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We consider both discrete and continuous “uncertain horizon” deterministic control processes,

for which the termination time is a random variable. We examine the dynamic programming

equations for the value function of such processes, explore their connections to infinite-horizon

and optimal-stopping problems, and derive sufficient conditions for the applicability of non-iterative

(label-setting) methods. In the continuous case, the resulting PDE has a free boundary, on which

all characteristic curves originate. The causal properties of “uncertain horizon” problems can be

exploited to design efficient numerical algorithms: we derive causal semi-Lagrangian and Eulerian

discretizations for the isotropic randomly-terminated problems, and use them to build a modified

version of the Fast Marching Method. We illustrate our approach using numerical examples from

optimal idle-time processing and expected response-time minimization.
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1. Introduction

Deterministic and stochastic optimal control problems arise naturally in most engineering

disciplines and in fields as diverse as economics, geometric optics, robotic navigation, and

computational geometry. Dynamic programming [6] is the key technique for solving such problems

by formulating equations satisfied by the corresponding value function. Fast algorithms for

recovering the value function are thus of interest to many practitioners, but the efficiency challenges

in building such methods can be quite different depending on the exact type of optimal control

problems. One basic taxonomy is based on the time-horizon of optimization in the problem.

Is the process stopped at some explicitly specified terminal time (finite-horizon problems) or

continues forever (infinite-horizon problems)? If the terminal time is not specified, but the process

eventually stops, does this happen upon entering some pre-specified set (exit-time problems), or at

any point when the controller chooses to do so (optimal-stopping problems)? For finite-horizon

problems, the time-dependence of the value function results in availability of simple and non-

iterative (time-marching) numerical methods. In contrast, all other scenarios typically yield large

systems of coupled non-linear equations, and finding suitable non-iterative methods for them can be
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challenging. The above problem types are classical and the resulting equations are well understood

(for readers’ convenience we review them in Section 2.1 and Section 3.1 for discrete and continuous

problems respectively). In this paper we are interested in a less studied class of randomly-terminated

or “uncertain-horizon” problems, where the termination is assumed to be the result of a Poisson

random process. As we show here, such problems inherit some properties of both finite-horizon

and optimal-stopping cases. Efficient numerical methods for them are not as simple as time-

marching, but we show that generalizations of non-iterative algorithms previously derived for exit-

time problems are applicable.

Another natural classification approach is to draw a distinction between deterministic and

stochastic control processes. Not surprisingly, the former are usually simpler and can be treated

by more efficient numerical methods. This observation holds for dynamic programming equations

both in discrete and continuous settings.

In the discrete cases, the deterministic Shortest Path (SP) problems on graphs are often solved

using fast-iterative (label-correcting) and non-iterative (label-setting) methods, including the well-

known Dijkstra’s method [18] and its parallelizable Dial’s variant [17]. We refer the readers to

[1, 7, 8] for a detailed discussion of these efficient methods on graphs. The more general Stochastic

Shortest Path (SSP) problems typically require iterative methods; a good discussion of SSPs can be

found in [8]. Except for a few structurally simple examples, the exact (a priori verifiable) conditions

under which non-iterative algorithms are applicable to SSPs are still not known. The second author

has previously derived such sufficient conditions for a narrower class of Multimode SSPs [38], but

the problems considered in the current paper lie outside of this class.

In the case of continuous state spaces, the deterministic problems lead to first-order non-linear

Hamilton–Jacobi-Bellman partial differential equations; a comprehensive description can be found

in [4]. For exit-time problems, the resulting PDE is typically static since the starting time does not

affect the optimality of any given control. Efficient numerical methods for such static PDEs formed

an active area of research in the last fifteen years. For example, Dijkstra-like non-iterative numerical

methods for isotropic problems were independently introduced by Tsitsiklis [35, 36] and Sethian

[29, 30]. Later generalizations lead to Ordered Upwind Methods [2, 31, 32] applicable to anisotropic

problems. All these methods rely on a careful use of Lagrangian information to efficiently solve the

Eulerian discretized equations, yielding space-marching algorithms, in which the numerical solution

is marched on the grid inward from the boundary of the domain.

On the other hand, most commonly considered stochastic control problems on continuous state

space assume that the controlled dynamics is affected by some time-continuous stochastic process

(usually, by a scaled Brownian motion). This yields second-order semi-linear PDEs and, in the static

case, non-iterative numerical methods are not applicable.

The stochasticity considered in this paper is of a different kind – the process dynamics and

the running cost are assumed to be fully deterministic up to the time of termination, but that

terminal time is itself a random variable. Such uncertain-horizon problems have applications in

production/maintenance planning [12], economic growth and global climate change modeling [21],

and multi-generational games [20]. We first show that the optimal control of randomly-terminated

problem can be always re-stated as a time-discounted infinite-horizon problem on the same state

space. (In the continuous case, this reformulation is well-known; e.g., [12]). We then prove that

efficient non-iterative methods are applicable for a wide subclass of such problems. Our exact

technical assumptions are specified in Sections 2.2 and 3.2, but this class generally includes all

problems where maintaining the “status quo” is always possible and incurs a smaller immediate cost
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than any attempt to change the system state. That assumption allows re-stating this as a deterministic

optimal stopping problem. We define a motionless set M of all states, starting from which the

optimal behavior is to remain in place (awaiting the termination). Unfortunately, the set M is not

a priori known, which presents a challenge in using label-setting methods, since B D @M forms a

free boundary of this problem, from which the numerical solution should be marched into the rest

of the domain.

Our exposition proceeds on two parallel tracks: the discrete and continuous settings are handled

in Sections 2 and 3 respectively. Some of the technical results are included in the Appendixes.

Throughout the paper the letters v and V are reserved for the value functions of randomly-terminated

problems, while letters u and U are used for all other optimal control examples. We will also use

the expressions “deterministic randomly-terminated processes” and “uncertain-horizon processes”

interchangeably. In Section 2.3 and Section 3.2 we prove the properties of value functions and

motionless sets, including their asymptotic behavior depending on the probability distribution for

the terminal time. We review the label-setting for the fully deterministic problems on graphs

in Section 2.4.1 and then prove the applicability of a Dijkstra-like method to uncertain-horizon

problems in Section 2.4.2. The corresponding generalization of the Fast Marching Method is

developed in Section 3.3. Numerical experiments illustrating the properties of the latter are included

in Section 4; several possible generalizations are discussed in Section 5.

2. Uncertain-horizon problems on a finite state space

Optimal control problems on a finite state space are usually presented as problems of finding optimal

paths in a finite directed graph. The notion of “optimality” here depends not only on edge costs, but

also on termination conditions for the process.

We begin by briefly reviewing several common types of such problems to put uncertain-horizon

optimization in context.

2.1 Common optimal control problems on graphs

We will assume that all paths are considered on a directed graph with M nodes X D fx1; : : : ; xM g.

Let N.xi / � X denote the set of nodes to which a direct transition from xi is possible, and assume

that � << M is an upper bound on the outdegrees of all nodes (i.e., jN.xi /j 6 � for 8xi 2 X ).

Suppose yk 2 X is the position after k steps. A sequence y D .y0; : : : ; yk ; : : :/ is a path on this

graph if ykC1 2 N.yk/ for each k > 0. Each transition from xi to xj incurs a cost Kij D K.xi ; xj /

(assumed to be C1 if xj 62 N.xi /). If the termination occurs at xj , this results in an additional

terminal-penalty qj D q.xj /:

ı Finite-horizon problems:

The process runs for exactly t steps (where t is a constant specified as a part of problem

description). The total cost of a path .y0; : : : ; yt / is

Cost.y0; : : : ; yt / D

t�1
X

kD0

K.yk ; ykC1/ C q.yt /: (2.1)

The central idea of dynamic programming is to define the value function U.xi ; k/ D U k
i as

the minimum cost to spend starting from xi with .t � k/ steps remaining. Bellman’s optimality
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principle [6] allows to derive equations for U k
i using the values in fU kC1

j j xj 2 N.xi /g only. In

particular,

8

<

:

U k
i D min

xj 2N.xi /

n

Kij C U kC1
j

o

; for k D 0; : : : ; .t � 1/ and i D 1; : : : ; M I

U t
i D qi for i D 1; : : : ; M:

(2.2)

It is easy to generalize this to use time-dependent K.xi ; xj ; k/ and the system (2.2) can be

efficiently solved in a single backward-sweep (from k D t to k D 0), regardless of the sign

of transition cost K .

ı Exit-time a.k.a. shortest path (SP) problems:

Here the termination occurs immediately upon reaching the exit-set Q � X ; i.e., ty D

minfkjyk 2 Qg. As a result, Ui D U.xi / (the min-cost-to-exit-starting-from-xi) no longer

depends on the number of steps already used to reach xi . The value function is defined only in

the absence of “negative cost cycles” and, by optimality principle, must satisfy

8

<

:

Ui D min
xj 2N.xi /

˚

Kij C Uj

	

; for 8xi 2 XnQI

Ui D qi ; for 8xi 2 Q:
(2.3)

This is a system of M coupled non-linear equations, and, unless the graph is acyclic, this

system might be expensive to solve iteratively. If all Kij ’s are non-negative, label-setting methods

(further discussed in section 2.4.1) provide an efficient way of solving it.

ı Infinite-horizon time-discounted problems:

Here the process never terminates – the paths are infinite, but the cost of each subsequent step is

discounted, i.e.,

Cost.y0; : : :/ D

C1
X

kD0

˛k K.yk; ykC1/; (2.4)

where ˛ 2 .0; 1/ is the discounting factor. The value function Ui D U.xi / is well-defined for all

nodes regardless of sign of Kij ’s and satisfies

Ui D min
xj 2N.xi /

˚

Kij C ˛Uj

	

for 8xi 2 X: (2.5)

Unlike the SP, in this case optimal paths might include cycles.

ı Optimal stopping problems:

Same as the infinite-horizon problem, but with an option of deciding to terminate the process at

any node x by paying an exit time-penalty q.x/. The value function then satisfies

Ui D min

�

qi ; min
xj 2N.xi /

˚

Kij C ˛Uj

	

�

for 8xi 2 X: (2.6)

We note that, unlike the previous case, the value function is well-defined even with ˛ D 1 (i.e.,

without time-discounting).
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2.2 The value function for uncertain-horizon processes on graphs

In this paper we concentrate on uncertain-horizon problems, where the process does not terminate

deterministically after a pre-specified number of steps nor upon reaching some special exit set Q,

but instead might terminate with probability p 2 .0; 1/ after each transition1. Two simple examples

of such randomly-terminated problems are provided in Figure 1.

We will use Y to denote the set of all infinite paths on X and Y.x/ D fy 2 Y j y0 D xg for

the set of all paths starting from x. If the termination occurs after t steps, the total cost of the path

is the same as in (2.1). The a priori probability of termination after exactly t > 1 steps is clearly
OPt D .1 � p/t�1p. The cost of an infinite path y D .y0; : : :/ is now a random variable whose

expected value is

J.y/ D EŒCost.y/� D

1
X

tD1

OPt Cost.y0; : : : ; yt /: (2.7)

Since the graph is finite, functions K and q are bounded, the above series is absolutely convergent,

and jJ.y/j is uniformly bounded for all y 2 Y .

Starting the process from any node x 2 X , the goal is to minimize the expected total cost up to

the termination. The value function V.x/ can be defined as

V.x/ D min
y2Y.x/

J.y/; (2.8)

where the existence of a minimizer follows from the compactness of Y.x/ and continuity of J ; see

Lemma A.2 in Appendix A.

We will say that y D .y0; y1; : : :/ 2 Y is a simple path if yk D ym implies ykC1 D ymC1.

A simple loop is a periodic simple path. Since the set X is finite, any simple path leads to a simple

loop within the first M steps. We will use Y s to denote the set of all simple paths and Y s.x/ � Y s

for the set of all such paths starting from x. Theorem A.5 in Appendix A proves the existence of a

minimizing simple path for every x 2 X .

We note that on any path at least one transition happens before the termination with probability

one. As a result we can rewrite

J.y/ D K.y0; y1/ C pq.y1/ C

1
X

tD2

OPt Cost.y1; : : : ; yt /

D K.y0; y1/ C pq.y1/ C .1 � p/J.y1; : : : /: (2.9)

This yields the Optimality Principle:

Vi D V.xi / D min
xj 2N.xi /

˚

Kij C pqj C .1 � p/Vj

	

; i D 1; : : : ; M: (2.10)

REMARK 2.1 This problem can also be restated as an infinite-horizon deterministic control by

setting the costs of transition QKij D Kij C pqj and the discounting factor ˛ D .1 � p/. Indeed, the

1 More general problems with (p dependent on the current state or even on the last transition) can be handled very

similarly; in this section we use the same constant p at all nodes for the sake of notational simplicity.
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expected cost of any uncertain-horizon path can be re-written as

EŒCost.y/� D

1
X

kD0

K.yk; ykC1/
�

1
X

tDkC1

OPt

�

C

1
X

tD1

q.yt / OPt

D

1
X

kD0

K.yk; ykC1/.1 � p/k C

1
X

tD1

q.yt / OPt

D

1
X

kD0

.K.yk ; ykC1/ C pq.ykC1// .1 � p/k D

1
X

kD0

˛k QK.yk; ykC1/: (2.11)

Conversely, consider an infinite-horizon deterministic control problem on a graph specified by a

matrix of QKij ’s and by a discounting factor ˛ 2 .0; 1/. Assume that self-transitions are allowed at

every node, i.e.,

xi 2 N.xi /; for 8xi 2 X: (A1)

(Whenever we need to refer to all other transitions possible from xi , we will use the set ON .xi / D

N.xi /nfxig.) Subject to assumption A1, each infinite-horizon problem can also be restated as a

randomly-terminated problem by setting:

p D .1 � ˛/I qi D QKi i=pI Kij D QKij � pqj I Ki i D 0:

REMARK 2.2 Similarly, if the assumption A1 holds in an uncertain-horizon problem, we can always

assume that self-transitions incur zero cost by setting

qnew
i D qi C Ki i=pI Knew

ij D Kij C p .qj � qnew
j / D Kij � Kjj I Knew

i i D 0:

Thus, for the rest of this paper we will assume without loss of generality that

Ki i D 0 for all i D 1; : : : ; M: (A2)

We will also make an additional assumption, the computational consequences of which will

become clear in Section 2.4.2:

Kij > � > 0 for all i D 1; : : : ; M and for all j ¤ i: (A3)

More generally, we can similarly treat any randomly-terminated problem, where a transition from

another node costs at least as much as staying in place. (Indeed, if A1 holds and Kij > Kjj for all

i and j , then the procedure described in Remark 2.2 will ensure that Knew will satisfy A2 and A3.)

