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We study the motion of discrete interfaces driven by ferromagnetic interactions in a two-dimensional

periodic environment by coupling the minimizing movements approach by Almgren, Taylor and

Wang and a discrete-to-continuous analysis. The case of a homogeneous environment has been

recently treated by Braides, Gelli and Novaga, showing that the effective continuous motion is a

flat motion related to the crystalline perimeter obtained by � -convergence from the ferromagnetic

energies, with an additional discontinuous dependence on the curvature, giving in particular a pinning

threshold. In this paper we give an example showing that in general the motion does not depend

only on the � -limit, but also on geometrical features that are not detected in the static description.

In particular we show how the pinning threshold is influenced by the microstructure and that the

effective motion is described by a new homogenized velocity.
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1. Introduction

In this paper we study a model problem of homogenization for a discrete crystalline flow. The

analysis will be carried over by using the minimizing-movement scheme of Almgren, Taylor and

Wang [4] (later thus renamed by De Giorgi, see, e.g., [2]). This consists in introducing a time scale

� , iteratively defining a sequence of sets E�
k

as minimizers of

min
n
P.E/ C

1

�
D.E; E�

k�1/
o
; (1)

where P is a perimeter energy and D is a (suitably defined) distance-type energy between sets, and

E�
0 is a given initial datum, and subsequently computing a time-continuous limit E.t/ of fE�

k
g as

� ! 0, which defines the desired geometric motion related to the energy P .

The study of geometric motions in inhomogeneous environments has a very large literature

(see, e.g., [5, 14–16]). The ones in a discrete setting can be considered a somewhat extreme case,

in that the corresponding energies possess a large number of local minimizers (actually, by the

discrete nature of the problem all states are local minimizers), while on the contrary their continuum
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limits (see, e.g., [1, 11] for a rigorous definition) possess no local (non global) minimizer. As a

consequence, gradient flows tend to be “pinned” (i.e., the resulting limit E.t/ is constant), in contrast

with the formal evolution of their limit continuous energies, to which the Almgren-Taylor-Wang

approach can be used to obtain a non trivial evolution (for the case ofP the crystalline perimeter in

two dimensions see [3]).

In a recent paper by Braides, Gelli and Novaga [10] the Almgren-Taylor-Wang approach has

been used coupled to a homogenization procedure. In this case the perimeters (and the distances)

depend on a small parameter ", and consequently, after introducing a time scale � , the time-discrete

motions are the E
�;"
k

defined iteratively by

E
�;"
k

is a minimizer of min
n
P".E/ C

1

�
D.E; E

�;"
k�1

/
o
: (2)

The time-continuous limit E.t/ of fE
�;"
k

g then may depend how mutually " and � tend to 0. This type

of problems can be cast in the general framework of minimizing movements along a � -converging

sequence (see [8]). In particular, if we have a large number of local minimizers then the limit motion

will be pinned if � << " suitably fast (in a sense, we can pass to the limit in � first, and then apply

the Almgren-Taylor-Wang approach, which clearly gives pinning when the initial data are local

minimizers). On the contrary, if " << � fast enough and P" � -converge to a limit perimeter P

(which is always the case by compactness), then the limit E will be the evolution related to the limit

P (again, in a sense, in this case we can pass to the limit in " first).

In [10] the energies P" are ferromagnetic energies defined on subsets E � "Z2, of the form

P".E/ D ˛ " #f.i; j / 2 "Z2 � "Z2 W i 2 E; j 62 E; ji � j j D "g

(˛ > 0 a positive parameter). The continuum limit of these energies can be proved to be the

crystalline perimeter

P.E/ D ˛

Z

@E

k�k1dH1;

where � is the normal to @E and k.�1; �2/k1 D j�1jCj�2j (see [1]). The flat flow of this perimeter is

the motion by crystalline curvature described by Taylor [17]. In the case of initial datum a coordinate

rectangle, the evolution is a rectangle with the same centre and sides of lengths L1; L2 governed by

the system of ordinary differential equations
8
ˆ̂̂
<̂
ˆ̂̂
:̂

PL1 D �
4˛

L2

PL2 D �
4˛

L1

:

In [10] all possible evolutions have been characterized as "; � ! 0, showing that the relevant mutual

scale is when �=" !  2 .0; C1/. In the case of initial datum a coordinate rectangle the resulting

evolution is still a rectangle. In the case of a unique evolution, the side-lengths L1.t/; L2.t/ of this

rectangle are governed by a system of ‘degenerate’ ordinary differential equations
8
ˆ̂̂
<̂
ˆ̂̂
:̂

PL1 D �
2



j2˛

L2

k

PL2 D �
2



j2˛

L1

k
:
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Note that the right-hand sides are discontinuous; however existence (and uniqueness, except for

some special cases) of solution can be easily proved by a direct argument. This characterization

highlights the effect of the periodicity through the scaling  and that the motion is obtained by

overcoming some energy barriers in a ‘quantized’ manner by the presence of a discontinuous right-

hand side. In particular, we have pinning of large rectangles: if both initial side-lengths are above

the pinning threshold eL D 2˛ then the right-hand sides are zero and the motion is pinned. The

limit cases (total pinning and continuous crystalline flow) correspond to the limit values  D 0 and

 D C1. This analysis shows that the “correct scaling” for this problem is " � � , which gives the

most information about all the limit evolutions.

The analysis described above exhibits a limit evolution in which we may read the effect of

the � -limit energy (through the crystalline form of the evolution and the coefficient ˛) and of the

interplay between the time and space scales through the scaling  . Scope of this work is to show

that in general the situation can be more complex, and the periodic microstructure can affect the

limit evolution without changing the � -limit. To this end we will introduce a further inhomogeneity

in the perimeters P" by considering

P".E/ D
1

2
"
X

fcij W i; j 2 Z
2; "i 2 E; "j 62 E; ji � j j D 1g;

(we use the notation
P

fxa W a 2 Ag D
P

a2A xa) where the coefficients cij equal ˛ except

for some well-separated periodic square inclusions where cij D ˇ > ˛. These inclusions are not

energetically favorable and they can be neglected in the computation of the � -limit, which is still

the perimeter P above, with the same coefficient ˛. They can be considered as “obstacles” that can

be bypassed when computing minimizers of P"; however their presence is felt in the minimizing-

movement procedure since they may influence the choice of E
�;"

k
through the interplay between the

distance and perimeter terms. As a result, the motion can be either decelerated or accelerated with

respect to the homogeneous case.

