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This paper presents a model describing the interaction between a solid body and a compressible

inviscid fluid in a pipe. The resulting system consists in a 1D hyperbolic balance law coupled with an

ordinary differential equation and is proved to be well posed. Simple explicit solutions and numerical

integrations show qualitative features of this model. In particular, we consider a ball falling in a

vertical tube closed at the bottom. This system results in the ball bouncing on the shocks reflected

between the ball and the bottom.
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1. Introduction

We consider a solid body moving in a tube filled with a non–viscous compressible fluid. Below,

this situation is described through a hyperbolic 1D system of balance laws coupled with an ordinary

differential equation. The former deals with the evolution of the fluid, modeled as one dimensional,

while the latter captures the dynamics of the solid body, modeled as a point mass.

This mixed o.d.e–p.d.e. system, whose derivation is detailed in Section 2, fits in a suitable

modification of the analytical framework in [3, 4]. Several physical situations enter the present

theoretical setting: we recall, for instance, the flow in a sewer system with a manhole, see [3, ÷ 3.2];

the flow of blood, see [3, ÷ 3.4] or [8, 13]; or a moving bottleneck in vehicular traffic, see [4, ÷ 3.2]

or [15].

From the physical point of view, the current literature offers several models for solid-fluid

interactions. A point mass moving in an inviscid fluid is studied in [2]. The experimental works [1, 7]

deal with a solid ball falling in a stratified fluid. Remarkably, this rather different physical setting

leads to a very similar trajectory for the falling body, see in particular Figure 4 below and [1,

Figures 4, 5 and 6]. Indeed, a ball falling in a vertical tube filled with a compressible fluid causes

a compression wave propagating downwards faster than the ball. This wave, focusing into a shock,

bounces against the bottom of the tube, propagates upwards and hits the ball. As a result of this
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interaction, the acceleration of the ball changes discontinuously, resulting in stopping the fall of the

ball, possibly also pushing it upwards. The repeated bounces of the shocks between the bottom of

the tube and the ball allow to keep the ball suspended in the fluid for a while, see Section 4.2.

A relevant detail in the present model is its ability to allow for mass transfer between the two

sides of the solid body. Indeed, in [3, 4], the conditions at the fluid–solid interfaces do not allow mass

transfer. Here, the two interfaces on the sides of the solid are treated as free boundaries evolving

according to the conservation of mass, to the balance of momentum and to the dissipation of energy.

The main properties of the model so obtained are shown first through a few simple examples of

explicit analytical solutions at the end of Section 2, then through numerical integrations of more

complex situations in Section 4.

The analytical setting exploited below is developed in [3, 4]. The result obtained fits in the

standard literature about 1D systems of conservation or balance laws, see for instance [3, 4, 6, 9, 10].

In particular, we select solutions that not only depend Lipschitz continuously from the data and

various parameters, but also that are strongly stable, in both the L1 and BV sense, see 1. in

Theorem 3.6. Here, we consider in detail the case of the initial value problem, i.e., no fixed outer

boundaries are present in the well posedness result below, see Theorem 3.6. Indeed, the analytical

machinery necessary to pass to initial – boundary values problems is well established and this

extension is of a merely technical nature, we refer to [5] for a sketch of it.

The next section is devoted to the derivation of the model. Section 3 deals with the analytical

well posedness result, while Section 4 is devoted to the numerical integration of specific examples

that show the main qualitative features of the model. All analytical details are deferred to the final

Section 5.

2. Model derivation

Let x denote the coordinate along the rectilinear tube, oriented as in Figure 1, and denote by

X D X.t/ the position of the (center of the) solid body. The angle # between the pipe and the

horizontal plane is fixed throughout. The classical isentropic Euler equations, see for instance [11,

������������
������������
������������
������������

������������
������������
������������
������������

X x

0

X

#

x

FIG. 1. Sketch of the situation described in (2.12). Left, a piston in a horizontal tube with no ends. Note the different sections

available to the fluid on the two sides of the piston. Right, a falling ball in a tube closed at the bottom.
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Formula (7.1.9)],
8

<

:

@t � C @xq D 0

@t q C @x

�q2

�
C p.�/

�

D 0
(2.1)

describe the fluid. Here, � D �.t; x/ is the fluid density, q D q.t; x/ is the linear momentum density

and p D p.�/ is the pressure law characteristic of the fluid. Typical choices are

p.�/ D po � .�=�o/
 with 
 > 1 ; po; �o > 0 ; and (2.2)

p.�/ D �2 � with � > 0 : (2.3)

Recall the dynamic pressure, the total energy density and the energy flow related to (2.1),

respectively given by:

P.�; q/ D q2

�
Cp.�/ ; E.�; q/ D q2

2�
C�

Z �

��

p.r/

r2
dr ; F.�; q/ D q

�
.E.�; q/ C p.�// ;

(2.4)

where �� is a fixed reference density. When gravity is present, (2.1) is modified as follows
8

<

:

@t � C @xq D 0

@t q C @x

�q2

�
C p.�/

�

D �� g sin # ;
(2.5)

see for instance [10, Formula (3.1)]. Here, g is gravity and the right hand side in the second equation

in (2.5) describes the lack of linear momentum conservation due to g.

The solid of mass m occupies the segment ŒX.t/ � ı; X.t/ C ı�, for a fixed ı > 0. Denote by

A D A.t; x/ the section of the tube. For instance, in the case of the piston, see Figure 1, left, we

have

A.t; x/ D A� �
��1;X.t/�ıŒ

.x/ C Ao �
ŒX.t/�ı;X.t/Cı�

.x/ C AC �
�X.t/Cı;C1Œ

.x/ : (2.6)

To have a fully determined problem, we now seek further conditions to determine the function

X D X.t/. We expect that, generically, 3 relations are necessary and sufficient to identify it. Indeed,

in a subsonic setting, 2 equations select the waves issuing from each side of the solid towards the

fluid, while a third constraint is an ordinary differential equation for X .

Introduce the total mass, total linear momentum and total energy:

M.t/ D
Z

R

A.t; x/ �.t; x/ dx C m

Q.t/ D
Z

R

A.t; x/ q.t; x/ dx C m PX.t/

E.t/ D
Z

R

A.t; x/
�

E
�

�.t; x/; q.t; x/
�

C �.t; x/ g x sin #
�

dx C m g X.t/ sin # C 1

2
m PX2.t/ :

(2.7)

We prescribe the conservation of the total mass, the balance of the linear momentum with the

gravitational impulse and the conservation of energy, namely:

PM.t/ D 0 ; PQ.t/ D �M g sin # and PE.t/ D 0 :
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Formally, setting �.X C ı˙/ D lim"!0˙ �.X C ı C "/, we obtain

PX
�

AC �.X C ıC/ � Ao �.X C ı�/ C Ao �.X � ıC/ � A� �.X � ı�/
�

D AC qC.X C ıC/ � Ao q.X C ı�/ C Ao q.X � ıC/ � A� q.X � ı�/ I

PX
�

AC q.X C ıC/ � Ao q.X C ı�/ C Ao q.X � ıC/ � A� q.X � ı�/
�

D AC P C.X C ıC/ � Ao P.X C ı�/ C Ao P.X � ıC/ � A� P.X � ı�/ C m RX
C m g sin # I

