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We consider Cahn–Hilliard equations with external forcing terms. Energy decreasing and mass

conservation might not hold. We show that level surfaces of the solutions of such generalized

Cahn–Hilliard equations tend to the solutions of a moving boundary problem under the assumption

that classical solution of the latter exists. Our strategy is to construct approximate solutions of

the generalized Cahn–Hilliard equation by the Hilbert expansion method used in kinetic theory

and proposed for the standard Cahn–Hilliard equation, by Carlen, Carvalho and Orlandi, [14].

The constructed approximate solutions allow to derive rigorously the sharp interface limit of the

generalized Cahn–Hilliard equations and higher order corrections to the limiting motion. We then

estimate the difference between the true solutions and the approximate solutions by spectral analysis,

as in [1].
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1. Introduction

In this paper, we apply an alternative method to matched asymptotic expansions, developed by

Carlen, Carvalho and Orlandi, in [14], which allows the study of the sharp interface limit for the

generalized Cahn–Hilliard equation, and derive higher order corrections to this limit. The method

is based on the Hilbert expansion used in kinetic theory; we refer to [14] where the analogy is

explained. We start by recalling some back ground regarding the Cahn–Hilliard equation and the

results obtained in [14].
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1.1 The Cahn–Hilliard equation

Let ˝ be a bounded domain in R
2. The restriction of the analysis to two dimensions is made only

for simplicity. Let m D m.x; t/ be an integrable function on ˝ which represents the value of a

conserved “order parameter” at x in ˝ at time t . The order parameter is conserved in the sense

that
R

˝
m.x; t/dx is independent of t . Therefore, the evolution equation form can be written in the

form

@tm.x; t/ D r � EJ .x; t/;
where the current EJ is orthogonal to the outer normal of the boundary of˝ . We take

EJ .x; t/ D �
�

m.x; t/
�

r�.x; t/;

where �.m/ is the mobility and �.x; t/ is the chemical potential of x at time t . The mobility is

positive and the chemical potential is defined as the L2.˝/ Frechet derivative of a free energy

functional F :

�.x/ D ıF

ım
.x/:

The simplest and most familiar example is the so called Cahn–Hilliard equation. It results by setting

�.m/ WD 1, i.e., constant mobility, and

F .m/ WD 1

2

Z

˝

jrm.x/j2dx C 1

4

Z

˝

�

m2.x/ � 1
�2

dx:

This leads to the evolution equation

@tm.x; t/ D �
�

��m.x; t/C f
�

m.x; t/
�

�

;

where

f .m/ D m3 �m: (1.1)

Different choices of f can be made, provided they are derivatives of a double well, smooth enough

potential, with equal absolute minima. If m.x; t/ is a solution of this equation, then

d

dt
F
�

m.�; t/
�

D �
Z

˝

j EJ .x; t/j2dx;

and thus, evolution decreases the free energy. The minimizers of the free energy are the constant

functions m D ˙1. These minimizers represent the “pure phases” of the system. However, unless

the initial condition m0 happens to satisfy
R

˝ m0.x/dx D ˙j˝j, these “pure phases” cannot be

reached due to the mass conservation law. Instead, what will eventually be produced is a region

in which m � C1 while m � �1 in its complement, with smooth transition across its boundary.

This phenomenon is referred to as phase segregation, where the aforementioned boundary is the

interface between the two phases. If we “stand far enough back” from ˝ , all we can observe is the

interface’s shape since the structure across the interface is placed on an invisibly small scale.

The evolution of m under the Cahn Hilliard equation, or another equation of this type, drives a

very slow evolution of the interface. More specifically, let " be a small parameter, and introduce the

new variables � and � by

� WD "3t and � WD "x:
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Then of course it follows

@t D "3@� and @x D "@� :

Hence, if m.x; t/ is a solution of the Cahn–Hilliard equation and we define m".�; �/ WD
m.x.�/; t.�// then we obtain

@�m
".�; �/ D ��

�

� "��m
".�; �/C 1

"
f
�

m".�; �/
�

�

: (1.2)

If we think of " as representing the inverse of a large length scale, the variable � will be

dimensionless. The dimensionless variables are “slow” and the original variables “fast” for small

". In what follows, we keep the notation � for the slow spatial variables, but we drop the use of

