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Optimal regularity for the parabolic no-sign obstacle type problem

JOHN ANDERSSON

Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

E-mail: johnan@kth.se

ERIK LINDGREN

Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

E-mail: eriklin@kth.se

HENRIK SHAHGHOLIAN

Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

E-mail: henriksh@math.kth.se

[Received 26 August 2013 and in revised form 27 September 2013]

We study the parabolic free boundary problem of obstacle type

�u �
@u

@t
D f�fu¤0g:

Under the condition that f D Hv for some function v with bounded second order spatial derivatives

and bounded first order time derivative, we establish the same regularity for the solution u. Both the

regularity and the assumptions are optimal.

Using this result and assuming that f is Dini continuous, we prove that the free boundary is, near

so called low energy points, a C 1 graph.

Our result completes the theory for this type of problems for the heat operator.
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1. Introduction

We present a proof of the interior optimal regularity, that is,W 2;1
1 -regularity (bounded second order

spatial derivatives and bounded first order time derivative) for solutions to the so-called parabolic

no-sign obstacle type problem

�

Hu WD �u � @u
@t

D f .x; t/�fu¤0g in Q�
1 ;

u D g on @pQ
�
1 ;

(1)

under minimal assumptions on the data. Here Br is the unit ball, Q�
r D Br � .�r2; 0�, f D Hv

where v 2 W 2;1
1 . Since we are interested in the interior regularity, the assumptions on g are not

very important but we assume that g is bounded and continuous for the sake of definiteness.

Naturally, we cannot expect that a solution u of (1) is in any better regularity class than the

solution, v, of the heat equation with right hand side f

Hv D f:
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Noticing that if f 2 Lp then f�fu¤0g 2 Lp so for f in the Lp-range Calderon-Zygmund theory

directly implies that u 2 W
2;1

p (cf. Proposition 7.14 in [10]) - which is the same regularity one can

expect for v.

It is also easy to see that u is no better than C 1;1�regular (bounded second order spatial

derivatives) in the space directions even in the case when f is constant. As a matter of fact, with an

appropriate choice of g the function

u.x; t/ D
1

2
.max.0; x1//

2

is a solution with f .x; t/ D 1. Similarly, the example

u.x; t/ D �.t � 1=2/C

shows that u.x; t/ is no better than C 0;1 regular (bounded first order time derivative) in time. This

shows that even for constant f we cannot hope for better regularity than u 2 W 2;1
1 . This leads to

the question: What is the weakest possible assumptions on f that assures that a solution u.x; t/ of

(1) satisfies u 2 W 2;1
1 ?

Since, in general, a solution to (1) is never more regular than a solution to Hv D f one might

ask: If f is such that the solution v to Hv D f satisfies v 2 W 2;1
1 will a solution to (1) also satisfy

u 2 W 2;1
1 ?

In the main theorem of this paper we answer the question in the affirmative. This clearly provides

an optimal regularity result for the parabolic no-sign obstacle type problem. Our main theorem is

the following.

THEOREM 1 Let u be a solution to (1) and assume furthermore that f D Hv in Q�
1 where v 2

W 2;1
1 .Q�

1 / and that u 2 L1.Q�
1 /. Then u 2 W 2;1

1 .Q�
1=2
/ and

kD2ukL1.Q�
1=2

/ C kut kL1.Q�
1=2

/ 6 C
�

kukL1.Q�
1

/ C kD2vkL1.Q�
1

/ C kvt kL1.Q�
1

/

�

; (2)

where C depends on the dimension.

It might be in order to comment on the assumption that Hv D f where v 2 W 2;1
1 .Q�

1 /. The

assumption might look technical, but to the authors’ knowledge there is no necessary condition on

f that assures that the solution v toHv D f is inW 2;1
1 . The weakest sufficient condition known to

the authors is f 2 CDini.Q�
1 / (see Section 1.1 and for instance [13] or [16]). Naturally, the theorem

holds, with minor changes in (2), under the assumption that f 2 CDini.Q�
1 /. But the assumption

we make on f is strictly weaker than Dini-continuity and it also highlights that up to W 2;1
1 the

regularity of solutions to the parabolic no-sign obstacle type problem are as regular as the solutions

to the corresponding heat equation.

Before we give a brief sketch of the history of the problem and formulate our second main

theorem we would like to remark that this is a free boundary result. As a matter of fact the problem

can be formulated as follows. Given f 2 Lp.Q�
1 / and g 2 C.@pQ

�
1 / find a set ˝ � Q�

1 and a

function u 2 W
2;1

p .Q�
1 / solving

8

<

:

Hu D f�˝ in Q�
1 ;

u D jruj D 0 in Q�
1 n˝;

u D g on @pQ
�
1 :



OPTIMAL REGULARITY FOR THE PARABOLIC NO-SIGN OBSTACLE TYPE PROBLEM 479

The free boundary is @pinterior.fu D 0g/ \ Q�
1 D @pfu ¤ 0g \ Q�

1 . In our proof we will use

that u D 0 outside of spt.Hu/ (to be more precise, we use that kD2uk D ut D 0 a.e.). The above

theorem is not true, in general, for solutions to

�

Hu D f�˙ in Q�
1 ;

u D g on @pQ
�
1 ;

(3)

where ˙ is an arbitrary set. A simple counterexample for the time independent case, with ˙ D

fx1x2 > 0g, is given in [2]. In [2] a solution, u, to (3) with f .x; t/ D �1 and ˙ D fx1x2 > 0g

is explicitly calculated and u.x; t/ D u.x; 0/ ¤ C 1;1.B1.0//. That f .x; t/ < 0 in [2], whereas

we usually think of f > 0 in obstacle problems is irrelevant since (3) is linear, so we can simply

change the sign of the equation by taking �u instead of u. The moral sense of the example is that

the solution to the free boundary problem choses a zero level set that assures that the solution has

slightly better regularity than what one in general would expect a solution to the similar problem (3)

to have.

Before we continue we would like to sketch an outline of some previous research into this

problem. The aim of this outline is not to provide a historical survey but to situate our result in the

current theory for obstacle type problems.

The papers we discuss below ( [4], [8], [14] [7]) are technically very sophisticated and we have

to refer the reader to the original sources for the full details. It should be mentioned that we will,

rather mischievously, slightly change the conceptual framework of the above papers into the BMO

framework of this paper in our explanations.

If f 2 L1.Q�
1 / then it directly follows that QD2u 2 BMO.Q�

1=2
/, i.e.,

k QD2u� . QD2u/Q�
r .X0/kL2.Q�

r .X0// 6 Cr .nC2/=2
�

kukL1.Q�
1

/ C kf kL1.Q�
1

/

�

; (4)

where . QD2u/Q�
r .X0/ denotes the average over the parabolic half cylinder Q�

r .X
0/ and QD2 is the

second spatial and first time derivative (see the list of notation at the end of the introduction). If

j. QD2u/Q�
r .X0/j 6 C for some constant C independent of r and X0 then by the triangle inequality

k QD2ukL2.Q�
r .X0// 6 Cr .nC2/=2 which implies that QD2u 2 L1. It is not difficult to see (cf. Lemma

12) that instead of subtracting . QD2u/Q�
r .X0/ in (4) we can use QD2pu;r;X0.x; t/ where pu;r;X0.x; t/

is a parabolic polynomial that is second order homogeneous in x and first order homogeneous in t .

