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The study of the basic model for incompressible two-phase flows with phase transitions in the case
of equal densities, initiated in the paper Priiss, Shibata, Shimizu, and Simonett [16], is continued
here with a stability analysis of equilibria and results on asymptotic behaviour of global solutions.
The results parallel those for the thermodynamically consistent Stefan problem with surface tension
obtained in Priiss, Simonett, and Zacher [20].
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1. Introduction

In this paper we study a sharp interface model for two-phase flows with surface tension undergoing
phase transitions. The model is based on conservation of mass, momentum and energy, and hence
is physically exact. It further employs the standard constitutive law of Newton for the stress tensor,
Fourier’s law for heat conduction, and it is thermodynamically consistent.

Suppose that two fluids, fluid; and fluid,, occupy the regions §2;(¢) and §2»(¢), respectively,
with 21(t) N 2,(t) = @ and 2,(t) U 22(¢1) = 2. Let I'(t) = 9£2,(¢) be a sharp interface
that separates the fluids. Across the interface I"(¢) certain physical parameters, such as the density,
viscosity, heat capacity and the heat conductivity, experience jumps. We assume that the interface
is ideal in the sense that it is immaterial, which means that it has no capacity for mass or energy
except surface tension.

In more detail, let 2 C R” be a bounded domain of class C3~ with n > 2. We further assume
that I"(t) N 32 = @, which implies that no boundary contact can occur. In the following we let
o u; denote the velocity field in £2;(¢),

o m; the pressure field in £2;(¢),
o T; the stress tensor in £2;(¢),
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D; = (Vu; + [Vu;]")/2 the rate of strain tensor in £2; (¢),
0; the (absolute) temperature field in £2; (¢),
vr the outer normal of £2; (),
Vr the normal velocity of I'(¢) (corresponding to vr),
Hr = H(I'(t)) = —divrvr the sum of the principal curvatures of I"(¢), and
[v] = va — v the jump of a quantity v across I"(¢).
Here the sign of the curvature Hp is negative at a point x € I" if £2; N B,(x) is convex, for some
sufficiently small » > 0. Thus if £2; is a ball, i.e. I' = Sg(xo), then Hr = —(n — 1)/R.
Several quantities are derived from the specific free energies ; (0) as follows:
€i(0) = ¥ (0) + 0n;(0) is the internal energy in phase ;.
i (6) = —](0) is the entropy,
ki (0) = ej(8) = =0y (0) > 0is the heat capacity,
1(0) = 0y’ (0)] = —0[n(8)] is the latent heat.
Further d;(6) > 0 denotes the coefficient of heat conduction in Fourier’s law, u;(68) > 0 the
viscosity in Newton’s law, p := p; = p = 1 the constant density, and o > O the constant
coefficient of surface tension.

In the sequel we drop the index i, as there is no danger of confusion; we just keep in mind that
the physical quantities depend on the phases, that is, v = u; in £2;(¢) for i = 1,2 and the same for
the other quantities.

By the Incompressible two-phase flow with phase transition we mean the following free
boundary problem: find a family of closed compact hypersurfaces {I"(¢)};>¢ contained in £2 and
appropriately smooth functions u : Ry x £ — R”, and 7, 6 : R4 x £ — R such that

O O O O O O

O O O O

diu+u-Vu—divl =0 in 2\
T = wu@)(Vu + [Vu]") —nl, divu=0 in 2\I'@)
k(0)(0:0 +u-VO)—div(d(O)VO) —T : Vu =0 in 2\7I@)
u=202,0=0 on 052
[u] =[] =0 on I(t) (L.1)
[Tvr]l+oHrvr =0 on [I'(t)
[w@)]+0cHr =0 on I'(r)
—[d(©)0,01+1O0)(Vr —u-vr)=0 on I'(t)
ro)=ry, u(,x)=up(x), 6(0,x)=0(x) in £.

This model has been recently proposed by Anderson et al. [1], see also the monographs by Ishii [9]
and Ishii and Takashi [10], and the derivation in Section 2 of the recent paper [16]. It has been shown
in [16] that the model is thermodynamically consistent in the sense that in the absence of exterior
forces and external heat sources, the total energy is preserved and the total entropy is nondecreasing.
Itis in some sense the simplest sharp interface model for incompressible Newtonian two-phase flows
taking into account phase transitions driven by temperature.

There is a large literature on isothermal incompressible Newtonian two-phase flows without
phase transitions, and also on the two-phase Stefan problem with surface tension modeling
temperature driven phase transitions. On the other hand, mathematical work on two-phase flow
problems including phase transitions are rare. In this direction, we only know the papers by
Hoffmann and Starovoitov [7, 8] dealing with a simplified two-phase flow model, and Kusaka
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and Tani [13, 14] which is two-phase for temperature but only one phase is moving. The papers
of DiBenedetto and Friedman [2] and DiBenedetto and O’Leary [3] deal with weak solutions of
conduction-convection problems with phase change. However, none of these papers deals with
models which are consistent with thermodynamics.

It is the purpose of this paper to present a qualitative analysis of problem (1.1) in the framework
of L,-theory. We discuss the induced local semiflow and study the stability properties of the
equilibria. These are the same as those for the thermodynamically consistent two-phase Stefan
problem with surface tension, and even more, also their stability properties turn out to be the same.
This heavily depends on the fact that the densities of the two phases are assumed to be equal; in this
case the problem is temperature dominated.

In a forthcoming paper we will consider the case where the densities are not equal; then the
solution behavior is different, as the interfacial mass flux has a direct impact on the velocity field
of the fluid, inducing so-called Stefan currents. The velocity field is no longer continuous across
the interface which leads to different analytic properties of the model. We call this case velocity
dominated.

It has been shown in [16] that the total energy

1
E:=EW,0,I') := —/ lu|3 dx +/ €@)dx +o|l|, (1.2)
2 Ja\r o\r
is preserved along smooth solutions, while the total entropy
®0,I') = / n(0) dx (1.3)
o\r

is strictly increasing along nonconstant smooth solutions. By similar arguments as in [20], it can
further be shown that the equilibria of (1.1) are precisely the critical points of the entropy functional
with prescribed energy, and that a necessary condition for such a point e, = (Ux, 0%, ['x) to be a
local maximum of the entropy functional with prescribed energy is that I'y is connected and that the
stability condition (S), see Theorem 3.1 below, is satisfied.