PX
�

AC E.X C ıC/ � Ao E.X C ı�/ C Ao E.X � ıC/ � A� E.X � ı�/
�

D AC F C.X C ıC/ � Ao F.X C ı�/ C Ao F.X � ıC/ � A� F.X � ı�/

C m. RX C g sin #/ PX :

We now assume that ı is so small that waves propagate between X ˙ ı to X � ı instantaneously, so

that for a.e. t 2 R
C, .�; q/ .t; X.t/ C ı�/ D .�; q/ .t; X.t/ � ıC/ and hence we get the conditions

PX �.A �/ � �.A q/ D 0 ; (2.8)

PX �.A q/ � �.A P / D m. RX C g sin #/ ; (2.9)

PX �.A E/ � �.A F / D m. RX C g sin #/ PX : (2.10)

Above, we used the following notation: for any quantity G D G.�; q/ we set

�G.t/ D G
�

�
�

t; X.t/ C
�

; q
�

t; X.t/ C
�

�

� G
�

�
�

t; X.t/ �
�

; q
�

t; X.t/ �
�

�

:

Moreover, in the limit ı ! 0 the section of the tube is

A.t; x/ D A� �
��1;X.t/Œ

.x/ C AC �
�X.t/;C1Œ

.x/ : (2.11)

We are thus led to study the problem consisting of (2.5), (2.8), (2.9) and (2.10), which we rewrite

thanks to (2.4) as

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t � C @xq D 0

@t q C @xP D �� g sin #

RX D �g sin # � 1

m

�

�.A P / � PX�.A q/
�

�.A q/ � PX �.A �/ D 0

�.A F / � PX �.A E/ D PX
�

�.A P / � PX�.A q/
�

:

(2.12)

Note that the ordinary differential equation on the third line of (2.12) is coherent with the

Archimedean law. Indeed, in the hydrostatic case q � 0 and PX � 0, the weight m g sin # of

the solid body is balanced by the force �.Ap/.

When the effects of friction can not be neglected, the p-system (2.5) now reads

�

@t � C @xq D 0

@t q C @xP D �� g sin # � �F .�; q/ ;
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where the term �F .�; q/ describes the friction between the fluid and the pipe’s walls. The local

balance of momentum (2.9) and energy (2.10) at X become

PX �.A q/ � �.A P / D m . RX C g sin #/ C m �S. PX/

PX �.A E/ � �.A F / D m . RX C g sin #/ PX C m PX �S . PX/ C �I .q=�; PX/

where �S quantifies the friction between the solid and the pipe’s walls; �I .q=�; PX/ accounts for the

friction due to the solid–fluid interaction. Possible standard choices are, for instance,

�F .�; q/ D Q�F

q jqj
�

; �S . PX/ D Q�S
PX and �I .q=�; PX/ D Q�I

�

PX �
�

q

�

��2

(2.13)

for suitable positive Q�F , Q�S and Q�I . Here, we denote
D

q
�

E

D 1
2

�

q.t;X.t/C/
�.t;X.t/C/

C q.t;X.t/�/
�.t;X.t/�/

�

. We thus

pass to the system
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t � C @xq D 0

@t q C @xP D �� g sin # � �F .�; q/

RX D �g sin # � 1

m

�

�.A P / � PX�.A q/
�

� �S . PX/

�.A q/ � PX �.A �/ D 0

�.A F / � PX �.A E/ D PX
�

�.A P / � PX�.A q/
�

� �I .q=�; PX/ :

(2.14)

We prove in Lemma 3.3 the following estimates on the variations of total mass, momentum and

energy along the solutions to (2.14), also in the case of weak entropy solutions:

PM.t/ D 0

PQ.t/ D �
Z

R

A.t; x/ �F .�; q/ dx � m �S. PX/ � M g sin #

PE.t/ 6 �
Z

R

A.t; x/
q.t; x/

�.t; x/
�F .�; q/ dx � m �S . PX/ PX � �I .q=�; PX/

(2.15)

As expected, the total mass in conserved. The usual conditions

q �F .�; q/ > 0 ; PX �S . PX/ > 0 and �I .q=�; PX/ > 0 (2.16)

on the friction terms ensure that the total energy decreases. Besides, (2.16) also implies, for instance,

that if q.t; x/ > 0 for all x and PX.t/ > 0, then PQ.t/ < 0.

Remark that in (2.15) the variation PQ of the linear momentum is not affected by �I .q=�; PX/.

In fact, this term describes the effect of the interaction between the solid and the fluid, hence of

internal forces.

A further property of (2.14) is that it is Galileian invariant, as soon as �F � 0, �S � 0 and �I is

a function of the difference PX � hq=�i, as for instance in (2.13), see Lemma 3.4.

The next examples display explicit solutions to (2.14), thus showing features of the present model.

EXAMPLE 2.1 With the pressure law (2.3), if AC D A� in (2.11), �F .�; 0/ D 0 and �I D 0, then

a simple solution to (2.14) is

�.t; x/ D N� exp
�

� g sin #

�2
.x � NX/

�

q.t; x/ D 0
and X D X.t/ solves

8

<

:

RX C �S . PX/ D �g sin #

X.0/ D NX ;
PX.0/ D NV
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where N� > 0 and NX; NV 2 R. This solution describes a fluid in hydrostatic equilibrium with a solid

body falling through it, due to gravity and subject to the friction against the pipe walls. Note that

the fluid and the solid body are completely independent and moving with respect to each other.

This somewhat artificial solution does not meet the stability requirements (3.5)–(3.6) necessary for

Theorem 3.6, see Lemma 5.3.

EXAMPLE 2.2 Consider a piston in a pipe filled with fluid satisfying the pressure law (2.3), if

�F D �S D 0 and �I .q=�; PX/ D N�I . PX � q=�/ with N�I .0/ D 0, direct computations show that

�.t; x/ D
(

�� exp
�

� g sin #

�2
.x � Xo/

�

x < Xo ;

�C exp
�

� g sin #

�2
.x � Xo/

�

x > Xo ;

q.t; x/ D 0 ;

and
X.t/ D Xo

PX.t/ D 0

solves (2.14) if and only if the Archimedean force balances the weight of the solid, i.e.,

m g sin # D �2.A� �� � AC �C/ : (2.17)

In this static solution, the piston is in equilibrium in the middle of the fluid. Other (non static)

traveling wave solutions can be obtained applying Galileian transformations, see Lemma 3.4. All

these solutions are stable in the sense that the conditions (3.5)–(3.6) are satisfied, as proved in

Lemma 5.4.