In view of (2.7), if a constant is added to all qi ’s, then the same constant is added to all Vi ’s. As

a result, we can also assume without loss of generality that qi > 0 for 8xi 2 X:

2.3 Properties of the value function

Figure 1A shows a simple example, where every optimal path is a loop. As we’ll see later, such loops

make it impossible to solve the system (2.10) efficiently. Fortunately, conditions A1–A3 preclude

this scenario and also yield useful bounds on V .
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x1

q1 D 0

x2

q2 D 0

K12 D 1

K11 D 10

K21 D 1

K22 D 10

(A)

x1

q1 D 1

x2

q2 D 10

x3

q3 D 0

Kij D 0 for all i; j

(B)

FIG. 1. Top: A simple example violating assumption A2. The optimal path clearly alternates between x1 and x2. By the

symmetry, V1 D V2 D 1=p. We note that the value iterations process described in Section 2.4 would generally require

infinitely many iterations here (except for a lucky initial guess W 0 D V ).

Bottom: A simple example satisfying assumptions A1–A3. We note that V2 D V3 D q3 D 0 and, starting from x2 the path

.x2; x3; x3; : : :/ is always optimal regardless of p. However, starting from x1, the path .x1; x2; x3; x3; : : :/ is optimal

only for p 6 0:1, and V1 D min.1; 10p/.

We will refer to a path y D .y0; y1; : : :/ as eventually motionless (or e.m.) if there exists some

m > 0 such that yk D ym for all k > m. We note that for any such e.m. path the formula (2.7) can

be rewritten as

J.y/ D

m�1
X

tD1

.1 � p/t�1p Cost.y0; : : : ; yt / C .1 � p/m�1Cost.y0; : : : ; ym/: (2.12)

We will refer to a node x 2 X as motionless if y D .x; x; x; : : :/ is a valid path and V.x/ D J.y/ D

q.x/. We will also use M � X to denote a set of all such motionless nodes. To illustrate, in the

example of Figure 1A M D ; regardless of p. In the example of Figure 1B, x3 2 M; x2 62 M , but

x1 2 M only if p > 0:1.

THEOREM 2.3 Suppose an uncertain-horizon problem is such that A1, A2, and A3 hold. Then

1. Vi 6 qi for all xi 2 X .

2. If y 2 Y s.xi / is optimal and yk D xj then Vi > k� C Vj .

3. If a loop .y0; : : : ; ym/ is an optimal path, then V.yk/ D q.yk/ D q.y0/ for all k D 0; : : : ; m:

4. For every x 2 X there exists an e.m. optimal path y 2 Y s.x/.

5. If an e.m. optimal path from x leads through Qx, then there exists an e.m. optimal path from Qx

avoiding x.

Proof. 1. Assumption A2 and (2.10) yield

Vi 6 pqi C .1 � p/Vi H) Vi 6 qi D J.xi ; xi ; xi ; : : :/:
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2. First, suppose y1 D xj ; i.e., xj 2 N.xi / is a minimizer in (2.10). Then, using the above,

Vi D Kij C pqj C .1 � p/Vj > Kij C Vj > � C Vj . Applying this argument recursively yields

Vi > k� C Vj .

3. An optimal path is optimal for every node on it. Suppose q.yn/ 6 q.yk/ for k D 0; : : : ; m. Then

Qx D yn 2 M : given A3, the path Qy D . Qx; Qx; Qx; : : :/ is at least as good for Qx as the original loop

y. Also V. Qx/ D J. Qy/ D q. Qx/. The equality J.y/ D J. Qy/ is only possible if K.yk; ykC1/ D 0

and q.yk/ D q. Qx/ for k D 0; : : : ; m. As a result, every yk 2 M and V.y0/ D : : : D V.ym/.

(This also shows that a non-trivial loop cannot be optimal if � > 0.)

4. Theorem A.5 shows the existence of an optimal simple path y (eventually leading to a simple

loop). The above also shows that the entry point of that simple loop yk is a motionless node.

Thus, the loop can be replaced by .yk ; yk; : : :/ without changing the cost of y .

5. For � > 0 this is obvious (if an optimal path from x passes from Qx, then V.x/ > V. Qx//. If

� D 0, then combining segments of both optimal paths we can form an optimal loop passing

through both x and Qx. As shown above, this implies that Qx is a motionless node.

In the rest of this section we will use superscripts to indicate the dependence on p of the expected

path-cost J p.y/, the value function V p.x/ and the motionless set M p D fx j V p.x/ D q.x/g.

Wherever this superscript is omitted, the properties hold for any fixed p 2 .0; 1/. To address two

extreme cases, we introduce V 0 and V 1 as respective solutions of two systems:

V 0
i D V 0.xi / D min

˚

min
xj 2 ON

fKij C V 0
j g; qi

	

; i D 1; : : : ; M I (2.13)

V 1
i D V 1.xi / D min

xj 2N.xi /

˚

Kij C qj

	

; i D 1; : : : ; M: (2.14)

We see that (2.13) is a variant of (2.6) with ˛ D 1. In other words, V 0 is the value function

for a deterministic optimal stopping problem with no time-discounting. As a result, the label-

setting methods of section 2.4.1 are applicable, and for every starting node x there exists some

optimal finite path .y0; : : : ; ym/; i.e., y0 D x and V 0.x/ D Cost.y0; : : : ; ym/. In the framework of

randomly-terminated problems, V 0 can be intuitively interpreted as the limiting case, in which the

termination is so unlikely that we are guaranteed to reach any node of our choice before it occurs.

(This interpretation is justified in Theorem 2.4 below).

V 1 corresponds to the opposite case, where the termination always happens after the very first

transition. We note that since xi 2 N.xi /, we have V 1
i 6 qi for all xi 2 X: By the above definition,

if xi 2 M 1, we have qi 6 Kij C qj for all xj 2 ON .xi /. An important subset is obtained when the

self-transition is the only optimal strategy:

M 1
0 D

˚

xi 2 X j qi < Kij C qj ; 8xj 2 ON .xi /
	

:

Below we show that M p � M 1; 8p 2 .0; 1/. However the example in Figure 2 shows that some

nodes in M 1nM 1
0 might become motionless only in the limit (as p ! 1). On the other hand, every

node in M 1
0 is already motionless for some p < 1.

To simplify the notation, we will refer to a path y 2 Y.x/ as p-optimal if J p.y/ D V p.x/.

THEOREM 2.4 Suppose an uncertain-horizon problem is such that A1, A2, and A3 hold. Then

1. Suppose y D .y0; : : : ; ym; ym; : : :/ is a p-optimal e.m. path leading from x D y0 to ym. Define

the cost of each finite subpath as in (2.1). Then Cost.y0; : : : ym/ 6 Cost.y0; : : : yn/ and q.ym/ 6

q.yn/ for all n < m (and the second inequality becomes strict if � > 0).
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x1

q1 D 10

x2

q2 D 9

x3

q3 D 0

K12 D 1

K11 D 0

K23 D C

K22 D 0 K33 D 0

FIG. 2. A simple example with subtle motionless set properties. First, note that x1 2 M 1nM 1
0 for all C > 0. Second,

assuming that C D 1, we have V
p

3
D 0; V

p

2
D 1; V

p

1
D 2 C 8p; and x1 62 M p for any p < 1: On the other hand, if

C > 9 then x1 2 M p for all p 2 Œ0; 1�.

2. V p.x/ 2 ŒV 0.x/; V 1.x/� for all p 2 .0; 1/ and all x 2 X .

3. 0 < p1 6 p2 < 1 H) V p1.x/ 6 V p2.x/; 8x 2 X:

4. V p.xi / ! V 1.xi / for all xi 2 X as p ! 1.

5. V p.xi / ! V 0.xi / for all xi 2 X as p ! 0.

6. If p1 6 p2, then M p1 � M p2 : In particular, M 0 � M p � M 1 for 8p 2 .0; 1/:

7. For every xi 2 M 1
0, there exists a sufficiently large p < 1, such that xi 2 M p.

8. For every xi 62 M 0, there exists a sufficiently small p > 0, such that xi 62 M p .

9. Define the sets of local and global minima of q:

Ql D fxi j q.xi / 6 q.xj /; 8xj 2 N.xi /gI Qg D fxi j q.xi / 6 q.xj /; 8xj 2 Xg:

Then Qg � M 0; Ql � M 1; and 8Kij D 0 H) Ql D M 1:

Proof. 1. Let l D argminn6m Cost.y0; : : : ; yn/ and define Qy D .y0; : : : ; yl ; yl ; : : :/. If

Cost.y0; : : : ; yl/ < Cost.y0; : : : ; ym/, then the formula (2.7) implies that J p. Qy/ < J p.y/, which

contradicts the p-optimality of y. (We emphasize that the above argument does not imply that

Cost.y0; : : : ; yn/ is monotone non-increasing in n along every p-optimal path; see Figure 1B for a

counter-example.) We note that

Cost.y0; : : : ; yn/ D

n�1
X

kD0

K.yk; ykC1/ C q.yn/

> Cost.y0; : : : ; ym/ >

n�1
X

kD0

K.yk ; ykC1/ C q.ym/;

where the second inequality uses A3 and becomes strict if � > 0. Thus, q.ym/ 6 q.yn/.

2. Let y D .y0; : : : ; ym; ym; : : :/ be a p-optimal e.m. path leading from x to ym. Note that (2.7)

defines J p.y/ as a weighted average of Cost.y0; : : : ; yn/ terms. Then, from the previous part,

J p.y/ > Cost.y0; : : : ; ym/ > V 0.x/. On the other hand, V 1 can also be defined as V 1.x/ D

min J p.y/, minimizing over all “infinite” paths y 2 Y s.x/ of the form y D .x; y1; y1; : : :/; hence,

V p.x/ 6 V 1.x/.

3. Fixing p2, we define m.x/ to be the minimum number of transitions before reaching the

motionless node along the p2-optimal paths from x. (E.g., x 2 M p2 ” m.x/ D 0.) We prove

this statement by induction on m.x/. First, for m.x/ D 0, we have V p2.x/ D q.x/ > V p1.x/. Now

suppose the statement is true for all xj such that m.xj / 6 k and consider xi such that m.xi / D kC1:



10 J. ANDREWS AND A. VLADIMIRSKY

Then there exists x�
j 2 N.xi /, a minimizer in formula (2.10) such that m.x�

j / D k. As a result,

V p2.xi / D Kij � C p2q.x�
j / C .1 � p2/V p2.x�

j / > Kij � C p2q.x�
j / C .1 � p2/V p1.x�

j /

D Kij � C V p1 .x�
j / C p2

�

q.x�
j / � V p1 .x�

j /
�

> Kij � C V p1.x�
j / C p1

�

q.x�
j / � V p1.x�

j /
�

> V p1.xi /:

4. For any y 2 Y.x/, formulas (2.1) and (2.7) can be combined to show that,

J p.y/ D p ŒK.y0; y1/ C q.y1/� C

1
X

tD2

.1 � p/t�1p Cost.y0; : : : ; yt /

! ŒK.y0; y1/ C q.y1/� ; as p ! 1:

5. For any e.m. y D .y0; : : : ; ym; ym; : : :/ 2 Y.xi /, the formula (2.12) implies that J p.y/ !

Cost.y0; : : : ; ym/ as p ! 0: If the finite path .y0; : : : ; ym/ is optimal for V 0.xi /, then

Cost.y0; : : : ; ym/ D V 0.xi / 6 V p.xi / 6 J p.y/, implying V p.xi / ! V 0.xi /:

6. If x 2 M p1 , then q.x/ D V p1.x/ 6 V p2 .x/ 6 q.x/. Thus, x 2 M p2 :

7. Since xi 2 M 1
0, we can define

p D qi = min
xj 2 ON .xi /

fKij C qj g < 1:

As a result, for any simple path y 2 Y s.xi / involving at least one non-trivial transition (i.e., with

y1 ¤ y0 D xi ), we have J p.y/ > p ŒK.y0; y1/ C q.y1/� > qi : Thus, xi 2 M p :

8. Part 5 of this Theorem implies limp!0 V p.xi / D V 0.xi / < qi . Thus, for sufficiently small p,

V p.xi / < qi , and xi 62 M p :

9. If xi 2 Qg , then for any path .y0; : : : ; ym/ starting from y0 D xi , we have Cost.y0; : : : ; ym/ >

q.ym/ > qi H) xi 2 M 0: If xi 2 Ql , then qi 6 qj 6 Kij C qj for all xj 2 N.xi / H) xi 2

M 1:

If 8Kij D 0, the definitions of M 1 and Ql coincide. In this case every p-optimal trajectory becomes

motionless at some local minimum of q.

REMARK 2.5 For the general infinite-horizon and/or optimal stopping problems reviewed in

Section 2.1, the cost of any trajectory is obviously a non-decreasing function of the discounting

factor ˛. We note that Part 3 of the above theorem does not contradict this monotonicity, since the

procedure described in Remark 2.1 also makes QKij ’s dependent on p.

2.4 Solving the Dynamic Programming equations

The Optimality Principle (2.10) yields a system of M coupled non-linear equations, which can be

challenging to solve efficiently.

An operator T can be defined on RM component-wise by applying the right hand side of

equation (2.10); i.e., for any W 2 RM ,

.T W /i D min
xj 2N.xi /

˚

Kij C pqj C .1 � p/Wj

	

: (2.15)
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Clearly, V D

2

6

4

V1

:::

VM

3

7

5
is a fixed point of T and one hopes to recover V by value iteration:

W nC1 WD T W n starting from an initial guess W 0 2 RM . (2.16)

The value iterations will converge (i.e., W n ! V ) for any initial guess W 0 [9], but this approach

is not very efficient. It is generally possible that the value iterations will not converge in a finite

number of steps (e.g., see the example in Figure 1A). If the problem is such that the convergence

is attained in finitely many steps for every W 0, it is easy to show that W M D V (i.e., at most M

value iterations will be needed). Since the computational cost of each value iteration is O.M /, this

results in the overall cost of O.M 2/. A standard Gauss–Seidel relaxation can be used to speed up

the convergence, but then the efficiency becomes strongly dependent on the chosen node-ordering

and the worst case computational cost remains O.M 2/.