In particular it is enough to estimate kpu;r;X0kL1.Q�
1

/ in order to deriveW 2;1
1 �regularity for u.

The first regularity results for parabolic obstacle type problems were obtained under the

assumption that u > 0, which implies that pu;r;X0 > �C in Q�
1 since ku � pu;r;X0kL2.Q�

r .X0// 6

Cr2C.nC2/=2, by our BMO estimate. But if pu;r;X0 > �C and is a second order caloric polynomial

then it directly follows that pu;r;X0 6 C in Q�
1 which implies the optimal regularity by the

above. The real difficulties therefore occur for no-sign obstacle type problems, i.e., when there

is no assumption on the sign of the solution.

The first major breakthrough in the regularity theory for parabolic obstacle problems without a

sign assumption was achieved in [4], where it was proved that if f .x; t/ D 1 then the solution to

(1) is in W 2;1
1 . The proof is based on a monotonicity formula first proved in [5]. The monotonicity

formula is applied on the positive and negative parts ofDeu, the directional derivatives of u, which

can be shown to be sub-caloric functions in their supports. The monotonicity formula gives uniform
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bounds, in r , of the following averages

1

r4

Z 0

�r2

Z

Br

jr.Deu/
Cj2G.x;�s/dxds

Z 0

�r2

Z

Br

jr.Deu/
�j2G.x;�s/dxds: (5)

Since, BMO-estimates implies u D pu;r;X0 up to an error that is bounded in W 2;1
1 it follows that

the expression in (5) is bounded with pu;r;X0 in place of u. Using that pu;r;X0 is a parabolic second

order polynomial implies, by elementary calculations, that pu;r;X0 is bounded.

Since the monotonicity formula in [5] is valid only if .Deu/
˙ are sub-caloric functions the

results in [4] are only valid in the case when f is constant. However, a refined version of the

monotonicity formula, valid when H.Deu/
˙

> �C for some constant C , was proved in [8]. This

monotonicity formula makes it possible to prove W 2;1
1 �regularity for solutions when f 2 C 0;1.

Clearly, if f … C 0;1 then H.Deu/
˙

> �C is no longer true which makes it difficult to use this

method to prove regularity for f less regular than Lipschitz.

The monotonicity formula approach therefore provides optimal regularity results for f 2 C 0;1.

There is however a substantial and rather unsatisfying gap in the regularity theory. If f 2 L1,

then classical methods implies that u 2 W
2;1

p for any p < 1. But in order to achieve the

W 2;1
1 �regularity with the above mentioned methods, one needs to assume that rf 2 L1, i.e.,

a whole extra derivative is required.

There is another approach to the regularity for the parabolic no-sign obstacle type problem,

which is based on an extra assumption on the behaviour of the free boundary. It is not difficult to

prove that the solution is W 2;1
1 close to points X0 where jfu D 0g \ Q�

r .X
0/j > �jQ�

r .X
0/j

for every r > 0. The most sophisticated result of this kind is [14] in the elliptic case and [7] for

the parabolic case. The assumptions on the free boundary are, in order to be as week as possible,

rather technical so we will have to refer the readers to the original papers for the details. For our

purposes it is enough to remark that even though the methods in [14] and [7] are strong enough to

prove optimal regularity of the solution – they are only able to do so under assumptions on the free

boundary which are unfortunately not verifiable in general.

The proof in our paper is based on the method in [1] where we prove similar results for the

elliptic problem. Let us sketch the proof of Theorem 1 before we state the second main theorem of

the paper. If u is a solution to (1) then we can write

u D v C g C second order caloric polynomial;

where g is a solution toHg D �f�fuD0g. We will slightly change the notation and write the second

order caloric polynomial as S.u; r; X0/pu;r;X0 where supQ�
1

jpu;r;X0j D 1, that is, S.u; r; X0/

controls the norm of the caloric polynomial. We will choose S.u; r; X0/pu;r;X0 by means of a

projection operator (see Definition 10) that assures that S.u; r; X0/pu;r;X0 closely approximates u.

As before, the BMO estimates implies that u 2 W 2;1
1 if and only if S.u; r; X0/ is bounded.

The idea of the proof is to use that on� D fu D 0g we have QD2u D 0 and thus

0 D k QD2ukL2.�\Q�
r .X0// > jS.u; r; X0/jk QD2pu;r;X0kL2.�\Q�

r .X0// (6)

�k QD2gkL2.�\Q�
r .X0// � k QD2vkL2.�\Q�

r .X0//:

Now, since v 2 W 2;1
1 and since kpu;r;X0kL1.Q�

1
/ D 1, it follows that

k QD2pu;r;X0kL2.�\Q�
r .X0// 6

q

j�\Q�
r .X

0/j
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and

k QD2vkL2.�\Q�
r .X0// 6

q

j�\Q�
r .X

0/jk QD2vkL1 :

Moreover, g may be written g D OgCh, where h is a caloric function satisfying, by BMO estimates

k QD2hkL2.Q�
r .X0// 6 Cr .nC2/=2.kukL1.Q�

1
/ C kf kL1.Q�

1
//;

and Og has zero boundary data and thus, by parabolic estimates

k QD2 OgkL2.Q�
r .X0/ 6 CkH OgkL2.Q�

r .X0// 6 C

q

j�\Q�
r .X

0/jkf kL1.Q�
1

/:

If we disregard the caloric function h then (6) can be written as

jS.u; r; X0/j 6 Ckf kL1.Q�
1

/;

which is our desired estimate. We may, unfortunately, not disregard h and this explains why the

paper is around 20 pages and not just a few lines.

In order to salvage something out of the above calculation we use the parabolic estimate

k QD2hkL1.Q�
r=2

.X0// 6 Cr�.nC2/=2k QD2hkL2.Q�
r .X0//;

which means that we can use the calculation (6) in Q�
r=2
.X0/. This estimate appears, then applied

directly on g D Og C h, in (15) and the calculations following (15) explicates how this revised

estimate controls the dyadic decay of the measure j� \ Q2�j j. This is the heart of the paper and

carried out, with slight variations, in Proposition 14. The dyadic decay of the measure j�\Q2�j j,

Proposition 14, implies that if S.u; r; X0/ is large enough then

j�\Q�
r=2
.X0/j

jQ�
r=2
.X0/j

6
1

4

j�\Q�
r .X

0/j

jQ�
r .X

0/j
;

i.e., the function �� satisfies a Morrey space condition atX0 - at least at the scale r . This is utilised,

in Proposition 15, to show that g is indeed small as long as S.u; r; X0/ is large in comparison to

kukL1.Q�
1

/ and k QD2vkL1.Q�
1

/. For full details see the main body of the paper.