As already remarked in [10] the relevant case for the description of the motion is that of initial

data coordinate rectangles, since all other cases can be reduced to the study of this one. We will then

restrict our analysis to that case. This (apparently) simple situation already contains all the relevant

features of the evolution and highlights the differences with respect to [10]. We will show that the

limit motion can still be described through a system of degenerate ordinary differential equations of

the form 8
ˆ̂̂
<̂
ˆ̂̂
:̂

PL1 D �
2


f
� 

L2

�

PL2 D �
2


f
� 

L1

�

with f a locally constant function on compact subsets of .0; C1/ which depends on ˛, the period

and size of the inclusions but not on  (neither on the value ˇ). The effective velocity f is obtained

by a homogenization formula which optimizes the motion of the sides of the rectangle, resulting

in an oscillation around a linear motion with velocity 1


f .=L/ (which is locally constant as noted

above). Note that, in the case of no inclusion, the system is of the same form with f .Y / D b2˛Y c.

The dependence on the inclusions gives a new pinning threshold

L D
4˛

2 C Nˇ
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depending on the size of the inclusion Nˇ . The reason for this new pinning threshold is that, in order

that a side may move, it needs to be able to overcome a barrier of Nˇ inclusions. Note that, if the

initial data have side-lengths L < L < eL, then we may have a microscopic motion which stops

after a finite number of time steps, and is not eventually detected in the limit. It should be remarked

that the presence of the inclusions may indeed accelerate the motion, so that f .Y / > b2˛Y c for

some Y .

The paper is organized as follows. In Section 2 we define all the energies that we will consider. We

then formulate the discrete-in-time scheme analogous to the Almgren, Taylor and Wang approach.

Section 3 contains the proof of the convergence of the discrete scheme in the case of a rectangular

initial set. Contrary to the case in [10] it is not trivial to show that the minimizers of this scheme are

actually rectangles. This is a technical result contained in Proposition 3.4. Subsection 3.1 contains

the computation of the new pinning threshold, showing that it depends on the percentage Nˇ of

defects in the lattice. Subsection 3.2 deals with the new definition of the effective velocity of a side

by means of a homogenization formula resulting from a one-dimensional ‘oscillation-optimization’

problem. This velocity can be expressed uniquely (up possibly to a discrete set of values), as a

function the ratio of  and the side-length (Definition 3.7). The description of the homogenized

limit motion is contained in Section 3.3. In the last Section 4 we explicitly compute the velocity

function by means of algebraic formulas in some simple cases, showing a nontrivial comparison

with the case with no inclusions.

2. Setting of the problem

If x D .x1; x2/ 2 R
2 we set kxk1 D jx1j C jx2j and kxk1 D maxfjx1j; jx2jg. If A is a Le-

besgue-measurable set we denote by jAj its two-dimensional Lebesgue measure. The symmetric

difference of A and B is denoted by A4B , their Hausdorff distance by dH.A; B/. If E is a set of

finite perimeter then @�E is its reduced boundary (see, for example [6]). The measure-theoretical

inner normal to E at a point x in @�E is denoted by � D �E .x/ .

2.1 Inhomogeneous ferromagnetic energies

The energies we consider are interfacial energies defined in an inhomogeneous environment as

follows: let 0 < ˛ < ˇ < C1, N˛; Nˇ > 1 and set N˛ˇ D N˛ C Nˇ . We consider the N˛ˇ -

periodic coefficients cij indexed on nearest-neighbours of Z2 (i.e., i; j 2 Z
2 with ji � j j D 1)

defined for i; j such that

0 6
i1 C j1

2
;

i2 C j2

2
< N˛ˇ

by

cij D

8
<
:

ˇ if 0 6
i1 C j1

2
;

i2 C j2

2
6 Nˇ

˛ otherwise.
(3)

These coefficients label the bonds between points in Z
2, so that they describe a matrix of ˛-bonds

with N˛ˇ -periodic inclusions of ˇ-bonds grouped in squares of side-length Nˇ . The periodicity

cell is pictured in Fig. 1. Correspondingly, to these coefficients we associate the energy defined on
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Nˇ N˛

FIG. 1. Periodicity cell. Continuous lines represent ˇ -bonds, dashed lines ˛-bonds.

subsets I of Z2 by

P˛;ˇ .I/ D
Xn

cij W ji � j j D 1; i 2 I; j 2 Z
2 n I

o
: (4)

As recalled in the introduction we use the notation
P

fxa W a 2 Ag D
P

a2A xa.

In order to examine the overall properties of P˛;ˇ we introduce the family of scaled energies

defined on subsets I of "Z2 by

P˛;ˇ
" .I/ D

Xn
" ci=" j=" W ji � j j D "; i 2 I; j 2 "Z2 n I

o
I (5)

i.e., P˛;ˇ
" .I/ D " P˛;ˇ . 1

"
I/. To study the continuous limit as " ! 0 of these energies it will be

convenient to identify each subset of "Z2 with a measurable subset of R2, in such a way that equi-

boundedness of the energies implies pre-compactness of such sets in the sense of sets of finite

perimeter. This identification is as follows: we denote by Q the closed coordinate unit square of

center 0, Q D Œ�1=2; 1=2�2; if " > 0 and i 2 "Z2, we denote by Q".i/ D i C "Q the closed

coordinate square with side-length " and centered in i . To a set of indices I � "Z2 we associate the

set

EI D
[

i2I

Q".i/:

The space of admissible sets related to indices in the two-dimensional square lattice is then defined

by

D" WD
˚
E � R

2 W E D EI for some I � "Z2
	

:

For each E D EI 2 D" we denote

P˛;ˇ
" .E/ D P˛;ˇ

" .I/: (6)

As an easy remark, we note that

P˛;ˇ
" .E/ > "˛#

n
.i; j / W ji � j j D "; i 2 I; j 2 "Z2 n I

o
D ˛H1.@E/; (7)

which shows that sequences of sets E" with sup" P˛;ˇ
" .E"/ < C1 are pre-compact with respect

to the local L1-convergence in R
2 of their characteristic function and their limits are sets of finite
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perimeter in R
2. Hence, this defines a meaningful convergence with respect to which compute the

� -limit of P˛;ˇ
" as " ! 0.

A general theory for the homogenization of energies (5), in a more general context, has been

developed in [11] (see also [9, 12, 13]), where it is shown that the � -limit’s domain is precisely the

family of sets of finite perimeter and its general form is

F.E/ D

Z

@�E

'.�/dH1;

with ' a convex function positively homogeneous of degree one. The computation in the case ˛ D ˇ

(homogeneous spin systems) can be found in [1] and gives '.�/ D ˛k�k1. In our case the presence

of the ˇ-inclusions does not influence the form of the � -limit, as in the following remark.