� and replace it by t for convenience. One should just bear in mind that now we are looking at

the evolution over a very long time scale when " is small. For the reasons indicated above, it is

customary to consider initial data m0.�/ that is �1 in the region bounded by a smooth closed curve

�0 in ˝ , and C1 outside this region. At later times t there will still be a fairly sharp interface

between a region where m.�; t/ � C1 and a region where m.�; t/ � �1, centered on a smooth

curve �t . One might hope that for small values of ", all information about the evolution of m".�; t/

is contained in the evolution of the interface �t . This is indeed the case as shown in [14]. To explain

the method used in [14], let M denote the set of all smooth simple closed curves in ˝ . As we

will explain in Section 2, M can be viewed as a differentiable manifold. A vector field V on M

is a functional associating to each � in M a function in C1.� /. This function gives the normal

velocity of a point on � , and thus describes a “flow” on M. We may formally write

d

dt
�t D V.�t /: (1.3)

Now, given a flow on M, we can produce from it an evolution in C1.˝/ through the following

device: Let m be any function from M to C1.˝/. We write m.�; � / to denote m.� / evaluated at

� 2 ˝ . We can then define a time dependent functionm.�; t/ on ˝ by

m.�; t/ WD m.�; �t /: (1.4)

Notice that time dependence in m.�; t/ enters only through the evolution of �t . Now if, for small "

and sharp interface initial data, all of the information about the evolution of solutions of the Cahn–

Hilliard equation were contained in the motion of the interface, then one might hope to find a vector

field V on M governing the evolution of the interface, and a functionm from M to C1.˝/ so that

(1.4) defines the corresponding solution of the Cahn–Hilliard equation.

In [14], a result of this type has been proved. More specifically, a sequence of vector fields

V0; V1; V2; � � � defined on M was constructed such that the interface for the solution of (1.2) satisfies

(1.3) for V WD P1
j D0 "

jVj . It turned out that the leading term V0 is the vector field generating the

Mullins Sekerka flow, as one could expect from the pioneering work of Pego [33] made rigorous

by Alikakos, Bates and Chen [1]. In these papers the approximate solutions were constructed by

using matched asymptotic expansions which give no information on the higher order corrections to

the flow. The approach introduced in [14] unable to determine at any given order the velocity of the

flow.

Let us fix a number S > 0 that will later be interpreted as a “surface tension”, denote by

K.�/ � K.�; � / the curvature at � 2 � and by � the unit outward normal either to @˝ or to � .
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Further, for each � in M, let � be the solution of

��.�/ D 0 for � 2 ˝ n �; (1.5)

subject to the boundary conditions

�.�/ D S
�

K.�/ � 2�

j� j
�

on �; @�� D 0 on @˝; (1.6)

where j� j denotes the arc length of � and @� is the outward normal derivative to @˝ . Now define

V0.� / as the real valued function on � given by

V0.�; � / WD 1

2
Œ@���� .�/; � 2 �; (1.7)

where the brackets on the right-hand side denote the jump of the normal derivative across � . In this

way one defines a vector field on M which generates a flow known as the Mullins–Sekerka flow.

For the local existence of a unique smooth solution of the free boundary problem (1.5), (1.6) and

(1.7) see Chen, [16] and Escher and Simonett, [21]. As it is well known, the Mullins–Sekerka flow

conserves the area enclosed by �t and decreases the arc length of �t .

The higher order terms in
P

j D0 "
jVj are more complicated. In [14], V1 which is the next

correction to V0 was computed and a general technique of calculating all the higher order terms has

been presented. The description of V1, like that of V0, is in the context of potential theory.

1.2 The "-dependent generalized Cahn–Hilliard equation

We consider the generalized Cahn–Hilliard equation of the following type

@tm
".�; t/ D �

�

� "�m".�; t/C f
�

m".�; t/
�

"
�G2.�I "/

�

CG1.�I "/; � in ˝; t > 0;

(1.8)

where� is the Neumann Laplacian operator on˝ . The termsG1 and G2 may depend on time also.

In the present analysis, we shall consider the case whereG1 andG2 depend only on � since our aim

is to explain the main strategy in the simplest interesting setting. As it will be clear in the sequence,

the proposed method is suitable for the time dependent case as well.

