing in the past, the problem (7.4) has a unique solution .U; W / 2
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et H 1
tan; .QC/ � etH 1

 .Q�/ with .q; u1h1; W /j! 2 etH
1=2
 .!/, such that

ke�t .U; W /kH 1
tan;.QC/�H 1

 .Q�/ C ke�t .q; u1; h1; W/j!k
H

1=2
 .!/

6
C



�
ke�t

F kH 1
tan;.QC/ C ke�t 'k

H
3=2
 .!/

�
: (7.5)

Proof. We insert the new boundary conditions (7.1), (7.2) in the quadratic form A" (see (6.24)) and

we get

A
" WD �1

2
. OA1 CE12/ U�UC 1

2
M "

1 W �W D .Œ@ Oq�u1 C a2H2 � a1H3 � "a3EN / ' on !: (7.6)

If we consider the boundary conditions (7.1), (7.2) in homogeneous form, namely if we set ' D 0,

then from (7.6)

A
" D 0 on !:

We deduce that the boundary conditions (7.1) are nonnegative for L . As the number of boundary

conditions in (7.1) is in agreement with the number of incoming characteristics for the operator L

(see Proposition 5.1) we infer that the boundary conditions (7.1) are maximally nonnegative (but not

strictly dissipative). Then we reduce the problem to one with homogeneous boundary conditions by

subtracting from .U ; W / a function .U0
 ; W 0

 / 2 H 2
 .QC/ � H 2

 .Q�/ such that

M

�
U0

W 0

�
C b ' D 0 on !:

Finally, as the boundary is characteristic of constant multiplicity [18], we may apply the result

of [19, 20] and we get the solution with the prescribed regularity.

The well-posedness of (6.1) in H 1
tan � H 1 is given by the following theorem.

THEOREM 7.2 There exists 0 > 0 such that for all  > 0 and F 2 et H 1
tan; .QC/ vanishing

in the past, the problem (6.1) has a unique solution .U; W / 2 et H 1
tan; .QC/ � et H 1

 .Q�/ with

.q; u1h1; W /j! 2 et H
1=2
 .!/, ' 2 et H

3=2
 .!/.

Proof. We prove the existence of the solution to (6.1) by a fixed point argument. Let ' 2
et H

3=2
 .!T / vanishing in the past. By Lemma 7.1, for  sufficiently large there exists a unique

solution .U; W / 2 et H 1
tan; .QC/ � etH 1

 .Q�/, with .q; u1; h1; W /j! 2 et H
1=2
 .!/ of

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

L

 
U

W

!
D
 

F

0

!
on QC � Q�;

M

 
U

W

!
D �b ' on !;

.U ; W / D 0 for t < 0;

(7.7)

enjoying the a priori estimate (7.5) with ' instead of '. Now consider the equation

' C @t ' C Ov2@2' C Ov3@3' � ' @1 OvN D u1 ; on !; (7.8)
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where u1 2 H
1=2
 .!/ is the trace of the component of U given in the previous step, vanishing for

t < 0. For  sufficiently large there exists a unique solution ' 2 H
1=2
 .!/, vanishing in the past,

such that

k' k
H

1=2
 .!/

6
C


ku1 k

H
1=2
 .!/

: (7.9)

From the plasma equation in (7.7) and from (7.8) we deduce the boundary constraint

h1 D bH 2@2' C bH 3@3' � ' @1
bH N on !: (7.10)

Since in the right-hand side of (7.7) we have ' instead of ' we are not able to deduce the similar

boundary constraint for the vacuum magnetic field. Instead, we obtain

h1 � @2

�bH2'

�
� @3

�bH3'

�
D G on !; (7.11)

where G solves

Qd
dt

G C a2@2.' � ' / � a1@3.' � ' / C .@2a2 � @3a1/.' � ' / D 0 on !; (7.12)

for Qd=dt D  C@t C@2. Ov2�/C@3. Ov3�/ and where the coefficients a1; a2 are the same of (7.1). (7.12)

is derived from the first equation of the vacuum part of (7.7), (7.8) and the boundary conditions for

E2;E3 in (7.7).

Let us consider the linear system for rt;x0' provided by equations (7.8), (7.10) and (7.11). By

the stability condition (4.1) we can express rt;x0' through .h1 ; h1 ; u1 /j! ; ' ; G , that is

rt;x0' D a0
1h1 C a0

2h1 C a0
3u1 C a0

4' C a0
5G ; (7.13)

where the precise form of the coefficients a0
i has no interest. Then, substituting into (7.12) yields

Qd
dt

G Cb0G D b1h1 Cb2h1 Cb3' Ca2@2' �a1@3' C.@2a2 �@3a1/' on !; (7.14)

with suitable coefficients bi .