REMARK 2.1 (� -convergence of inhomogeneous perimeter energies) The energies P˛;ˇ
" defined by

(5) � -converge, as " ! 0, to the anisotropic crystalline perimeter functional

P˛.E/ D ˛

Z

@�E

k�k1 dH1:

This limit is independent of N˛; Nˇ , and equals the one obtained when ˇ D ˛.

The lower bound for the � -limit is immediately obtained from the case ˛ D ˇ in [1] after

remarking that P˛;ˇ
" > P˛;˛

" . In order to verify the upper bound, it suffices to note that recovery

sequences for the � -limit of P˛;˛
" can be constructed at a scale N˛ˇ ", thus ‘avoiding’ the ˇ-

connections. To this end, define

Q
N˛ˇ
" D

[n
Q".i/ W i 2 "Z2; 0 6 kik1 < "N˛ˇ

o
:

This is a square of side-length N˛ˇ " whose boundary intersects only ˛-bonds. We consider P
N˛ˇ
" the

restriction of P˛;ˇ
" to the class

D
N˛ˇ
" D

n
E � R

2 W E is a finite union of "Z2-translations of Q
N˛ˇ
"

o
:

Note that we have P˛;ˇ
" .E/ D P˛;˛

" .E/ for E 2 D
N˛ˇ
" , and that sets in D

N˛ˇ
" differ from sets in

D"N˛ˇ
by a fixed translation of order ". Hence, we have (see [7] for details on the properties of

� -upper limits)

� - lim sup
"!0

P˛;ˇ
" .E/ 6 � - lim sup

"!0

P
N˛ˇ
" .E/ D � - lim

"!0
P

˛;ˇ
N˛ˇ".E/;

and the latter is again equal to P˛.E/. This inequality just states that we can take sets in D
N˛ˇ
" which

are (small translations of) a recovery sequence for P
˛;ˇ
N˛ˇ".E/ as a recovery sequence for P˛;ˇ

" .E/.

2.2 A discrete-in-time minimization scheme

For I � "Z2 we define the discrete `1-distance from @I as

d "
1.i; @I/ D

(
inffki � jk1 W j 2 Ig if i 62 I

inffki � jk1 W j 2 "Z2nIg if i 2 I:
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Note that we have d "
1.i; @I/ D d1.i; @EI/ C

"

2
, where d1 denotes the usual `1-distance. The

distance can be extended to all R2n@EI by setting

d "
1.x; @I/ D d "

1.i; @I/ if x 2 Q".i/:

In the following we will directly work with E 2 D", so that the distance can be equivalently defined

by

d "
1.x; @E/ D d1.i; @E/ C

"

2
; if x 2 Q".i/:

Note that this is well defined as a measurable function, since its definition is unique outside the

union of the boundaries of the squares Q" (that are a negligible set).

We now fix a time step � > 0 and introduce a discrete motion with underlying time step � obtained

by successive minimization. At each time step we will minimize an energy F
˛;ˇ
";� W D" � D" ! R

defined as

F
˛;ˇ
";� .E; F / D P˛;ˇ

" .E/ C
1

�

Z

E4F

d "
1.x; @F / dx: (8)

Note that the integral can be indeed rewritten as a sum on the set of indices "Z2 \.E4F / (see [10]).

Given an initial set E0
" , we define recursively a sequence Ek

";� in D" by requiring the following:

(i) E0
";� D E0

" ;

(ii) EkC1
";� is a minimizer of the functional F

˛;ˇ
";� .�; Ek

";�/.

The discrete flat flow associated to functionals F
˛;ˇ
";� is thus defined by

E";� .t/ D Ebt=�c
";� : (9)

Assuming that the initial data E0
" tend, for instance in the Hausdorff sense, to a sufficiently regular

set E0, we are interested in identifying the motion described by any converging subsequence of

E";� .t/ as "; � ! 0.

As remarked in the Introduction, the interaction between the two discretization parameters,

in time and space, plays a relevant role in such a limiting process. More precisely, the limit

motion depends strongly on their relative decrease rate to 0. If " << � , then we may first let

" ! 0, so that P˛;ˇ
" .E/ can be directly replaced by the limit anisotropic perimeter P˛.E/ and

1
�

R
E4F

d "
1.x; @F / dx by 1

�

R
E4F

d1.x; @F / dx. As a consequence the approximated flat motions

tend to the solution of the continuous ones studied by Almgren and Taylor [3]. On the other hand,

if ">> � then there is no motion and Ek
";� � E0

" . Indeed, for any F ¤ E0
" and for � small enough

we have
1

�

Z

E0
" 4F

d "
1.x; @F / dx > c

"

�
> P˛;ˇ

" .E0
" /:

In this case the limit motion is the constant state E0. The meaningful regime is the intermediate case

� � ".

3. Motion of a rectangle

As shown in [10] the relevant case is when " and � are of the same order and the initial data are

coordinate rectangles E0
" , which will be the content of this section.
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We assume that

� D " for some  2 .0; C1/;

and, correspondingly, we omit the dependence on � in the notation of

Ek
" D Ek

";� .D Ek
";"/:

Due to the lack of uniqueness of minimizers in the discrete minimization scheme, a standard

comparison principle cannot hold. We recall a weak comparison principle for our motion in the

discrete case (see [10] for the proof).

PROPOSITION 3.1 (Discrete weak comparison principle) Let " > 0 and let R"; K" 2 D" be such

that R" � K" and R" is a coordinate rectangle. Let Kk
" be a motion from K" constructed by

successive minimizations. Then Rk
" � Kk

" for all k > 1, where Rk
" is a motion from R" constructed

by successively choosing a minimizer of F
˛;˛
";� .�; Rk�1

" / having smallest measure.

REMARK 3.2 The set R2nKk
" is the k-step evolution of the complementary R

2nKk
" of K". As a

consequence, if we have R" � R
2nKk

" , from Proposition 3.1 it follows that

Rk
" � R

2nKk
" ; for all k > 1.

DEFINITION 3.3 (˛-type rectangle) A coordinate rectangle whose sides intersect only ˛-bonds will

be called an ˛-type rectangle.

The first result is that coordinate rectangles evolve into ˛-type rectangles.

PROPOSITION 3.4 If E0
" 2 D" is a coordinate rectangle and F is a minimizer for the minimum

problem for F
˛;ˇ
";� .�; Ek

" /; k > 0, then for all ı > 0 F is a coordinate ˛-type rectangle as long as the

sides of Ek
" are larger than ı and " is small enough.

Proof. Step 1: Connectedness of F . We want to prove that each Ek
" is connected. It will suffice to

show this for F D E1
" . We first need an estimate on the area of the “small components” of E1

" ; this

estimate will be obtained by using the comparison principle in Proposition 3.1.