The plan for this paper — which builds on [16] and [20] — is as follows. Our approach is based
on the so-called direct mapping method where the problem with moving interface is transformed to
a problem with fixed domain, resulting in a quasilinear parabolic evolution problem with a dynamic
boundary condition on a domain with fixed interface. The main result on well-posedness of the
transformed problem is taken from [16] and is stated in Section 2. The linear stability properties
of the equilibria are derived in Section 3. It turns out that generically the equilibria are normally
hyperbolic. They are always unstable if the disperse phase £2; is not connected. If both phases
are connected we find the same stability condition, condition (S) in Theorem 3.1 below, as in
Priiss, Simonett and Zacher [20], see also Priiss and Simonett [17]. As the equilibria are normally
hyperbolic we may use a variant of the generalized principle of linearized stability, see Priiss,
Simonett and Zacher [19], to prove nonlinear stability or instability. Combining this method with
the Lyapunov functional we are able to show that a solution which does not develop singularities
exists globally and its orbit is relatively compact in the state manifold. If such a solution contains a
stable equilibrium in its limit set, then it is shown that it converges to this equilibrium.
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2. The local semiflow

(1) Local existence. The basic result for local well-posedness of problem (1.1) in an L,-setting,
stated in [16, Theorem 5.1], is the following. Here Pr = I — vy ® v denotes the orthogonal
projection onto the tangent space of I".

THEOREM 2.1 Let p > n + 2,0 > 0. Suppose ¥; € C3(0,0), i.d; € C?(0, 00) such that
ki(s) = —sy](s) >0, wui(s) >0, di(s)>0, s€(0,00),i=12.
Assume the regularity conditions
(0. 60) € W22 (2 \ o) N C()I"H!, Ty e w27,
where £2 C R” is a bounded domain with boundary 352 € C3~, the compatibility conditions

divug =0 in 2\ Iy, up =09,80 =00nds2,
Pr,[1(60) (Vo + [Vuoe] )] = 0 on I,
[¥(80)] +0Hr, =0 on Iy, [[a’(é’o)avr0 Bo] € Wp2_6/1’(F0),

and the well-posedness condition
6p > 0on 82, 1(6y) # 0on Iy.

Then there exists a unique Lj,-solution of problem (1.1) on some possibly small but nontrivial time
interval J = [0, t].

(1) The local semiflow. We follow here the approach introduced in Kéhne, Priiss and Wilke [11] for
the isothermal incompressible two-phase Navier-Stokes problem without phase transitions and in
Priiss, Simonett and Zacher [20] for the Stefan problem with surface tension.

Recall that the closed C2-hypersurfaces contained in §2 form a C2-manifold, which we denote
by T H?(£2). The charts are the parameterizations over a given hypersurface ¥, and the tangent
space consists of the normal vector fields on ¥. We define a metric on ML (£2) by means of

dpy2(Z1. 22) 1= dg (V> 21, N2 X,),

where dp denotes the Hausdorff metric on the compact subsets of R” and N2Y =
{(p.vs(p),Vsvs(p)) : p € X} the second order bundle of ¥ € T K?(£2). This way MK (£2)
becomes a Banach manifold of class CZ2, cf. [18].

As an ambient space for the state manifold STil of problem (1.1) we consider the product space
C(2)"T! x MK?(£2), due to continuity of velocity, temperature and curvature.

We then define the state manifold STl as follows.

SM = {(u.0,I) € C(2)"T' x MK : (u,0) € W2 2/P(2\ )", I e W37,
divu=0in 2, 6>0in$, u=0,0 =0 onas2,
Prw@)Dvr] =0, [y(0)] +oHr =0onT,
1(0) #0on T, [dd,0] € W27 (I")}. (2.1)
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Charts for these manifolds are obtained by the charts induced by T ¥ ?(£2), followed by a Hanzawa
transformation.

Applying Theorem 2.1 and re-parameterizing the interface repeatedly, we see that (1.1) yields a
local semiflow on STil.

THEOREM 2.2 Let p > n + 2,0 > 0, and suppose ¥; € C3(0,00), iu;,d; € C?(0, 00) such that
ki(s) = —sy](s) >0, wi(s) >0, di(s)>0, s€(0,00),i=12.

Then problem (1.1) generates a local semiflow on the state manifold SW. Each solution (u, 6, I")
exists on a maximal time interval [0, 7. ), where £, = tx (g, 6o, [0).

Note that the pressure does not occur explicitly as a variable in the local semiflow, as the latter
is only formulated in terms of the temperature 9, the velocity field u, and the free boundary I". The
pressure 7 is determined for each time ¢ from (u, 6, I") by means of the weak transmission problem

(V7IV9), @) = Qdiv((O)D) —u-Vu|Ve), . ¢ € H,(R2).
[x] =ocHr +2[u(@)Dvr -vr] onl.

Concerning such transmission problems we refer to [11, Section 8].

3. Linear stability of equilibria

1. Asshownin [16, Section 3], the equilibria (14«, 7«, O«, I'x) of (1.1) consist of zero velocities .,
constant pressures 7, in the phases, constant temperatures ., and §2; is aball £2; = Bgr, (x«) C £2
in case £2; is connected, and a union of nonintersecting balls of equal radii otherwise. We assume
here that the balls do not touch the outer boundary 952, to avoid the contact angle problem, and we
also assume that the balls do not touch each other. We are not able to handle the latter case as the
interface I'x = 0521 will then not be a C2-manifold. We call such equilibria non-degenerate. The
temperature 6, and the pressure jump [r.] are related to R, via the curvature Hp, through the
relation

(n—1o

V(6] = —oHr, = -

I = =Ty (6] (3.1

In the sequel we only consider non-degenerate equilibria and denote the set of such equilibria by &,
i.e.,

m
&=100.6. 1) I\ = yrt rt= Sr.(h)},

with [7«], 6« and R, determined by (3.1). According to (1.2) the total energy at an equilibrium
(0, B4, I'y) is then given by

©(04) := E(0,04,Ty) = / €(0x)dx + o|I|. (3.2)
Q

*
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By employing the Hanzawa transformation, see [16, Section 2], one shows that the fully linearized
problem at an equilibrium is given by

U — uxAu+ Ve = f, in 2\ I,
divu=f; in £\ I,
u=20 on 082,
[u] =0 on I,
—[Tv] +o0(Ash)v = g4, on Tk,
Kx0:0 —ds AD = fp in 2\ T, (3.3)
0, =0 on 052,
[¥1=0 on Ik,
140 —0Ash =gg on T,
(I«/04)(0th —u -v) — [dx0,0] = g on T,
u(0) = uo, 9(0) = o, 1(0) = ho,

with
px = w(0x), ks = k(0x), L =1(0x), Ax=—H'(0)=—(n— 1)/Ri —Ar,, 3.4

where Ap, denotes the Laplace-Beltrami operator of Iy, % = (0 — 604)/0s« is the relative
temperature, and / denotes the height function that parameterizes the unknown interface I"(¢) over
I.

It follows from the maximal regularity results in [16] that the operator IL defined by the left hand
side of (3.3) is an isomorphism from E(J) into R(J) C F(J)xyE, where R(J) is determined by the
natural compatibility conditions. Here the function spaces E(J), yE(J) and F(J), with J = [0, a]
an interval, are defined as follows:

E(J) = {(u,7,q,0,h) € Ey(J) x E2(J) x E3(J) x E4(J) x Es(J) : ¢ = [x]}.
where

E1(J):={ue H)(J:Lp(2))" N Lp(J: HX(R2\ TW))" : u=00n082, [u] =0},
Eo(J) = Lp(J: Hy (2 \ I})).