Our method improves on the previous research. It is strong enough to prove the optimal

regularity with minimal assumptions on f and therefore improves on the monotonicity formula

approach in [4] or [8] that required f 2 C 0;1. We do not make any assumptions on the solution

or its free boundary (such as in [14] or [7]). Furthermore, whereas previous methods have utilised

powerful, but rather specialized, monotonicity formulas with limited reach, our method is based

on standard Lp estimates. This makes it likely that our methods can be extended to cover other

equations, such as equations with variable coefficients, higher order equations or fully non-linear

equations.

As soon as W 2;1
1 �regularity have been established we are in the position to apply the powerful

free boundary regularity results developed in [4], [7] and [12]. For that we need to assume that

f 2 CDini. This assumption is also optimal in the sense that if f 62 CDini, then there is a time

independent solution for which the free boundary is not C 1 at the origin, but in fact a spiral point,

see [3]. We will only sketch the proof to highlight some minor differences, the reader is referred to

the original papers for the details.
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If u is a solution to (1) then we define the free boundary, in the usual way, to be

� .u/ D @p interior .fu D 0g/ ; (7)

where @p stands for the parabolic boundary, referring to the points that are not parabolically interior,

i.e., the points such that

Q�
r \ .interiorfu D 0g/ D ;;

for any r small enough. In this terminology our second main theorem is the following.

THEOREM 2 Let u be a solution to (1) and assume in addition that f 2 CDini.Q�
1 / and f .0; 0/ D 1.

– If the origin is a low energy point (as in Definition 19) then the free boundary � .u/ (as defined

in (7)) is, in a neighbourhood of the origin (which might depend on the solution u), a (parabolic)

C 1 regular graph.

– There is a modulus of continuity � and r0 > 0 (both depending on kukL1.Q�
1

/ and kf kC Dini.Q�
1

//)

such that if

MD
�

fx W u.x;�r2/ D 0g \ Br

�

r
> �.r/ (8)

for some r < r0, then � .u/ is a C 1 regular graph in Q�
r=2

. Here MD stands for the minimal

diameter.

It is in order to explain the assumptions in Theorem 2 for the non-expert reader. It is well known that

the free boundary is not C 1 everywhere (see [15] for an example in the time independent case) and

some extra assumption is needed to exclude that the origin is a singular point of the free boundary.

A natural and correct assumption could be that the zero set of u has positive Lebesgue density at the

origin, which is a slightly stronger assumption that (8).

There is also a different statement, based on a monotonicity formula, that excludes singularities.

The powerful monotonicity formula states that a certain energy W.r Iu; f; .0; 0// (defined in

Section 6) is almost increasing in r if u is a solution to (1) and .0; 0/ 2 � .u/. Furthermore,

W.0CIu; f; .0; 0// (which is well defined due to the almost monotonicity) can only assume the

values 15, 15/2 or 0, and the value carries geometric information of the free boundary at the origin.

For reasons explained in [4], the value 0 in does not occur if .0; 0/ 2 � .u/. If the value is 15=2, we

say that the origin is a low energy point.

In particular, by the discreteness of the limiting energies we can conclude that if (8) or a

Lebesgue density condition holds then we are at a low energy point. The energy condition we

impose is therefore weaker than a Lebesgue density condition but comparable to (8).

1.1 Notation and assumptions

Throughout the paper we use the following notation:
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X D .x; t/; X0 D .x0; t0/; Y D .y; s/ general points in R
n � R

C

ut D @tu D @u
@t

the time derivative

ru D . @u
@x1
; : : : ; @u

@xn
/ the spatial gradient

�u D
Pn

iD1
@2u
@xi

2 the Laplace operator

Hu D �u � ut the heat operator

Qr.x0; t0/ D Br .x0/ � .t0 � r2; t0 C r2/ a parabolic cylinder

Q�
r .x0; t0/ D Br .x0/ � .t0 � r2; 0� a half cylinder

Qr D Qr.0; 0/; Q�
r D Q�

r .0; 0/; @pQ
�
r D @pQ

�
r .0; 0/ simplified notation

W
2;1

p .A/ the Sobolev space of functions in

Lp.A/ with p integrable second

derivatives in space and first

derivatives in time.

QD2u D

�

D2u 0

0 @tu

�

the parabolic second derivative

ˇ

ˇ QD2u
ˇ

ˇ

2
D

P

i;j

ˇ

ˇD2
i;ju

ˇ

ˇ

2
C j@tuj2 the matrix norm used

� D fu D 0g \Q�
1 the coincidence set

� D @p.fu ¤ 0gı/ \Q�
1 the free boundary, the part of

@.fu ¤ 0gı/ that is not

parabolically interior in �

�r D
j�\Q�

r j

jQ�
r j

the density of � at the level r

.f /r;X0 D 1
jQ�

r .X0/j

R

Q�
r .X0/

fdxdt the mean value of f overQ�
r .X0/

.f /S D 1
jS j

R

S fdxdt the mean value of f over

S � R
n � R

.f /˝ D 1
j˝j

R

˝
fdx the mean value of f over˝ � R

n

.f /.a;b/ D 1
jb�aj

R b

a
fdt the mean value of f over the

interval .a; b/

We will continuously denote by v a function satisfying

v 2 W 2;1
1 .Q�

1 /; Hv D f in Q�
1 : (9)

Finally we introduce the notion of Dini continuity.

DEFINITION 3 (Dini continuity) A function f .x; t/ is said to be Dini continuous (in the parabolic

setting) if

jf .x; t/ � f .y; s/j 6 �.
p

jx � yj2 C jt � sj/;

where � is a non-negative continuous function such that �.0/ D 0 and

Z 1

0

�.s/

s
ds < 1:

2. Parabolic spaces

Here we present some useful definitions and result for parabolic spaces.
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DEFINITION 4 (Parabolic BMO) We say that a function f 2 L2.˝/ is in BMO.˝/ if

kf k2
BMO.˝/ � sup

.x;t/2˝;r>0

1

jQr.x; t/j

Z

Qr .x;t/\˝

jf .y; s/ � .f /Qr .x;t/j
2 C kf k2

L2.˝/
< 1:

The result below is well known and can be found in for instance [6].

THEOREM 5 (BMO-estimates for the heat equation) Let Hw D f in Q�
R. If f 2 L1.Q�

R/ then

kD2wkBMO.Q�
R=2

/ C k@twkBMO.Q�
R=2

/ 6 C
�

kf kL1.Q�
R

/ C kwkL1.Q�
R

/

�

:

Here the constant depends only on the space dimension.

We will need the following standard results:

LEMMA 6 Let u be a solution of Hu D 0 in Q�
r . Then

k QD2ukL1.Q�
r=2

/ 6
C

rnC4
kukL1.Q�

r /:

The proof of this lemma is contained in the proof of Theorem 8 on page 59 in [9].

LEMMA 7 Let
Hu D f in Q�

r

u D 0 on @pQ
�
r

then

k QD2ukL2.Q�
r / 6 Ckf kL2.Q�

r /:

This is a rescaled version of Proposition 7.17 in [10].