Let ` > 0 be the maximum number such that for each point x 2 E0
" there exists y 2 R

2 such

that x 2 .y C Q`/ � E0
" , where Q` D Œ�`=2; `=2� � Œ�`=2; `=2�, and the same property holds for

x 62 E0
" . If E0

" D Œ�L1=2; L1=2� � Œ�L2=2; L2=2�, we can choose ` D minfL1; L2g. By applying

Proposition 3.1 and Remark 3.2 to the union of squares contained in E0
" , and to those outside E0

" ,

respectively, and taking into account that a side of length ` shrinks by
j

2˛
`

k
" in absence of defects

(see [10]), it follows that

dH.@E1
" ; @E0

" / 6

�2˛

`
C 1

�
":

In this way, it is not possible to have a configuration as in Fig. 2, with two large components for E1
" .

Assume by contradiction that E1
" is not connected. In this case we should have only one large

component as in Fig. 3. We consider the decomposition

E1
" D E1

0;" [

N[

iD1

E1
i;";

with E1
0;" the component containing all the points of E0

" having distance more than C 0" from @E0
"

for a suitable constant C 0 < 2˛=` C 1.
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E1
" E0

"

FIG. 2. Test set with E1
" with two large components

E1
0;"

E1
i;"

E0
"

FIG. 3. Small components of E1
" .

Therefore for a suitable constant C 00 we have

d "
1.x; @E0

" / 6 C 00" for all x 2 E1
i;" and i > 1:

By using the isoperimetric inequality, for " small enough we infer

1

�

Z

E1
i;"

d "
1.x; @E0

" / dx 6 .C 00=/jE1
i;"j < Ciso

q
jE1

i;"j 6 P˛;˛
" .E1

i;"/ 6 P˛;ˇ
" .E1

i;"/;

with Ciso being the constant of the isoperimetric inequality. Thus, we get a contradiction since we

can decrease strictly the energy by eliminating the small components of E1
" and considering the set

E 0 D E1
0;" as a competitor.

Step 2: ˛-rectangularization. Consider the maximal ˛-type rectangle R˛ with each side intersecting

F . We call the set F 0 D F [R˛ the ˛-rectangularization of F . This set is either an ˛-type rectangle

(and in this case we conclude) or it has some protrusions intersecting ˇ-bonds (Fig. 4). In both cases

P˛;ˇ
" .F 0/ 6 P˛;ˇ

" .F /, and the symmetric difference with E0
" decreases. To justify this, note that the

˛-rectangularization reduces (or leaves unchanged) P˛;˛
" and it reduces the symmetric difference.

As a consequence of this observation, we also deduce an a priori estimate on the maximal

distance between @E0
" and @E1

" . By the argument above, F contains an ˛-type rectangle R˛ and is

strictly contained in an ˛-type rectangle eR˛ whose sides have a distance from the corresponding

sides of R˛ of not more than .Nˇ C 1/". We only check the a priori estimate in the simplifying
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R˛

F

eR˛

E0
"

FIG. 4. ˛-rectangularization.

hypothesis that E0
" is of ˛-type and that E0

" and R˛ are both concentric squares, so that we can

express this estimate in terms of the length L of the sides of E0
" and the distance between @E0

" and

@R˛, which can be expressed as "N . Note that we have

˛H1.@E0
" / > F

˛;ˇ
";� .E1

" ; E0
" / > ˛H1.@R˛/ C

1

�

Z

E0
" neR˛

d "
1.x; @E0

" / dx;

which translates into

4˛L > 4˛.L � 2"N / C
2L


".N � Nˇ /2 C O."2/;

and gives (for " sufficiently small)

N 6
c1

L
C c2Nˇ DW c.L/: (10)

The same type of estimate holds in the general case taking L the minimal length of sides of E0
" .

Step 3: Profile of protrusions on ˇ-squares. Now we want to describe the form of the optimal profiles

of the boundary of F intersecting ˇ-squares.

As noted above, F contains an ˛-type rectangle R˛ D Œ"m1; "M1� � Œ"m2; "M2� and is

contained in the ˛-type rectangle

eR˛ D Œ".m1 � Nˇ /; ".M1 C Nˇ /� � Œ".m2 � Nˇ /; ".M2 C Nˇ /�

whose side exceed the ones of R˛ by at most 2"Nˇ . We will describe separately the possible profile

of F close to each side of R˛; e.g., in the rectangle Œ".m1 �Nˇ /; ".M1 CNˇ /��Œ"M2; ".M2 CNˇ /�

(i.e., close to the upper horizontal side of R˛).

We first consider the possible behavior of the boundary of F at a single ˇ-square Q. We suppose

that such Q is not one of the two extremal squares, for which a slightly different analysis holds.

First, if a portion � of @F intersects Q in exactly two points on opposite vertical sides, then we

may consider in place of F the union of F and all the "-squares with centers .x; y/ in Q \ "Z2 and

y 6 maxfz2 W z 2 � g:
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Q

F F

�

FIG. 5. Envelope of @F when intersecting opposite sides

F F

FIG. 6. Removal of @F when intersecting one side

F F

FIG. 7. Removal of @F when intersecting two adjacent sides

The new set, pictured in Fig. 5, has both lower perimeter and less symmetric difference with E0
" .

If a portion � intersects Q in exactly two points on the same side (horizontal or vertical) or

adjacent sides, then we may remove all the "-squares with centers in the portion of Q \ F with

boundary � . The two cases are pictured in Fig. 6 and Fig. 7, respectively. This operation decreases
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R

Qi

F

F

FIG. 8. Envelope of @F in consecutive squares

the perimeter of at least ".ˇ � ˛/, while at most increases the bulk term by 1
�
"3N 2

ˇ
c.L/ (c.L/ given

by (10)). The total change in the energy is thus

�".ˇ � ˛/ C
1


"2N 2

ˇ c.L/ ; (11)

which is negative if " is small enough. As a consequence, either F \Q D ; or @F \Q is a horizontal

segment.

The same type of analysis applies to the extremal squares, for which we deduce instead that

F \ Q is a rectangle with one vertex coinciding with a vertex of eR˛.

We now consider the interaction of consecutive ˇ-squares. Let Q1; : : : ; QK be a maximal array of

consecutive ˇ-squares with F \ Qk ¤ ; for k D 1; : : : ; K and such that Q1 is not a corner square.