E3(J) 1= W, /272 (] Ly(1W) N Ly (J: W ~HP(I)),

Es(J):=1{0 € Hy(J: Lp(2)) N Lp(J: HZ(2\ T)) : 8,6 =0o0ndg2, [6] =0},
Es(J) := W2V2P (J1 Ly(1) N WETV2P(J HA(TW) 0 Lp(J: WP ().

Here n € Lp(J;HI}(Q \ I'y)) means that m; € LP(J;HI}(.Q,-)), where le(.Q,-) = {q €
H!, (£2;): VG € Ly(£2;)"}/ constants, i = 1,2. The time-trace space yE(J) is given by

1,loc

n+1

YE(J) = {(uo. %0, ho) € (WZ2/P(2\ )N C(2))"" x Wi=3/7(I,)},
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while the space of data is F(J) := {(fu, Sfa-8u- fo.80,8n) € 1_[,6:1 IF; (J)}, where

Fi(J) = Lp(J; Lp(2))",

Fo(J) == Hy(J: Hy ' (2)) N Ly(J: HY (2 \ T)).

F3(J) := W) 2722 (1 Ly (1) 0 Ly (J; W,V 2 (1),

Fa(J) 1= Lp(J: Lp(£2)),

Fs(J) := Wy =22 (J; Ly () N Ly (J: WEYP (1),

Fe(J) := W, /27122 (] Ly (1) N Ly (T WP (1)),
with I:Il,_l(.Q) = (FI;,(.Q))*, p' = p/(p — 1). If the time derivatives d, are replaced by 9; + w,
with @ > 0 sufficiently large, then this result is also true for J/ = R.

2. We introduce a functional analytic setting as follows. Set
Xo = Lpo(R)" x Lp(2) x Wr2/P (L),
where the subscript 0 means solenoidal, and define the operator L by
L(u,0,h) = (— pedu + Va, —(du/ks) AD, —u - v — (0x/ 1+)[d+0,9]).
To define the domain D(L) of L, we set
X1 = {(.9.h) € (HX(R2\ L) N C@)" " x wir(ry)
divu =0 in 2\ Ik, u=09,9 =0 on 89},
and
D(L) = {(u,9.h) € X1 : [Peptx Dv] =0, [40 —0Ash =0on Ik,
[d.0,0] € W2™2/7(I'y)},

where P, = Pr, denotes the orthogonal projection onto the tangent space of I'x. Here & is
determined as the solution of the weak transmission problem

(VaIVP)Ly@2) = (e Au|VP) Ly 2). ¢ € HY(R2).,
[z] = —0Axh 4+ 2[p«Dv - V].

We refer to [11, Section 8] for a detailed analysis of such transmission problems.
The linearized problem can be rewritten as an abstract evolution problem in Xy,

z+Lz=f t>0, z(0)=z, (3.5)

where z = (u, %, h), f = (fu, fo.8n), 2o = (uo, Vo, ho), provided f; = gy, = go = 0. As the
terms u - v and 0A«h are of lower order we may deduce maximal L,-regularity of (3.5) from that
of the Stokes system (cf. [11, Section 6] and the (3, &)-system corresponding to the Stefan problem
with surface tension ( [20, Theorem 4.3]) by means of a perturbation argument. In fact, by trace
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theory u € Ey(J) implies u - v € Fp(J) := W, V2P (J:L,(I) N Ly(J: W2 Y?(I)), and
thus u - v has more temporal and spatial regularity than functions in L, (J/; sz—z/ P(Iy)), which
is the base space of the h-equation. On the other hand, maximal L,-regularity of (¢, ) implies
that 0A.h (= 1+0) € Fp(J), and thus o (A«h)v enjoys more temporal and spatial regularity than
gu € F3(J). We also refer to [16, proof of Theorem 5.2], where a similar argument is used. From
maximal L,-regularity of (3.5) we can then conclude that —L generates an analytic Co-semigroup
in Xo; cf. Priiss [15, Proposition 1.1].

3. The eigenvalue problem. Since the embedding X; < X, is compact, the semigroup e ! as
well as the resolvent (A4 L)~! of —L are compact. Therefore, the spectrum o' (L) of L consists only
of countably many eigenvalues of finite algebraic multiplicity and is independent of p € (1, 00).
Therefore it is enough to consider the case p = 2. In the following, we will use the notation

wv)e = W)L, (0) = /Quﬁ dx, u,v e Ly(£2),

@lhr. = glhar = /F ghds, g.heLa(l),

for the L, inner product in £2 and Iy, respectively. Moreover, we set |v]|o = (v|v)}2/2 and |g|r, =

(g| g)}/*z. The eigenvalue problem for — L reads as follows:
A — s Au+Vr =0 in 2\ Ik,
divu =0 in £\ Ik,
u=0 on 0J52, (3.6)
[ul =0 on Ik,
—[Tv] +0(Axh)v =0 on I,

KxAD —ds A9 =0 in 2\ [,
d,% =0 on 082,
[#] =0 on [T, (3.7
40 —cAsh =0 on Tk,
(I«/0x)(Ah —u -v) — [d«0,0] =0 on TI%.

We are now ready to formulate the main result of this section.

THEOREM 3.1 Let L denote the linearization at (0, 0«, I'x) € & as defined above. Suppose /.. # 0.
Then —L generates a compact analytic Cp-semigroup in X which has maximal L ,-regularity. The
spectrum of L consists only of eigenvalues of finite algebraic multiplicity. Moreover, the following
assertions are valid.

(i) If I'k is connected and the stability condition

on—1) 12|

s = s(ex) :=

)

holds, then all eigenvalues A # 0 of —L have negative real part.
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(ii) The stability condition (S) is equivalent to ¢’(64) < 0, where the function ¢ is defined in (3.2).

(i) If I = U;C":l]“f and s > 0, then —L has precisely m positive eigenvalues, and precisely
(m — 1) positive eigenvalues if s < 0.

(iv) A = 0is an eigenvalue of L with geometric multiplicity (mn + 1). It is semi-simple if s # 0.

(v) Letesx = (0,04, I'x) € 8 be an equilibrium. Then in a neighborhood of e, the set of equilibria
8 forms a (mn + 1)-dimensional C !-manifold. Moreover, the kernel N (L) of L is isomorphic
to the tangent space T,, & of € at e..

Consequently, (0, 04, I'x) € & is normally stable if and only if s < 0 and Ik is connected, and

normally hyperbolic if and only if s > 0, or Iy is disconnected and s # 0.