EXAMPLE 2.3 With the pressure law (2.3), if �F D �S D �I D 0, a stationary solution to (2.14)

with different sections A˙ and with mass transfer between the two sides of the solid is as follows:

�.t; x/ D
�

�� x < Xo

�C x > Xo
q.t; x/ D

�

q� x < Xo

qC x > Xo
X.t/ D Xo ;

where Xo 2 R, A� > 0, �� > 0, q� 2 R and

AC D � exp
�1 � �2

2�

�

�C D A�

AC � ��

qC D A�

AC q�

where � D
� q�

� ��

�2

:

This solution does not satisfy the subsonic condition (3.11). Elementary computations show that if

the left state .��; q�/ is subsonic, then the right state .�C; qC/ is supersonic.

In all the examples above, the choice (2.3) of the pressure law is necessary only to allow the

explicit writing of the solutions to the p-system (2.1). Indeed, Lemma 5.2 ensures that analogous

solutions may exist under more general assumption on the pressure law.

3. Analytical results

Throughout, RC D Œ0; C1Œ and R̊
C D �0; C1Œ. To simplify the notation, we identify the state

.�; q/ with u, so that for instance u˙ D .�˙; q˙/. The ball in R
2 centered at u with radius ı > 0

is denoted by B.u; ı/. For the basic results in the theory of hyperbolic conservation laws we refer

to [11], while for those concerning Caratheodory differential equations, see [14].

The pressure law p D p.�/ is assumed to satisfy the following standard assumption:
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(p) p 2 C2.RCIRC/ is such that p0.�/ > 0 and p00.�/ > 0 for all � > 0.

Both pressure laws (2.2) and (2.3) satisfy (p).

As a first step, we formalize what we mean by solution to (2.14).

DEFINITION 3.1 Let T > 0 be fixed, uo 2 BV.RI R̊C � R/, Xo 2 R and Vo 2 R. The map .u; X/

is a solution to (2.14) with initial condition
8

ˆ

<

ˆ

:

u.0; x/ D uo.x/

X.0/ D Xo

PX.0/ D Vo

(3.1)

on the time interval Œ0; T � if

1. u 2 C0
�

Œ0; T �I BV.RI R̊C � R/
�

, X 2 W1;1.Œ0; T �IR/ and PX 2 W1;1.Œ0; T �IR/.

2. u is a weak entropy solution to
�

@t � C @xq D 0

@t q C @xP.�; q/ D �� g sin # � �F .�; q/

for .t; x/ 2 Œ0; T � � ��1; X.t/Œ and for .t; x/ 2 Œ0; T � � �X.t/; C1Œ.

3. X solves

RX D �g sin # � 1

m

�

�.A P / � PX �.A q/
�

� �S . PX/

in Caratheodory sense for t 2 Œ0; T �.

4. For a.e. t 2 Œ0; T �, the boundary conditions
�

�.A q/ D PX �.A �/

�.A F / � PX �.A E/ D PX
�

�.A P / � PX �.A q/
�

� �I .q=�; PX/

are satisfied in the sense of the traces at X.t/˙.

5. The initial condition is satisfied in the strong sense: u.0; x/ D uo.x/ for a.e. x 2 R, X.0/ D Xo

and PX.0/ D Vo.

Here, at 1., the continuity of u is understood in the strong L1 topology. At 2., we mean that for all

' 2 C1
c.�0; T Œ � RIR/ such that

spt ' \
˚

.t; x/ 2 �0; T Œ � R
CW x D X.t/

	

D ; ; (3.2)

the following relation holds:

Z T

0

Z

R

��

�

q

�

@t ' C
�

q

P.�; q/

�

@x' C
�

0

�� g sin # � �F .�; q/

�

'

�

dx dt D 0

and for all ' 2 C1
c.�0; T Œ � RIRC/ satisfying (3.2), for any convex entropy – entropy flux pair

.�; �/, see [6, Definition 4.4], the inequality

Z T

0

Z

R

�

�.�; q/ @t ' C �.�; q/ @x' C D�.�; q/

�

0

�� g sin # � �F .�; q/

�

'

�

dx dt > 0

holds. Concerning 4., remark that the traces of u at X.t/˙ exist, thanks to the requirement u 2 BV.

The present framework, based on (2.12) and on Definition 3.1, comprises [4, Section 3.1], as

proved by the following lemma.
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LEMMA 3.2 Let p satisfy (p), fix positive g; m; Q�F ; Q�S and # 2 Œ0; �=2� and set AC D A�

in (2.11). Let .u; X/ solve [4, Formula (1.2)], i.e.,

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t � C @xq D 0;

@t q C @xP D �� g sin # � Q�F

qjqj
�2

;

RX D �g sin # � AC

m
�p � Q�S

PX;

PX D q .t; X.t/�/

� .t; X.t/�/
;

PX D q .t; X.t/C/

� .t; X.t/C/
;

(3.3)

in the sense of [4, Definition 2.1], then .u; X/ solves (2.14), in the case �I D 0, �S . PX/ D Q�S
PX and

�F .�; q/ D Q�F q jqj=�2, in the sense of Definition 3.1.

The proof is immediate and, hence, omitted. Remark that the present setting allows the transfer of

mass between the two sides of the solid body, which is impossible in (3.3). Therefore, the present

construction is able to comprise, for instance, the situation in Figure 3, right.

We now pass to the rigorous statement of the conservation of mass, energy and the balance of

momentum.

LEMMA 3.3 Let p satisfy (p), p.0/ D 0 and A be as in (2.11) for fixed A˙ > 0. Fix positive g; m

and # 2 Œ0; �=2�. Let .u; X/ solve (2.14)–(3.1) in the sense of Definition 3.1. Assume

�.t; x/ > 0; 8.t; x/ 2 R
C � R;

limx!˙1 x �.t; x/ D limx!˙1
q.t;x/
�.t;x/

D 0; 8t > 0;

x ! x �.t; x/; x ! q.t; x/; x ! �.t; x/ ln .�.t; x// 2 L1.R/; 8t > 0:

Then, with reference to the quantities defined in (2.7), the inequalities (2.15) hold in distributional

sense.

The proof is deferred to Section 5.

The next lemma is devoted to the Galileian invariance of (2.12).

LEMMA 3.4 Let �F D �S D 0 and �I .q=�; PX/ D N�I . PX � q=�/, with N�I 2 C
0;1
loc .RIR/. Let

.�; q; X/ solve (2.14). Then, for any OX; OV in R, also the function . L�; Lq; LX/ given by

L�.t; x/ D �.t; x C OX C OV t/

Lq.t; x/ D q.t; x C OX C OV t/ � �.t; x C OX C OV t/ OV and LX D X.t/ � OX � OV t

solves (2.14) in the sense of Definition 3.1.

The proof is straightforward and, hence, omitted.

Introduce the function ˚ W .R̊C � R/2 � R ! R
2 whose components are defined by

˚1.u�; uC; V / D �.A q/ � �.A �/ V;

˚2.u�; uC; V / D �.A F / � V �.A E/ � V .�.A P / � V�.A q// C �I .q=�; V /
(3.4)
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with P , E , F as in (2.4), so that the last two conditions in (2.14) can be concisely rewritten as

˚
�

u
�

t; X.t/ �
�

; u
�

t; X.t/ C
�

; PX.t/
�

D 0 :

PROPOSITION 3.5 Let (p) hold and define ˚ as in (3.4). Fix the positive parameters m, g and # .