The term G2 in (1.8) models general external fields, see [25, 26]. In [28] the authors apply

the Kawasaki exchange dynamics to derive a modified Cahn–Hilliard equation where G2 describes

the external gravity field. When G1 D 0, one can regard equation (1.8) as a particular case of the

conserved phase field system with prescribed temperature, see for example [8].The free energy-

independent term G1 may describe an external mass supply, cf. [25], or [3] where G1 was defined

as a deterministic Gaussian function. Such a model is described for example in [3], in order to

model spinodal decomposition in the presence of a moving particle source, as a mechanism for

the formation of Liesengang bands. In addition, G1 was introduced as a conservative white noise

of thermal fluctuations cf. [26] or [17] (Cahn–Hilliard-Cook model). Existence and uniqueness of

solution for the stochastic problem was established in [6, 13, 18] while dynamics and stochastic

stability were analyzed for the one-dimensional case in [5]. Furthermore, the interface stochastic

motion and singular perturbation has been studied for many related models like Allen–Cahn or

Ginzburg Landau and phase-field models, cf. for example [4, 23].
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Integrating (1.8) over˝ we get

@t

�

Z

˝

m".�; t/d�
�

D
Z

@˝

@�

�

� "�m" C f .m"/

"
�G2.sI "/

�

ds C
Z

˝

G1.�I "/d�: (1.9)

Therefore,
R

˝
m".�; t/d� is not conserved unless the second member of (1.9) is null. Generally,

due to the presence of the external force field G2 and the external mass supply G1, a free energy

decreasing is not expected. For a mathematical analysis of the problem when G2 D 0 and G1 is in

L2.˝/ cf. [19, 35].

An equivalent system formulation of (1.8) is the following

@tm
".�; t/ D ��".�; t/CG1.�I "/; (1.10)

�".�; t/ D �"�m".�; t/C 1

"
f .m".�; t// �G2.�I "/; (1.11)

where� is the Neumann Laplacian operator on˝ . This representation will be used in our analysis.

For the purposes of this paper we consider the "-dependent generalized Cahn–Hilliard equation

(1.8) (and equivalently the system (1.10), (1.11)) supplemented with an initial condition

m".�; 0/ D m"
0.�/ '

(

� 1 on ˝�
0

C 1 on ˝C
0 ;

(1.12)

where ˝�
0 is the region of ˝ enclosed by a smooth closed curve �0 and ˝C

0 D ˝ n
�

˝�
0 [ �0

�

.

Thus, we are assuming that the interface is already initial formed. Further we take the following

Neumann boundary conditions

@�m
" D @��m

" D 0 on @˝: (1.13)

We assume that the forcing terms G1 and G2 are sufficiently smooth, and that @�G2 D 0 on @˝ so

that (1.13) becomes

@�m
" D @��

" D @��m
" D 0 on @˝: (1.14)

We dot not require
Z

˝

G1.�I "/d� D 0: (1.15)

Hence, mass conservation might not hold. The precise assumptions for the forcing termsG1 andG2

will be given in Section 2. For sufficiently smooth initial conditions and forcing termsG1,G2, there

exists a unique classical solution of the generalized Cahn–Hilliard equation. The proof is analogous

to that of the homogeneous case presented in [19].

Notice that if we write (1.8) in the original not scaled variables .x; t/ the terms G1 and G2 are

small perturbations of the standard Cahn–Hilliard equation. The term G1 in the original variables

.x; t/ is multiplied by a factor "3 and the term G2 by a factor ". The problem that we pose is the

following. Take as in the homogeneous Cahn–Hilliard equation, initial data m0.�/ like in (1.12).