Proof. (i) Suppose A with Re A = 0 is an eigenvalue of —L with eigenfunction (u, ¥, h). Taking
the inner product of the eigenvalue problem (3.6) with # and integrating over £2 we get

0= A|u|?2 — (div T|u)g = A|u|?2 +/ T:Vudx + (Trvuy — Tyviy) ds
(9] I

= Auly +21w2 DG + (Tv]lw)r.,
= Alulg + 2| DIG + oA(Ahn)r. + o (Ashlj)r..
since [u] = 0, [Tv] = o(A«h)v andu - v = Ah + j with (l«/0x)j = —[d«d,?]. On the other
hand, the inner product of the equation for ¢ with ¢ and an integration by parts lead to
0= A|K}</2l9|?2 + |d,:/2Vl9|?2 + ([d«0,9]19) .
= A ?0[G +1d VO[S — 0 (j1Ash) 1. /6s.

where we employed the relations (//6«)j = —[d«0,?7] and [,¥ = ocA«h. Adding these identities
and taking real parts yield the important relation

0 = Re Aul% +2|1l?D|% + o Re A (Ashlh)r, + 0« (Re Akl 293 +1d1/2VD%).  (3.8)
On the other hand, if B := ImA # 0, then taking imaginary parts separately we get with a =
o (Axh|j)r.

0= Bluly —op(Ahl)r, +Ima,
0 = Bbikc}/20|% + Ima.

Hence
o(Auhlh)r, = ul% — 0.kl ?91%.

Inserting this identity into (3.8) leads to
0=2ReAlul? +2|ul/?D|% + 0.1d}/?V 0|3,

which by (3.6)-(3.7) (and Korn’s inequality in case Re A = 0) shows that if A is an eigenvalue of
—L with Re A = 0 then A is real. B B
Supposing that A > 0 is an eigenvalue, we decompose ¥ = ¥+, h = ho+hand j = jo+/,
where B B
U= (k| / kel D, b= D /ITxl, = GIDr/IT%
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are weighted means. Then

2013 = [0l B + (x| D@, [hIT, = lholp, + [Tl 2, 1|7, = ljolF, + [Tl /.
Therefore (3.8) becomes

0 = Aul + 2|1y > DIG + oA(Asholho)r,

n—1

RE

10, (/\|K}</2190|%2 4 |d,,}/2V190|§2) T MG (| 1) 292 — Ao |2 (3.9)

We further have

A hds:/(u'v—j)ds:—/ jds
T T Iy

hence Ah = — j_ . Also, the identity

(z*/e*)/ jds:—/ [[d*a,,ﬁ]]ds:/ d*Aﬁdx:)L/ Ky D dx
Ty Ty 2 2

implies (I«/0:)|Tk|j = A(k«|1)@¥. Thus (3.9) becomes

0 = Aul + 2|y/*DI% + oA(Axholho)r,

12|T| on—1)) -
O (Alicl/ 290l + 14120l ) + AlTel{ - b2, @10

As A, is positive semidefinite on functions with mean zero if I is connected ( [17, Prop. 3.1]), in
this case —L has no positive eigenvalues if the stability condition

I2|T -1

1% _(n 2)‘7;0 (.11
is satisfied. This is the same condition we found for the thermodynamically consistent Stefan
problem with surface tension; see [20] and [17].

(i1)) The assertion follows immediately from the results in [16, Section 3].

(iii)) On the other hand, if the stability condition does not hold or if I is disconnected, then there
is always a positive eigenvalue. To prove this we proceed as follows. Solve the Stokes problem

A —puxAu+Voe =0 in 2\ Ik,
divu =0 in £\ Ik,
u=0 on 052, (3.12)
[ul =0 on T,
—[Tv] =gv on Ik

and define the Neumann-to-Dirichlet operator N f for the Stokes problem by N f g = u-v.
Similarly, solve the heat problem

ksl —deAY =0 in 2\ I,
0, =0 on 052,
[#] =0 on T,
—[d«0,%] =g on I

(3.13)
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to obtain ¥ = N f g, where N f denotes the Neumann-to Dirichlet operator for the heat problem.
In the following, we use the same notation for ¥ and its restriction to I'.

Suppose that A > 0 is an eigenvalue with eigenfunction (u, %, h). Choosing g = —0A.h in
(3.12) we obtainu - v = —NfaA*h. Next we solve the heat problem (3.13) with g = (I/0x)(u -
v — Ah), yielding

% = —(l+/0)NF (NS oAxh + Ah).

This implies with the linearized Gibbs-Thomson law [} = oA« the relationship
—(12/0)NF (NS oAxh + Ah) = 0Ah,

hence
M+ NS + ((12/6)NE)oAh = 0.

Setting
Ty = INg + (/0N
we arrive at the equation

Byh :=ATyh + cAh = 0. (3.14)

A > 0is an eigenvalue of —L if and only if (3.14) admits a nontrivial solution. We consider this
problem in L, (). Then A, is selfadjoint and

on—1)
R2

*

o(Axhlh)r, = — |h|F,.

On the other hand, we will see below that N fl and N f are selfadjoint and positive semidefinite
on L,(I%) and hence T} is selfadjoint and positive semidefinite as well. Moreover, since A, has
compact resolvent, the operator B, has compact resolvent as well, for each A > 0. Therefore the
spectrum of B) consists only of eigenvalues which, in addition, are real. We intend to prove that in
case either Iy is disconnected or the stability condition does not hold, By, has 0 as an eigenvalue,
for some A9 > 0.

To proceed we need properties of the relevant Neumann-to-Dirichlet operators.

PROPOSITION 3.2 The Neumann-to-Dirichlet operator N f for the Stokes problem (3.12) has the
following properties in L, ().
(i) If u denotes the solution of (3.12), then

(WFelor. =Auly+2 [ pulDBdr. g€ La(R). A0

(ii) For each o € (0, 1/2) there is a constant C > 0 such that

_ (+2°

(NFgle)r, = ——c——INJglf,. g €La(l), 220,

In particular,
C

—, A 20.
(I+ 1)

INF 8L <
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(iii) Let F*k denote the components of Iy and let e; be the function which is one on I, f, Zero
elsewhere. Then (N f glex)r. = O for each k; in particular N f g has mean value zero for each
g € La(I'x). Moreover, with e = ), ex we have Nfe = 0 and (Nfg|e)L2(p*) = 0 for all
g€ L2(F*)~
Proof. The first assertion follows from the divergence theorem. The second assertion is a
consequence of trace and interpolation theory, combined with Korn’s inequality and (i). In
fact, we can use that the trace operator yr, : H21/2+E(.Qz) — L,(I'yx) is bounded and that
[L2(522), H) (22)]1/24¢ = H21/2+E (£22) (complex interpolation) for all € € (0,1/2]. The last
assertion is implied with divu = 0 by the divergence theorem. o

The following result can be found in [20, Prop. 4.7].