Label-setting methods provide an attractive alternative to value iterations for problems with

intrinsic causality. These methods reorder the iterations over the nodes to guarantee that each Vi

is recomputed at most � << M times. This can also be interpreted as finding the optimal Gauss–

Seidel ordering dynamically – based on the value function already correctly computed on a part of

the graph.

2.4.1 Label-setting for SP problems. For reader’s convenience, we first provide a brief overview

of standard label-setting methods for deterministic shortest path problems (2.3). If we assume Kij >

� > 0; then Ui D Kij C Uj implies Ui > � C Uj > Uj . This induces a causal ordering: each

Ui depends only on the smaller values in the adjacent nodes. I.e., if xj 2 N.xi / and Uj > Ui then

replacing Uj with C1 will not change the value of Ui as computed by formula (2.3). This is the

basis of Dijkstra’s classic method [18].

The method subdivides X into three classes: Accepted (or “permanently labeled”) nodes,

Considered (or “tentatively labeled”) nodes that have Accepted nodes among their neighbors, and

Far (or “unlabeled”) nodes. The values for Considered xi ’s are successively re-evaluated using

only the previously Accepted adjacent values:

U.xi / WD min
xj 2 QN .xi /

˚

Kij C Uj

	

; (2.17)

where QN .xi / D N.xi / \ Accepted. The algorithm is initialized by designating all exit-nodes as

Considered (with tentative labels U.xi / D qi for all xi 2 Q) and all other nodes as Far (with

tentative labels U.xi / D C1 for all xi 2 XnQ). At each stage the algorithm chooses the smallest

of tentative labels U. Nx/, designates Nx as Accepted (making this label permanent and removing Nx

from the list of Considered), and re-evaluates Ui for each not-yet-Accepted xi such that Nx 2 N.xi /:

Since Nx is the only new element in QN .xi /, that re-evaluation can be more efficiently performed by

setting

U.xi / WD min fU.xi /; .K.xi ; Nx/ C U. Nx//g : (2.18)

In addition, all previously Far xi ’s updated at this step are designated Considered.

The algorithm terminates once the list of Considered nodes is empty, at which point the vector

U 2 RM satisfies the system of equations (2.3). The necessity to sort all tentative labels suggests
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the use of heap-sort data structures for Considered nodes [1], resulting in the overall computational

complexity of O.M log M /.

If � > 0, then Dial’s label-setting method is also applicable [17]. The idea is to avoid sorting

Considered nodes and instead place them into “buckets” of width � based on their tentative values.

If U. Nx/ is the “smallest” of tentative labels and U.x/ is currently in the same bucket, then even after

Nx is permanently labeled, it cannot affect U.x/ since

U.x/ < U. Nx/ C � 6 U. Nx/ C K.x; Nx/:

Thus, a typical stage of Dial’s method consists of Accepting everything in the current bucket,

recomputing all not-yet-Accepted nodes adjacent to those newly Accepted, switching them to other

buckets if warranted by the new tentative labels, and then moving on to the next bucket. Since

inserting to and deleting from a bucket can be performed in O.1/ time, the overall computational

complexity of Dial’s method becomes O.M /. In addition, while Dijkstra’s approach is inherently

sequential, Dial’s method is naturally parallelizable. However, in practice, Dial’s method is often

less efficient then Dijkstra’s because the constant factor hidden in the former’s O.M / asymptotic

complexity depends on � and on average Kij values encountered along optimal paths. Many other

enhancements of the above label-setting methods are available in the literature (e.g., see [7], [1] and

references therein).

2.4.2 Label-setting for uncertain-horizon problems. We now show that a variation of Dijkstra’s

method is applicable in the uncertain-horizon case provided A1–A3 hold.

Part 2 of Theorem 2.3 shows the causality necessary for a variant of Dijkstra’s method to

correctly compute the value function. Some modifications are needed, however. First of all, the

tentative labels should be initially set to Vi D qi . Secondly, the update formula (2.18) has to be

replaced by

V.xi / WD min
n

V.xi /;
�

K.xi ; Nx/ C pq. Nx/ C .1 � p/V. Nx/
�

o

: (2.19)

Thirdly, there is a question of which nodes should be initially placed on the Considered list.

(Since this list is maintained using a heap-sort data structure, this decision will directly impact

the efficiency of the method.) The only way for Dijkstra’s to produce a wrong result is to have some

node Nx Accepted before its optimal neighbor Ox 2 N. Nx/. Suppose y is Nx’s optimal path becoming

motionless at some node Qx; i.e., y D .y0; : : : ; ym�1; ym; ym; ym; : : :/ 2 Y s. Nx/, where y0 D Nx,

y1 D Ox, and ym D Qx. By Part 2 of Theorem 2.3, V. Nx/ > V.y1/ > : : : V .ym/ D q.ym/.

As long as, ym is initially marked as Considered, it is easy to show that Nx will not be Accepted

prematurely. So, it is sufficient to initially mark as Considered all motionless nodes. Unfortunately,

the set M is not known in advance, but Part 6 of Theorem 2.4 can be used to over-estimate it with

M 1 D fxi j qi 6 Kij C qj ; 8xj 2 ON .xi /g: However, the following Lemma shows why it is

already sufficient to mark as Considered a smaller set Ql :

LEMMA 2.6 For every Nx 2 X there exists a path y D .y0; : : : ; yr / such that

yr 2 Ql , y0 D Nx, and, for all k D 0; : : : ; .r � 1/,

either yk is a motionless node and V.yk/ D q.yk/ > V.ykC1/;

or ykC1 is an optimal transition from yk

(i.e., V.yk/ D K.yk ; ykC1/ C pq.ykC1/ C .1 � p/V.ykC1/).

Proof. Start with an optimal e.m. path for Nx leading to some motionless node Qx. If Qx 62 Ql , then



DETERMINISTIC CONTROL OF RANDOMLY-TERMINATED PROCESSES 13

there exists x 2 N. Qx/ such that V. Qx/ D q. Qx/ > q.x/ > V.x/. Now concatenate the x’s optimal

e.m. path and repeat the process until reaching Ql .

Using concatenated paths described in Lemma 2.6, it is easy to prove by induction that, starting with

Ql marked as Considered, the order of acceptance will be also causal (i.e., Ox will be Accepted before

Nx). We summarize the resulting Dijkstra-like method for uncertain-horizon processes on graphs in

Algorithm 1 (allowing for edge-dependent probabilities of termination pij ’s).

Algorithm 1 A Dijkstra-like method for randomly-terminated processes on graphs

start with all nodes marked as Far;

set Vi WD qi for all xi 2 X;

mark all local minima of q as Considered;

while (Considered list is not empty) f

let Vj D V.xj / be the smallest Considered value;

mark xj Accepted;

for each not-yet-Accepted xi such that xj 2 N.xi / f

set Vi WD min
�

Vi ; Kij C pij qj C .1 � pij /Vj

�

I

if xi is Far, mark it Considered;

g

g

The direct procedure of identifying all local minima takes O.�M / operations and may or may

not be advantageous (after all, the algorithm will also work if the entire X is initially labeled

as Considered). However, this pre-processing becomes clearly worthwhile if several different

uncertain-horizon problems are to be solved on the same graph (with the same terminal cost function

q W X 7! R) but with different transition cost functions K W X � X 7! RC;0.

Finally, we note that if � > 0, then a similarly modified Dial’s method will also be applicable

with buckets of width �.

2.5 Example: Optimal idle-time processing

As a sample application for uncertain-horizon processes, we consider the task of optimally using

the idle-time to minimize the expected waiting time of the first client. We model arrival of client

requests as a Poisson process with � requests arriving on average per unit time; i.e., if T1 is the

time of the first request, then P.T1 > t/ D e��t and P .T1 2 Œt; t C dt�/ D �e��t dt . If xi 2 X

is the current state of the system when the first request arrives, then q.xi / is the expected time for

completing that request. At every stage of the process we can either decide to stay in the current

state or start a transition to any state xj 2 N.xi /. Such a transition will take some time �ij > 0

and the system will not be capable of responding to any incoming requests until that transition is

completed. Thus, even if q.xj / < q.xi /, this has to be balanced against the expected additional

waiting time .�ij � T1/ provided T1 < �ij , i.e.,

Kij D

�ij
Z

0

.�ij � t/�e��t dt D
e���ij � .1 � ��ij /

�
> 0; 8i ¤ j:
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If Vi D V.xi / is the minimal expected wait time starting from the state xi , then

Vi D min
˚

qi ; min
xj 2 ON .xi /

˚

Kij C pij qj C .1 � pij /Vj

		

; (2.20)

where pij D P.T1 < �ij / D 1 � e���ij . This system clearly satisfies the assumptions A1, A2, and

A3 and the label-setting methods of Section 2.4.2 are therefore applicable.

One interesting application of this problem is to minimize the expected wait time of the first

emergency caller by moving an ambulance during the idle-time. In that case, x is the current position

of an ambulance and q.x/ is the expected travel time from x to the caller’s location. Suppose d.x; Qx/

is the minimum travel time through the graph from x to Qx and QP . Qx/ is the probability that the next

call originates from Qx. Then

q.x/ D
X

Qx2X

QP . Qx/ d.x; Qx/:

If QP is non-zero for a small fraction of nodes in X only, then the distances d.x; Qx/ are best

evaluated through a repeated application of the standard Dijkstra’s method. Otherwise, Floyd–

Warshall algorithm will likely be more efficient [1].

Any global minimum of q is obviously the optimal location to “park” an ambulance (or to build

an ambulance depot). But if the ambulance starts at any other location xi , the optimal strategy for

moving it while expecting the call is recovered by using the minimizer in formula (2.20).

REMARK 2.7 After this paper was already submitted, we have found a somewhat different single-

ambulance model introduced in a recent technical report [39], which also contains an independently

developed label-setting algorithm for the “no running cost” subcase (i.e., all Kij D 0).

Of course, realistic dynamic fleet management problems require efficient control of multiple

vehicles simultaneously. The expected response time would then depend on the current position

and status of all vehicles, resulting in the exponential growth of the state space. This curse of

dimensionality typically precludes the direct use of the above approach, but a computationally

feasible alternative is provided by the methods of approximate dynamic programming [27]. A recent

example of the latter applied to the ambulance redeployment problem can be found in [24].

Non-iterative algorithms for approximate dynamic programming would be clearly very useful,

but, to the best of our knowledge, no such methods are currently available.

3. Uncertain-horizon processes in continuous state-space

We now derive the results parallel to those in Section 2 but in continuous state-space. We start with

the taxonomy of “common” deterministic optimal control problems on ˝ � Rn. We then show

the relationship between the uncertain-horizon problems and time-discounted optimal-stopping

problems. A modified version of Fast Marching Method is then developed for the latter and

illustrated by a number of numerical examples in Section 4.

3.1 Common types of optimal control problems in continuous state-space

We will assume that ˝ is an open bounded subset of Rn. Suppose A 2 Rm is a compact set of

control values, and the set of admissible controls A consists of all measurable functions a W R 7! A.
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The dynamics of the system is defined by

y 0.s/ D f
�

y.s/; a.s/
�

;

y.0/ D x 2 ˝; (3.1)

where y.s/ is the system state at the time s, x is the initial system state, and f W ˝ � A 7! Rn is

the velocity.

We will also assume that the running cost K W ˝ � A 7! ŒK1; K2� and the discount rate ˇ > 0

are known. (The case ˇ D 0 corresponds to no discounting.)

We note that the partial differential equations derived for problems in this subsection typically

do not have classical (smooth) solutions on the entire domain and the weak solutions are generally

not unique. The theory of viscosity solutions introduced by Crandall and Lions [15] is used to

overcome this difficulty, picking out the unique weak solution coinciding with the value function of

the corresponding control problem. Here we only provide a formal derivation and classification of

PDEs; rigorous proofs and many relevant references can be found in [4].

ı Finite-horizon problems:

Suppose the process runs until the specified time T . This allows us to define the total cost of

using a control a.�/ starting from x with T D T � t seconds left before the termination:

J .x; t; a.�// D

Z T

0

e�ˇsK
�

y.s/; a.s/
�

ds C e�ˇT q
�

y.T /
�

;

where t is the starting time and q W ˝ 7! R is the terminal cost. The value function u W ˝ � Œ0; T �

can be defined as usual: u.x; t/ D inf J .x; t; a.�//; where the inf is taken over

A0.x/ D
˚

a.�/ 2 A j y.s/ 2 ˝ for all s 2 Œ0; T �
	

:

The optimality condition shows that, for any � 2 .0; T /,

u.x; t/ D inf
a.�/

�Z �

0

e�ˇsK
�

y.s/; a.s/
�

ds C e�ˇ� u
�

y.�/; t C �
�

�

:

Assuming that u 2 C 2, Taylor-expanding and letting � ! 0, it is easy to show that u is a solution

of a Hamilton–Jacobi–Bellman PDE:

�ut C ˇu � min
a2A

˚

K.x; a/ C ru � f .x; a/
	

D 0; for x 2 ˝; t 2 Œ0; T /I

u D q; for x 2 ˝; t D T : (3.2)

Here ut is the derivative with respect to time, and ru is a vector of spatial derivatives. This is a

terminal value problem for a hyperbolic non-linear PDE. The optimal trajectories coincide with

the characteristics of this equation. Since it is time-dependent, the numerical approximation can

be computed very efficiently by time-marching (from t D T into the past).