If we substitute F with F [R, where R is the maximal rectangle of "-squares containing all F \Qk

and not intersecting other ˇ-squares, then the corresponding energy has a not larger perimeter part,

and a bulk part which is strictly lower if F [ R ¤ F . This substitution is pictured in Fig. 8. If the

subsequent ˇ-squares QKC1 : : : ; QKCK0 are a maximal array which do not intersect F , then we

may further substitute F [ R with .F n R/ [ .R C "N˛ˇ K 0.1; 0//, where we translate R until it

meets another portion of F (if any). This translation is pictured in Fig. 9. Note that if it does meet

another portion of F , then the change in energy is at most

�2"˛ C
1


"2Nˇ N˛c.L/ ; (12)

which is negative if " is small enough. In this case at this point we may iterate this analysis since

we now have a larger array of consecutive ˇ-squares intersecting F . Note, moreover, that the same

argument can be repeated shifting the rectangle R to the left instead than to the right if energetically

convenient. As a conclusion, we obtain that F may only either intersect one array of consecutive

ˇ-squares, or two such arrays if they contain the two corner ˇ-squares; i.e., we have one of the two

situations pictured in Fig. 10.

Step 4: All ˇ-connections can be removed except those at the four corners. At this point we are in

the situations pictured in Fig. 10. If we are as in the upper figure, then by removing all "-squares
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R

F

F

FIG. 9. Translation argument to join protrusions

F

F

FIG. 10. Profiles of candidate minimal F

external to R˛ the variation of the energy is less or equal than

�.ˇ � ˛/.Nˇ C 1/N" C c.L/
.N C 1/N˛ˇ Nˇ


"2;

where N is the number of modified ˇ-squares. For " small this variation is negative, showing that

F does not contain any protrusion.

If we are as in the lower figure, then we may remove all ˇ-connections inside the border ˇ-

squares, except those in the two periodicity squares at the corners as in Fig. 11; the variation of the

energy functional is less or equal than

�.ˇ � ˛/.Nˇ C 1/N" C c.L/
NN˛ˇ Nˇ


"2;
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F

FIG. 11. Removing ˇ -connections except in the two ˇ -squares at the corners

R

QRi

FIG. 12. The set obtained in Step 4

where N is the number of modified cells. For " small this variation is negative, showing that the

profile in Fig. 11 is energetically convenient. We can repeat this procedure for each side, and finally

we obtain that F is the union of a coordinate ˛-type rectangle R and possibly one to four rectangles
eRi ; i D 1; : : : ; 4 of side lengths at most N˛ˇ " such that the intersection of eRi with each corner

ˇ-square is a rectangle (see Fig. 12).

Step 5: Conclusion. It remains to prove that the rectangles eRi in the previous step are actually not

there. This is immediately checked by comparing such an F with R˛: if eRi ¤ ; then by removing

it the energy changes by at most by

�2ˇ" C
1


c.L/"2N 2

˛ˇ ;

which is negative for small ".

We finally note that all the estimates above can be iterated and hold uniformly as long as the

sides of Ek
" are larger than ı, since they depend only on c.ı/.
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asymptotically negligible sets

EkC1
"Ek

"

FIG. 13. Picture of E
kC1
" inside Ek

"

The proposition above shows that we may restrict our analysis to ˛-type rectangles; indeed, for

fixed " this assumption is not restrictive until the sides of the rectangles are larger than a constant,

which vanishes as " ! 0. As a consequence, once we suppose the convergence of the initial data,

up to subsequences, the discrete motions E";�.t/ converge as " ! 0 to a limit E.t/ such that E is a

rectangle for all t , up to its extinction time. Note, moreover, that it is not restrictive to suppose that

also the initial data are ˛-type rectangles, up to substituting E0
" with E1

" .

As shown in [10], the motion of each side of Ek
" can be studied separately, since the constraint

of being an ˛-type rectangle does not influence the argument therein, which consists in remarking

that the bulk term due to the small corner rectangles in Fig. 13 is negligible. As a consequence, we

can describe the motion in terms of the length of the sides of Ek
" . This will be done in the following

sections.

3.1 A new pinning threshold

We first examine the case when the limit motion is trivial; i.e., all Ek D Ek
" are the same after a

finite number of steps. This will be done by computing the pinning threshold; i.e., the critical value

of the side length L above which it is energetically not favorable for a side to move. We recall that,

in the case ˛ D ˇ, this threshold is
eL D 2˛:

This value is obtained by computing the values for which a side of length L may not move inwards

of " by decreasing the energy. In our case, by the condition that Ek be an ˛-type rectangle, we

have to impose instead that it is not energetically favorable to move inwards a side by .Nˇ C 1/"

(see Fig. 14). We then write the variation of the energy functional F
˛;ˇ
";� from configuration A to

configuration B in Fig. 14, regarding a side of length L. If we impose it to be positive, we have

�2.Nˇ C 1/˛" C
1

�

NˇC1X

kD1

.k"/L" D .Nˇ C 1/"

�
�2˛ C

L

2
.Nˇ C 2/

�
> 0

and we obtain the pinning threshold

L WD
4˛

Nˇ C 2
: (13)



466 A. BRAIDES AND G. SCILLA

A

B

FIG. 14. Motion is possible if the side can move at least by .Nˇ C 1/".

Note that this threshold depends on Nˇ and not on the value ˇ > ˛ and that, if Nˇ D 0 (or,

otherwise, ˛ D ˇ), we recover the previous threshold eL.

3.2 Definition of the effective velocity

As remarked above, up to an error vanishing as " ! 0, the motion of each side is independent of the

other ones. As a consequence, its description can be reduced to a one-dimensional problem, where

the unknown represents, e.g., the location of the left-hand vertical side of Ek .

Let xk represents the projection of this side of Ek on the horizontal axis. The location of xkC1

depends on a minimization argument involving xk and the length Lk of the corresponding side of

Ek . However, we will see that this latter dependence is locally constant, except for a discrete set of

values of Lk . Indeed, for all Y > 0 (which in our case will be of the form Y D =Lk), consider the

minimum problems

min
n

� 2˛N C
N.N C 1/

2Y
W N 2 N; Œx C N �N˛ˇ

2 ZN˛

o
; (14)

for x 2 f0; : : : ; N˛ˇ g, where Œz�N˛ˇ
denotes the congruence class of z modulo N˛ˇ and

ZN˛
D
˚
Œ0�N˛ˇ

; : : : ; ŒN˛ � 1�N˛ˇ

	
:

Then the set of Y > 0 for which (14) does not have a unique solution is discrete. To check this it

suffices to remark that the function to minimize

�4˛XY C X.X C 1/

is a parabola with vertex in

X D 2˛Y �
1

2
:

The minimizers N are points with Œx C N �N˛ˇ
2 ZN˛

of minimal distance from the vertex X .