PROPOSITION 3.3 The Neumann-to-Dirichlet operator N ){1 for the diffusion problem (3.13) has
the following properties in Ly (1%).
(i)  If 9 denotes the solution of (3.13), then

(N{glo)r, = AV [ + 1VduVOIG. g € La(I%), A > 0.
(ii) Foreacha € (0,1/2) and A¢ > O there is a constant C > 0 such that

Aot
(Nigle)r. = INTglh, g € La(I%), A = ho.

In particular, N /{'I is injective, and

C
(iii) On Lo(Ix) ={g € Lo(I) : (gle)r, = 0}, we even have
1+ 1)
(N{'glo)r, = —5—INfglh. g€ Lao(Ih). >0,
and
INF gL, o << A>0
A ( 2.0( *)) =~ (1 +A’)a7 .

In particular, for A = 0, (3.13) is solvable if and only if (g|e) r, = 0, and then the solution is unique
up to a constant.

(a) Consider vy := Tje, or equivalently e = va;h + (C*Nf)_lv)h, where we used the
abbreviation ¢y = lf /0%, and where e is the characteristic function on I'x. Here I'x can be either
connected or disconnected. Denoting the orthogonal projection from L, (I'y) to L2 o(I%) by Qo,
the equation for v, is equivalent to

V) +c*NfIQ0va,1 = c*Nfe,

due to Proposition 3.2. Multiplying this identity in L, (%) by N f v, we obtain with Propositions
32and 3.3

cCMINSvalF < (a + e« NINSINSv ), = (e« N eINSvi)r,
= cx(e|NF QoNS v r, < CV)INS vl
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where c¢(4) and C(A) are bounded near A = 0, showing that Nf v, is bounded near A = 0. This
implies

lim ATpe = lim Avy = ¢4 lim AN e,

A—0 A—0 A—0
provided the latter limit exists.

To compute this limit, we proceed as follows. First we solve the problem

0L, =0 on 08 315
4] =0 on T (3.15)
—[d«0,9] = e on [,

where ag = |I'«|/(k«|1)gq, which is solvable since the necessary compatibility condition holds. We
denote the solution by ¥y and normalize it by (k«|%9)z = 0. Then ), = N fl e — U9 —ap/A solves
the problem

KxAD — dx AY = —kx A0 in 2\ I

0,0 =0 on 082 (3.16)
[¢] =0, on [ '

By the normalization (k«|%)e = 0 we see that 9, is bounded in H3(£2 \ I'x) as A — 0. Hence we
have

Anm ANHe = A1im A + Ao + ao] = ao = |Tk|/(k«| .
—0 —0

This then implies

I|? -1
[ _U|F*|(n )

<0,
(k«|Dg RZ

lim (Byele)r, = c«
A—0

if the stability condition does not hold.

(b)  Next suppose that I is disconnected, i.e., [x = Uf=11“*k, and set g = D agex # 0 with

ar = 0. Hence Q¢g = g. Then for vy := T, g we have as in (a) boundedness o vy, an

i 0. H Then f T h in (a) bounded f NS d
then

lim AT5¢ = lim Avy = ¢« lim ANH =0,
lm ATyg = lim Avy = cx lim 3 Qog

since N fl Qy is bounded as A — 0. This implies

}E)I})(Bkglg)Lz(F*) = TR Xk: |I lag < 0.

(c)  Next we consider the behavior of (Byg|g)L,(r,) as A — oo. With ¢x = [2/0, as above we
first have

Ty =+ NINH) TN = o N — e NENS (I 4+ cx NENS)1euNE,
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hence by Propositions 3.3, 3.2 for A = Ay, with A sufficiently large,
(Tagle)r, = cx(N{Tgle)r, — cZ(NJ (I + cxN{INS) TN gINI o),

INS I, r
A INf’gI?*]

> c*[(Nfglg)r* —c;
1=l N Ly NS |y

CAGYINS L,
A (Nfglg)r*]
1= x| Ny Lo ro INR Ly

1
> c*[(Nfglg)r* - E(Nf’glg)r*] =co(Nglg)r..

> c*[(Nfglg)r* -

Therefore, it is sufficient to bound (N /{1 glg)r. from below as A — oco.
For this purpose we introduce the projections P and Q by

m
Pg=cmy (glex)rex, Q=1-P,
k=1

where ¢, = m/|I|in case Iy has m components. Then with gx = (glex) .
(NS PglQo)r.| < cm Y Ikl [(Nf Qgler)r. |
k
<C Y lgl INF Qglr, < €A™ [grl (N 0g109) 2
k k
< CA™P[ Y Ik + m(NJ 0gl09)r |
k

< Ca?|Pgh, + (VF 0¢109)r. ]

where C > 0 is a generic constant, which may differ from line to line. Hence for A = ¢, with A
sufficiently large, we have

(N glg)r, = (N 0g|0g)r, +2(NF Qg|Pg)r, + (Nf Pg|Pg)r,

1 C
> 5N 08109)r, + (N Pl P)r. — 51 Pl
0

This implies
(Baglg)r, = MTrglg)r, + o(Axglg)r,
A
> co[ S (N{ 02109)r. + AN, PglPg)r.]
+ o0 (A« Q8108 r, —c| PglT, .

Since N /{'I is positive semidefinite and also A4 Q has this property as im (Q) C L3 (%), we only
need to prove that A(N/{'I Pg|Pg)r, tends to infinity as A — oo.
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To prove this, similarly as before we assume A > 1 and estimate

—o/2 1/2
((NVf eilej) Lol < CINS eiliy(ry < CAG* (N eilen) 3.

Choosing A sufficiently large this yields
(NHPg|Pg) > ¢o| min(NH e;]e;) _ < |Pg|?
A D88y = Co| M A Cil®i)Ly(Iy) g 8L,
Therefore it is sufficient to show

Jlim AN erler)r,ry =00, k=1,...,m. (3.17)
—00

So suppose, on the contrary, that A;(N /{1 g18)r,(r,) is bounded, for some ¢ = e; and some
: J

sequence A; — oo. Then the corresponding solution ©; of (3.13) is such that v; := A;%; is
bounded in L,(£2) as

RIViEd 1 < A (3101 + 1VdV,13) = (N glo)r..

Hence v; has a weakly convergent subsequence, and we can assume without loss of generality that
Vj — Voo Weakly in L, (§2). Fix a test function ¢ € 9(§2 \ I'y). Then

(kxv;i[¥)2 = ([d«AVj|V)2 = (Vj|d«AY) 2 = (vj|d«AY)2/A; — 0
as j — 00, hence voo = 0 in L;(§2). On the other hand we have

I
0< |m| :/ gds:/ —[d0,3;] ds

=/ d« AY; dx:)kj/ Kx dx—)/ KxVood X,
2 2 2

hence v is nontrivial, a contradiction. This implies that (3.17) is valid.