From (7.14), for  sufficiently large, we get the estimate

kG k
H

1=2
 .!/

6
C



�
k.h1 ; h1 /k

H
1=2
 .!/

C k' k
H

1=2
 .!/

C k' k
H

3=2
 .!/

�

6
C



�
kF kH 1

tan;.QC/ C k' k
H

3=2
 .!/

�
; (7.15)

where we have applied (7.5) (with ' in place of ') and (7.9). Thus, from (7.13) again, we obtain the

estimate

krt;x0'k
H

1=2
 .!/

6 C
�
k.u1 ; h1 ; h1 /k

H
1=2
 .!/

C k' k
H

1=2
 .!/

C kG k
H

1=2
 .!/

�

6
C



�
kF kH 1

tan;.QC/ C k' k
H

3=2
 .!/

�
: (7.16)
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Combining (7.5) (with ' in place of '), (7.9) and (7.16) gives

k' k
H

3=2
 .!/

6
C



�
kF kH 1

tan;.QC/ C k' k
H

3=2
 .!/

�
: (7.17)

This defines a map ' ! ' in etH
3=2
 .!T /. Let '1; '2 2 et H

3=2
 .!T /, and .U1; W 1/; .U2; W 2/,

'1; '2 be the corresponding solutions of (7.7), (7.8), respectively. Thanks to the linearity of the

problems (7.7), (7.8) we obtain, as for (7.17),

k'1
 � '2

 k
H

3=2
 .!/

6
C


k'1

 � '2
 k

H
3=2
 .!/

:

Then there exists 0 > 0 such that for all  > 0 the map ' ! ' has a unique fixed point, by the

contraction mapping principle. The fixed point ' D ', together with the corresponding solution of

(7.7), provides the solution of (7.4), (7.8), that is a solution of (6.1). As for the boundary conditions,

we have already observed that (5.12), (6.1c)-(6.1f) is equivalent to (5.12), (6.1c), (7.1). The proof is

complete.

8. Proof of Theorem 4.1

For all " sufficiently small, problem (5.8) admits a unique solution with the regularity described

in Theorem 7.2. Due to the uniform a priori estimate (6.2) we can extract a subsequence

weakly convergent to functions .U; W; '/ with .U ; W / 2 H 1
tan; .QC

T / � H 1
 .Q�

T / and

.q ; u1 ; h1 /j!T
2 H

1=2
 .!T /, W j!T

2 H 1
 .!T / and ' 2 H 1

 .!T / (we use obvious notations).

Let us decompose W D .H;E/ and perform a inverse change of unknown with respect to that of

Section 5.1 to define .H; E/ from .H;E/. Passing to the limit in (5.1b), (5.8)–(5.12) as " ! 0

immediately gives that .U; H; '/ is a solution to (2.29), (2.23), (2.24) and E D E D 0. Passing to

the limit in (6.2) gives the a priori estimate (4.2). The proof of Theorem 4.1 is complete.

9. Equivalence of systems (5.1b) and (6.12)

We prove the equivalence of systems (5.1b) and (6.12) for every E� 6D 0. This is the same as the

equivalence of (5.8b) and (6.9), or (6.1b) and (6.9).

LEMMA 9.1 Assume that systems (5.1b) and (6.12) have common initial data satisfying the

constraints

div h" D 0; div e" D 0 in ˝� for t D 0:

Assuming that the corresponding Cauchy problems for (5.1b) and (6.12) have a unique classical

solution on a time interval Œ0; T �, then these solutions coincide on Œ0; T � for all " sufficiently small.

Proof. Let us set

A D O��1.@th
" C "�1r � E"/; B D O��1.@t e

" � "�1r � H"/:

Then (6.12) can be written as

A � " E� � B C E�
@1
b̊

1

div h" D 0; B C " E� � A C E�
@1
b̊

1

div e" D 0: (9.1)
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Taking the vector product of E� with the systems in (9.1) gives

E� � A � " E� � .E� � B/ D 0; E� � B C " E� � .E� � A/ D 0; (9.2)

that is

E� � A � " .E� � B/E� C " jE�j2B D 0; E� � B C " .E� � A/E� � " jE�j2A D 0: (9.3)

We take the vector product of " E� with the first system in (9.3) and get

" .E� � A/E� � " jE�j2A C "2 jE�j2 E� � B D 0: (9.4)

For any choice of E� 6D 0 we may assume that " jE�j 6D 1 (this is true for " definitely small). Then

by comparison of (9.4) and the second equation in (9.3) we infer E� � B D 0, and from (9.2) also

E� � A D 0.

Thus (6.12) may be rewritten as

@th
" C 1

"
r � E" C O� E�

@1
b̊

1

div h" D 0; @t e
" � 1

"
r � H" C O� E�

@1
b̊

1

div e" D 0:

Applying the div operator to the equations gives the transport equation

@t u C div.uEa/ D 0 in Q�
T ;

for both u D divh" and u D div e", where Ea D O�E�=@1
b̊

1. Noticing that the first component of Ea
vanishes at x1 D 0, the transport equation doesn’t need any boundary condition. As ujtD0 D 0, by

a standard argument we deduce u D 0 for t > 0. This fact shows the equivalence of (5.1b) and

(6.12).