LEMMA 8 Let

Hw D f in Q�
1 ;

where f D Hv for some v satisfying k QD2vkL1.Q1/ < 1. Then there exists a constant C such

that

k QD2wkL1.Q�
1=2

/ 6 C
�

kwkL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

:

This lemma is an easy consequence of the parabolic version of the Poincaré inequality below.

LEMMA 9 (Parabolic Poincaré inequality) Assume thatw 2 W
2;

2 .Q
�
1 /. Then for some � 2 .7=8; 1/

and some C > 0





w � .w/Q�
�

� x � .rw/Q�
�







L2.Q�
� /

6 C
�

kD2wkL2.Q�
1

/ C kwt kL2.Q�
1

/

�

:

Proof. We notice that from the Poincaré inequality applied of each t-section of w we may deduce

that
Z

Q�
�

ˇ

ˇw � .w/B� �ftg � x � .rw/B� �ftg

ˇ

ˇ

2
dxdt 6 C

Z

Q�
�

ˇ

ˇD2w
ˇ

ˇ

2
dxdt: (10)

Hence, it suffices to find proper estimates for the differences

k.w/B� �ftg � .w/Q�
k

kL2.Q�
� /; kx � .rw/B� �ftg � x � .rw/Q�

�
kL2.Q�

� /:
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For that purpose we first of all remark that from the Poincaré inequality employed for fixed x one

can conclude
Z

Q�
�

jw � .w/.��2;0/j
2dxdt 6 C

Z

Q�
�

jwt j
2dxdt: (11)

From Hölder’s inequality we can then conclude
Z

Q�
�

j.w/B��ftg � .w/Q�
k

j2dxdt 6

6 C

Z

Q�
�

�Z

B�

jw � .w/.��2;0/j
2

�

dxdt 6 C

Z

Q�
�

jwt j
2dxdt:

Now we compute, and use for the third equality that x � ryw.y; �/ D divy.xw.y; �// together with

the divergence theorem
Z

Q�
�

ˇ

ˇx � .rw/B� �ftg � x � .rw/Q�
�

ˇ

ˇ

2
dxdt

D

Z

Q�
�

ˇ

ˇ

ˇ

ˇ

x �
1

jB� j

Z

B�

ryw.y; t/dy � x �
1

�2jB� j

Z

Q�
�

ryw.y; s/dyds

ˇ

ˇ

ˇ

ˇ

2

dxdt

D

Z

Q�
�

ˇ

ˇ

ˇ

ˇ

1

jB� j

Z

@B�

x � �w.y; t/dy �
1

�2jB� j

Z 0

��2

Z

@B�

x � �w.y; s/dyds

ˇ

ˇ

ˇ

ˇ

2

dxdt

6 C

Z

Q�
�

Z

@B�

ˇ

ˇw.y; t/ � .w.y; s//.��2;0/

ˇ

ˇ

2
dydxdt

6 C

Z 0

��2

Z

@B�

ˇ

ˇw.y; t/ � .w.y; s//.��2;0/

ˇ

ˇ

2
dt:

Using polar coordinates and the mean value theorem, there exist a � 2 .7=8; 1/ such that

C

jB� j

Z 0

��2

Z

@B�

ˇ

ˇw.y; t/ � .w.y; s//.��2 ;0/

ˇ

ˇ

2
dydt

6 C

Z 0

�1

Z

B1

ˇ

ˇw.y; t/ � .w.y; s//.��2 ;0/

ˇ

ˇ

2
dydt

6 C

Z

Q�
1

jwt j
2dxdt;

where the last inequality follows from (11). Hence,
Z

Q�
k

jx � .rw/B� �ftg � x � .rw/Q�
�

j2dxdt 6 C

Z

Q�
1

jwt j
2dxdt: (12)

To conclude the lemma, we only need to combine (10), (11) and (12).

3. The projection˘ and some technical results

DEFINITION 10 Let ˘.u; r; X0/ be the projection of u into the space of second order parabolic

homogeneous caloric polynomials in Q�
r .X

0/. In other words
Z

Q�
r .X0/

ˇ

ˇ QD2u.X/ � QD2˘.u; r; X0/
ˇ

ˇ

ˇ

2

D inf
p2P2

Z

Q�
r .X0/

ˇ

ˇ QD2u.X/ � QD2p.X/
ˇ

ˇ

2
;
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where P2 is the space of caloric polynomials that are homogeneous of degree two in space and

homogeneous of degree one in time and where we use the matrix norm

ˇ

ˇAj2 D
X

i;j

ˇ

ˇAi;j

ˇ

ˇ

2
:

Moreover, we will use the notation

˘.u; r; X0/ D S.u; r; X0/pu;r;X0.X/;

where pu;r;X0.X/ is a second order parabolic homogeneous caloric polynomial such that

k QD2pu;r;X0kL1.Q�
1

/ D j QD2pu;r;X0 j D 1;

and S.u; r; X0/ 2 RC.

Below are certain properties of the projection that can be easily verified.

LEMMA 11 Let u be as in Theorem 1. Then

1. ˘.�; r; X0/ is linear;

2. k˘.u; r; X0/kL2.Q�
1

/ 6 Ck QD2ukL2.Q�
1

/ for r 2 Œ1
2
; 1�;

In the above, C is a constant depending only on the dimension.

Proof. The first statement follows from the fact that ˘ is a projection.

In order to prove the second statement we observe that if QD2u 2 L2.Q�
1 / then

inf
P 2P2

Z

Q�
1

ˇ

ˇ QD2u � QD2P
ˇ

ˇ

2
6

Z

Q�
1

ˇ

ˇ QD2uj2

and moreover

k QD2u � QD2P kL2.Q�
1

/ > k QD2P kL2.Q�
1

/ � k QD2ukL2.Q�
1

/:

Thus,

k QD2˘.u; 1; 0/kL2.Q�
1

/ 6 2k QD2ukL2.Q�
1

/:

Since QD2˘.u; 1; 0/ is constant and ˘.u; 1; 0/ homogeneous we can conclude

k˘.u; 1; 0/kL2.Q�
1

/ 6 Ck QD2ukL2.Q�
1

/:

The third statement now follows by a simple change of variables.