(d) Summarizing, we have shown that B} is not positive semidefinite for small A > 0 if either I
is not connected or the stability condition does not hold, and B}, is always positive semidefinite for
large A. Set

Ao = sup{A > 0 : B, is not positive semidefinite for each p € (0, A]}.

Since Bj has compact resolvent, B has a negative eigenvalue for each A < A¢. This implies that O
is an eigenvalue of B, ,, thereby proving that —L admits the positive eigenvalue 2.
Moreover, we have also shown that

[T
(kx| g2

Boh := }im AT h + 0Axh = ¢ (I — Qo)h + cAsh.
—0

Therefore, By has the eigenvalue ¢« ||/ (kx|1)r,2) —o(n — 1)/ R? with eigenfunction e, and
in case m > 1 it also possesses the eigenvalue —o (n — 1)/R? with precisely (m — 1) linearly
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independent eigenfunctions of the form ) ;. axer with ), ax = 0. This implies that — L has exactly
m positive eigenvalues if the stability condition does not hold, and m — 1 otherwise.

(iv) (a) Suppose that (u, ¥}, ) is an eigenfunction of L for the eigenvalue A = 0. Then (3.8) yields
2|ui/2 DI + 1d}/>Vo 5 = 0. (3.18)

It follows from (3.18) and (3.6)-(3.7) that & is constant and D = 0 on £2. Korn’s inequality, in turn,
implies Vu = 0 on §2, and we then have u = 0 by the no-slip condition on d§2. Moreover, the
pressures are constant in the phases and we have

[7] + cAsh =0, [} —0cAsh =0 on Tk.
We can now conclude from the relation /. — 0A«h = 0 that the kernel of L is given by

N(L) = span{(O, %

1€).(0,0,YF).....(0,0, Y5y : 1sksm}, (3.19)
where the functions ij = ij ex denote the spherical harmonics of degree one on Ff , normalized
by (Yik|ij) rk = di;j. This shows that N(L) has dimension (mn + 1), in accordance with the
situation for the Stefan problem with surface tension [20].

(b) It remains to show that A = 0 is semi-simple if s # 0. We concentrate on the case where

I is connected, for simplicity. The disconnected case is treated in complete analogy. So suppose
(u, ¥, h) € N(L?). Hence L(u, 9, h) € N(L), i.e.

L(u.®.h) = ao(0.—0(n — 1)/(1.R2). Yo) + Y _ (0,0, Y)),
=1

where o, ; are appropriate coefficients and Yo = 1. Thus (u, 9, i) solves the equations

—uxAu + Vo =0 in 2\ I,
divu =0 in £\ I,
u=20 on dJ82, (3.20)
[u] =0 on [,
—[Tv] = —o(A«h)v on T,
and
—d AV = —apkro(n — 1)/l*Ri in 2\ Iy,
0,0 =0 on 0452,
[#] =0 on [, (3.21)
I« —0Ash =0 on I,
—(ls/Os)u - v — [d«0,0] = (I+/0x) X]_ o1 Yy on [,

We have to show o; = 0 for all /. Integrating the equation for the temperature over £2 we find

o(n—1(k«|g —a Li| x|
I.R2 T,

Qo (3.22)
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as u - v and the spherical harmonics Y;, 1 </ < n, all have mean zero on I'. Therefore, ag = 0,
unless there is equality in the stability condition. If s # 0, and hence a9 = 0, it follows from (3.20)
and (3.21)

0 =2|uy?DIg + o (Ashlu-v)r,,

n
0= 0.]d})>VO|G — o (Auhlu-v+ Y Y r, = 0u|d}/ V|G — o(Achlu V)1,
I=1

as A is self-adjoint and AY; = O for the spherical harmonics. Adding these equations gives
20> D1 + 64}V [E = 0.

This implies D = 0, ¥ constant, ¥ - v = 0 and u = 0, which in turn yields 0 = Z7=1 o;Y;. Thus
«; = 0 for all / since the spherical harmonics Y; are linearly independent. Therefore, the eigenvalue
A = 01is semi-simple.

(v)  Suppose for the moment that I consists of a single sphere of radius Ry = a(n—1)/[¥ (6:)],
centered at the origin of R”. Suppose 8 is a sphere that is sufficiently close to I'x. Denote by
(¢4, ..., ¢y) the coordinates of its center and let {o be such that o (n—1)/[¥ (6« +0+o)] corresponds
to its radius. We observe that the equation a(n — 1)/[¥ (6« + 0+{o)] = R has a unique solution
o for R close to Ry, as [¥/(04)] # 0 by assumption. Then, by [6, Section 6], the sphere S can be
parameterized over I by the distance function

PO =) LY =Rt [Q_ LY+ (0= D/[Y (O + 6:L)D> = D 2.
j=1 j=1 j=1

Denoting by O a sufficiently small neighborhood of 0 in R”*!, the mapping
(£ = W) 1= (0.80. p(E)] : O — W@ x WP (1)

is C! (in fact C* if  is C¥), and the derivative at 0 is given by
W' (0)z = (o, 1, —o(n— 1)9*[[¢’(9*)]]/[[¢(9*)]|2)zo n (o,o, Yz Y,-), z e R,
j=1

Noting that
a(n—1)0[y'(0.)] _ I*Ri
[v (6] S o(n—1)

we can conclude that near e, = (0, 6, I';) the set & of equilibria is a C !-manifold in sz(.Q)" X

sz (£2) x Wp4_1/ P(Iy) of dimension (n + 1), and that T,, & coincides with the eigenspace N(L).

It is now easy to see that this result remains valid for the case of m spheres of the same radius
R... The dimension of & is then given by (mn + 1), as mn parameters are needed to locate the
respective centers, and one additional parameter is needed to track the common radius. o
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REMARKS 3.4 (a) One should observe that for the case s = 0, the eigenvalue A = 0 ceases to be
semi-simple and the dimension of the generalized eigenspace raises by one. This can be shown by
similar arguments as in the proof of Theorem 2.1.(c) in [17].

(b)  For the Fréchet derivative of the energy functional E(u, 8, I'), see (1.2) for the definition, we
obtain

1
(E'(u. 0. )| (v. 9. 1)) =/ (u-v +€'(0)D) dx —/ (aHr + [5hi3 +e(9)]])h ds.
22 r
At equilibrium (u, 0, I') = (0, Oy, I'y) this yields

(E'(0, 9*,F*)|(v,z9,h)):/ KD dx—/ (0Hr, + [ex])h ds.
2

*

Here [e«] := [e(6+)] = [V (6+)] — 0«[¥'(0x)] = —(cHr, + 1) where we used the equilibrium
relation [ (0«x)] + cHr, = 0 and the definition of /. in the last step. Preservation of energy then
requires (E’(0, 04, I'x)|(v, ¥, h)) = 0, hence

2 *

In this case h = Z?:o_“l Y;, where Yy = 1 and Y; denote the orthonormalized spherical harmonics
of degree one. Hence 1 = g, and = —ago(n — 1)0x/ L« R2, which implies

[0(11 — 1)Bx (k4|1
oo

e — L] =o.