ı Undiscounted exit-time problems:

Here, ˇ D 0 and the process terminates upon exiting from ˝; i.e.,

T D Tx;a D inf
˚

t 2 RC;0jy.t/ 62 ˝
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and the terminal cost is defined only on the boundary (q W @˝ ! R). Since both the cost and

dynamics are not directly dependent on time, the value function does not depend on t either and

u.x/ is defined by taking inf over A. Similar formal reasoning shows that u.x/ must satisfy a

static Hamilton–Jacobi-Bellman PDE with Dirichlet boundary conditions

� min
a2A

˚

K.x; a/ C ru � f .x; a/
	

D 0; for x 2 ˝I

u D q; for x 2 @˝: (3.3)

If we assume K1 > 0, this guarantees that wherever u.x/ < 1, all optimal paths lead to @˝

in finite time. Thus, all characteristics originate from @˝ and K1 > 0 implies the monotone

growth of u along each characteristic. This gives one reasons to hope for causal (label-setting)

numerical methods after the PDE is discretized on a grid. Such efficient methods were, indeed,

constructed for a number of special cases. In the fully isotropic case, K D K.x/, A D Sn�1,

and f D f .x/a. Here, a unit vector a is our chosen direction of motion, f > 0 is the speed of

motion, and (3.3) reduces to the Eikonal PDE:

jrujf .x/ D K.x/ for x 2 ˝I

u D q; for x 2 @˝: (3.4)

Two Dijkstra-like methods for discretizations of this equation were introduced by Tsitsiklis

[35, 36] and Sethian [29]. The former was done in the context of semi-Lagrangian discretizations

for control-theoretic problems; the latter (the Fast Marching Method) was introduced for upwind

finite-difference discretizations of isotropic front propagation problems. A detailed discussion

of connections between these two approaches can be found in [32]. The Fast Marching Method

was later extended by Sethian and collaborators to higher order upwind discretizations on grids

and unstructured meshes in Rn and on manifolds. All Dijkstra-like methods have the same

computational complexity of O.M log M /, where M is the number of gridpoints. Another

algorithm introduced by Tsitsiklis on an 8-neighbor stencil mirrors the logic of Dial’s method

and results in O.M / computational complexity (see [36] and the generalizations in [38]).

A more general anisotropic case is obtained when K D K.x; a/, A D Sn�1, and f D f .x; a/a

(i.e., both the running cost and the speed can depend on the direction of motion). Upwind

discretizations of the resulting PDE are generally not causal, making label setting methods

inapplicable. Ordered Upwind Methods circumvent this difficulty by dynamically extending the

stencil just enough to restore the causality, resulting in Dijkstra-like computational complexity,

but with an additional “anisotropy coefficient” [2, 31, 32].

ı Infinite-horizon problems:

Here, the cost of each control is defined as before, except that ˇ > 0, T is always taken to be C1,

and there is no terminal cost: J .x; a.�// D
R C1

0 e�ˇsK.y.s/; a.s// ds: Since we are moving for

an infinite time, the value function u is no longer time-dependent. (The fact that u is finite follows

from ˇ > 0 and the boundedness of K . To remain in ˝ , the inf is taken over A0.x/.) Similar

formal reasoning shows that u.x/ must satisfy a static Hamilton–Jacobi–Bellman PDE

ˇu � min
a2A

˚

K.x; a/ C ru � f .x; a/
	

D 0; for x 2 ˝: (3.5)

We note that there is also a well-known version of this problem, where the process can also be

terminated upon hitting @˝; see [4]. In that case, u is defined by taking inf over A, resulting
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in Dirichlet boundary conditions on @˝ interpreted in the viscosity sense. However, unlike the

undiscounted exit-time problems defined above, here the optimal trajectories can be periodic

inside ˝ even if K1 > 0. This generally precludes any use of causal numerical methods.

ı Optimal stopping problems:

Same as the infinite-horizon problem, but with an option of deciding to terminate the process at

any point T :

J
�

x; a.�/; T
�

D

Z T

0

e�ˇsK
�

y.s/; a.s/
�

ds C e�ˇT q
�

y.T /
�

;

where, as in the finite-horizon case, q W ˝ 7! R. The value function can be defined by taking inf

over all controls and all termination times:

u.x/ D inf
a.�/2A0.x/; T >0

J .x; a.�/; T /:

The direct consequence of this is the fact that u.x/ 6 q.x/ on ˝ and, wherever u is less than q,

it should be formally a solution of (3.5). In this case, u is the viscosity solution of the following

variational inequality of obstacle type :

max
n

u.x/ � q.x/; ˇu � min
a2A

˚

K.x; a/ C ru.x/ � f .x; a/
	

o

D 0: (3.6)

See [4] for a rigorous derivation. Let M D fx 2 ˝ j u.x/ D q.x/g. Then the PDE (3.5)

is satisfied on ˝nM and B D @M forms a free boundary for this problem. It is not hard to

show that the optimal trajectories cannot be periodic, provided K.x; a/ > ˇq.x/ for all x and

a. In this case, all characteristics of this PDE run into ˝nM from B and the space-marching

numerical approach is feasible. However, since B is a priori unknown, this presents an additional

challenge for label-setting methods. (The equivalent properties of uncertain-horizon processes

will be considered in detail in the next section.)

We note that the analysis of optimal stopping problems can be reduced to that of infinite horizon

problems if we extend the set of control values by adding a special “motionless” control a0 such

that f .x; a0/ D 0 and K.x; a0/ D ˇq.x/ for all x 2 ˝ . Similarly, any infinite horizon problem

with a motionless control a0 available in every state x can also be viewed as an optimal stopping

problem by setting q.x/ D K.x; a0.x//=ˇ:

3.2 The value function for uncertain-horizon processes

We now consider a randomly-terminated state-restricted undiscounted problem. The dynamics is

yet again restricted to ˝ , the state evolution is described by (3.1), where f .x; a/ is Lipschitz-

continuous in x and continuous in a. We assume that both K and q are lower semi-continuous

functions satisfying the following:

q W ˝ 7! R is the terminal cost such that

q1 6 q.x/ 6 q2; 8x 2 ˝; where q1 D min
x

q.x/ > 0:
(B1)

K W ˝ � A 7! Ris the running cost such that

0 6 K1 6 K.x; a/ 6 K2; 8x 2 ˝; a 2 A:
(B2)



18 J. ANDREWS AND A. VLADIMIRSKY

Some of the properties proven below, also rely on a stronger assumption:

The velocity f W ˝ � A 7! Rn is bounded (i.e., jf j 6 F2) and the motion in

every direction is always possible, i.e.,
8x 2 ˝; and all v 2 Sn�1; 9a 2 A s.t. v � f .x; a/ D jf .x; a/j > F1 > 0:

(B3)

We assume that the terminal event is a result of some Poisson process and the time till termination

has an exponential probability distribution; i.e., P.T > t/ D e��t . Thus, starting from x, the cost

of any individual control a.�/ 2 A0.x/ is

J .x; a.�// D

Z C1

0

�e��t

�Z t

0

K
�

y.s/; a.s/
�

ds C q
�

y.t/
�

�

dt (3.7)

D

Z C1

0

e��s
�

K
�

y.s/; a.s/
�

C �q
�

y.s/
��

ds (3.8)

where the second equality follows from the Fubini’s Theorem. This shows that any randomly-

terminated problem can be converted to a discounted infinite-horizon problem with ˇ D � and
QK.x; a/ D K.x; a/ C �q.x/: This relationship is well-known and has been previously used in [12]

to treat even more general random-termination problems (e.g., with � D �.x/). The value function

can then be defined as usual v.x/ D inf
a.�/2A0.x/

J .x; a.�//:

REMARK 3.1 In view of (3.8), adding any constants C1 and C2 to functions K and q respectively,

will result in adding C1=� C C2 to the value function v. Thus, the above assumptions about the

non-negativity of q1 and K1 can be made without any loss of generality.

Assuming f , K and q are Lipschitz, the value function v is a ˝-constrained viscosity solution

[4] of a Hamilton–Jacobi PDE:

min
a2A

˚

rv.x/ � f .x; a/ C K.x; a/
	

C �
�

q.x/ � v.x/
�

D 0: (3.9)

Before using the fact that v.x/ is the viscosity solution of the corresponding variational inequality,

we first prove a number of properties of the value function directly.

A standard treatment of state-constrained infinite-horizon problems shows that, for sufficiently

regular costs, dynamics, and @˝ , v.x/ is bounded uniformly continuous. Using an additional

controllability assumption B3 we provide a direct proof of local Lipschitz-continuity of v.x/.

LEMMA 3.2 Assume B1–B3. Then the value function of the randomly-terminated problem is

locally Lipschitz-continuous on ˝ with the Lipschitz constant Lv D .K2 C �q2/=F1.

Proof. Suppose x1; x2 2 ˝ are such that the straight line segment connecting these two points lies

inside ˝ . Suppose a.�/ is a control and y.�/ is the corresponding trajectory such that we follow that

straight line from x1 to x2 and then switch to the optimal control of x2:

y.0/ D x1I y.�/ D x2I J
�

x2; a.� C �/
�

D v.x2/I

y 0.t/ �
x2 � x1

jx2 � x1j
D jy 0.t/j D

ˇ

ˇf
�

y.t/; a.t/
�ˇ

ˇ; for 8t 2 Œ0; �/:

The existence of such a.�/ and the fact that � 6
jx2�x1j

F1
follow from the controllability assumption
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B3. Then, from the optimality principle,

v.x1/ 6 J .x1; a.�// D

Z �

0

e��s ŒK.y.s/; a.s// C �q.y.s//� ds C e��� v.x2/

6 �.K2 C �q2/ C v.x2/ 6
jx2 � x1j

F1

.K2 C �q2/ C v.x2/ D jx2 � x1jLv C v.x2/:

To complete the proof, the above argument can be repeated reversing the roles of x1 and x2. We

note that this proof does not use any additional assumptions on the regularity of K or q.

We now list three essential assumptions that provide a continuous equivalent of A1–A3, which

defined the discrete randomly-terminated problem in Section 2.2. We assume the existence of a

special control a0 2 A such that

f .x; a0/ D 0; 8x 2 ˝: (A10)

K.x; a0/ D 0; 8x 2 ˝: (A20)

We will also use OA D Anfa0g for the set of all other control values.

K1 D inf
x2˝; a2 OA

K.x; a/ > 0: (A30)

Assumptions A10–A30 allow us to restate (3.9) as an optimal stopping problem

max
n

v.x/ � q.x/; �
�

v.x/ � q.x/
�

� min
a2 OA

˚

K.x; a/ C rv.x/ � f .x; a/
	

o

D 0I (3.10)

or, in the isotropic case (when A D Sn�1 [ fa0g, and f .x; a/ D f .x/a; K.x; a/ D K.x/; 8a ¤

a0),

max
˚

v.x/ � q.x/; � .v.x/ � q.x// � K.x/ C jrv.x/jf .x/
	

D 0: (3.11)

Using the notation Œz�� D min.z; 0/, we can rewrite this variational inequality as follows:

v.x/ D q.x/ C
1

�

h

min
a2 OA

˚

K.x; a/ C rv.x/ � f .x; a/
	

i�

; (3.12)

or, in the isotropic case,

v.x/ D q.x/ C
1

�

�

K.x/ � f .x/jrv.x/j
��

: (3.13)

The PDE holds (with the Œ��� omitted) on the domain ˝nM . In Section 3.3 we discuss the

discretized version of the isotropic variational inequality (3.13) and a label-setting algorithm

for solving it efficiently. We note that several properties of the value function (e.g., Part 5 of

Theorem 3.3) can also be obtained directly from the characteristic ODEs of (3.12) using stronger

regularity assumptions on the dynamics and cost. However, our proofs provided below are more

general. Examples studied in Sections 4.3 and 4.4 use discontinuous f and K to test our numerical

method; additional examples (using discontinuous q) were omitted to save space. A detailed

theoretical discussion of viscosity solutions to HJB PDEs with discontinuous Lagrangian can be

found in [33].
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The rest of this section is based on direct applications of the control-theoretic interpretation

rather than on the theory of viscosity solutions. We will refer to a control a.�/ as eventually

motionless (or e.m.) if 9T s.t. a.t/ D a0; 8t > T: We will say that the corresponding e.m. trajectory

y.�/ becomes motionless at the point y.T /. Given a fixed control a.�/, we will further use a notation

!.t/ D

Z t

0

K
�

y.s/; a.s/
�

ds C q
�

y.t/
�

;

for the deterministic cost of it if the termination happens at the time t . We note that, for an e.m.

control, formula (3.7) can be rewritten as

J .x; a.�// D

Z T

0

�e��t !.t/ dt C e��T !.T /: (3.14)

We will also define a “motionless” set M D fx j v.x/ D J .x; a0/ D q.x/g: We note that, if the

value function is continuous, then the set M is closed (since .v � q/ is upper semi-continuous).

The following two theorems list a number of properties of the value function and of optimal

controls/trajectories.

THEOREM 3.3 Assume B1,B2, and A10–A30. Then, for all x 2 ˝ ,

1. v.x/ 2 Œq1; q.x/�.

2. q.x/ D q1 implies x 2 M .

3. 8x 2 ˝; " > 0; 9 an "-suboptimal e.m. control a".�/:

4. If K1 > 0, then every optimal control is e.m.

5. If y�.t/ is an optimal trajectory, then v.y�.t// is a monotone non-increasing function of t (and

monotone decreasing up to its motionless point if K1 > 0).

6. If B3 holds, K1 > 0, and y�.t/ is an optimal trajectory for x D y�.0/, then

jy�.t/ � xj > t
K1F1

K2 C �q2

;

provided the straight line from x to y�.t/ lies within ˝ .

7. Let D.x1; x2/ be the minimum distance from x1 to x2 (minimized over all allowable trajectories

in ˝) and D D sup
x1;x22˝

D.x1; x2/. If B3 also holds, then v.x/ 6 q1 C DLv .

Proof. 1. A10, and A20 ensure that v.x/ 6
R C1

0
e��s�q.x/ ds D q.x/, while A30 shows that

for every control J .x; a.�// >
R C1

0
e��s�q.y.s// ds > q1:

2. In particular, if q1 D q.x/ then v.x/ D q.x/ and a�.t/ D a0 is the optimal control.

3. Suppose a1.�/ is a (possibly non-e.m.) "
2

-suboptimal control and y1.�/ is the corresponding

trajectory starting from x; i.e.,

J
�

x; a1.�/
�

D

Z C1

0

e��s
h

K
�

y1.s/; a1.s/
�

C �q.y1.s//
i

ds 6 v.x/ C
"

2
:

Define a control a2.t/ D a1.t/ for t < � and a2.t/ D a0 after that. The corresponding trajectory
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y2 is a truncated version of y1.