Due to the presence of G1 and G2 the constant functions m" D ˙1 are not anymore stationary

solutions of (1.8). But we still expect that eventually at later times t there will appear a fairly sharp

interface between the regions where m".�; t/ � C1 and where m".�; t/ � �1, centered on some

smooth curve �t . We prove that this is indeed the case. We derive the motion of �t determining the
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vector field. It turns out that the leading term V0 in the vector field
PN �1

j D0 "
jVj

�

�
.N /
t

�

, governing

the interfacial flow (see (2.7)), is not the vector field generating the Mullins Sekerka flow appearing

in the sharp limit of the homogeneous Cahn–Hilliard equation. In fact, we obtain

V0.�; �t / D V
.0/

0 .�; �t /C hV0i�t
; (1.16)

where
Z

�t

V
.0/

0 .�; �t /dS� D 0;

and

hV0i�t
D 1

2j�t j

Z

˝

G1;0.�/d�; t 2 Œ0; T �: (1.17)

Here, and in the following, we denote by dS� the element of the arc length along � or @˝ . We will

indeed prove that, as " ! 0 the singular limit of (1.10) and (1.11) leads to the following moving

boundary problem: Given a closed curve � 0 in ˝ that it is the boundary of an open set ˝�
0 � ˝

find a family
˚

�t 2 M W t 2 Œ0; T �
	

and functions �.�; t/ D �.�; �t / for t 2 Œ0; T � and � 2 ˝ so

that

��.�; t/ D �G1;0.�/ � 2 ˝ n �t ; t 2 Œ0; T /;
�.�; t/ D 2SK.�; �t/ �G2;0.�/ on �t ; @��.�; t/ D 0 on @˝; t 2 Œ0; T /;
V0.�; �t / D 1

2
Œ@����t

.�/; � 2 �t ; t 2 .0; T /;
�0 D � 0;

(1.18)

where G1;0.�/ WD lim
"!0

G1.�I "/ and G2;0.�/ WD lim
"!0

G2.�I "/ and S > 0 is the surface tension

defined in (4.32). In [7] the authors applied formal asymptotics to analyze the sharp interface motion

for generalized Cahn–Hilliard equations of the form (1.8). The limit problem, which was formally

derived in [7], agrees exactly to (1.18) which is rigorously proven in this paper.

We immediately obtain for any t 2 .0; T /

2

Z

�t

V0.�; �t /dS� D
Z

�t

Œ@����t
.�/dS� D �

Z

˝n�t

��.�; t/d� D
Z

˝

G1;0.�/d�; (1.19)

i.e., (1.17). Recalling that d
dt

j˝�
�t

j D
R

�t
V0.�; �t /dS�, we obtain that the area enclosed by �t is

not conserved unless
R

˝
G1;0.�/d� D 0. Also, we have

d

dt
j�t j D

Z

�t

K.�; �t /V0.�; �t /dS� (1.20)

D 1

2S

�Z

�t

�V0.�; �t /dS� C
Z

�t

V0.�; �t /G2;0.�/dS�

�

:
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Let us denote by �˙.�; �t / the restriction of �.�; �t / in ˝˙
t . It follows that

2

Z

�t

�V0.�; �t /dS� D
Z

�t

�C@��
CdS� �

Z

�t

��@��
�dS�

D �
Z

˝�
t

div.�r�/d� �
Z

˝
C
t

div.�r�/d�

D �
Z

˝

jr�j2d� �
Z

˝n�t

���d� D �
Z

˝

jr�j2d� C
Z

˝n�t

�G1;0.�/d�:

(1.21)

From these computations there is no reason to expect that d
dt

j�t j is not positive. So, even in the

case when the volume is conserved, i.e when
R

˝
G1;0.�/d� D 0 the length of the curve does not

decrease. The unknown
˚

�t 2 ˝ W t 2 Œ0; T �
	

and �˙ are coupled through the system (1.18).

However if the position and the regularity of the moving boundary
˚

�t 2 ˝ W t 2 Œ0; T �
	

is known,

the chemical potential � is obtained by solving at each time t 2 Œ0; T / the elliptic boundary value

problem

��.�; t/ D �G1;0.�/; � 2 ˝ n �t ; t 2 Œ0; T /;
�.�; t/ D 2SK.�; �t / �G2;0.�/ on �t ; @��.�; t/ D 0 on @˝; t 2 Œ0; T /: (1.22)

In this sense we call a family f� .t/I t 2 Œ0; T /g of surfaces a solution of (1.18). To our knowledge

there are no results regarding the existence and the uniqueness of solution for the moving boundary

problem of the type (1.18). A modified Mullins Sekerka motion has been studied by [20], but it

differs from (1.18) both at the presence of the term �G1;0 which is replaced in [20] by a specific

function of time only, and might at the presence of �G2;0 which does not appear in [20]. We think

that a method similar to the one used in [20] might be useful to give existence and uniqueness of

the classical solution of (1.18). For the purposes of this paper, we assume that there exists a unique

classical solution of the free boundary problem (1.18).