Thus & = a9 = 0 unless we have equality in the stability condition (3.11). Conservation of energy
kicks out one dimension of the eigenspace.

4. Nonlinear stability of equilibria

1. We now consider problem (1.1) in a neighborhood of a non-degenerate equilibrium e, =
(0,64, I'y) € &, with [, = () # 0. Setting ¥ = I’ the transformed problem becomes

U — uxAu+ Vo = F,(u,7,9,h) in £\X,

divu = Fg(u,h) in £2\X,
u=0, 9,9 =0 on 082,
[u] =0, [#]=0 on X,

—Psps(Vu + [Vu])]vs = Ge(u,%,h)  on X,
—[Tvs -vs] + 0Ash = G,(u, 9, h) on X,
Kx0; 0 — dx AD = Fg(u, 9, h) in £2\X,
[+ —cAxh = Gg(9, h) on X,
(l+/0+)(0:h —u - vy) — [d«0,0] = Gp(u, 9, h) on X,
u(0) = ug, ¥(0) = B¢, h(0) = hy.

@.1)
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The nonlinearities on the right hand side of (4.1) are, up to some straightforward modifications,
defined in [16, Section 7]. It follows that the nonlinearities are of class C! from E(J) to F(J), and
they satisfy

Fj(0) = G(0) = F{(0) = G;.(0) =0, j €{u,d,0}, kei{r,v,0,h}
In order to shorten notation, we will occasionally write (4.1) in short form
Lz = N(z), z(0)= zo.

The state manifold locally near the equilibrium e, = (0, 0y, I'y) reads as

ST = {(u, 9,h) e (W22/P(2\ 2)n @) x wir(x),
divu = Fy(u,h) in 2\ Y, u=0,9 =00n02,
—Pxu«(Vu + [Vu]T)]Ivz =G (u,%,h)on X,
1.0 —0Agh = Gg(D, h), [d«d,0] + Gp(u,d,h) € WPH/P(E)}. 4.2)

Note that due to the compatibility conditions this is a nonlinear manifold. We shall parameterize
this manifold over its tangent space

7= {(ﬁ, B.hy e (W2AP@2\ £)nC()" x wir(E),
divii =0 in 2\ X, i =3,0 =0onds,
— Pylux(Vii + [Vii] vy = 0, 10 —0Ash =0, [dudyD] e W;—G/P(z)}.

We mention that the norm in Z is given by

|(f" ﬂ’h)|2 = |L~‘|Wp2—2/”(9\2) + |19|W,?—2/”(9\2) + |h|Wp“—3/"(z) + “[d*avﬁ]]iwpz—ﬁ/”(z)'

2. In order to parameterize the state manifold ST over Z near the given equilibrium (0, 0y, X)
we consider the linear elliptic problem

ou — puxAu+Vr =0 in £\X,
divu=f; in £2\%,
u=20,0=0 on 082,

[ul=M%1=0 on X,

—[us(Vu + [Vu] " Jvs + [7]vs + 0(Agh)vs =g, on X,
Kxw® —d A9 =0 in 2\ X,

[+ —0Ash =gg on X,

(U+/0x)(@h —u-vy)—[d«0,0] =g on X

4.3)

for given data ( f4, gu, gn. £¢)- For this problem we have the following result.



424 J. PRUSS, G. SIMONETT AND R. ZACHER

PROPOSITION 4.1 Suppose p > 3, [« # 0 and w > 0 is sufficiently large. Then problem (4.3)
admits a unique solution (u, , ¥, h) with regularity

w,9,h) e WFHP@\)nc@)" xwir(zD), xew M@\ ),
if and only if the data ( f;, gu, gn, g¢) satisfy
Ja €W P@N\D)NH N (R). (gu.gn) € W, 2/P(D)"HY, gy e WETP(D).

The solution map [(f4, gu» &n. g¢) —> (u, 7, ¥, h)] is continuous in the corresponding spaces.

Proof. This purely elliptic problem can be solved in the same way as the corresponding linear
parabolic problem, cf. [16, Section 5]. O

THEOREM 4.2 There exists a neighborhood U of 0 in Z anda map
¢ e CH U, (WZ2P(2\ D) N C@)" x Wi/P(x))  with ¢(0) = ¢'(0) =0,

such that [Z — Z 4+ ¢(2)] : U — ST provides a parameterization of the state manifold ST near
the equilibrium (0, 0,, X).

Proof. Fix any large @ > 0. Given Z = (u, 19, ﬁ) V4 sufficiently small, and setting (u, ¥, h) =
(u, v, h) + (u, U, h), we solve the nonlinear elliptic problem

Wil — (L All + V7 =0 in 2\,
divii = Fy(u,h) in £\,
U= 81,19 =0 on 052,
[a]l =[9] =0 on X,
—Pylu«(Vii + [Vii] Jvy = G (u,9,h) on X, 4.4)
—([ux(Vit + [Vi] Jvs|vs) + [7] + 0Ash =0 on X,
ks — dy AD =0 in £\,
1,0 —oAgh = Gg(9,h)  on X,
(l+/0:)(wh —ii - vg) — [dedy?] = Gp(u, 0. h) on X

by means of the implicit function theorem, employing Proposition 4.1. Then with z = (u, 9, };)
and z = Z + Z we obtain Z = ¢(Z), with a C!-function ¢ such that ¢(0) = ¢’(0) = 0. Then
z =%+ ¢(%) € SM, hence SM is locally parameterized over Z.

To prove surjectivity of this map, for given (u,d,h) € ST, solve problem (4.4), where
the functions (Fgz(u, h), Gz (u, 8, h), Go (3, h), Gp(u, ¥, h)) are now given. By Proposition 4.1 the

resulting linear problem has a unique solution z = (u, 9, /). Let Z = z — Z. Then we see that
Z = ¢(2), hence the map [Z — Z + ¢(Z)] is also surjective near 0. O
3. Next we derive a similar decomposition for the solutions of problem (4.1). Let zg = Zo +