J
�

x; a2.�/
�

D

Z �

0

e��s
h

K
�

y1.s/; a1.s/
�

C �q
�

y1.s/
�

i

ds C

Z C1

�

e��s�q
�

y1.�/
�

ds

D

Z C1

0

e��s
h

K
�

y1.s/; a1.s/
�

C �q
�

y1.s/
�

i

ds

C

Z C1

�

e��s
h

�q
�

y1.�/
�

� K
�

y1.s/; a1.s/
�

� �q
�

y1.s/
�

i

ds

6 J
�

x; a1.�/
�

C
h

q2 � q1 �
K1

�

i

e��� :

Thus, for all sufficiently large � ,

J
�

x; a2.�/
�

6 J
�

x; a1.�/
�

C
"

2
6 v.x/ C "I i.e., a2.�/ is "-suboptimal.

4. Suppose a�.t/ is a non-e.m. optimal control starting from x and y�.t/ is the corresponding

trajectory. Let Qq1 D inf
t>0

q.y�.t//: Then 9� > 0 such that q.y�.�// � Qq1 < K1=�. Then

Z C1

�

e��s
h

K
�

y�.s/; a�.s/
�

C �q.y�.s//
i

ds > e���
h

K1=� C Qq1

i

> e���q
�

y�.�/
�

I

i.e., making that trajectory motionless at y�.�/ would result in a lower cost, contradicting the

optimality of a�.t/.

5. Suppose a�.�/ is an optimal control starting from x, y�.t/ is the corresponding optimal

trajectory, and define z.t/ D v.y�.t//. By the optimality principle,

z.0/ D

Z t

0

e��s
h

K
�

y�.s/; a�.s/
�

C �q
�

y�.s/
�

i

ds C e��t z.t/:

By Lebesgue’s differentiation theorem, z.t/ is differentiable for almost all t > 0 and

0 D e��t
�

K.y�.t/; a�.t// C �q.y�.t//
�

C e��t z0.t/ � �e��tz.t/I

Hence, z0.t/ D � Œz.t/ � q.y�.t//� � K.y�.t/; a�.t// for almost all t > 0. Since z.t/ D

v.y�.t// 6 q.y�.t//, we have z0.t/ 6 0; moreover, this inequality becomes strict if K1 > 0

and a�.t/ ¤ a0.

We note that a similar argument combined with the optimality principle shows that, even for a non-

optimal control a.�/, the value function along the corresponding trajectory z.t/ D v.y.t// will

satisfy z0.t/ > � Œz.t/ � q.y.t//� � K.y.t/; a.t// for almost every t > 0.

6. As shown above, z0.t/ 6 �K1; so, v.x/ � v.y�.t// > tK1. On the other hand, by

Lemma 3.2, v.x/�v
�

y�.t/
�

D
ˇ

ˇv.x/�v
�

y�.t/
�
ˇ

ˇ 6 Lv

ˇ

ˇx�y�.t/
ˇ

ˇ: Thus, jy�.t/�xj > t K1F1

K2C�q2
:

7. Since v is locally Lipschitz by Lemma 3.2, this bound is obtained by following the trajectory

from x to x�
0 D argmin

x02˝

q.x0/.
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In the rest of this section we will use superscripts to indicate the dependence on � of the expected

control cost J �.x; a.�//, the value function v�.x/ and the motionless set M � D fx j v�.x/ D

q.x/g. Wherever this superscript is omitted, the properties hold for any fixed � > 0. We also

introduce v0 as the solution of a variational inequality:

max
n

v0.x/ � q.x/; � min
a2A

˚

K.x; a/ C rv0.x/ � f .x; a/
	

o

D 0: (3.15)

We see that (3.15) is a variant of (3.6) with ˇ D 0. Intuitively, v0 can be interpreted as the value

function for the limiting case, in which the termination is so unlikely that we are guaranteed to reach

any x 2 ˝ of our choice before it occurs. Due to A20, A30 we can instead minimize over OA without

changing v0.

Let Da
Cq.x/ and H

a
Cq.x/ be respectively the lower Dini and the lower Hadamard derivatives

of q along the vector f .x; a/; i.e.,

Da
Cq.x/ D lim inf

t!0C

q
�

x C tf .x; a/
�

� q.x/

t
I Ha

Cq.x/ D lim inf
t!0C

b!f .x;a/

q .x C tb/ � q.x/

t
I

if q is differentiable, then Da
Cq.x/ D Ha

Cq.x/ D rq.x/ � f .x; a/. We also define two sets

M 1 D
n

x j inf
a2 OA

˚

K.x; a/ C Da
Cq.x/

	

> 0
o

and M 1
0 D

n

x j min
a2 OA

˚

K.x; a/ C Ha
Cq.x/

	

> 0
o

:

The minimum in the above definition of M 1
0 is attained since the lower Hadamard derivatives

are lower semi-continuous functions of the direction. Moreover, it is easy to show that for every

x 2 M 1
0 there exists � > 0 and � > 0 such that for all t 2 .0; �� and all a 2 OA

K.x; a/ C
q
�

x C tf .x; a/
�

� q.x/

t
> � > 0: (3.16)

REMARK 3.4 The set ˝nM 1 consists of points, starting from which it is never optimal to stay in

place regardless of how high � is. However, the points in M 1nM 1
0 may also remain outside of

M � for any finite �. E.g., if K � 0 and q is smooth, then every critical point of q will be in M 1,

including all strict local maxima of q, starting from which it is clearly better to move regardless of

�, and all strict local minima of q, which become motionless when � is sufficiently large. Below

we show that all point in M 1
0 also have the latter property, at least for isotropic cost/dynamics with

K1 > 0. Interestingly, the isotropy and K1 > 0 also imply that all strict local maxima of a smooth

q will also lie in M 1
0 . This might seem somewhat counterintuitive, but there is no contradiction: for

large �, the process will likely terminate close to the starting point, and the net decrease in q will be

insufficient to compensate for the accumulated running cost.

To simplify the notation, we will refer to a control a�.t/ (and the corresponding trajectory y�.t/)

as �-optimal if J �.x; a�.�// D v�.x/:

THEOREM 3.5 Bounds and asymptotic behavior of v� and M � assuming B1, B2, and A10–A30.

Suppose that an e.m. �-optimal control exists for every starting location x 2 ˝ and 8� > 0.

1. If y�.t/ is an optimal trajectory starting from x and becoming motionless at some x0 D y�.t0/,

then !.t0/ 6 !.t/ and q.x0/ 6 q.y�.t// for all t 2 Œ0; t0/ (and the second inequality is strict if

K1 > 0).
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2. v�.x/ 2 Œv0.x/; q.x/� for all � > 0 and all x 2 ˝.

3. 0 6 �1 6 �2 H) v�1.x/ 6 v�2 .x/; 8x 2 ˝:

4. v� ! q pointwise as � ! C1.

5. v� ! v0 pointwise as � ! 0.

6. If �1 6 �2, then M �1 � M �2 : In particular, M 0 � M � � M 1; for all � > 0.

7. Suppose the cost and dynamics are isotropic as in equation (3.11) and K1 > 0. Then, for every

x 2 M 1
0 , there exists a sufficiently large � > 0, such that x 2 M �.

8. For every x 62 M 0, there exists a sufficiently small � > 0, such that x 62 M �.

9. We will denote the sets of local minima, strict local minima and global minima of q in ˝ as

Ql , Qs
l

and Qg respectively. Then Qg � M 0, and Ql � M 1. Moreover, if B3 also holds and

K � 0; then M 1
0 � Qs

l
:

Proof. 1. Suppose t1 D argmint2Œ0;t0� !.t/ and x1 D y�.t1/. If !.t0/ > !.t1/, then formula

(3.7) shows that the same trajectory but made motionless earlier (at x1) would have a lower cost,

contradicting the optimality of y�.�/. Thus, !.t0/ 6 !.t/ for all t 2 Œ0; t0/. As a result,

!.t/ D

Z t

0

K
�

y�.s/; a�.s/
�

ds C q
�

y�.t/
�

> !.t0/ >

Z t

0

K
�

y�.s/; a�.s/
�

ds C q.x0/;

where the last inequality uses A30 and becomes strict if K1 > 0. Hence, q.x0/ 6 q.y�.t//.

We emphasize that the above argument does not imply that !.t/ is monotone decreasing along

optimal trajectories. In fact, for K D 0, it is easy to see that any optimal trajectory starting from a

local minimum of q (but outside M ) would provide a counter-example.

2. Suppose that a�.t/ is a �-optimal control starting from x and becoming motionless at the

time t0. From the formula (3.14) and using Part 1 of the current theorem, v�.x/ D J �.x; a�.�// D
R t0

0
�e��t !.t/ dt C e��t0!.t0/ > !.t0/ > v0.x/; where the last inequality reflects the

interpretation of v0 as the value function of the deterministic optimal stopping problem.

3. Suppose that a.t/ is an e.m. �2-optimal control and y.t/ is the corresponding trajectory

starting from x. Define z2.t/ D v�2 .y.t// and z1.t/ D v�1.y.t//. Since this trajectory is �2-

optimal, Part 5 of Theorem 3.3 shows that, for almost all t ,

z0
2.t/ D �2

�

z2.t/ � q
�

y.t/
��

� K
�

y.t/; a.t/
�

6 �1

�

z2.t/ � q
�

y.t/
��

� K
�

y.t/; a.t/
�

;

where the inequality uses the fact that z2.t/ 6 q.y.t//: Since the same trajectory is not necessarily

�1-optimal, we have

z0
1.t/ > �1

�

z1.t/ � q
�

y.t/
��

� K
�

y.t/; a.t/
�

:

Subtracting these inequalities, and defining �.t/ D z2.t/ � z1.t/, we see that �.t/0
6 �1�.t/.

On the other hand, when the trajectory becomes motionless at the time t0 > 0, we know that

v�2 .y.t0// D q.y.t0// > v�1 .y.t0//; i.e., �.t0/ > 0. Taken together with the above differential

inequality this implies �.0/ > 0; i.e., v�2 .x/ > v�1 .x/.

4. Note that !.t/ is lower semicontinuous for every control a.�/. Since q is lower

semicontinuous, for every x 2 ˝ and every � > 0 there exists ı such that jx � Qxj < ı H)

q. Qx/ > q.x/ � �: Choosing � < ı=kf k1, we can bound from below the cost of every control

J �
�

x; a.�/
�

>

Z �

0

!.s/�e��s ds >

Z �

0

q
�

y.s/
�

�e��s ds >
�

q.x/ � �
��

1 � e���
�

:
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Thus, q.x/ > v�.x/ > .q.x/ � 2�/ for all sufficiently large �’s. Since this argument works for any

� > 0, v�.x/ ! q.x/ as � ! C1.

5. Suppose a 0-optimal control a.�/ becomes motionless at some time T ; i.e., v0.x/ D

J 0.x; a.�// D
R T

0
K.y.s/; a.s// ds C q.y.T //: Then, from formula (3.14),

lim
�!0

J �.x; a.�// D !.T / D v0.x/:

6. If x 2 M �1 , then q.x/ D v�1 .x/ 6 v�2.x/ 6 q.x/. Thus, x 2 M �2 :

7. Suppose x 2 M 1
0 is fixed. To prove that x becomes motionless for some finite �, it is

not enough to show that for every fixed control a.�/ we can choose large enough � to guarantee

J �.x; a.�// > q.x/: We need to show that some finite � guarantees this inequality for all a.�/.

For isotropic dynamics and cost, the fact that x 2 M 1
0 guarantees that 9ı > 0 such that jy �xj 6 ı

implies

K.x/ C
q.y/ � q.x/

ty
> � > 0;

where ty denotes the minimum time needed to reach from x to y . Without loss of generality, we can

assume that � < K1. Let a.�/ be an arbitrary control with the corresponding trajectory y.t/ starting

from x. We also choose a small enough � to ensure that jy.t/ � xj 6 ı and K.y.t// > K.x/ � �=2

for all t 6 � . Then

J �
�

x; a.�/
�

>

Z �

0

!.s/�e��s ds >

Z �

0

h

�

K.x/ �
�

2

�

s C q
�

y.s/
�

i

�e��s ds:

Using the fact that ty(s) 6 s, we note that

q.y.s// > q.x/ C ty(s)
�

� � K.x/
�

> q.x/ C s
�

� � K.x/
�

:

Combining this with the above,

J �
�

x; a.�/
�

>

Z �

0

h s�

2
C q.x/

i

�e��s ds D .1 � e��� /q.x/ C
�

2�

h

1 � e��� � ��e���
i

D q.x/ C
�

2�

h

1 � e��� � ��e��� � 2���1q.x/e���
i

:

To complete the proof, we note that, for large enough �, the expression in the last square brackets is

strictly positive, and this inequality holds for all controls a.�/.

8. Follows from Part 5.

9. Suppose x 2 Qg and a.�/ is its 0-optimal control that becomes motionless at some time T .

Then v0.x/ D !.T / > q.y.T // > q.x/; hence, x 2 M 0. If x 2 Ql , then Da
Cq.x/ > 0; 8a 2 A

and x 2 M 1: Finally, if K � 0, then B3 implies that all lower Hadamard derivatives of q are

positive at every x 2 M 1
0 , making x a strict minimum.

We note that the conditions in Theorem 3.5 can be further relaxed by rewriting the proofs in terms

of �-suboptimal e.m. trajectories (see Part 3 of Theorem 3.3).

3.3 Upwind discretization and a modified Fast Marching Method

We consider a first-order upwind finite differences discretization of the isotropic variational

inequality (3.13) and introduce a modified version of Fast Marching Method applicable to it. We
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note that Ordered Upwind Methods [2, 31, 32] can be similarly modified to handle anisotropic

randomly-terminated problems.