LEMMA 12 Assume Hu 2 L1.Q�
1 /. Then for every X0 D .x0; t0/ 2 Q�

1=2
and r < 1

4
, the

following inequality holds










QD2
�u.rx C x0; r2t C t0/

r2
�˘.u; r; X0/

�









L2.Q�
1

/
6 C

�

kukL1.Q�
1

/ C kHukL1.Q�
1

/

�

;

where C depends only on the dimension.
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Proof. Recall that

QD2u D

�

D2u 0

0 @tu

�

:

From Theorem 5 it follows that





 QD2u � . QD2u/r;X0 kL2.Q�
r .X0// 6 C

�

kukL1.Q�
1

/ C kHukL1.Q�
1 /

�

r .nC2/=2: (13)

We also observe that

�

Z

Q�
r .X0/

QD2u D �

Z

Q�
r .X0/

��

QD2u �
Hu

nC 1
I

�

C
Hu

nC 1
I

�

D M.X0; r/C �

Z

Q�
r .X0/

Hu

nC 1
I;

where M.X0; r/ is a constant matrix with zero trace and I the identity matrix. Thus, if

qX0;r D
1

2
xT ŒM.X0; r/�n�nx C t ŒM.X0; r/�nC1;nC1;

then
QD2qX0;r D M.X0; r/:

It follows that

. QD2u/r;X0 D �

Z

Q�
r .X0/

QD2u D QD2qX0;r C �

Z

Q�
r .X0/

Hu

nC 1
I:

Hence,










QD2u � QD2qX0;r










L2.Q�
r .X0//

6

6










QD2u � �

Z

Q�
r .X0/

QD2u









L2.Q�
r .X0//

C









Hu

nC 1
I










L2.Q�
r .X0//

:

From this, the definition of ˘ and rescaling the inequality (13), the lemma follows.

4. The key proposition

In this section we present Proposition 14, which is the base of the whole paper. First a lemma.

LEMMA 13 Assume that v satisfies (9) and that w solves

�

Hw.x; t/ D f .rx; r2t/ in Q�
1 ;

w.x; t/ D ur .x; t/ �˘.u; r; 0/ on @pQ
�
1 ;

where

ur .x; t/ D
u.rx; r2t/

r2
:

Then

k QD2wkL1.Q�
1=2

/ 6 C
�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

:
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Proof. To simplify the notation write Sr D S.u; r; 0/ and pr D pu;r;0. Define the function

Qu D ur � Srpr � .ur � Srpr /Q�
1

� x �
�

r.ur � Srpr /Q�
1

�

:

Since Lemma 12 implies

k QD2.ur � Srpr /kL2.Q�
1

/ 6 C.kukL1.Q�
1

/ C kHukL1.Q�
1

//

we can use Lemma 9 to obtain

k QukL2.Q�
7
8

/ 6 C.kukL1.Q�
1

/ C kHukL1.Q�
1

//: (14)

Now we observe that H Qu D Hu so that interior estimates (Lemma 8) combined with (14) imply

j.ur � Srpr /Q�
1

j C jx � .r.ur � Srpr //Q�
1

j D j Qur .0/j C jr Qur .0/j 6

6 C.kukL1.Q�
1

/ C kHukL1.Q�
1

//:

As a consequence

ku � SrprkL2.Q�
1

/ 6 C.kukL1.Q�
1

/ C kHukL1.Q�
1

//:

To obtain the desired estimate, we apply interior estimates (Lemma 8) to w together with the

definition of v.

We recall the notation

�r D
j�\Q�

r j

jQ�
r j

:

PROPOSITION 14 Let u be a solution of (1) and let v satisfy (9). Then there exist C0 and C1

depending only on the dimension such that if X0 2 � \Q�
1=2

and r < 1
4

then

C0k QD2vkL1.Q�
1

/

S.r; u;X0/ � C1

�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

��1=2
r > �

1=2
r
2

;

whenever

S.r; u;X0/ > 2C1

�

kukL1.B1/ C k QD2vkL1.B1/

�

:

Proof. For simplicity let X0 D 0 and

ur .X/ D wr .X/C S.u; r; 0/pu;r;0.X/C gr .X/;

where
�

Hgr .x; t/ D �f .rx; r2t/��.u.rx;r2 t// in Q�
1 ;

gr D 0 on @pQ
�
1 ;

and
�

Hwr .x; t/ D f .rx; r2t/ in Q�
1 ;

wr .x; t/ D ur .x; t/ � S.u; r; 0/pu;r;0.X/ on @pQ
�
1 :
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From Lemma 7 and Lemma 13 it follows that

k QD2grkL2.Q�
1=2

/ 6 Ckf kL1k��.u.rx;r2 t//kL2.Q�
1

/; (15)

and

k QD2wrkL1.Q�
1=2

/ 6 C
�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

: (16)

At this stage we use that D2u D @tu D 0 a.e. in fu D 0g and thus

0 D k QD2urkL2.�r \Q�
1
2

/ D k QD2.wr C S.u; r; 0/pu;r;0 C gr /kL2.�r \Q�
1
2

/;

which implies

k QD2S.u; r; 0/pu;r;0kL2.�r \Q�
1
2

/ 6 k QD2wrkL2.�r \Q�
1
2

/ C k QD2grkL2.�r \Q�
1
2

/: (17)

From the definition of pu;r;0 it follows that

k QD2pu;r;0kL2.�r \Q�
1
2

/ > k QD2pu;r;0kL1.�r \Q�
1
2

/�
1
2
r > c�

1
2
r
2

: (18)

In addition, the estimates in (15) and (16) imply

k QD2grkL2.�r \Q�
1
2

/ 6 Ckf kL1.�r \Q�
1

/�
1
2
r 6 Ck QD2vkL1.Q�

1
/�

1
2
r : (19)

and

k QD2wrkL2.�r \Q�
1
2

/ 6 C
�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

�
1
2
r
2

: (20)

Combining (18), (19) and (20) we can conclude

S.u; r; 0/�
1
2
r
2

6 Ck QD2vkL1.Q�
1

/�
1
2
r C C

�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

�
1
2
r
2

;

from which the desired result follows.

PROPOSITION 15 Let

Hg D f .x; t/�� in Q�
2�k

k QD2gkL2.Q
2�k / 6 C12

�k.nC2/=2

where kf kL1 6 C2 and

�2�j �1 6
1

4
�2�j (21)

for j D k; k C 1; k C 2; : : : ; J . Then there exists a universal constant C0 such that

sup
Q1

j˘.g; 2�j ; 0/j 6 C0 .C1 C C2/ (22)

for j D k; k C 1; k C 2; : : : ; J .
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Proof. There is no loss of generality to assume that k D 0. In particular, we may parabolically

rescale g to Ng.x; t/ D g.2�kx; 2�2k t/=2�2k . Then Ng satisfies the assumptions with k D 0 and

J � k in place of J . If we can prove (22) for Ng then it follows for g by scaling back. We may thus

assume that k D 0 in the proof.

We may write gj D gjQ�

2�j
, the restriction of g to Q�

2�j , as the following sum

gj D

j
X

kD0

hk C Qgj (23)

where
H Qgj D f�� in Q�

2�j

Qgj D 0 on @pQ
�
2�j

and
Hhk D 0 in Q�

2�k

hk D Qgk�1 on @pQ
�
2�k ;

where we, for consistency, identify g�1 D g. That Qgj D g in Q�
2�j follows by an easy induction.

It is true, by definition, for j D �1. If Qgj �1 D g in Q�
2�j C1 then H Qgj D Hg in Q�

2�j and Qgj D g

on @pQ
�
2�j by construction. By the maximum principle it follows that Qgj D g in Q�

2�j and our

induction is complete.