Choose �I 2 C1.R � RIR/. Assume there exist states Nu˙ 2 R̊
C � R, a position NX 2 R̊

C and a

speed NV 2 R such that ˚. Nu�; NuC; NV / D 0. Assume moreover that

det
�

Du�˚. Nu�; NuC; NV / r1.u�/ DuC˚. Nu�; NuC; NV / r2.uC/
�

¤ 0 ; (3.5)
�

�

Du�˚. Nu�; NuC; NV / r1. Nu�/ DuC˚. Nu�; NuC; NV / r2. NuC/
��1

DV ˚. Nu�; NuC; NV /
�

1;2
¤ 0 : (3.6)

Then, there exists a positive ı such that for all u˙ 2 B. Nu˙; ı/ and V 2
� NV � ı; NV C ı

�

the two sets

of conditions

˚.u�; uC; V / D 0 and

(

b�.u�; uC/ D V

bC.u�; uC/ D V

are equivalent, for suitable smooth functions b˙ that also satisfy

ru�b�.u�; uC/ r1.u�/ ¤ 0 ; and ruCbC.u�; uC/ r2.uC/ ¤ 0 :

The proof is deferred to Section 5.

The well posedness of (2.14) now immediately follows through [4, Theorem 2.7]. To state it, for

fixed Nu 2 R̊
C � R, NV 2 R, and ı > 0, we introduce the set

U. Nu; NX; NV ; ı/ D

8

ˆ

<

ˆ

:

.u; X; V /W

8

ˆ

<

ˆ

:

u 2 Nu C L1.RCI R̊ � R
C/

X 2 R

V 2 R

and

(

TV.u/ < ı
ˇ

ˇV � NV
ˇ

ˇ < ı

9

>

=

>

;

where we define TV.u/ D TV.�/ C TV.q/.

THEOREM 3.6 Let (p) hold and assume that �F 2 C0;1.R̊C � RIR/, �S 2 C
0;1
loc .RIR/ and �I 2

C1.R �RIR/. Define ˚ as in (3.4). Fix the parameters m; g 2 R̊
C and # 2 Œ0; �=2�. Assume there

exist states Nu˙ 2 R̊
C � R, a position NX 2 R̊

C and a speed NV 2 R such that ˚. Nu�; NuC; NV / D 0.

Assume moreover that (3.5) and (3.6) hold. Then, system (2.14) can be rewritten

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t u
� C @xf �.u�/ D '�.u�/ x < 
�.t/;

@t u
C C @xf C.uC/ D 'C.uC/ x > 
C.t/;

b� �

u��

t; 
�.t/ �
�

; uC�

t; 
C.t/ C
��

D w.t/;

bC �

u��

t; 
�.t/ �
�

; uC�

t; 
C.t/ C
��

D w.t/;

Pw D F
�

t; u��

t; 
�.t/ �
�

; uC�

t; 
C.t/ C
�

; w.t/
�

;

P
�.t/ D w.t/;

P
C.t/ D w.t/;

(3.7)
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where

u˙ D
�

�˙

q˙

�

f ˙.u/ D
�

q

P.�; q/

�

(3.8)


 D X F .t; u�; uC; w/ D �g sin # � 1

m

�

�.A P / � PX �.A q/
�

� �S . PX/ (3.9)

w D PX '˙.u/ D
�

0

�g sin # � � �F .�; q/

�

(3.10)

and with b˙ given by Proposition 3.5. Hence, under the subsonic condition
ˇ

ˇ NV
ˇ

ˇ <
p

p0. N��/ and
ˇ

ˇ NV
ˇ

ˇ <
p

p0. N�C/ ; (3.11)

there exist positive ı, �, L, Tı , domains D and a map S W Œ0; Tı � � D 7! D such that the following

holds:

1. U. Nu; NV ; ı/ � D � U. Nu; NV ; �/;

2. S is a local semigroup, i.e., S0 D Id and St1 ı St2 D St1Ct2 for all t1; t2 2 Œ0; Tı � with

t1 C t2 2 Œ0; Tı �;

3. S is Lipschitz, i.e., for all .u1; X1; V1/; .u2; X2; V2/ 2 D and for all t1; t2 2 Œ0; Tı �,




St2.u2; X2; V2/ � St1.u1; X1; V1/




 6 L � .ku2 � u1kL1 C jX2 � X1j C jV2 � V1j C jt2 � t1j/ I

4. for all .uo; Xo; Vo/ 2 D, the orbit t ! St .uo; Xo; Vo/ is a solution to (2.14) in the sense of

Definition 3.1, for all t 2 Œ0; Tı �.

Thanks to Proposition 3.5, the proof is an immediate application of [4, Theorem 2.7] and is hence

omitted.

The next lemma ensures that the assumptions of Theorem 3.6 are non void.

LEMMA 3.7 Consider the pressure law (2.3) with � D 5 and assume that A� D AC and �I D 0.

Define

N�� D 2 N�C D 9=5 NV D 19�90
p

38 ln.10=9/
38

:

Nq� D 1 NqC D 171 C 90
p

38 ln.10=9/

190

Then, the subsonic states Nu�, NuC and the velocity NV satisfy ˚. Nu�; NuC; NV / D 0, and conditions (3.5),

(3.6) and (3.11). Moreover Nq�= N�� ¤ NV ¤ NqC= N�C, i.e., there is transfer of mass between the two

sides of the solid body.

In practical applications it is often unavoidable to consider the presence of, at least, one end of

the tube. This leads to study the following initial–boundary data for a balance law, coupled with an

ordinary differential equation, defined for x > 0 with a no flow condition at x D 0:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t � C @xq D 0;

@t q C @xP D �� g sin # � �F .�; q/;

RX D �g sin # � 1

m

�

�.A P / � PX�.A q/
�

� �S . PX/;

�.A q/ � PX �.A �/ D 0;

�.A F / � PX �.A E/ D PX
�

�.A P / � PX�.A q/
�

� �I .q=�; PX/;

q.t; 0C/ D 0 :

t > 0 ; x > 0 (3.12)
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Note that Example 2.2, if Xo > 0, provides a stationary solution to (3.12). For the case of two

boundaries, we refer to [5].

From a rigorously analytical point of view, problem (3.12) does not fit in the framework in [4],

due to the presence of the boundary condition at x D 0. Hence a result analogous to Theorem 3.6,

ensuring the well posedness of solutions, can not be proved relying on the cited literature. However

the analytical results in [4, 9] can be easily merged, obtaining a theorem which includes also the

presence of a boundary, hence proving the well posedness of the Cauchy problem for (3.12). This

merely technical improvement is out of the scope of the present paper.