We assume that (3.13) is discretized on a uniform Cartesian grid2 with M gridpoints and the

value function v.x; y/ is approximated by a grid-function V :

xi;j D .xi ; yj /I xi˙1 D xi ˙ hI yj ˙1 D yj ˙ hI v.xi ; yj / � V.xi ; yj / D Vi;j :

We also define the set of neighboring gridpoints and the set of neighboring values

N.xi;j / D Ni;j D fxiC1;j ; xi;j C1; xi�1;j ; xi;j �1gI N Vi;j D fViC1;j ; Vi;j C1; Vi�1;j ; Vi;j �1g:

Our discretization uses two one-sided, first-order accurate approximations for each partial

derivative; i.e.,

vx.xi ; yj / � D˙x
ij V D

Vi˙1;j � Vi;j

˙h
I vy.xi ; yj / � D

˙y
ij V D

Vi;j ˙1 � Vi;j

˙h
:

An upwind discretization of (3.13) at a gridpoint .xi ; yj / is obtained as follows:

Vi;j D qi;j

C
1

�

"

Ki;j � fi;j

r

�

max
�

D�x
ij V; �DCx

ij V; 0
�

�2

C
�

max
�

D
�y
ij V; �D

Cy
ij V; 0

�

�2
#�

: (3.17)

If all the N Vi;j values are already known, (3.17) has to be solved to obtain Vi;j . The latter task is

significantly simplified once we realize that the equation can be solved on a quadrant-by-quadrant

basis. This procedure is described in detail in Appendix B (Section 5) and there we also prove

that the finite-difference discretization (3.17) can be obtained from the Kuhn–Tucker optimality

conditions for a suitable semi-Lagrangian discretization.

However, the values in N Vi;j are not a priori known and equation (3.17) has to hold at every

gridpoint, resulting in a system of M coupled non-linear equations. This system can be solved

iteratively, but that approach is unnecessarily inefficient. Indeed, (3.17) is related to the upwind

scheme used by Rouy and Tourin [28] for the Eikonal equation, which Sethian later showed to

possess causal properties, yielding the non-iterative Fast Marching Method [29]. Below we provide

an extension of that method to our obstacle problem.

REMARK 3.6 If V satisfies equation (3.17), it is easy to show that

1. Vi;j 6 qi;j I i.e., the discretized version is also an obstacle problem.

2. Vi;j is a non-decreasing function of all values in N Vi;j : (This monotonicity, along with the

consistency of the discretization can be used to show the convergence of V to v as h ! 0;

see [5, 25].)

3. Suppose OV 2 N Vi;j . Then, either OV < Vi;j or any increase in OV will not affect Vi;j . In other

words, the value of Vi;j depends only on its smaller neighbors, which makes the label-setting

method summarized in Algorithm 2 applicable.

2 For the sake of notational simplicity, we describe the numerical method in R2; the generalization for n > 2 is

straightforward.
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As with Dijkstra’s method, the values V at all gridpoints are at first temporary, equation

(3.17) is used to update these temporary values, and the values become permanent when the

corresponding gridpoints are Accepted. Due to causality of this discretization, by the time the

algorithm terminates, (3.17) holds at all gridpoints. As in the original Fast Marching Method for the

Eikonal equation, the computational cost of our algorithm is O.M log M /, where the log M term

stems from implementing a sorted list of Considered gridpoints using a heap-sort data structure.

Algorithm 2 A modified Fast Marching Method for randomly-terminated isotropic problems.

start with all gridpoints marked as Far;

set V.x/ WD q.x/ for all x 2 X;

mark all local minima of q as Considered;

while (Considered list is not empty) f

let Nx be s.t. V. Nx/ is the smallest Considered value;

mark Nx Accepted;

for each not-yet-Accepted xi;j 2 N. Nx/ f

update V.xi;j /;

if xi;j is Far, mark it Considered;

g

g

A simple implementation of “update V.xi;j /” is obtained by re-solving (3.17) using all current

(possibly temporary) values in N Vi;j . A more efficient version, using the Accepted subset of N Vi;j

and taking advantage of the fact that only V. Nx/ has recently changed, is described in Remark B.6

in Appendix B.

4. Numerical examples

4.1 Convergence study: A trivial free boundary

We start by studying convergence of our method on a simple randomly-terminated continuous

example, where the free boundary is trivial and the analytic formula for the solution is available.

Suppose ˝ D Œ�2; 2� � Œ�2; 2�, q.x/ D jxj, K D 0, and f D 1. Note that K D 0 and the fact

that q has only one minimum imply that the free boundary is trivial; i.e., M D B D f0g, the global

minimum of q.

Since f , K , and q are radially symmetric, then so is the value function: for every x ¤ 0 it

is optimal to move along the straight line toward the origin; i.e., the optimal control is a�.t/ D

�x=jxj. The expected cost of using this control (with the specified q and f and with any radially

symmetric K) is

J
�

x; a�.�/
�

D

Z jxj

0

e��s

�

K
�

x
jxj � s

jxj

�

C � .jxj � s/

�

ds: (4.1)

In particular, when K D 0,

v.x/ D J
�

x; a�.�/
�

D

Z jxj

0

�e��s
�

jxj � s
�

ds D jxj �
1

�

�

1 � e��jxj
�

:
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TABLE 1. Errors for the trivial free boundary example with � D 0:5

Grid points 1D L1 error 2D L2 error 2D L1 error

101�101 0.0073 0.0062 0.0449

201�201 0.0037 0.0035 0.0259

401�401 0.0018 0.0020 0.0147

801�801 0.0009 0.0011 0.0083

1601�1601 0.0005 0.0006 0.0046

Table 1 lists the numerical errors observed in this computational example for � D 0:5. The second

column reports the maximum error observed on the horizontal gridline passing through the origin.

(Since the characteristics are straight lines in this example, this is equivalent to conducting the same

experiment in 1D on the domain Œ�2; 2�.) The remaining two columns report L2 and L1 errors

computed on the entire ˝; the L2 errors are normalized to account for the non-unit area of ˝ . The

data clearly indicates the first order of convergence.

REMARK 4.1 We note that for an Eikonal equation with a point source, the rate of convergence

is often found to be lower due to a local non-smoothness of the viscosity solution at that point

source. The techniques to recover the first order of convergence include pre-initializing the true

solution in a disk of fixed radius centered at the point source as well as the more recently proposed

“singularity removal” method [19]. In the example considered above, we do not face similar issues

simply because the leading term in the expansion of v is jxj2 rather than jxj.

4.2 Convergence study: A circular free boundary

A small modification of the previous example already leads to a non-trivial free boundary. We let

K.x/ D jxj and take the same f , q and ˝ as above.

As before, v.x/ is radially symmetric, and if x 62 M , then the optimal trajectory starting from

x is again a�.t/, whose expected cost is evaluated from the integral in (4.1):

J
�

x; a�.�/
�

D
� C 1

�

�

jxj �
1

�

�

1 � e��jxj
�

�

:

The value function is v.x/ D min .q.x/; J .x; a�.�///, and, unlike in the previous example, q.x/ D

jxj is actually smaller when jxj is sufficiently large. Thus, for this example, B D f0g[C .r/, where

C .r/ D fx j jxj D rg and the radius r is such that

� C 1

�

�

r �
1

�

�

1 � e��r
�

�

D r: (4.2)

The origin is the inflow part and C .r/ is the outflow part of B .

This example also illustrates the asymptotic behavior of B . Applying definitions of asymptotic

motionless sets from Section 3.2,

M 0 D f.0; 0/g
[

n

x j q.x/ 6

Z jxj

0

K
�

x
jxj � s

jxj

�

ds
o
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and

M 1 D f.0; 0/g
[

˚

x j K.x/ � jrq.x/j > 0
	

:

When � ! 1, Theorem 3.5 shows that Bout ! B1 D fx j jxj D K.x/ D jrq.x/j D

1g D C .1/. On the other hand, when � ! 0, we have Bout ! B0 D fx j jxj D q.x/ D
R jxj

0
.jxj � s/ dsg D C .2/. This is also confirmed in Figure 3 obtained by solving (4.2) numerically.

Table 1 lists the numerical errors observed in this example for two different values of �.

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

λ

R

FIG. 3. Radius of the outflow free boundary for different values of �

TABLE 2. Errors for the circular (outflow) free boundary example

� D 0:5 � D 25

grid points 1D L1 error 2D L2 error 2D L1 error 1D L1 error 2D L2 error 2D L1 error

101�101 0.0216 0.0048 0.0344 0.0055 0.00015 0.0092

201�201 0.0109 0.0025 0.0173 0.0032 0.00008 0.0053

401�401 0.0055 0.0012 0.0087 0.0017 0.00004 0.0029

801�801 0.0027 0.0006 0.0044 0.0009 0.00002 0.0015

1601�1601 0.0014 0.0003 0.0022 0.0005 0.00001 0.0008

4.3 Optimal idle-time motion in continuous space

We now consider a continuous equivalent of the optimal idle-time processing example of

Section 2.5. An all-terrain vehicle moving in ˝ � R2 is tasked with responding to emergency calls.

We assume that the arrival of calls is a Poisson process with rate �, and our goal is to minimize the

expected response time to the first caller. We are given a list of possible caller locations Qx1; : : : ; Qxr

inside ˝ and the corresponding probabilities QP1; : : : ; QPr of the next call originating at each of these

locations. The vehicle’s dynamics is assumed to be isotropic; i.e., y 0 D f .y/a, where a 2 S1 is the

current direction of motion. We then use the Fast Marching Method to solve r Eikonal problems:

jrui .x/jf .x/ D 1; x 2 ˝nf Qxi gI ui . Qxi / D 0; and u D C1 on @˝I i D 1; : : : ; r:
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The resulting ui .x/ is the minimum time to reach Qxi for a vehicle starting from x and constrained

to move within ˝ . If the call is received at x, the expected time from there to the caller is

q.x/ D

r
X

iD1

QPi ui .x/: (4.3)

(We note that thus defined q.x/ is always Lipschitz-continuous.)

A global minimum of q is obviously the optimal place to “park” the vehicle while expecting a

call. But what if the current position is not a global minimum of q? The most intuitive approach,

based on a gradient descent in q, is far from optimal. (E.g., it would prescribe not moving away from

any local minimum of q – a clearly bad strategy when � is small enough and there is a good chance

of reaching the global minimum of q before the next call.) Since we are trying to minimize the

expected response time, it is logical to set K D 0, since in this continuous-time control, the vehicle

starts responding instantaneously. (This is in contrast to the discrete-transitions scenario considered

in Section 2.5.)

We consider an example in which f is piecewise-constant: f D 0:2 in a large circular “slow”

region in the center and f D 1 everywhere else. We use four different call locations ( Qx1; : : : ; Qx4)

symmetric relative to the slow region and numbered counter-clockwise starting from the lower left;

see Figures 4 and 5.

We perform this experiment with several sets of parameter values. First, we set � D 0:05,
QP1 D QP2 D QP3 D 0:2 and QP4 D 0:4. The results in Figure 4 highlight the differences between q

and v.

We then set � D 25 and repeat the experiment two more times: with equal probabilities ( QP1 D

: : : D QP4 D 0:25) in Figure 5A and with varying probabilities ( QP1 D QP2 D 0:2I QP3 D 0:25I QP4 D

0:35) in Figure 5B. In all three cases the computations are performed on a 1001 � 1001 grid and the

level sets are selected to highlight the complex structure of the solution outside of the slow region.
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FIG. 4. � D 0:05 Four emergency call locations (shown by black diamonds) around a circular “slow region”. Three sample

starting locations are shown by small white squares. Level curves of q (left) and of v (right) shown by solid lines. “Optimal”

trajectories (shown by dotted lines) found by gradient descent in q (on the left) are quite different from the truly optimal

trajectories found by gradient descent in v (on the right).
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FIG. 5. � D 25: Four emergency call locations (shown by black diamonds) around a circular “slow region”. Level curves

of v shown by solid lines. Optimal trajectories are shown by dotted lines, running from several starting locations (shown by

small squares) to the free boundary B (found numerically and shown by thick black dots).

As the figures show, two nearby starting locations can easily produce dramatically different optimal

trajectories when the locations are on different sides of the shock line (where rv is undefined).

REMARK 4.2 We note that K � 0 leads to M consisting of (a subset of) local minima locations of

q; these are found numerically (and indicated by thick black dots in the corresponding figures). As a

result, the true shape of M may not become apparent even on fairly refined computational grids. For

example, when all caller locations are equally likely, it is relatively easy to show analytically that the

minima of q are attained at four isolated points only, while Figure 5A shows a larger motionless set.

This, however, is due to the fact that the value function varies very slowly in this region (e.g., order

of 10�6 variation of q on the numerically found M ). This also presents an additional challenge in

recovering optimal trajectories, which for isotropic problems is done by a gradient descent in v. The

characteristic equations show that, when K � 0, the directional derivative of v along the optimal

trajectory becomes zero at B . To circumvent this difficulty, our current implementation forces the

trajectory to take a straight line path to B , when the distance to it decreases below an h-dependent

threshold. No such heuristic adjustments are needed when K1 > 0.

4.4 Navigating a maze

The following example illustrates the effect of changing � on the free boundary for problems with

non-zero running cost K .

We assume two possible locations for emergency calls: Qx1 D .1:0; 0:1/ and Qx2 D .9:0; 0:1/

with the corresponding probabilities of calls QP1 D 0:2 and QP2 D 0:8 inside the domain ˝ D

Œ0; 10� � Œ0; 10�. We further assume that the domain contains a “maze” with K high / f low within

its “walls” and K low / f high everywhere else. Figure 6 shows the described f , K , and the

resulting terminal cost function q computed from (4.3).

Figure 7 shows the level curves of v and the optimal trajectory starting from the center of the

maze computed for different values of �. The free boundary B is also indicated by a thick line in

each case. We note that the running cost matters only until the emergency call arrives. Thus, for very
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FIG. 6. The “maze example” : running cost K (Left), speed f (Center), and the terminal cost q (Right). The caller locations

are shown by black diamonds. The thick solid lines in the last subfigure show @M 1.

small �’s, it is likely that the global minimum of q (i.e., the point Qx2) can be reached avoiding the

walls before the first call arrives. When � increases, it becomes more optimal to head toward (and

then through) the closest wall, hoping that the call arrives before we reach it. Finally, for large �’s it

is optimal to stop and wait for the call at the wall boundary.