10. Proof of Lemma 1.1

Given an even function � 2 C 1
0 .R/, with � D 1 on Œ�1; 1�, we define

	.x1; x0/ WD �
�
x1hDi

�
'.x0/ ; (10.1)

where �.x1hDi/ is the pseudo-differential operator with hDi D .1 C jDj2/1=2 being the Fourier

multiplier in the variables x0. From the definition it readily follows that 	.0; x0/ D '.x0/ for all

x0 2 R
2. Moreover,

@1	.x1; x0/ D �0
�
x1hDi

�
hDi '.x0/ ; (10.2)

which vanishes if x1 D 0. We compute

k	.x1; �/k2
H m.R2/

D
Z

R2

h� 0i2m�2.x1h� 0i/j O'.� 0/j2d� 0 ;

where O'.� 0/ denotes the Fourier transform in x0 of '. It follows that

k	k2

L2
x1

.H m.R2//
D
Z

R

Z

R2

h� 0i2m�2.x1h� 0i/j O'.� 0/j2d� 0 dx1

D
Z

R

Z

R2

h� 0i2m�1�2.s/j O'.� 0/j2d� 0 ds 6 C k'k2
H m�0:5.R2/

:
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In a similar way, from (10.2), we obtain

k@1	k2

L2
x1

.H m�1.R2//
D
Z

R

Z

R2

h� 0i2m�2j�0.x1h� 0i/h� 0ij2j O'.� 0/j2d� 0 dx1

D
Z

R

Z

R2

h� 0i2m�1j�0.s/j2j O'.� 0/j2d� 0 ds 6 C k'k2
H m�0:5.R2/

:

Iterating the same argument yields

k@
j
1	k2

L2
x1

.H m�j .R2//
6 C k'k2

H m�0:5.R2/
; j D 0; : : : ; m :

Adding over j D 0; : : : ; m finally gives 	 2 H m.R3/ and the continuity of the map ' 7! 	 .

We now show that the cut-off function �, and accordingly the map ' 7! 	 , can be chosen to

give (1.14). From (10.2) we have

@1	.x1; x0/ D .2�/�2

Z

R2

ei�0�x0

�0.x1h� 0i/ h� 0i O'.� 0/ d� 0:

By the Cauchy–Schwarz inequality and a change of variables we get

j@1	.x/j 6 C k'kH 2.R2/

�Z

R2

j�0.x1h� 0i/j2 h� 0i�2 d� 0

�1=2

D C k'kH 2.R2/

�Z 1

0

j�0.x1h�i/j2 h�i�2 � d�

�1=2

:

We change variables again in the integral above by setting s D x1h�i. It follows that

j@1	.x/j 6 C k'kH 2.R2/

�Z 1

x1

j�0.s/j2 x1

s

ds

x1

�1=2

6 C k'kH 2.R2/

�Z 1

1

j�0.s/j2 ds

s

�1=2

:

(10.3)

Given any M > 1, we choose � such that �.s/ D 0 for jsj > M , and j�0.s/j 6 2=M for every s.

Then from (10.3) one gets

j@1	.x/j 6
Cp
M

k'kH 2.R2/:

Given any � > 0, if M is such that C=
p

M < �, then (1.14) immediately follows.

The proof of Lemma 1.2 follows from Lemma 1.1, with t as a parameter. Notice also that the

map ' ! 	 , defined by (10.1), is linear and that the time regularity is conserved because, with

obvious notation, 	.@
j
t '/ D @

j
t 	.'/. The conclusions of Lemma 1.2 follow directly.

11. Proof of Lemma 6.2

We write U"
n on ! as

jU"
n j2jx1D0 D �2

Z 1

0

U
"
n � @1U

"
n dx1;
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which gives

kU
"
n j!k2

L2.!/
6 2kU

"
 kL2.QC/k@1U

"
n kL2.QC/: (11.1)

Estimating the right-hand side of (11.1) with (6.17) and using the  -homogeneity of the H 1
tan;

norm gives

kU
"
n j!k2

L2.!/
6 C

�
kF k2

L2.QC/
C kU

"
 k2

H 1
tan;.QC/

�
:

Thus the first part of (6.36) is proved. To show the second part of (6.36) we compute for ` D 0; 2; 3,

Z

!

jZ`U
"
n j2jx1D0 dx0dt D �2

Z 1

0

Z

!

Z`U
"
n � @1Z`U

"
n dxdt

D 2

Z 1

0

Z

!

Z2
` U

"
n � @1U

"
n dxdt;

which gives

kU
"
n j!k2

H 1
 .!/

6 2kU
"
 kH 2

tan;.QC/k@1U
"
n kL2.QC/: (11.2)

Interpolating between (11.1) and (11.2) gives

kU
"
n j!k2

H
1=2
 .!/

6 2kU
"
 kH 1

tan;.QC/k@1U
"
n kL2.QC/:

Applying (6.17) eventually gives the second part of (6.36). We do the same for (6.37).
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