4. Numerical examples

This section is devoted to numerical integrations of (2.14) and (3.12). The balance laws are solved

by means of a wave–propagation method for a moving mesh, see [12]. The ordinary differential

equation and the source term are integrated using a two stages Runge–Kutta method. The two

systems are coupled using the Strang splitting [16, ÷ 17.4] in order to maintain the second order

accuracy. The time steps are chosen according to a CFL number of 0:9. Particular care was taken to

ensure the conservation of the conserved quantities and the matching of the trace conditions at the

solid body.

4.1 Fluid flowing past a moving body

We consider a rigid body moving in a tube filled with a compressible fluid. Initially, the body travels

at the same speed as the surrounding fluid. Hence, the framework in [4] applies. At a later time, a

relatively strong shock hits the body, accelerating it. As a result, the body starts moving at a speed

different from that of the fluid, thus allowing transfer of mass between its two sides. This latter

behavior is not allowed in [4], but it is comprised in the present framework based on (2.14).
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FIG. 2. Integration of (2.14), (2.3), (2.13), (4.1). Left, the density � and, right, the flow q as functions of t (on the horizontal

axis) and x (on the vertical axis). The position of the solid body is indicated by the white gap.
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More precisely, we consider (2.14), with the pressure law (2.3), with all the friction terms (2.13)

set to 0 and with the parameters

� D 1
m

s
; g D 9:81

m

s2
; # D 0;

A� D 1 m2; AC D 0:5 m2; m D 1 kg:

(4.1)

We choose the following initial data:

�.0; x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

6
kg

m
x < 0:05 m ;

2
kg

m
x 2 Œ0:05 m; 0:1 m� ;

4
kg

m
x > 0:1 m ;

q.0; x/ D �0:2
m

s
�.0; x/ ;

X.0/ D 0:1 m ;

PX.0/ D �0:2
m

s
:

(4.2)

The numerical integration of (2.14), (2.3), (2.13), (4.1), obtained with N D 2000 grid cells up to

the time T D 0:2 s, is shown in Figures 2 and 3. At the beginning, the solid body and the fluid have

the same speed, see Figure 3. At this stage, the whole system can be described by the framework

in [3, 4]. The Riemann problem at t D 0 s, x D 0:05 m yields a 2-shock moving upwards, which

hits the solid body at about t D 0:038, see Figure 2. As a result of this interaction, the solid body

acceleration RX suffers a discontinuity, as also the traces of the fluid speed at the solid body. From

that instant on, the three speeds are different, see Figure 3 right, but related by the conservation of

mass through the ratio of the sections AC=A�. Remarkably, the numerical integration captures the

fact that if two of these speeds are equal at some time Nt , then also the third speed must attain this

common value at the same time, see Figure 3, right, at about Nt D 0:12 s. Due to the absence of

friction, system (2.14), (2.3), (2.13), (4.1) is Galileian invariant. Hence, the common value of the

three speeds, in this case v � 0 m=s, is not relevant.

Remark that at the interaction between the shock and the solid body [4, Proposition 3.1] may

not be applied: when this large shock hits the solid body, the speed of the fluid above and below the

fluid become different from that of the solid body.
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FIG. 3. Integration of (2.14), (2.3), (2.13), (4.1). Left, the speed v as a function of t (on the horizontal axis) and x (on the

vertical axis). The position of the solid body is indicated by the white gap. Right, the black line is the speed of the solid body,

the red, respectively green, line is the trace of the fluid speed at the solid body from below, respectively from above.
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4.2 A ball bouncing on a shock in a compressible fluid

In the following we consider a vertical cylinder filled with a compressible fluid and containing a

ball falling downwards. The cylinder has a fixed cross section, is closed at the bottom end x D 0 m

and is open at the top. The gas within the cylinder is characterized by the pressure law (2.3), the

friction terms (2.13) and the following parameters are chosen:

� D 15
m

s
g D 9:81

m

s2
# D �=2

Q�F D 10�8 1

m
Q�S D 10�2 1

s
Q�I D 5

m2 kg

s

m D 0:004 kg

(4.3)

We choose the following initial data:

�.0; x/ D 1=225
kg

m
; q.0; x/ D 0

kg

s
; X.0/ D 0:35 m ; PX.0/ D �2:5

m

s
: (4.4)

The numerical integration, obtained with N D 2000 grid cells up to the time T D 0:3 s, is shown

in figures 4 and 5. At the beginning the ball falls at a relatively high speed. Hence, it compresses

the gas and generates a compression wave of higher density propagating downwards. During its

way down, the ball is slowed down due to several effects. As the surrounding fluid is almost at

rest, the friction decreases the ball’s speed on the time interval Œ0 s; 0:04 s�. At the same time, the

compression wave caused by the ball focuses in a shock, reaches the bottom at about t D 0:02 s,

bounces back and at about t D 0:04 s hits the ball, causing a discontinuity in its acceleration RX . At

this interaction the shock is mainly reflected, but a smaller part passes the ball and later exits the

integration domain. The reflected part of the shock is mostly trapped between the bottom and the

moving ball. In fact, at any interaction between the ball and the shocks, only a small part of the wave

is transmitted while most of the shock is reflected and continues bouncing back and forth between

the ball and the bottom. The fact that the shock strength diminishes with time is confirmed also in

Figure 5, right: the momentum transfer from the shock to the ball due to the interaction with the

shock is less and less evident as the number of bounces increases. Thus, the ball is pushed upward
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FIG. 4. A ball falling in a gas, i.e., integration of (3.12), (2.3), (2.13), (4.3) with initial datum (4.4), see also Figure 5. Left,

the density � and, right, the flow q as functions of t (on the horizontal axis) and x (on the vertical axis). The position of the

ball is indicated by the white gap. The moving ball causes a compression wave that becomes a shock, bounces repeatedly

between the bottom and the ball, slowing it down.
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FIG. 5. Integration of (3.12), (2.3),, (2.13), (4.3) with initial datum (4.4), see also Figure 4. Left, the height X and, right, the

velocity PX of the ball falling in the gas. Note the discontinuities in RX due to the shocks hitting the ball: their size diminishes

with time due to the decreasing size of the bouncing shock.

each time it is hit by the wave but, asymptotically, it will reach the bottom, since the lower fluid is

allowed to pass above the ball.

We remark the evident analogy with the experimental findings in [1], where a ball falling in a

stratified fluid is observed to follow very similar trajectories, see in particular [1, figures 4, 5 and 6].

5. Technical details

Recall the sound speed c, the eigenvalues �1;2, the eigenvectors r1;2 and the Riemann coordinates

v1;2 referred to the p-system (2.1):

�1.�; q/ D q

�
� c.�/ �2.�; q/ D q

�
C c.�/

c.�/ D
p

p0.�/ r1.�; q/ D
�

�

q � � c.�/

�

r2.�; q/ D
�

�

q C � c.�/

�

v1 D q

�
C

Z �

��

c.r/

r
dr v2 D q

�
�

Z �

��

c.r/

r
dr

(5.1)
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where �� > 0 is a fixed reference density.