5. Conclusions

We have considered a wide class of uncertain-horizon problems and showed that non-iterative

methods can be used to compute their value functions both in discrete and continuous settings. The

numerical examples in Section 4 have illustrated both the convergence properties and the asymptotic

behavior of the free boundary @M . Our modification of the Fast Marching Method in Section 3.3

addressed the isotropic case only, but similarly modified Ordered Upwind Methods [2, 31, 32] can

be used to treat the anisotropic cost and dynamics in randomly-terminated problems. A Dial-like

version of the Fast Marching Method will be similarly applicable if (3.13) is discretized on an acute

triangulated mesh [38]. Another fairly straightforward generalization is to treat inhomogeneous

termination rates in the continuous case; i.e., � D �.x/; this would require only minimal changes

to the label-setting algorithms.

In this paper we have not discussed the label-correcting methods [7], whose asymptotic

complexity is worse but practical performance is sometimes better than that of label-setting

methods. Their applicability to uncertain-horizon problems is clearly also of interest. In the

continuous case, we believe that fast sweeping methods (e.g., [11, 34, 40]) and various fast-iterative

methods (e.g., [3, 10, 22, 26]) should be easy to extend to randomly-terminated problems. The

same is also true for hybrid two-scale methods that aim to combine the advantages of marching

and sweeping [13, 14]. Careful testing would be needed to compare the computational efficiency of

these alternatives to that of Dijkstra-like methods considered here.

The second author has previously studied the so-called Multimode SSP (MSSP) in [38]

and derived sufficient conditions for the applicability of the label-setting methods to them. We

emphasize that the uncertain-horizon problems considered here cannot be cast as MSSPs and the

results from [38] do not apply. However, the results from both papers can be easily combined to

address the randomly-terminated MSSPs. More generally, we believe that label-setting methods will

be applicable for a broader class of hierarchically causal SSPs. A natural example from this category

is the “SSP with recourse” problem, where the transition-costs are known only probabilistically at
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FIG. 7. The “maze example”: level-curves of the value function v.x/ computed for 4 different values of �. In each case,

the optimal trajectory starting from the center is indicated by a dotted line. For larger �’s, when M is not just the global

minimum of q, the free boundary is shown by a thick solid line.

first and their true values are learned in the process of traveling through the graph. A Dijkstra-like

method for such problems was previously introduced by Polychronopoulos and Tsitsiklis in [37].

On the continuous side, the randomly-terminated problems form a simple subclass of piecewise-

deterministic problems [16, 20]. The latter arise when a Poisson process governs random switches

between several known types of deterministic dynamics/cost, yielding a system of weakly-coupled

static non-linear HJB PDEs. We believe that these more general problems can also be treated by non-

iterative numerical methods provided all non-deterministic transitions (and the resulting couplings

between the PDEs) are hierarchically causal.



DETERMINISTIC CONTROL OF RANDOMLY-TERMINATED PROCESSES 33

Finally, we note that in all randomly-terminated problems considered in the current paper,

the only goal was to minimize the expected value of the total cost. An interesting direction for

future work is to incorporate simultaneous optimization and/or constraints based on the worst case

scenario. Efficient algorithms for this more difficult problem can be built using the recent method

for multiobjective optimal control introduced in [23].

Appendix A: Optimality of stationary policies

This section contains the results on existence of optimal stationary policies for the general randomly-

terminated processes on graphs. We note that the following proofs do not make any use of

assumptions A1–A3; i.e., both the transition penalties Kij and the terminal costs qj can be positive

or negative and the self-transitions need not be allowed.

A function � W X 7! X is a control mapping if �.x/ 2 N.x/ for 8x 2 X . A policy is an infinite

sequence of control mappings � D .�0; �1; : : :/. Starting from any x 2 X a policy will generate a

particular path y� as follows: y�
0 D x, y�

kC1
D �k.y�

k
/ for 8k > 0. Defining J .x; �/ D J.y�/,

we can also re-write the value function as

V.x/ D min
�

J .x; �/: (A.1)

If � D �0 D �1 D : : :, the corresponding policy � D .�; �; : : :/ is called stationary. (We will also

somewhat abuse the notation and refer to a stationary policy �.) Since stationary policies generate

only simple paths, Theorem A.5 proves the existence of an optimal stationary policy. Formula (2.9)

shows that for any stationary policy, J .x; �/ D K.x; �.x// C pq.�.x// C .1 � p/J .�.x/; �//,

which implies the dynamic programming equation (2.10).

REMARK A.1 Our problem can be easily recast as a Stochastic Shortest Path (SSP) problem by

adding a special absorbing terminal node xt D xMC1, and considering N.xi / to be the set of

controls available at xi . A choice of the control xj 2 N.xi / then results in a transition to the node xj

with probability .1 � p/ and to the node xt with probability p. The cost associated with this control

is .Kij C pqj /. The process terminates upon reaching xt . In [9] Tsitsiklis and Bertsekas proved the

equivalents of Lemma A.2 and Theorem A.5 for a broader class of general SSPs. However, in our

setting, direct proofs are much simpler and exploit the special structure of this problem.

We first note the following useful generalization of the recursive formula (2.9). Starting from

(2.11),

J.y/ D E
�

Cost.y0; : : : ; yk ; : : :/
�

D

k�1
X

iD0

�

K.yi ; yiC1/ C pq.yiC1/
�

.1 � p/i C

1
X

iDk

�

K.yi ; yiC1/ C pq.yiC1/
�

.1 � p/i

D

k�1
X

iD0

�

K.yi ; yiC1/ C pq.yiC1/
�

.1 � p/i C .1 � p/k J.yk ; ykC1; : : :/: (A.2)

LEMMA A.2 For every x 2 X , there exists Ny 2 Y.x/ such that J. Ny/ D inf
y2Y.x/

J.y/:
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Proof. Given any two paths y; Qy 2 Y , let k be the first stage of the process where the paths become

different; i.e., k.y ; Qy/ D minfj j yj ¤ Qyj g. A natural metric on Y is defined by

dist.y; Qy/ D

(

.1 � p/k.y ; Qy/; if y ¤ Qy I

0; if y D Qy :

and the induced topology makes Y totally disconnected. The compactness of Y follows from the

standard diagonalization argument. Y.x/ is thus a closed subset of Y and also compact. On the other

hand, based on (A.2), J W Y 7! R is Lipschitz-continuous. As a continuous function on a compact

set it must attain the minimum at some Ny 2 Y.x/.

We will use Y �.x/ to denote the set of all such minimizing paths starting from x.

LEMMA A.3 Suppose y D .y0; y1; : : :/ 2 Y �.x/; while k and m are non-negative integers such

that k < m and yk D ym. Then J.y/ D J.y0; : : : ; yk; ymC1; ymC2; : : :/.

Proof. We show that any loop can be removed from an optimal (not necessarily simple) path without

increasing that path’s total cost. By the optimality of y, J.y/ 6 J.y0; : : : ; yk ; ymC1; ymC2; : : :/:

On the other hand, if J.y/ < J.y0; : : : yk; ymC1; ymC2; : : :/; then, by formula (A.2),

J.yk ; ykC1; ykC2; : : :/ < J.yk ; ymC1; ymC2; : : :/: The latter contradicts the optimality of y since

it implies that

J.y/ D J.y0; : : : ; ym; ymC1; ymC2; : : :/ > J.y0; : : : ; ym; ykC1; ykC2; : : :/:

LEMMA A.4 Suppose y D .y0; y1; : : :/ 2 Y �.x/; while k and m are non-negative integers such

that k < m and yk D ym. Define Qy by replacing the tail .yk ; : : :/ with an infinitely repeated loop

.yk ; ykC1; : : : ; ym�1/. Then J.y/ D J. Qy/:

Proof. First, note that proving the equality for k D 0 combined with the formula (A.2) yields the

proof for the general case. Assuming k D 0,

J. Qy/ D

1
X

rD0

�

m�1
X

iD0

�

K.yi ; yiC1/ C pq.yiC1/
�

.1 � p/iCrm
�

D
�

m�1
X

iD0

�

K.yi ; yiC1/ C pq.yiC1/
�

.1 � p/i
� 1

1 � .1 � p/m
: (A.3)

By Lemma A.3 and formula (A.2),

J.y/ D

m�1
X

iD0

�

K.yi ; yiC1/ C pq.yiC1/
�

.1 � p/i C .1 � p/m J.y/I

m�1
X

iD0

�

K.yi ; yiC1/ C pq.yiC1/
�

.1 � p/i D
�

1 � .1 � p/m
�

J.y/;

which yields J. Qy/ D J.y/:
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THEOREM A.5 There exists a stationary policy � such that J .x; �/ D V.x/.

Proof. By Lemma A.2, there exists some optimal path Oy 2 Y �.x/: We note that, given any path, it

is easy to define a policy generating it. Moreover, if the path is simple, then it can be produced by

a single control mapping (and the corresponding policy will be stationary). So, we simply need to

prove the existence of some Ny 2 Y s.x/ such that J. Ny/ D J. Oy/:

For each non-negative integer k and each path y 2 Y.x/, let M.y; k/ D fm j m > k; ym D ykg.

We will define a function Dk W Y.x/ 7! Y.x/ as follows:

� if M.y; k/ is not empty, then Dk.y/ D Qy produced in Lemma A.4 using k and m D

min M.y; k/,

� and Dk.y/ D y otherwise.

Note, that if y 2 Y �.x/, then Dk.y/ 2 Y �.x/ as well. Defining Qy0 D Oy and Qyk D

Dk�1. Qyk�1/ we obtain a simple path in at most M steps; i.e., Ny D QyM 2 Y s.x/.

Appendix B: A quadrant-by-quadrant update formula

To simplify the discussion, we will focus on one node x D xi;j , renaming its neighbors as in

Figure 8 and slightly abusing the notation as follows:

V D Vi;j ; K D Ki;j ; q D qi;j ; f D fi;j ;

V1 D ViC1;j ; V2 D Vi;j C1; V3 D Vi�1;j ; V4 D Vi;j �1:

First, suppose that V < q; max.D
�y
ij V; �D

Cy
ij V; 0/ D 0; and

max
�

D�x
ij V; �DCx

ij V; 0
�

D �DCx
ij V H) V > V1; (B.4)

Then (3.17) reduces to V D q C
�

K � f
h

.V � V1/
�

=�; with the solution

V D .hK C �hq C f V1/=.�h C f /: (B.5)

We note that V < q implies V � V1 D h.K C �.q � V //=f > 0, which is consistent with (B.4).

Now suppose that V < q and (B.4) hold, but

max
�

D
�y
ij V; �D

Cy
ij V; 0

�

D �D
Cy
ij V; H) V > V2; (B.6)

Then (3.17) reduces to a quadratic equation

f 2

�

�V � V1

h

�2

C
�V � V2

h

�2
�

D ŒK C �q � �V �2 : (B.7)

Suppose V # is the smallest number satisfying both (B.7) and V #
> max.V1; V2/ (for consistency

with (B.4) and (B.6)). If such V # exists, we use it as an “update” from this first quadrant; i.e.,

V 12 D V #. Otherwise, we define the update similarly to (B.5) as V 12 D .hK C �hq C

f min.V1; V2//=.�h C f /: The updates from the other quadrants are similarly defined using

.V2; V3/, .V3; V4/, and .V4; V1/: If the values in N Vi;j are fixed, it is easy to check that

Vi;j D min
�

q; V 12; V 23; V 34; V 41
�

(B.8)

is the unique solution of (3.17).
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REMARK B.6 The modified version of the Fast Marching Method in Section 3.3 calls for updating

the not-yet-Accepted value of Vi;j whenever one of its neighbors is Accepted. In principle, the above

procedure and formula (B.8) may be used for that update, but a more efficient implementation can

be built utilizing the quadrant-by-quadrant approach and the fact that Vi;j depends on the smaller

neighbors only.

First, each quadrant-update should be considered only if at least one of the neighbors defining

this quadrant is already Accepted (by the causality of (3.17), the non-Accepted values can be

replaced by C1 without affecting Vi;j ). Second, if Nx is the last Accepted gridpoint, then only

quadrants in which it participates will need to be considered (since the updates from other quadrants

have already been previously stored in Vi;j – this is similar to the idea behind the update formula

(2.18) for Dijkstra’s method). Third, the monotonicity of (3.17) guarantees that at most one quadrant

is relevant.

For definiteness sake, suppose that the recently accepted Nx D xiC1;j D x1 in the notation of

Figure 8. The efficient update procedure would set V.xi;j / WD min
�

V.xi;j /; V
�

, where V is

1. computed by formula (B.5) if neither x2 nor x4 is Accepted;

2. equal to V 12 if x2 is Accepted and x4 is not (or if both of them are Accepted, but V2 6 V4);

3. equal to V 41 if x4 is Accepted and x2 is not (or if both of them are Accepted, but V2 > V4).

B.1 A semi-Lagrangian discretization

The upwind finite difference discretization (3.17) and its quadrant-by-quadrant version in the

previous section do not appear natural from the point of view of optimal control. A more natural

semi-Lagrangian scheme is based on a direct discretization of the optimality principle. Here we

show that the former is in fact equivalent to the latter.

Suppose x D .xi ; yj / and v.x/ < q.x/ (i.e., a0 is not the optimal control value at x). Suppose

f and K are locally constant, v is smooth, and the optimal direction of motion from x is a 2 S1

lying in the first quadrant; see Figure 8. We assume that the motion continues in the direction a until

crossing the segment x1x2 at the point Qx after � D jx � Qxj=f units of time. The corresponding

running cost is �K and the probability of termination signal received while moving from x to Qx is

.1 � e��� /. In case of termination, we incur the terminal cost of q; otherwise, the motion along the

x
x1

x2

x3

x4

a

Qx

FIG. 8. A semi-Lagrangian scheme using a simple 5-point stencil on a Cartesian grid
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approximate optimal trajectory continues (with the expected cost of v. Qx/). Thus,

v.x/ D K� C .1 � e��� /q C e���v. Qx/ C O.�2/ D
K�e��

e��
C

.e�� � 1/q

e��
C

v. Qx/

e��
C O.�2/

D
K�

1 C ��
C

q��

1 C ��
C

v. Qx/

1 C ��
C O.�2/:

Let � D f� D .�1; �2/ j �1 C �2 D 1 and 8�1; �2 > 0g : If � 2 � is such that Qx D �1x1 C �2x2,

then

�.�/ D .h=f /

q

�2
1 C �2

2 and v. Qx/ � �1V1 C �2V2:

This suggests a semi-Lagrangian scheme for the grid function V :

V 12 D min
�2�

C.�/ D min
�2�

�

.K C �q/�.�/ C .�1V1 C �2V2/

1 C ��.�/

�

: (B.9)

Given similarly defined updates from all other quadrants, we can again set

V D min
�

q; V 12; V 23; V 34; V 41
�

:

Kuhn–Tucker optimality conditions can be used to relate this scheme to (3.17). A similar connection

was previously demonstrated for Eikonal PDEs on a uniform Cartesian grid by Tsitsiklis [36], and

then on triangulated meshes and for more general Hamilton–Jacobi-Bellman PDEs by Sethian and

Vladimirsky [32, Appendix]; see also the detailed discussion of connections to MSSP problems in

[38]. The following proof applies the same ideas to the variational inequality (3.11), with additional

technical details due to the direct dependence of the Hamiltonian on v.