Next we notice that by (21) and Hölder’s inequality it follows that

kH Qgj kL2.Q�

2�j
/ 6 C22

�j jQ�
2�j j1=2:

This implies, by Lemma 7, that

k Qgj k
W

2;1
2

.Q�

2�j
/

6 CC22
�j jQ�

2�j j1=2 (24)

for some universal constant C .

Since hj C1 is caloric with Qgj as boundary values it follows from Lemma 7 and Lemma 11 that

sup
Q�

1

j˘.hj C1; 2
�k; 0/j 6 CC22

�j (25)

for some universal constant C and all k > j C 1 and all j > 0.

From (24) we may deduce, using Lemma 11 and a simple rescaling, that

sup
Q�

1

j˘. Qgj ; 2
�j ; 0/j 6 CC22

�j : (26)

We need to estimate the projection of h0 as well. From parabolic estimates (cf. Lemma 7) we

can conclude that

k QD2h0kL2.Q�
1

/ 6 Ck QD2gkL2.Q�
1

/

and thus, using Lemma 11 again, that

sup
Q�

1

j˘.h0; 2
�k ; 0/j 6 CC1 (27)
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for any k > 0.

Using the linearity of˘ we can finally conclude that for any j 6 J

sup
Q�

1

ˇ

ˇ˘.g; 2�j ; 0/
ˇ

ˇ 6

j
X

kD0

sup
Q�

1

ˇ

ˇ˘.hk ; 2
�j ; 0/

ˇ

ˇ C
ˇ

ˇ˘. Qgj ; 2
�j ; 0/

ˇ

ˇ

6 C
�

C1 C C2

j
X

kD0

2�k C C2

�

6 C.C1 C 3C2/;

where we have used (23) in the first inequality and (25), (26) and (27) in the second.

5. Proof of the main result

The two following lemmata provides us with the result that if S is bounded then u is W 2;1
1 .

LEMMA 16 (Quadratic growth impliesW 2;1
1 ) Suppose v satisfies (9) and u is a solution of (1) such

that

sup
Q�

r .Y 0/

juj 6 Mr2

for all 0 < r < 1=2 and Y 0 � Q�
1
2

\ @fu ¤ 0g. Then

k QD2ukL1.Q�
1
2

/ 6 C.M C kukL1.Q�
1

/ C kD2vkL1.Q�
1

//:

Proof. Take X0 2 Q�
1
2

and define

r D supfr W Q�
r .X

0/ \ @fu ¤ 0g D ;g:

We now split the proof into two cases:

Case 1: r < 1
4

. From the definition of r it follows that with

w D u � v � v.X0/ � rv.X0/ � .x0 � x/;

then Hw D 0 in Q�
r .X

0/. From Lemma 6

k QD2wkL1.Q�
r=2

.X0// 6
C

r2
kukL1.Q�

r .X0// 6 C
�

M C kD2vkL1.Q�
r .X0//

�

;

and thus

k QD2ukL1.Q�
r=2

.X0// 6 C
�

M C kD2vkL1.Q�
1

/

�

;

where C is possibly a larger constant.

Case 2: r >
1
4

. In this case, it is clear that

w D u � v � v.X0/ � rv.X0/ � .x0 � x/;
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then Hw D 0 in Q�
1
4

.X0/. Lemma 6 then implies

k QD2wkL1.Q�
1=8

.X0// 6 CkukL1.Q�
1
4

.X0// 6 C

�

kukL1.Q�
1

/ C kD2vkL1.Q�
1
4

.X0//

�

;

which implies

k QD2ukL1.Q�
1=8

.X0// 6 C
�

kukL1.Q�
1

/ C kD2vkL1.Q�
1

/

�

:

The combination of the two cases above yields the desired estimate.

LEMMA 17 (Bounded S implies quadratic growth) Suppose u is a solution of (1) and let X0 2

Q�
1
2

\ @fu ¤ 0g. Then for r < 1=4

sup
Q�

r
2

.X0/

juj 6 C
�

S.u; r; X0/C kukL1.Q�
1

/ C kHukL1.Q�
1

/

�

r2:

The proof is very similar to the proof of Lemma 13 and therefore we give only a sketch of the

proof.

Proof. To avoid cumbersome writing we use the notation S D S.u; r; X0/ and

ur D ur;X0 D
u.rx C x0; r2t C t0/

r2
;

where X0 D .x0; t0/, throughout the whole proof. The hypotheses of the lemma and Lemma 12

imply

k QD2urkL2.Q�
1

/ 6 C
�

S C kukL1.Q�
1

/ C kHukL1.Q�
1

/

�

:

Defining

Qu D ur � .ur /Q�
1

� x �
�

r.ur /Q�
1

�

;

we can reason as in the proof of Lemma 13 to obtain that

k QukL1.Q�
1
2

/ C j.ur /Q�
2

j C jx � .r.ur //Q�
2

j D k QukL1.Q�
1
2

/ C j Qur .0/j C jr Qur.0/j

6 C
�

S C kukL1.Q�
1

/ C kHukL1.Q�
1

/

�

:

This implies, by the triangle inequality

kurkL1.Q�
1
2

/ 6 C.S C kukL1.Q�
1

/ C kHukL1.Q�
1

//:

We are now ready to give the proof of the main theorem.

Proof of Theorem 1. In view of Lemma 17 and Lemma 16 it is enough to prove that

sup
Q�

1

j˘.u; 2�j ; X0/j 6 C.kukL1.Q�
1

/ C kD2vkL1.Q�
1

//; (28)
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for j D 2; 3; 4; : : : and some universal constant C and every X0 2 Q�
1=2

. It is enough to prove

(28) for X0 D 0. Once (28) is proved for X0 D 0 a translation argument assures that (28) holds for

any X0 2 Q�
1=2

. Then Lemma 17 provides a quadratic bound on the solution which, by Lemma 16

implies regularity.

Let us denote by B the set B � N of all j 2 N such that

S.u; 2�j ; 0/ > 2C0k QD2vkL1.Q�
1

/ C 2C1

�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

;

where C0 and C1 are as is Proposition 14. Naturally if j … B then

S.u; 2�j ; 0/ 6 2C0k QD2vkL1.Q�
1

/ C 2C1

�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

for all j which in turn implies (28) with C D 2.c0 CC1/. Therefore B consists of the “bad” scales

where (28) might not hold.