LEMMA 5.1 Assume (p) holds. Let E and F be the functions defined in (2.4). Then E is a convex

function and an entropy for the p-system (2.5) with entropy flux F .

Proof. The Hessian matrix of E is given by

D2E.�; q/ D

2

4

q2

�3
C p0.�/

�
� q

�2

� q

�2

1
�

3

5 ;

which, by (p), is a semidefinite positive matrix. This proves that E is a convex function. Moreover

DE.�; q/ D
�

� q2

2�2
C

Z �

��

p.r/

r2
dr C p.�/

�

q

�

�

;

DF.�; q/ D
�

�q3

�3
C q p0.�/

�

3q2

2�2
C

Z �

��

p.r/

r2
dr C p.�/

�

�

;

while the Jacobian matrix of the flux function for (2.5) is given by

Df .�; q/ D
"

0 1

� q2

�2
C p0.�/ 2q

�

#

:

It is immediate to show that DE � Df D DF , hence E and F provide an entropy and entropy flux

pair for (2.5).

LEMMA 5.2 Let p satisfy (p). Then, for any g > 0, # 2
�

0; �
2

�

, v 2 R and �o 2 R̊
C, the Cauchy

Problem
�

@x

�

� v2 C p.�/
�

D �� g sin #;

�.0/ D �o;
(5.2)

admits a unique solution defined on all R. Moreover:

1. If # D 0, then �.x/ D �o for every x 2 R.

2. If v ¤ 0, then �.x/ > 0 for every x 2 R.

3. If # > 0 and v D 0, then �.x/ > 0 for every x 2 R if and only if

Z �o

0

p0.�/

�
d� D C1.

In particular, if (2.2) holds, then there exists Nx > 0 such that �.x/ > 0 for every x < Nx and

�.x/ D 0 for every x > Nx. Otherwise, if (2.3) holds, then �.x/ > 0 for every x 2 R.

4. If (2.2) holds, then, for every x 2 R such that �.x/ > 0, we have

v2 log
�

�.x/
�

C po


�


o .
 � 1/

�
�1.x/ D �xg sin # C v2 log .�o/ C po


�


o .
 � 1/

�
�1
o

5. If (2.3) holds, then, for every x 2 R, we have �.x/ D �o exp
�

� g sin #

v2 C �2
x

�

.

Proof. Note that the differential equation in (5.2) can be written in the form

h

v2 C p0��.x/
�

i

�0.x/ D ��.x/g sin #;
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The solution is strictly monotone increasing in its domain of existence. If v ¤ 0, then, by (p),

the Cauchy theorem for ordinary differential equations applies providing global existence and

uniqueness of a solution to (5.2). Moreover, by a comparison principle, one easily deduces that

�.x/ > 0 for every x 2 R.

Assume now that v D 0. If # D 0, then clearly the unique solution is constant. Suppose that

# > 0. Then, in a neighborhood of x D 0, the solution to (5.2) exists and remains positive. Then

the differential equation in (5.2) can be written in the form

p0��.x/
�

�.x/
�0.x/ D �g sin #:

By (p), we easily deduce that
R C1

�o

p0.�/
�

d� D C1 hence there is no blowup in finite time, i.e.,

�.x/ exists for every x 2 R. Moreover, the integral

Z �o

0

p0.�/

�
d� (5.3)

could be finite or C1. If it is equal to C1, then the solution asymptotically tends to 0 when

x ! C1. If the integral in (5.3) is finite, then there exists Nx > 0 such that �. Nx/ D 0 and �.x/ > 0

for every x < Nx. Note also that � can be prolonged in a unique way after Nx (by �.x/ D 0). The last

statements of the lemma easily follow.

Proof of Lemma 3.3. First observe that the hypotheses of the Lemma imply that the quantities

in (2.7) are well defined and finite. Indeed, it is clear that M.t/ and Q.t/ are well defined and finite.

As regards E.t/, the hypotheses on the pressure law p imply that there exist a constant K > 0 and

N� > 0 such that p.�/ 6 K� for every 0 < � < N�. From this inequality and from the hypotheses of

the lemma easily follows that the energy E.�.t; x/; q.t; x// 2 L1.R/ for every t > 0, proving that

E.t/ is also well defined and finite. The conservation of mass is a standard property of conservation

laws, see [11].

Note that the regularity of u prescribed in Definition 3.1 does not ensure the differentiability of

Q and E. Therefore for T > 0, we prove that

Z T

0

Q.t/ ' 0.t/ dt D
Z T

0

�Z

R

A.t; x/ �F

�

�.t; x/; q.t; x/
�

dx C m �S . PX.t// C M g sin #

�

'.t/ dt

for any ' 2 C1
c.�0; T Œ IR/ and

Z T

0

E.t/ ' 0.t/ dt >

Z T

0

"

Z

R

�

A.t; x/ q.t; x/ �F

�

�.t; x/; q.t; x/
�

C �I

�q.t; x/

�.t; x/
; PX.t/

�

�

dx

C m �S. PX/ PX.t/

#

'.t/ dt

for any ' 2 C1
c.�0; T Œ IRC/. Fix an increasing sequence of functions #n 2 C1

c.R̊�I Œ0; 1�/ such that

#n.x/ ! 1 for a.e. x 2 R
�. Define

Qn.t/ D m PX.t/ C A�
Z X.t/

�1
#n .x � X.t// q.t; x/ dx C AC

Z C1

X.t/

#n .X.t/ � x/ q.t; x/ dx :
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Note that, for a.e. t 2 Œ0; T �, Qn.t/ ! Q.t/ as n ! C1. We have

Z T

0

Qn.t/ ' 0.t/ dt D m

Z T

0

PX.t/ ' 0.t/ dt C A�
Z T

0

Z X.t/

�1
' 0.t/ #n

�

x � X.t/
�

q.t; x/ dx dt

C AC
Z T

0

Z C1

X.t/

' 0.t/ #n

�

X.t/ � x
�

q.t; x/ dx dt :