These are not unique in some cases: first if the vertex X is equidistant from two consecutive points

in ZN˛
; i.e., if

2˛Y �
1

2
2

1

2
C Z;

or, equivalently,

Y 2
1

2˛
Z: (15)



MOTION OF DISCRETE INTERFACES IN PERIODIC MEDIA 467

The second case is when we have two points in ZN˛
of minimal distance from X which are not

consecutive. In this case the distance between these points is Nˇ C 1, so that we have

2˛Y �
1

2
2

Nˇ C 1

2
C Z;

or, equivalenly,

Y 2
1

2˛

�Nˇ

2
C Z

�
:

If Nˇ is even then this condition is equivalent to (15), while if Nˇ is odd then we have

Y 2
1

4˛
C

1

2˛
Z: (16)

DEFINITION 3.5 We define the (possibly) singular set Sˇ for problems (14) as

Sˇ D
1

2˛

 
Z [

�1

2
C Z

�!
:

We will examine the iterated minimizing scheme for =Lk D =L 2 .0; C1/nSˇ fixed, which

reads (
xL

kC1
D xL

k
C N k ; k > 0

xL
0 D x0

(17)

with x0 2 f0; 1; : : : ; N˛ˇ � 1g and N k 2 N the minimizer of

min
n

� 2˛N C
1



N.N C 1/

2
L W N 2 N; ŒxL

k C N �N˛ˇ
2 ZN˛

o
; (18)

which is unique by the requirement that =L 62 Sˇ .

After at most N˛ steps, fxL
k

gk>0 is periodic modulo N˛ˇ , as expressed by the following

proposition.

PROPOSITION 3.6 There exist integers k 6 N˛; M 6 N˛ and n > 1 such that

xL
kCM D xL

k C n N˛ˇ ; for all k > k: (19)

Moreover, the quotient M=n depends only on =L.

Proof. First remark that, if xL
k

is defined recursively by (17), we have

ŒxL
k �N˛ˇ

2 ZN˛
; for all k > 1:

Since #ZN˛
D N˛, there exist integers 0 6 j 6 N˛ and l > j , with l � j 6 N˛, such that

ŒxL
j �N˛ˇ

D ŒxL
l �N˛ˇ

: (20)

Let l be the minimal such l . Define k D j , M D l � j and n D
xL

l
� xL

j

N˛ˇ

to obtain (19).
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It remains to show the last statement of the theorem. It suffices to show that the quotient is

independent of x0. We start by proving a monotonicity property of the orbits defined in (17) with

respect to the initial datum: if fxkg and fx0
k
g are orbits obtained as above, we have

if x0 6 x0
0; then xk 6 x0

k ; for all k > 1: (21)

This can be seen iteratively from (14) since the problems with x D xk�1 and x D x0
k�1

consist

in a constrained minimization of a parabola and its translation by x0
k�1

� xk�1, and, as previously

remarks, the minimizer in (14) is the closest point to the vertex of the parabola with Œx C N �N˛ˇ
2

ZN˛
.

Consider the orbits with initial data x0, x0
0 and x0 C N˛ˇ , and let n.x/ and M.x/ denote the

indices above with initial datum x 2 fx0; x0
0; x0 CN˛ˇ g. Since the orbit with initial datum x0 CN˛ˇ

is the translation by N˛ˇ of the one with initial datum x0, we have n.x0 C N˛ˇ / D n.x0/ and

M.x0 C N˛ˇ / D M.x0/. Taking into account the ordering of the initial conditions

x0 6 x0
0 6 x0 C N˛ˇ ;

by (19) for k0 sufficiently large and taking k D k0 C TM.x0/M.x0
0/ with T 2 N, from xk 6 x0

k
6

xk C N˛ˇ we get

xk0
C T n.x0/M.x0

0/N˛ˇ N˛ˇ 6 x0
k0

C T n.x0
0/M.x0/N˛ˇ

6 xk0
C T n.x0/M.x0

0/N˛ˇ C N˛ˇ :

In order that this inequality hold for all T > 1 we must have

n.x0/M.x0
0/ D n.x0

0/M.x0/;

which is the desired equality.

DEFINITION 3.7 (Effective velocity) We define the effective velocity function f W .0; C1/nSˇ �!

Œ0; C1/ by setting

f .Y / D
nN˛ˇ

M
; (22)

with M and n in (19) defined by L and  such that Y D =L. By Proposition 3.6 this is a good

definition.

REMARK 3.8 The terminology for formula (22) is motivated by the fact that we can define the

velocity of a side as a mean velocity averaging on a period; that is,

v D
nN˛ˇ "

M�
: (23)

In (23) the velocity is the ratio between the minimal (periodic) displacement of the side and the

product of the time-scale � and the number of steps necessary to describe the minimal period, each

of which considered as a 1-time step.

REMARK 3.9 (Properties of the velocity function f ) The velocity function f has the following

properties:

(a) f is constant on each interval contained in its domain;
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(b) f .Y / D 0 if

Y < Y WD
Nˇ C 2

4˛
I

in particular

lim
!0C

1


f
� 

L

�
D 0 :

Note that .0; Y / \ Sˇ ¤ ;;

(c) f .Y / is a rational value;

(d) f is non decreasing;

(e) we have

lim
!C1

1


f
� 

L

�
D

2˛

L
:

(f) f .Y / is independent of ˇ but depends on Nˇ .

(a) holds since on each component of .0; C1/ n Sˇ the minimum problems (14) have a unique

solution independent of Y , so that the values n and M in Proposition 3.6 are independent of Y .

Note, however, that f .Y / may be equal on neighboring components since the corresponding n and

M may be equal even without uniqueness in (3.6);

(b) holds since we have Y D =L, where L is the pinning threshold (13), and the computation of

the pinning threshold is equivalent to the requirement that the orbit be constant after a finite number

of steps;

(c) is immediate from the formula for f .Y /;

(d) is again a consequence of the fact that (14) are minimum problems related to a parabola with

vertex in 2˛Y � 1
2

and the latter is an increasing function of Y ;

(e) using the same argument as in (d) above, we deduce in particular that

ˇ̌
ˇN k � 2˛Y C

1

2

ˇ̌
ˇ 6 Nˇ ;

which for Y D =L implies that

2˛

L
�

2Nˇ C 1

2
6

1


f
� 

L

�
6

2˛

L
C

2Nˇ C 1

2
;

and the desired equality letting  ! C1;

(f) is an immediate consequence of the definition of f .Y /.

REMARK 3.10 Let =L 2 Sˇ , and let fxL
k

g be defined by (17) with N k chosen to be a minimizer

of (18), which may be not unique. Then arguing by monotonicity as in (d) above, we have xLC

k
6

xL
k

6 xL�

k
, where L˙ are any two values with L� < L < LC and =L˙ belonging to the two

intervals of .0; C1/ n Sˇ with one endpoint equal to L, and fxL˙

k
g have the same initial data.