If j 2 B then, according to Proposition 14,

1

4
�2�j > �2�j �1 : (29)

Moreover, if fk; k C 1; k C 2; : : : ; J g � B then (29) holds for all j 2 fk; k C 1; : : : ; J g. In

particular, if fk; k C 1; k C 2; : : : ; J g � B and if we split u into

u D Qv C g (30)

whereH Qv D Hv andHg D �f�� then g satisfies the conditions in Proposition 15 for j 2 fk; kC

1; : : : ; J g. We have a choice in h and g and we may choose g such that kgkL1.Q�
1

/ 6 Ckf kL1.Q�
1

/

by for instance letting g be the convolution of the heat kernel and �f��. Then Theorem 5 implies

that

k QDgkBMO.Q�
1=2

/ 6 Ckf kL1.Q�
1

/: (31)

Then it follows, by the triangle inequality, that

k QvkL1.Q�
1

/ 6 kukL1.Q�
1

/ C Ckf kL1.Q�
1

/: (32)

Let j 2 N. Then either j … B and (28) holds or j 2 B and there exists a smallest k 2 N such

that fk; kC 1; kC 2; : : : ; j g � B . Using (30), the linearity of˘ and the triangle inequality we can

estimate

sup
Q�

1

ˇ

ˇ˘.u; 2�j ; 0/ �˘.u; 2�k ; 0/
ˇ

ˇ

6 sup
Q�

1

ˇ

ˇ˘. Qv; 2�j ; 0/ �˘. Qv; 2�k; 0/
ˇ

ˇ C sup
Q�

1

ˇ

ˇ˘.g; 2�j ; 0/ �˘.g; 2�k ; 0/
ˇ

ˇ: (33)

Since v 2 W 2;1
1 .Q�

1 / it follows from Lemma 6 and Lemma 11 that

sup
Q�

1

ˇ

ˇ˘. Qv; 2�j ; 0/
ˇ

ˇ ; sup
Q�

1

ˇ

ˇ

ˇ
˘. Qv; 2�k; 0/

ˇ

ˇ

ˇ
6 C

�

k QD2vkL1.Q�
1

/ C kQvkL1.Q�
1

/

�

(34)

6 C
�

k QD2vkL1.Q�
1

/ C kukL1.Q�
1

/

�

;
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where we used (32) in the last inequality.

We use Proposition 15 to estimate

sup
Q�

1

ˇ

ˇ

ˇ
˘.g; 2�j ; 0/ �˘.g; 2�k ; 0/

ˇ

ˇ

ˇ
D sup

Q�
1

ˇ

ˇ˘. Qg; 2�j ; 0/
ˇ

ˇ (35)

where Qg D g �˘.g; 2�k ; 0/. In particular, by (31) and Lemma 12, it follows that

k QgkL2.Q�

2�k
/ 6 Ckf kL1.Q�

1
/2

�k.nC2/=2:

Moreover, by (29) and our assumption that fk; k C 1; :::; j g � B the assumptions in Proposition

15 are satisfied with C1 D Ckf kL1.Q�
1

/ for some universal constant C . From Proposition 15 and

(35) it therefore follows that

sup
Q�

1

ˇ

ˇ˘.g; 2�j ; 0/ �˘.g; 2�k ; 0/
ˇ

ˇ D sup
Q�

1

ˇ

ˇ˘. Qg; 2�j ; 0/
ˇ

ˇ 6 Ckf kL1.Q�
1

/: (36)

From (33), (34) and (36) we can conclude that

sup
Q�

1

ˇ

ˇ˘.u; 2�j ; 0/
ˇ

ˇ 6 sup
Q�

1

ˇ

ˇ˘.u; 2�k ; 0/
ˇ

ˇ C C
�

k QD2vkL1.Q�
1

/ C kukL1.Q�
1

/

�

: (37)

We need to estimate supQ�
1

ˇ

ˇ˘.u; 2�k ; 0/
ˇ

ˇ. Remember that k 2 N was the smallest constant such

that fk; k C 1; : : : ; j g � B . This implies that k � 1 … B so

S.u; 2�kC1; 0/ 6 2C0k QD2vkL1.Q�
1

/ C 2C1

�

kukL1.Q�
1

/ C k QD2vkL1.Q�
1

/

�

: (38)

Furthermore, by Lemma 12,

k QD2.u �˘.u; 2�kC1; 0//kL2.Q�

2�kC1
/ 6 C2�.nC2/.k�1/=2

�

kf kL1.Q�
1

/ C kukL1.Q�
1

/

�

:

That is

sup
Q�

1

ˇ

ˇ˘
�

u �˘.u; 2�kC1; 0/;2�k; 0
�
ˇ

ˇ

6 Ck˘
�

u�˘.u; 2�kC1; 0/; 2�k; 0
�

kL2.Q�
1

/

6 2�k�k.nC2/=2Ck˘
�

u �˘.u; 2�kC1; 0/; 2�k; 0
�

kL2.Q�

2�k
/ (39)

6 2�.nC2/k=2Ck QD2.u �˘.u; 2�kC1; 0//kL2.Q�

2�k
/

6 C
�

kf kL1.Q�
1

/ C kukL1.Q�
1

/

�

;

where we used that ˘.�/ is a polynomial in the first inequality, a rescaling in the second, Lemma 11

in the third and Lemma 12 in the last inequality. The triangle inequality, (38) and (39) implies that

sup
Q�

1

ˇ

ˇ

ˇ
˘.u; 2�k ; 0/

ˇ

ˇ

ˇ
6 C2.nC2/=2

�

kf kL1.Q�
1

/ C kukL1.Q�
1

/

�

C sup
Q�

1

ˇ

ˇ

ˇ
˘.u; 2�kC1; 0/

ˇ

ˇ

ˇ

6 C
�

kf kL1.Q�
1

/ C kukL1.Q�
1

/

�

: (40)
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Using (40) in (37) yields

sup
Q�

1

ˇ

ˇ˘.u; 2�j ; 0/
ˇ

ˇ 6 C
�

k QD2vkL1.Q�
1

/ C kukL1.Q�
1

/

�

; (41)

where we also used that kf kL1 6 Ck QD2vkL1 . Equation (41) is valid for all j 2 N.

By translating the coordinate system it follows from (41) that

sup
Q�

1

ˇ

ˇ˘.u; 2�j ; X0/
ˇ

ˇ 6 C
�

k QD2vkL1.Q�
1

/ C kukL1.Q�
1

/

�

; (42)

for any X0 2 Q�
1=2

.

Lemma 17 and (42) implies, for all r 2 .0; 1=4/, that

sup
Q�

r .X0/

juj 6 C
�

k QD2vkL1.Q�
1

/ C kukL1.Q�
1

/

�

:

which by Lemma 16 implies that

k QD2ukL1.Q�
1=2

/ 6 C
�

k QD2vkL1.Q�
1

/ C kukL1.Q�
1

/

�

;

and the proof is complete.

6. Regularity of the free boundary

In this section we prove the second main theorem. The idea is to prove that at low energy points

(see Definition 19 below) points and at a scale small enough, the solution is non-negative.

6.1 Weiss’ monotonicity formula

In order to prove the regularity of the free boundary we need to introduce some notions from for

instance [4].