By Definition 3.1, we obtain that

Z T

0

Qn.t/ ' 0.t/ dt D �m

Z T

0

RX.t/ '.t/ dt

� A�
Z T

0

Z X.t/

�1
'.t/ # 0

n.x � X.t//
�q2.t; x/

�.t; x/
C p

�

�.t; x/
�

�

dx dt

C A�
Z T

0

Z X.t/

�1
'.t/ #n.x � X.t//

�

�.t; x/g sin # C �F

�

�.t; x/; q.t; x/
�

�

dx dt

C A�
Z T

0

Z X.t/

�1
'.t/ # 0

n.x � X.t// PX.t/ q.t; x/ dx dt

C AC
Z T

0

Z C1

X.t/

'.t/ # 0
n.X.t/ � x/

�q2.t; x/

�.t; x/
C p

�

�.t; x/
�

�

dx dt

C AC
Z T

0

Z C1

X.t/

'.t/ #n.X.t/ � x/
�

�.t; x/ g sin # C �F

�

�.t; x/; q.t; x/
�

�

dx dt

� AC
Z T

0

Z C1

X.t/

'.t/ # 0
n

�

X.t/ � x
� PX.t/ q.t; x/ dx dt

Passing to the limit as n ! C1 we have

Z T

0

Q.t/ ' 0.t/ dt D �m

Z T

0

RX.t/ '.t/ dt

C
Z T

0

'.t/
�

� �.A P /.t/ C PX.t/ �.A q/.t/
�

dt

C A�
Z T

0

Z X.t/

�1
'.t/

�

�.t; x/ g sin # C �F

�

�.t; x/; q.t; x/
�

�

dx dt

C AC
Z T

0

Z C1

X.t/

'.t/
�

�.t; x/ g sin # C �F

�

�.t; x/; q.t; x/
�

�

dx dt

and, using (2.14) and the assumptions on ul and ur , we get

Z T

0

Q.t/ ' 0.t/ dt D g sin #

Z T

0

'.t/
�

m C
Z

R

A.t; x/ �.t; x/ dx
�

dt C m

Z T

0

'.t/ �S

� PX.t/
�

dt

C
Z T

0

Z

R

'.t/ A.t; x/ �F

�

�.t; x/; q.t; x/
�

dx dt
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proving the second statement of Lemma 3.3.

Let us consider now the inequality satisfied by the distributional derivative of the total energy E.

Fix an increasing sequence of functions #n 2 C1
c.R̊�I Œ0; 1�/ such that #n.x/ ! 1 for a.e. x 2 R

�.

Note that the hypotheses imply that

lim
x!˙1

E
�

�.t; x/; q.t; x/
�

D lim
x!˙1

F
�

�.t; x/; q.t; x/
�

D 0

for every t > 0. Define

En.t/ D m g X.t/ sin # C 1

2
m PX2.t/

C A�
Z X.t/

�1
#n

�

x � X.t/
�

�

E
�

�.t; x/; q.t; x/
�

C �.t; x/ x g sin #
�

dx

C AC
Z C1

X.t/

#n .X.t/ � x/
�

E
�

�.t; x/; q.t; x/
�

C �.t; x/ x g sin #
�

dx :

Note that, for a.e. t 2 Œ0; T �, En.t/ ! E.t/ as n ! C1. We have

Z T

0

' 0.t/ En.t/ dt D
Z T

0

' 0.t/

�

m g X.t/ sin # C 1

2
m PX2.t/

�

dt

C A�
Z T

0

Z X.t/

�1
' 0.t/ #n .x � X.t// E .�.t; x/; q.t; x// dx dt

C A�
Z T

0

Z X.t/

�1
' 0.t/ #n .x � X.t// �.t; x/ g x sin # dx dt

C AC
Z T

0

Z C1

X.t/

' 0.t/ #n .X.t/ � x/ E .�.t; x/; q.t; x// dx dt

C AC
Z T

0

Z C1

X.t/

' 0.t/ #n .X.t/ � x/ �.t; x/ g x sin # dx dt :

By Lemma 5.1 the couple .E; F / provides a convex entropy–entropy flux pair for the p-

system (2.5), hence, by Definition 3.1, we obtain

Z T

0

' 0.t/En.t/ dt

>

Z T

0

' 0.t/

�

m g X.t/ sin # C 1

2
m PX2.t/

�

dt

� A�
Z T

0

Z X.t/

�1
'.t/ # 0

n .x � X.t// F .�.t; x/; q.t; x// dx dt

C A�
Z T

0

Z X.t/

�1
'.t/ #n .x � X.t//

�

g sin # q.t; x/ C �F .�.t; x/; q.t; x//
q.t; x/

�.t; x/

�

dx dt

C A�
Z T

0

Z X.t/

�1
'.t/ # 0

n .x � X.t// PX.t/ E .�.t; x/; q.t; x// dx dt
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� A� g sin #

Z T

0

Z X.t/

�1
'.t/ # 0

n .x � X.t// x q.t; x/ dx dt

� A� g sin #

Z T

0

Z X.t/

�1
'.t/ #n .x � X.t// q.t; x/ dx dt

C A� g sin #

Z T

0

Z X.t/

�1
'.t/ # 0

n .x � X.t// PX.t/ x �.t; x/ dx dt

C AC
Z T

0

Z C1

X.t/

'.t/ # 0
n .X.t/ � x/ F .�.t; x/; q.t; x// dx dt

C AC
Z T

0

Z C1

X.t/

'.t/ #n .X.t/ � x/

�

g sin # q.t; x/ C �F .�.t; x/; q.t; x//
q.t; x/

�.t; x/

�

dx dt

� AC
Z T

0

Z C1

X.t/

'.t/ # 0
n .X.t/ � x/ PX.t/ E .�.t; x/; q.t; x// dx dt

C AC g sin #

Z T

0

Z C1

X.t/

'.t/ # 0
n .X.t/ � x/ x q.t; x/ dx dt

� AC g sin #

Z T

0

Z C1

X.t/

'.t/ #n .X.t/ � x/ q.t; x/ dx dt

� AC g sin #

Z T

0

Z C1

X.t/

'.t/ # 0
n .X.t/ � x/ PX.t/ x �.t; x/ dx dt :

Passing to the limit as n ! C1, we have

Z T

0

' 0.t/ E.t/ dt >

Z T

0

' 0.t/
�

m g X.t/ sin # C 1

2
m PX2.t/

�

dt

C
Z T

0

'.t/
�

� � .A F.t// C PX.t/ �
�

A E.t/
�

�

dt

C g sin #

Z T

0

'.t/ X.t/
�

� �
�

A q.t/
�

C PX.t/ �
�

A �.t/
�

�

dt

C
Z T

0

Z

R

'.t/ A.t; x/ �F .�.t; x/; q.t; x//
q.t; x/

�.t; x/
dx dt :

Now, using the relations (2.14), we deduce that

Z T

0

' 0.t/ E.t/ dt >

Z T

0

'.t/�I

�

q.t; x/

�.t; x/
; PX.t/

�

dt C m

Z T

0

'.t/ PX.t/�S

� PX.t/
�

dt

C
Z T

0

Z

R

'.t/ A.t; x/ �F .�.t; x/; q.t; x//
q.t; x/

�.t; x/
dx dt

which proves the Lemma. �

Proof of Proposition 3.5. In a neighborhood of .u�; uC/ 2 .R̊C � R/2, introduce the function Q̊
as the expression of ˚ in (3.4) in the Riemann coordinates v˙ defined as in (5.1). The condition
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˚.u�; uC; V / D 0 is then rewritten as

Q̊ .v�; vC; V / D 0 : (5.4)

In a neighborhood of . Nv�; NvC; V /, the Implicit Function Theorem can be applied to (5.4), so that it

is locally equivalent to

v�
1 D 	1.v�

2 ; vC
1 ; V / and vC

2 D 	2.v�
2 ; vC

1 ; V / (5.5)

for suitable smooth functions 	1, 	2, since

D
.v�

1
;v

C

2
/

Q̊ . Nv�; NvC; NV / D D.u�;uC/˚. Nu�; NuC; NV / � D
.v�

1
;v

C

2
/
. Nu�; NuC/

D
�

Du�˚. Nu�; NuC; NV / DuC˚. Nu�; NuC; NV /
�

2

6

6

4

r1. Nu�/

�

0

0

�

�

0

0

�

r2. NuC/

3

7

7

5

D
�

Du�˚. Nu�; NuC; NV / r1. Nu�/ DuC˚. Nu�; NuC; NV / r2. NuC/
�

and the latter matrix is invertible by (3.5).