3.3 Description of the homogenized limit motion

The following characterization of any limit motion holds.



470 A. BRAIDES AND G. SCILLA

THEOREM 3.11 For all " > 0, let E0
" 2 D" be a coordinate rectangle with sides S0

1;"; : : : ; S0
4;".

Assume also that

lim
"!0C

dH.E0
" ; E0/ D 0

for some fixed coordinate rectangle E0. Let  > 0 be fixed and let E".t/ D E";".t/ be the

piecewise-constant motion with initial datum E0
" defined in (9). Then, up to a subsequence, E".t/

converges as " ! 0 to E.t/, where E.t/ is a coordinate rectangle with sides Si .t/ and such that

E.0/ D E0. Each Si moves inward with velocity vi .t/ satisfying

vi .t/ 2

"
1


f

�


Li .t/

��

;
1


f

�


Li .t/

�C
#

; (24)

where f is given by Definition 3.7, Li .t/ WD H1.Si .t// denotes the length of the side Si .t/, until

the extinction time when Li .t/ D 0, and f .Y /�; f .Y /C are the lower and upper limits of the

effective-velocity function at Y 2 .0; C1/.

Proof. We will apply the results of the previous sections with � D ". Let S";i.t/ be the sides of

E".t/, and let Lk
i;" D H1.S";i .k�//; i.e., Lk

i;" is the length of the i -th side of Ek
" in the notation

of the previous sections. If �Sk
";i D dH.S";i ."k/; S";i.".k C 1// denotes the distance from

corresponding sides of Ek
" then note that

LkC1
i;" � Lk

i;" D �
�
�Sk

";i�1 C �Sk
";iC1

�

(where the indices i rotate cyclically). By (10) we have

�Sk
";i

�
6

c1

Lk
i;"

C c2:

This implies that if we define Li;".t/ as the affine interpolation in Œk�; .k C 1/�� of the values

Lk
i;", then Li;".t/ is a decreasing continuous function of t and the sequence is uniformly Lipschitz

continuous on all intervals Œ0; T � such that Li;".T / > c > 0. Hence it converges (up to a

subsequence), as " ! 0, to a function Li .t/, which is also decreasing. It follows that E".t/

converges as " ! 0, up to a subsequence and in the Hausdorff sense, to a limit rectangle E.t/,

for all t > 0.

It remains to justify formula (24) for the velocity vi of the side Si .t/. Let Œt�; tC� and L˙
i be

such that =L˙
i 2 .0; C1/ n Sˇ and

L�
i < Li .t/ < LC

i ; for t�
6 t 6 tC:

Then the corresponding Li;".t/ satisfy the same inequalities for " small enough. By Remarks 3.10

and 3.8 we then have

1


f
� 

LC

�
6 vi .t/ 6

1


f
� 

L�

�
; for t�

6 t 6 tC:

By optimizing in L˙, and recalling that f is not decreasing, we obtain (24).
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THEOREM 3.12 (Unique limit motions) Let E"; E0 be as in the statement of Theorem 3.3. Assume

in addition that the lengths L0
1; L0

2 of the sides of the initial set E0 satisfy one of the following

conditions (we assume that L0
1 6 L0

2):

(a) L0
1; L0

2 >
4˛

Nˇ C 2
(total pinning);

(b) L0
1 <

4˛

Nˇ C 2
and L0

2 6
4˛

Nˇ C 2
(vanishing in finite time);

then E".t/ converges locally in time to E.t/ as " ! 0, where E.t/ is the unique rectangle with sides

of lengths L1.t/ and L2.t/ which solve the following system of ordinary differential equations

8
ˆ̂̂
<̂
ˆ̂̂
:̂

PL1.t/ D �
2


f
� 

L2.t/

�

PL2.t/ D �
2


f
� 

L1.t/

� (25)

for almost every t , with initial conditions L1.0/ D L0
1 and L2.0/ D L0

2, where f is given by

Definition 3.7.

Proof. In case (a) the statement follows by Theorem 3.11 noticing that we have v1.t/ D v2.t/ D 0

for all t > 0, which is equivalent to PL1 D PL2 D 0.

In case (b) the lengths of Li are strictly decreasing until the extinction time. This implies that

the set of t such that f .=Li .t//
� ¤ f .=Li .t//

C is negligible, and (25) follows since PLi D

�2viC1.

REMARK 3.13 (general evolutions) More general initial data can be considered. Since their

treatment follows from Theorem 3.11 as in [10], we do not include the details. We only recall

that:

ı all velocities vi satisfying (24) can be obtained, with a proper choice of the initial data E0
" ;

ı if we take initial data E0 coordinate polyrectangles then the motion can be characterized with

the same velocities, with the convention that convex sides move inwards, concave sides move

outwards, other sides remain pinned;

ı more general initial data E0 can be dealt with once we remark that at level " the assumption that

E0
" is a polyrectangle is always satisfied.

4. Computation of the velocity function

The velocity function in Definition 3.7 may be not easily described for generic N˛ and Nˇ . In this

section we compute it, by means of algebraic formulas, in the simpler cases Nˇ D 1 and Nˇ D 2,

with varying N˛. These are prototypes for the cases Nˇ odd and Nˇ even, respectively. We also

give two easy examples for N˛ fixed and equal to 1, and we compare the new velocity function with

the homogeneous case showing that the inhomogeneities in the lattice may accelerate or decelerate

the motion. We can assume, without loss of generality, that  D 1.
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4.1 The case Nˇ D 1.

Let Y > Y D 3
4˛

. We assume also that Y is not in the singular set; i.e.,

Y 62

�
k C j.N˛ C 1/

2˛
; k D 1; : : : ; N˛ � 1; j > 0

�
[

�
N˛ C .2j C 1/.N˛ C 1/

4˛
; j > 0

�
:

As shown by Proposition 3.6, the minimal period is independent of the starting point of the orbits,

so there is no restriction to assume that x0 D 0 in (17)–(18). We divide the analysis in the three

cases (a), (b) and (c) below.

(a) If Y 2

�
k C j.N˛ C 1/

2˛
;

k C 1 C j.N˛ C 1/

2˛

�
; k D 1; 2; : : : ; N˛ � 1; j > 0, then we

denote the minimizer of problem (18) in the homogeneous case Nˇ D 0 by N D k C j.N˛ C 1/.