#(Zo) € 8T be given, and let z € E(J) be the solution of (4.1) with initial value zo. Then we
would like to devise a decomposition of z such that z(t) = Z(¢t) + z(¢) with Z(¢t) € Z fort = 0.
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As before, we use the notation Z = (i, 1~9, l;), and Z = (u, 5‘, ﬁ) In order to accomplish this we
consider the coupled systems of equations

o + 0;u — uxAu + Vi = Fy(u,w,9,h) in £\ X,

divii = Fg(u,h) in £2\X,
U= 8,,@ =0 on 052,
[i] = [9] =0 on X,

—Pxus(Vii + [Vi])]vys = G.(u,9,h)  on X,

~ _ _ — 4.5)
—([us (Vi + [Vil] "lvs|vs) + [7] + 0Ash = Gy(u,9,h)  on X,
Kx0 + Kk50;0 — dy AV = Fg(u,9,h)  in £\ X,
1,9 —gAsh = Ga(D, h) on X,
() 0)h + (1+/02)(0;h — i1 - vg) — [dedy D] = Gh(u.9.h)  on X
2(0) = ¢(Zo)
and
0l — U Al + VT = wil in 2\X,
diviu =0 in £\,
n= 8,,19 =0 on 052,
[i] =[] =0 on X,
—Ps[p«(Vii + [Vit] Jvs =0 on X,
—([p«(Vit + [Vil] Tvs|vs) + [7] + 0Ash =0 on X, (+6)
k50 — dy AD = kx0¥ in 2\,
l*é—oAgﬁzo on X,
(1e/63)(0ch — it - v) = [dedyD] = (e/6)0h on ¥
Z(0) = Zy.
Equations (4.5)—(4.6) can be rewritten in the more condensed form
L,z = N(Z+2), z(0) = ¢(Zo) @

4+ L% =wz, 2(0) = Zo,

where we use the abbreviation L, to denote the linear operator on the left hand side of (4.5), and N
to denote the nonlinearities on the right hand side of (4.5), respectively.

REMARK 4.3 As divu is in general nonzero, Z does not belong to the base space Xo. However,
this defect can be easily overcome, replacing # in (4.6) by its Helmholtz-projection in §2. This only
changes the pressure 7 by a jump-free part, but the velocity i, and hence also Z, are unchanged.

4.  For the purpose of proving the stability result it turns out to be more convenient to modify the
decomposition of z derived in the previous step in the following way. Suppose Zoo = Zoo +¢(Z00) €
8T is an equilibrium of (4.1) which is close to the fixed equilibrium z, = (0, 64, I'x). Then we



426 J. PRUSS, G. SIMONETT AND R. ZACHER

decompose the solution z of (4.1) as z(f) = zeo + 2(t) 4 Z(t), where as above Z(t) € Z. Clearly,
Lzs = N(zso), and we are lead to consider the following coupled system for the pair (Z, Z)

LoZ = N(Zoo+Z+2) = N(zeo).  Z(0) = ¢(20) — ¢(Zoo).

. _ _ _ ~ ~ 4.8)
Z+LZ =wz, Z(0) = Zg — Zoo-

The abstract problem (4.8) can be treated in the same way as in the proof of Theorem 5.2 in Priiss,
Simonett and Zacher [20]. This implies the following result.

THEOREM 4.4 Let p > n+2,0 > 0and [, # 0, and suppose ¥; € C3(0,00), i, d; € C2(0,00)
are such that

ki(s) = —s¥l'(s) >0, pwi(s) >0, di(s)>0, s€(0,00), j=12.

Let the function ¢ be as in (3.2). Then in the topology of the state manifold ST we have:

(a) (0,6, I'y) € & is stable if Iy is connected and ¢’(6x) < 0.
Any solution starting in a neighborhood of such a stable equilibrium converges to another stable
equilibrium exponentially fast.

(b) (0,64, I'y) € & is unstable if I is disconnected or ¢’(0x) > 0.
Any solution starting and staying in a neighborhood of such an unstable equilibrium converges
to another unstable equilibrium exponentially fast.

5. Global existence and convergence

We have seen in [16] that the negative total entropy, see (1.3), is a strict Lyapunov functional.
Therefore the /imit sets of solutions in the state manifold STl are contained in the manifold 8 C STil
of equilibria.
There are several obstructions against global existence:
— Regularity: the norms of either u(¢), 6(¢), I'(¢), or [d(0(2))d,6(¢)] may become unbounded;
— Well-posedness : the condition /() # 0 may be violated; or the temperature may become 0;
— Geometry: the topology of the interface may change; or the interface may touch the boundary of
£2; or a part of the interface may contract to a point.
Recall that the compatibility conditions

divu(t) =0in 2\ I'(t), u() = 0,6(t) =0o0n0ds2,
[u@®l =101 = Prin@@)D®] =0, [v(©@@)]+oHr({) =0o0nI(),

are preserved by the semiflow.

Let (u, 0, I') be a solution in the state manifold ST with maximal interval of existence [0, 7).
By the uniform ball condition we mean the existence of a radius o > 0 such that for eachz € [0, 7.),
ateach pointx € I'(¢) there exists centers x; € §2;(¢) such that By, (x;) C §2; and F(t)ﬂéro (x;) =
{x},i = 1, 2. Note that this condition bounds the curvature of I"(¢), prevents parts of it to shrink to
points, to touch the outer boundary 052, and to undergo topological changes.

With this property, combining the local semiflow for (1.1) with the Lyapunov functional and
compactness we obtain the following result.

THEOREM 5.1 Let p > n + 2,0 > 0, and suppose ¥; € C3(0,00), u;,d; € C?(0, 00) such that
ki(s) = —sy](s) >0, wui(s) >0, di(s)>0, s€(0,00),i=12.
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Suppose that (u, 8, I") is a solution of (1.1) in the state manifold STl on its maximal time interval
[0, 24). Assume there is some constant M > O such that the following conditions hold on [0, #.):
W) O] gy2-2/p0 100 220, 1T O a2/, OOy 2-er0 < M
(i) [1O@)].6(r) = 1/M;
(iii) I"(¢) satisfies the uniform ball condition.
Then t, = o0, i.e., the solution exists globally, and its limit set w(u, 6, ') C & is non-empty. If
further (0, Ox0, I'00) € w4 (u, 0, I') with I's, connected and ¢’ (0) < 0, then the solution converges
in 8T to this equilibrium.

Conversely, if (u(z), 0(¢), I'(t)) is a global solution in ST which converges to an equilibrium
(0,04, %) € 8in 8M ast — oo, and [(0«) # 0, then (i)—(iii) hold.

Proof. Under the assumptions (i)—(iii) it is shown in the proof of [16, Theorem 8.2] that #, = oo
and that the orbit (v, 8, I")(R4+) C ST is relatively compact. The negative total entropy is a strict
Lyapunov functional, hence the limit set w(u, 8, I') C ST of a solution is contained in the set & of
equilibria. By compactness, wy (u, 8, I') C 8Tl is non-empty, hence the solution comes close to &,
and stays there. Then we may apply the convergence result Theorem 4.4. The converse follows by
a compactness argument. O

REMARKS

(i) We believe that in Theorem 5.1 the assumption that [ is connected can be dropped and
¢’ (0s0) < 0 can be replaced by ¢'(6c) # 0. However, a proof of this requires much more
technical efforts, we refrain from these, here.

(il)) We cannot show that the temperature stays positive if it is initially since we did not make any
assumptions on the behavior of the functions u;, d;, ¥; near 0.
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