THEOREM B.7 Let �� denote the minimizer in (B.9), and suppose that V D V 12 < q: Then

1. ��
i > 0 H) V 12 > Vi for i D 1; 2:

2. ��
1 ; ��

2 > 0 H) V 12 defined by (B.9) is also a solution of (B.7).

Proof. We note three useful properties of the function �.�/:

@�

@�i

.�/ D
h2

f 2

�i

�.�/
I (B.10)

�.�/ D �1

@�

@�1

.�/ C �2

@�

@�2

.�/I (B.11)

h2

f 2
D

�

@�

@�1

.�/

�2

C

�

@�

@�2

.�/

�2

: (B.12)

To simplify the notation, we will suppress the arguments – in what follows, � and its partial

derivatives are always evaluated at ��.

First, note that if �� D .1; 0/, then � D h=f and (B.9) reduces to (B.5); a similar formula (with

V2 replacing V1) holds when �� D .0; 1/. Now suppose ��
1 ; ��

2 > 0: By the Kuhn–Tucker optimality

conditions applied to C.�/ defined in formula (B.9), there exists a Lagrange multiplier � such that

� D
@C

@�i

.��/ D
.K C �q/ @�

@�i
C Vi

1 C ��
�

� @�
@�i

Œ�.K C �q/ C ��
1 V1 C ��

2 V2�

.1 C ��/2

D
.K C �q � �V 12/ @�

@�i
C Vi

1 C ��
; for i D 1; 2: (B.13)
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Multiplying the above by ��
i , adding up (for i D 1; 2) and using (B.11), we see that

� D �.�1 C �2/ D
.K C �q � �V 12/� C ��

1 V1 C ��
2 V2

1 C ��
D V 12 �

��V 12

1 C ��
D

V 12

1 C ��
: (B.14)

Combining (B.13) and (B.14), we obtain

V 12 � Vi D .K C �q � �V 12/
@�

@�i

> 0; for i D 1; 2 (B.15)

where the inequality follows from K > 0, V 12 < q, and the fact that .��
i > 0 H) @�

@�i
.��/ >

0/ by formula (B.10). This shows the causality of the semi-Lagrangian discretization.

To prove the second half of the theorem, we take a square of both sides of (B.15), sum over

i D 1; 2 and use (B.12) to obtain

�

V 12 � V1

�2
C

�

V 12 � V2

�2
D

h2

f 2

�

K C �q � �V 12
�2

;

which is equivalent to (B.7).
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11. BOUÉ, M. & DUPUIS, P., Markov chain approximations for deterministic control problems with affine

dynamics and quadratic cost in the control, SIAM J. Numer. Anal. 36 (1999), 667–695. Zbl0933.65073

MR1681057

12. BOUKAS, E.K., HAURIE, A., MICHAEL, P., An optimal control problem with a random stopping time,

J. of Optimization Theory and Applications 64 (1990), 471–480. Zbl0681.93070 MR1043735

13. CHACON, A. & VLADIMIRSKY, A., Fast two-scale methods for Eikonal equations, SIAM J. Sci. Comp.

33 (2012), A547–A578. Zbl1244.49047 MR2914295

14. CHACON, A. & VLADIMIRSKY, A., A parallel two-scale method for Eikonal equations, submitted to

SIAM J. Sci. Comp. in 2012.

15. CRANDALL, M.G. & LIONS, P-L., Viscosity solutions of Hamilton-Jacobi equations, Tran. AMS 277

(1983), 1–43. Zbl0599.35024 MR0690039

16. DAVIS, M.H.A., Markov models and optimization, Chapman and Hall, London, 1993. Zbl0780.60002

MR1283589

17. DIAL, R., Algorithm 360: shortest path forest with topological ordering, Comm. ACM (1969), 632–633.

18. DIJKSTRA, E.W., A note on two problems in connection with graphs, Numerische Mathematik 1 (1959),

269–271. Zbl0092.16002 MR0107609

19. FOMEL, S., LUO, S. & ZHAO, H., Fast sweeping method for the factored Eikonal equation, J. Comp.

Phys. 228 (2009), 6440–6455. Zbl1175.65125 MR2549850

20. HAURIE, A., A multigenerational game model to analyze sustainable development, Annals of Operations

Research 137 (2005), 369–386. Zbl1138.91348 MR2166448

21. HAURIE, A. & MORESINO, F., A stochastic control model of economic growth with environmental

disaster prevention, Automatica (Journal of IFAC) 42 (2006), 1417–1428. Zbl1108.93078 MR2242926

22. JEONG, W.-K. & WHITAKER, R. T., A fast iterative method for Eikonal equations, SIAM J. Sci. Comput.

30 (2008), 2512–2534. Zbl1246.70003 MR2429477

23. KUMAR, A. & VLADIMIRSKY, A., An efficient method for multiobjective optimal control and optimal

control subject to integral constraints, Journal of Computational Mathematics 28 (2010), 517–551.

Zbl1240.90345 MR2666839

24. MAXWELL, M.S., RESTREPO, M., HENDERSON, S.G. & TOPALOGLU, H., Approximate dynamic

programming for ambulance redeployment, INFORMS Journal on Computing 22 (2010), 266–281.

Zbl1243.90109 MR2677214

25. OBERMAN, A. M., Convergent difference schemes for nonlinear elliptic and parabolic equations:

Hamilton–Jacobi equations and free boundary problems, SIAM J. Numer. Anal. 44 (2006), 879–895.

Zbl1124.65103 MR2218974

26. POLYMENAKOS, L. C., BERTSEKAS, D. P. & TSITSIKLIS, J. N., Implementation of efficient algorithms

for globally optimal trajectories, IEEE Trans. on Automatic Control 43 (1998), 278–283. Zbl1032.49037

MR1605994

27. POWELL, W. B., Approximate dynamic programming: solving the curses of dimensionality, J. Wiley &

Sons (2007). Zbl1156.90021 MR2347698

28. ROUY, E. & TOURIN, A., A viscosity solutions approach to shape-from-shading, SIAM J. Num. Anal. 29

(1992), 867–884. Zbl0754.65069 MR1163361

29. SETHIAN, J.A., A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad.

Sci. 93 (1996), 1591–1595. Zbl0852.65055 MR1374010

30. SETHIAN, J.A., Fast marching methods, SIAM Review 41 (1999), 199–235. Zbl0926.65106 MR1684542

31. SETHIAN, J.A. & VLADIMIRSKY, A., Ordered upwind methods for static Hamilton–Jacobi equations,

Proc. Nat. Acad. Sci. 98 (2001), 11069–11074. Zbl1002.65112 MR1854545

32. SETHIAN, J.A. & VLADIMIRSKY, A., Ordered upwind methods for static Hamilton–Jacobi equations:

Theory & algorithms, SIAM J. on Numerical Analysis 41 (2003), 325–363. Zbl1040.65088 MR1974505

Zbl 0933.65073
http://www.emis.de/MATH-item?0933.65073
MR 1681057
http://www.ams.org/mathscinet-getitem?mr=1681057
Zbl 0681.93070
http://www.emis.de/MATH-item?0681.93070
MR 1043735
http://www.ams.org/mathscinet-getitem?mr=1043735
Zbl 1244.49047
http://www.emis.de/MATH-item?1244.49047
MR 2914295
http://www.ams.org/mathscinet-getitem?mr=2914295
Zbl 0599.35024
http://www.emis.de/MATH-item?0599.35024
MR 0690039
http://www.ams.org/mathscinet-getitem?mr=0690039
Zbl 0780.60002
http://www.emis.de/MATH-item?0780.60002
MR 1283589
http://www.ams.org/mathscinet-getitem?mr=1283589
Zbl 0092.16002
http://www.emis.de/MATH-item?0092.16002
MR 0107609
http://www.ams.org/mathscinet-getitem?mr=0107609
Zbl 1175.65125
http://www.emis.de/MATH-item?1175.65125
MR 2549850
http://www.ams.org/mathscinet-getitem?mr=2549850
Zbl 1138.91348
http://www.emis.de/MATH-item?1138.91348
MR 2166448
http://www.ams.org/mathscinet-getitem?mr=2166448
Zbl 1108.93078
http://www.emis.de/MATH-item?1108.93078
MR 2242926
http://www.ams.org/mathscinet-getitem?mr=2242926
Zbl 1246.70003
http://www.emis.de/MATH-item?1246.70003
MR 2429477
http://www.ams.org/mathscinet-getitem?mr=2429477
Zbl 1240.90345
http://www.emis.de/MATH-item?1240.90345
MR 2666839
http://www.ams.org/mathscinet-getitem?mr=2666839
Zbl 1243.90109
http://www.emis.de/MATH-item?1243.90109
MR 2677214
http://www.ams.org/mathscinet-getitem?mr=2677214
Zbl 1124.65103
http://www.emis.de/MATH-item?1124.65103
MR 2218974
http://www.ams.org/mathscinet-getitem?mr=2218974
Zbl 1032.49037
http://www.emis.de/MATH-item?1032.49037
MR 1605994
http://www.ams.org/mathscinet-getitem?mr=1605994
Zbl 1156.90021
http://www.emis.de/MATH-item?1156.90021
MR 2347698
http://www.ams.org/mathscinet-getitem?mr=2347698
Zbl 0754.65069
http://www.emis.de/MATH-item?0754.65069
MR 1163361
http://www.ams.org/mathscinet-getitem?mr=1163361
Zbl 0852.65055
http://www.emis.de/MATH-item?0852.65055
MR 1374010
http://www.ams.org/mathscinet-getitem?mr=1374010
Zbl 0926.65106
http://www.emis.de/MATH-item?0926.65106
MR 1684542
http://www.ams.org/mathscinet-getitem?mr=1684542
Zbl 1002.65112
http://www.emis.de/MATH-item?1002.65112
MR 1854545
http://www.ams.org/mathscinet-getitem?mr=1854545
Zbl 1040.65088
http://www.emis.de/MATH-item?1040.65088
MR 1974505
http://www.ams.org/mathscinet-getitem?mr=1974505


40 J. ANDREWS AND A. VLADIMIRSKY

33. SORAVIA, P., Boundary value problems for Hamilton–Jacobi equations with discontinuous Lagrangian,

Indiana Univ. Math. J. 51 (2002), 451–477. Zbl1032.35055 MR1909297

34. TSAI, Y.-H.R., CHENG, L.-T., OSHER, S., & ZHAO, H.-K., Fast sweeping algorithms for a class of

Hamilton–Jacobi equations, SIAM J. Numer. Anal. 41 (2003) 673–694. Zbl1049.35020 MR2004194

35. TSITSIKLIS, J.N., Efficient algorithms for globally optimal trajectories, Proceedings, IEEE 33rd

Conference on Decision and Control, 1368–1373, Lake Buena Vista, Florida (1994).

36. TSITSIKLIS, J. N., Efficient algorithms for globally optimal trajectories, IEEE TRAN. AUTOMATIC

CONTROL 40 (1995), 1528–1538. Zbl0831.93028 MR1347833

37. POLYCHRONOPOULOS, G. H. & TSITSIKLIS, J. N., Stochastic shortest path problems with recourse,

Networks 27 (1996), 133–143. Zbl0851.90129 MR1375843

38. VLADIMIRSKY, A., Label-setting methods for multimode stochastic shortest path problems on graphs,

Mathematics of Operations Research 33 (2008), 821–838. Zbl1218.90205 MR2464644

39. ZHANG, L., MASON, A. & PHILPOTT, A., Optimization of a single ambulance move up, Technical report,

University of Auckland Faculty of Engineering (2010).

40. ZHAO, H. K., Fast sweeping method for Eikonal equations, Math. Comp. 74 (2005), 603–627. Zbl1070.

65113 MR2114640

Zbl 1032.35055
http://www.emis.de/MATH-item?1032.35055
MR 1909297
http://www.ams.org/mathscinet-getitem?mr=1909297
Zbl 1049.35020
http://www.emis.de/MATH-item?1049.35020
MR 2004194
http://www.ams.org/mathscinet-getitem?mr=2004194
Zbl 0831.93028
http://www.emis.de/MATH-item?0831.93028
MR 1347833
http://www.ams.org/mathscinet-getitem?mr=1347833
Zbl 0851.90129
http://www.emis.de/MATH-item?0851.90129
MR 1375843
http://www.ams.org/mathscinet-getitem?mr=1375843
Zbl 1218.90205
http://www.emis.de/MATH-item?1218.90205
MR 2464644
http://www.ams.org/mathscinet-getitem?mr=2464644
Zbl 1070.65113
Zbl 1070.65113
http://www.emis.de/MATH-item?1070.65113
MR 2114640
http://www.ams.org/mathscinet-getitem?mr=2114640

	Introduction
	Uncertain-horizon problems on a finite state space
	Common optimal control problems on graphs
	The value function for uncertain-horizon processes on graphs
	Properties of the value function
	Solving the Dynamic Programming equations
	Label-setting for SP problems
	Label-setting for uncertain-horizon problems

	Example: Optimal idle-time processing

	Uncertain-horizon processes in continuous state-space
	Common types of optimal control problems in continuous state-space
	The value function for uncertain-horizon processes
	Upwind discretization and a modified Fast Marching Method

	Numerical examples
	Convergence study: A trivial free boundary
	Convergence study: A circular free boundary
	Optimal idle-time motion in continuous space
	Navigating a maze

	Conclusions
	Appendix A: Optimality of stationary policies
	Appendix B: A quadrant-by-quadrant update formula
	A semi-Lagrangian discretization