Define the Weiss energy for v.x; t/: Rn � R
� ! R to be

W.r I v; f; .x0; t0// D
1

r4

Z

Rn�.�r2Ct0;t0�

�

jrvj2 C 2f v C
v2

t

�

G.x;�t/dxdt;

and let

vr;.x0;t0/.x; t/ D
v.rx C x0; r2t C t0/

r2
;

so that

W.r I v; f; .x0; t0// D W.1I vr;.x0;t0/; fr;.x0;t0/; 0/;

where

fr;.x0;t0/.x; t/ D f .rx C x0; r2t C t0/:

Moreover, for a general function u.x; t/ define

Lu D x � ruC 2tut � 2u: (43)

The following proposition is a parabolic version of Weiss’ monotonicity formula. Once we know

that u enjoys the optimal regularity (Theorem 1), it can be proved in the same manner as in [7]

or [12].
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PROPOSITION 18 Let u be a solution of (1),  2 C1
0 .B3=4/ such that  D 1 on B1=2, and set

v D u . Then there is a continuous function

F D F.kf kC Dini ; kukL1.Q�
1

/; r/;

with F.0/ D 0 such that

W.r I v; f; .x0; t0//C F.r/

is a non-decreasing function for 0 < r < 1=2, and in particular for 0 < s < r < 1=2 there holds

W.r I v; f; .x0; t0// �W.sI v; f; .x0; t0//C F.r/ � F.s/

>

Z r

s

1

�5

Z

Rn�.��2Ct0;t0�

.Lv/2

�t
G.x;�t/dtdxd�:

In view of the proposition above, the limit

W.0CIu; 1/ WD lim
r!0

W.r Iu; 1/ D lim
r!0

W.r Iu; f /

exists. In Lemma 6.2 and Lemma 6.3 in [4], the possible values are determined. It turns out that

they are in general 0, 15=2 and 15. As is explained in Section 7.1 in [4] the value 0, corresponding

to so-called zero energy points, does not occur for X0 2 � .

DEFINITION 19 We say that the the point .x0; t0/ 2 � is a low energy point if

W.0CIu; f; .x0; t0// WD lim
r!0

W.r I v; f; .x0; t0// D
15

2
:

From Proposition 18 it follows that the function

.x; t/ 7! W.0CIu; f; .x; t//;

is upper semi-continuous, and thus the set of regular points is an open set.

6.2 The proof

We can now give the proof of the second main theorem.

Proof of Theorem 2. The proof consists of three steps. The first step amounts to prove that if the

origin is a low energy point, then u is non-negative close to the origin. The second step consists of

applying the theory known for the case when u has a sign, implying that the free boundary is locally

a C 1 graph. These two steps prove the first part of the theorem.

In the third and final step, we observe that if the geometric condition holds at the origin, then

Lemma 13.3 in [4] implies that the energy is sufficiently low (below the threshold 15) in a uniform

neighbourhood of the origin. In particular, this implies that all points in that neighbourhood are low

energy points. Hence, the first part of the theorem is applicable in a uniform neighborhood of the

origin, which implies the second part of the theorem.

Step 1: For r0 small enough, u > 0 in Q�
r0 . We argue by contradiction. If this is not true, then there

is a solution u of (1), with

kukL1.Q�
1

/ C kf kC Dini 6 M; W.0Iu; f; .0; 0// D
15

2
;
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and points .yj ; sj / 2 Q�
1 ! .0; 0/ so that u.yj ; sj / < 0. Let .xj ; tj / be the closest free boundary

point, i.e.,

rj D dist.�; .yj ; sj // D dist.yj � xj ; sj � tj / D

q

jxj � yj j2 C jtj � sj j:

Define the rescaled functions

vj .x; t/ D
u.rjx C xj ; r2

j t C tj /

r2
j

:

Clearly vj satisfies the equation

Hvj D f .rjx C xj ; r2
j t C tj /�fvj ¤0g; in Q�

1
rj

.�xj ;�tj /:

Moreover, due to Theorem 1

sup
Q�

�

jvj j 6 C�2; for � <
1

2rj
;

and by the choice of .yj ; sj / and .xj ; tj /, Hvj D f .rjx C xj ; r2
j t C tj / in the set

�

.x; t/ W
ˇ

ˇ

ˇ
x �

xj � yj

rj

ˇ

ˇ

ˇ

2

C
ˇ

ˇ

ˇ
t �

tj � sj

rj

ˇ

ˇ

ˇ
< 1

�

:

By standard estimates for parabolic equations, we can extract a sub-sequence, again labelled vj ,

such that vj ! v0 uniformly and

Hv0 D �fv0¤0g; in R
n � R

�; .0; 0/ 2 � .v0/

sup
Q�

�

jv0j 6 C�2; for all � > 0;

and

Hv0 D 1 in f.x; t/ W jx � z0j2 C jt � �0j < 1g; v0.z
0; �0/ 6 0; (44)

where

.z0; �0/ D lim
j !1

�

yj � xj

rj
;
sj � tj

rj

�

; .z0/2 C �0 D 1:

Observe that (44) assures that v0 6� 0. Moreover non-degeneracy (Lemma 5.1 in [4]) implies that

the origin is contained in the free boundary of v0 (see also section 5.2 in [4]).

Next we need to use the assumption on the energy functionalW.r; u; f;X/. SinceW.r; u; f;X/

is uniformly continuous in X for each r > 0 and

lim
r!0

W.r; u; f; 0/ D
15

2
;

the monotonicity formula implies that for each " > 0 there exists an r" > 0 such that

W.r; u; f; .xj ; tj // 6 W.r; u; f; 0/C " <
15

2
C 2"
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if r < r" and j is large enough (j may depend on r). In particular, a rescaling implies that

W

�

r

rj
; vj ; f .rjx; r

2
j t/; 0

�

6
15

2
C 2"

if r < r" is small enough and j large enough. Passing to the limit j ! 1 and using that W is

almost monotone in its first argument we may conclude that for any " > 0

W .r; v0; 1; 0/ 6
15

2
C 2": (45)

From (45) and the second part of Lemma 9.2 in [4] we can conclude that

v0 D
1

2
.x � e/2C; (46)

for some unit vector e. This is a contradiction to (44) since .z0; �0/ is, by construction, a point in the

set Hv0 D 1 at unit distance from the free boundary so by (46) v0.z
0; �0/ D 1

2
which contradicts

(44).

Step 2: Apply the results from [11]. Now we are in the situation of Theorem 1.9 in [11] if we consider

u to be defined only in Q�
r0

, i.e., u > 0 in Q�
r0

and the origin is a low energy point. Hence, there is

a small neighbourhood, which might depend on u itself, where the free boundary is a C 1 graph (in

the parabolic sense).

Step 3: The geometric condition implies a uniform energy condition. Theorem 1 applied to u and

then Lemma 13.3 in [4] applied to u.rx; r2t/=r2 implies that if �.r/ is large enough, r small enough

(both depending on kukL1.Q�
1

/ and kf kC Dini.Q�
1

// and

MD
�

fx W u.x;�r2/ D 0g \ Br

�

r
> �.r/;

then

W.�Iu; f;X/ < 15� "0;

for all X 2 Q�
r=2

, � < r small enough (depending on kukL1.Q�
1

/ and kf kC Dini.Q�
1

/). In particular,

all free boundary points in Q�
r=2

are low energy points. Hence, we can apply Step 1 and Step 2 to

conclude that in Q�
r=2

, the free boundary is a C 1 graph.
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