To solve for V each of the two the relations (5.5), we apply again the Implicit Function Theorem,

computing

DV 	. Nv�
2 ; NvC

1 ; NV / D �
�

D
.v�

1
;v

C

2
/

Q̊ . Nv�; NvC; NV /
��1

DV
Q̊ . Nv�; NvC; NV /

D �
�

Du�˚. Nu�; NuC; NV / r1. Nu�/DuC˚. Nu�; NuC; NV / r2. NuC/
��1

DV ˚. Nu�; NuC; NV /

and condition (3.6) allows to apply the Implicit Function Theorem proving that the relations (5.5)

are logical equivalent to

Qb� �

v�
1 ; v�

2 ; vC
1

�

D V and QbC �

v�
2 ; vC

1 ; vC
2

�

D V: (5.6)

To complete the proof, let b˙ be the expression of Qb˙ in the Riemann coordinate and compute:

ru�b�. Nu�; NuC/ r1. Nu�/

D rv� Qb�. Nv�; NvC/ Du� Nv� r1. Nu�/

D
�

@V 	1. Nv�
2 ; NvC

1 ; NV /
��1 �

1 � @v�
2

	1. Nv�
2 ; NvC

1 ; NV /
�

Œr1. Nu�/ r2. Nu�/��1 r1. Nu�/

D
�

@V 	1. Nv�
2 ; NvC

1 ; NV /
��1 �

1 � @v�
2

	1. Nv�
2 ; NvC

1 ; NV /
�

�

1

0

�

D
�

@V 	1. Nv�
2 ; NvC

1 ; NV /
��1

D �
�

�

Du�˚. Nu�; NuC; NV / r1. Nu�/ DuC˚. Nu�; NuC; NV / r2. NuC/
��1

DV ˚. Nu�; NuC; NV /
�

1

¤ 0 :

The case of bC is entirely analogous. �
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Proof of Lemma 3.7. Lengthy computations show that ˚. Nu�; NuC; NV / D 0. Moreover the left hand

side of (3.5) is equal to

� 1

19

h

p

ln.10=9/
�

405000
p

38 ln.10=9/ � 42750
p

38
�i

C 85500

19
ln.10=9/ � 482; 44:

Moreover the first condition in (3.6) is a fraction with numerator

32400 ln2.5/ C
p

ln.10=9/
�

3240
p

38 ln.10=9/ � 5
p

219488
�

C .�129600 ln.3/ C 64800 ln.2/ � 722/ ln.5/ C 129600 ln2.3/

C .1444 � 129600 ln.2// ln.3/ C 32400 ln2.2/ � 722 ln.2/ � 361

and denominator
p

ln.10=9/
�

34200
p

38 ln.10=9/ � 95
p

219488
�

� 3078000 ln2.5/ C .12312000 ln.3/ � 6156000 ln.2/ C 646190/ ln.5/ � 12312000 ln2.3/

C .12312000 ln.2/ � 1292380/ ln.3/ � 3078000 ln2.2/ C 646190 ln.2/ � 34295

so that .3:6/1 � 0; 39. The second condition in (3.6) is a fraction with the numerator

32400 ln2.5/ �
p

ln.10=9/
�

3600
p

38 ln.10=9/ � 9
p

219488
�

� .129600 ln.3/ � 64800 ln.2/ � 722/ ln.5/ C 129600 ln2.3/

� .129600 ln.2/ C 1444/ ln.3/ C 32400 ln2.2/ C 722 ln.2/ � 361 � 0; 11

and denominator
p

ln.10=9/
�

34200
p

38 .ln.5/ � 2 ln.3/ C ln.2// � 95
p

219488
�

� 3078000 ln2 5 C .12312000 ln.3/ � 6156000 ln.2/ C 646190/ ln.5/ � 12312000 ln2.3/

C .12312000 ln.2/ � 1292380/ ln.3/ � 3078000 ln2.2/ C 646190 ln.2/ � 34295 � �393; 81

so that .3:6/1 � �0; 00027. Finally condition (3.11) clearly holds, since NV � �4; 24. �

LEMMA 5.3 Choose p as in (2.3). Fix g > 0, # 2 Œ0; �=2�. Let AC D A� in (2.11), �F .�; 0/ D 0

and �I � 0 as in Example 2.1. Then, the initial datum .uo; Xo; Vo/, where

�o.x/ D N� exp

�

�g sin #

�2
.x � Nx/

�

Xo 2 R

qo.x/ D 0 Vo 2 R ;

satisfies (3.5), provided Vo ¤ ˙� and V ¤ 1
2

� ln.�C=��/, but satisfies neither .3:6/1 nor .3:6/2.

Proof. Concerning (3.5), lengthy but elementary computations lead to

det
�

Du�˚. Nu�; NuC; NV / r1.u�/ DuC˚. Nu�; NuC; NV / r2.uC/
�

D � .V 2 � �2/

�

2V � � ln
�C

��

�

while both the right hand sides in (3.6) vanish. Indeed, with the notation in Proposition 3.5,

DV ˚. Nu�; NuC; NV / D 0.
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LEMMA 5.4 Choose p as in (2.3) and A as in (2.11) with A˙ > 0. Fix g > 0, # 2 Œ0; �=2�. Let

�F D �S D 0 as in Example 2.2 and �I .q=�; PX/ D N�I . PX � q=�/2 for a positive N�I . Assume �˙

satisfy (2.17). Then, the initial datum .uo; Xo; Vo/, where

�o.x/ D

8

<

:

�� exp
�

� g sin #

�2
.x � Xo/

�

x < Xo ;

�C exp
�

� g sin #

�2
.x � Xo/

�

x > Xo ;
qo.x/ D 0 ; Xo 2 R ; Vo D 0 ;

satisfies (3.5) and (3.6), provided �� ¤ �C.

Proof. Elementary but lengthy computations lead to

det
�

Du�˚. Nu�; NuC; NV / r1.u�/ DuC˚. Nu�; NuC; NV / r2.uC/
�

D A� AC �4 ln.�C=��/ ;
�

�

Du�˚. Nu�; NuC; NV / r1. Nu�/ DuC˚. Nu�; NuC; NV / r2. NuC/
��1

DV ˚. Nu�; NuC; NV /
�

1
D ��=� ;

�

�

Du�˚. Nu�; NuC; NV / r1. Nu�/ DuC˚. Nu�; NuC; NV / r2. NuC/
��1

DV ˚. Nu�; NuC; NV /
�

2
D ��C=� ;

completing the proof.
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