The velocity function f .Y / will be characterized by algebraic relations between N and N˛. We

have two sub-cases:

(a1) N and N˛ C 1 are coprime. In this case, by iterating the scheme (18), after at most N˛ steps

the side encounters a defect, that is

ŒnN �N˛ C1 D ŒN˛�N˛C1

for some 1 6 n 6 N˛. In this case, we denote by Nn > 0 the minimal solution of the congruence

equation

nN � N˛ mod .N˛ C 1/; n > 1; (26)

and Nk > 0 is given by

Nk D
NnN � N˛

N˛ C 1
:

If Y 2

�
k C j.N˛ C 1/

2˛
;

2k C 2j.N˛ C 1/ C 1

4˛

�
, then the location of the side at step n is at

N˛ � 1 C Nk.N˛ C 1/ (which is equal to �2 modulo N˛ C 1).

This computation shows that we can limit our analysis to periodic orbits modulo N˛ C 1 with

initial datum equal to �2 (or, equivalently, N˛ �1). The period of such orbits is obtained as follows.

We solve the congruence equation

nN � 1 mod N˛ C 1; (27)

for n > 1 and denote by nmin the minimal positive solution of equation (27); that is, the minimal

positive integer in the class h
N '.N˛C1/�1

i
mod N˛ C 1

:

The function '.n/ is Euler’s totient function and it counts the integers m such that 1 6 m < n and

m has no common divisors with n. If we define

kmin D
nminN � 1

N˛ C 1
;
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then we have that

f .Y / D
kmin.N˛ C 1/

kmin.N˛ C 1/ C 1

b2˛Y c

D

�
kmin.N˛ C 1/

kmin.N˛ C 1/ C 1

�
b2˛Y c

D

 
1

1 C 1
kmin.N˛C1/

!
b2˛Y c:

(28)

Note that f .Y / < b2˛Y c, so that the velocity of the side reduces (deceleration) with respect to the

homogeneous case.

Suppose now that Y 2

�
2k C 2j.N˛ C 1/ C 1

4˛
;

k C 1 C j.N˛ C 1/

2˛

�
, then the location of the

side at step n is N˛ C 1 C Nk.N˛ C 1/, which is equal to 0 modulo N˛ C 1. We have that

f .Y / D

 
. Nk C 1/.N˛ C 1/

. Nk C 1/.N˛ C 1/ � 1

!
b2˛Y c D

0
@ 1

1 � 1

. NkC1/.N˛C1/

1
A b2˛Y c: (29)

Note that f .Y / > b2˛Y c, so the velocity of the side increases (acceleration) with respect to the

homogeneous case.

(a2) N and N˛ C1 are not coprime. In this case the side does not meet any ˇ-bond and the velocity

function has the same value as in the homogeneous case, i.e.

f .Y / D b2˛Y c:

(b) If Y 2

�
N˛ C j.N˛ C 1/

2˛
;

N˛ C .2j C 1/.N˛ C 1/

4˛

�
then we argue as in .a1/.

(c) If Y 2

�
N˛ C .2j C 1/.N˛ C 1/

4˛
;

1 C .j C 1/.N˛ C 1/

2˛

�
, then

f .Y / D N˛ C 1 C j.N˛ C 1/:

Note that f .Y / > b2˛Y c if Y 2

�
N˛ C .2j C 1/.N˛ C 1/

4˛
;

.j C 1/.N˛ C 1/

2˛

�
, while f .Y / D

b2˛Y c if Y 2

�
.j C 1/.N˛ C 1/

2˛
;

1 C .j C 1/.N˛ C 1/

2˛

�
.

EXAMPLE 4.1 (The case N˛ D Nˇ D 1) In this case the velocity function is given by

f .Y / D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

0 if Y <
3

4˛
;

2k if Y 2

�
4k � 1

4˛
;

4k C 3

4˛

�
; k > 1I

i.e.,

f .Y / D 2
j
˛Y C

1

4

k
:
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4.2 The case Nˇ D 2

We now study the case Nˇ D 2. Let Y > Y D
1

˛
and we assume also that Y is not in the singular

set, i.e.,

Y 62

�
k C j.N˛ C 2/

2˛
; k D 1; : : : ; N˛ � 1; j > 0

�
[

�
N˛ C 1 C j.N˛ C 2/

2˛
; j > 0

�
:

(a) If Y 2

�
k C j.N˛ C 2/

2˛
;

k C 1 C j.N˛ C 2/

2˛

�
; k D 1; 2; : : : ; N˛ � 2; j > 0, then N D

k C j.N˛ C 2/ and we have two sub-cases:

(a1) N and N˛ C 2 are coprime. We compute Nk D min.k1; k2/ > 0, where k1 is the minimal

positive solution of the congruence equation

kN � N˛ mod N˛ C 2;

and k2 is the minimal positive solution of the congruence equation

kN � N˛ C 1 mod N˛ C 2I

that is k1 is the minimal positive integer in the class
�
N˛N '.N˛C2/�1

�
mod N˛ C 2

and k2 is the

minimal positive integer in the class
�
.N˛ C 1/N '.N˛C2/�1

�
mod N˛ C 2

.

If Nk D k1, then

f .Y / D

�
k1.N˛ C 2/

k1.N˛ C 2/ C 1

�
b2˛Y c D

 
1

1 C 1
k1.N˛C2/

!
b2˛Y c; (30)

and f .Y / < b2˛Y c.

If Nk D k2, then

f .Y / D

�
k2.N˛ C 2/

k2.N˛ C 2/ � 1

�
b2˛Y c D

 
1

1 � 1
k2.N˛C2/

!
b2˛Y c; (31)

and f .Y / > b2˛Y c.

(a2) N and N˛ C 2 are not coprime. In this case

f .Y / D b2˛Y c

as in the homogeneous case.

(b) If Y 2

�
N˛ C 1 C j.N˛ C 2/

2˛
;

.j C 1/.N˛ C 2/ C 1

2˛

�
; j > 0, then

f .Y / D .j C 1/.N˛ C 2/:

Note that, in this case, if Y 2

�
N˛ C 1 C j.N˛ C 2/

2˛
;

.j C 1/.N˛ C 2/

2˛

�
then f .Y / > b2˛Y c,

while if Y 2

�
.j C 1/.N˛ C 2/

2˛
;

.j C 1/.N˛ C 2/ C 1

2˛

�
then f .Y / D b2˛Y c.
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(c) If Y 2

�
N˛ � 1 C j.N˛ C 2/

2˛
;

N˛ C 1 C j.N˛ C 2/

2˛

�
; j > 0, then we may argue as in

case (a).

EXAMPLE 4.2 (The case N˛ D 1; Nˇ D 2) The velocity function is given by

f .Y / D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

0 if Y <
1

˛
;

3k if Y 2

�
3k � 1

2˛
;

3k C 2

2˛

�
; k > 1I

i.e.,

f .Y / D 3
j2

3
˛Y C

1

3

k
:
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