1.3 Background literature

There is a large body of literature concerning Cahn–Hilliard equations. We refer the reader to the

nice introduction of Novick-Cohen on this subject and to the list of reference therein, see [29]. We

also refer to [34] for a connection with the Mullins-Sekerka limit motion in spherical symmetry.

There is also a large number of papers, more physics oriented, devoted to the derivation of

generalized Cahn–Hilliard equations and conserved phase field system, see for example [8], [9].

In [10] an interesting discussion of the asymptotic analysis of the phase field equations in the case

of different sharp interface limits takes place.

Various generalizations of conserved phase field models are studied in [30], [31], [32]. In the

aforementioned papers, the authors consider systems of equations close to our model and take

into account more complicated structures such as anisotropy and temperature fields coupled with

density, and, derive interesting formal asymptotic expansions of the order parameters (density and

temperature) as the scaling parameter " ! 0. These systems of equations are more complicated

than (1.8), and challenging to analyze.

As a first step for a rigorous analysis of generalized phase field models, in this paper, we set

ourself in a simpler context, yet not only proving rigorously that the limit interfacial motion is given
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by (1.18) but also employing a method that allows for the derivation of higher order corrections to

the limiting motion.

2. Notations and main results

2.1 Vector fields and flow on the curve space

Let M denote the set of all smooth simple closed curves in ˝ � R
2. To discuss motion in M it is

convenient to introduce local coordinates in the neighborhood of any given � 2 M. To this aim we

define:

DEFINITION 2.1 LetK.�/ D K.�; � / denote the curvature at a point � 2 � for � 2 M. We define

k.� / WD max
�2�

jK.�/j:

We denote by d.�; � / the signed distance of � 2 ˝ from � . We define d < 0 when � is inside

� and d > 0 when � is outside � . As long as d.�; � / 6
1

k.� /
there is a uniquely determined point

� 2 � such that j� � �j D d.�; � /; this is the point in � closest to �. Therefore, for any "0 such

that 0 < "0 <
1

k.� /
, let

N."0/ D N."0; � / WD
˚

� 2 ˝ W jd.�; � /j 6 "0

	

:

There is a natural set of coordinates in N."0/. Given � 2 N."0/ we denote by � the diffeomorphism

� W N."0/ ! Œ�"0; "0��� defined by �.�/ D .d.�/; s.�// (whenever this does not cause ambiguity

we omit to write the explicit dependence of N or d on � ). We have that

� D s.�/C d �
�

s.�/
�

;

where �.s.�// denotes the unit outward normal to � at s.�/. For d 2 Œ�"0; "0� and s 2 � let ˛.d; s/

be the Jacobian of the local change of variables ˛.d; s/ D det
@��1.d;s/

@.d;s/
. A standard computation (cf.

[24, appendix]) gives ˛.d; s/ D Qn�1
iD1 .1 � dKi .s// ; where Ki .s/, i D 1; : : : ; n are the principal

curvatures at s 2 � , in the direction i . When n D 2 we have

˛.d; s/ D 1 � dK.s/: (2.1)

In the sequel we identify functions of variable � and functions of variable .d; s/ in the domain

N."0/. We denote by

z D d

"

the stretched variable.

The introduced coordinates on N."0; � / provide the means to give M the structure of a

differentiable manifold and to study motions in this manifold, see [14, Section 2]. A vector field

V on M is a functional associating to each � in M a function in C1.� /. This function defines

the normal velocity of a point on � and thus, describes a “flow” on M. More specifically, we may

formally write
d

dt
�t D V.�t /: (2.2)
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We denote the lifetime T of the flow (2.2), starting at � 2 M as

T D inf
˚

t > 0 W k.�t / 6 k0

	

; (2.3)

where k0 is any arbitrarily chosen positive number so that k.� / 6 k0 < 1. If V.�; � / D K.�; � /,
the curvature at s 2 � , one obtains the curve shortening flow by curvature. When V.�; � / is given

by (1.7) we have the Mullins–Sekerka vector field, described in the introduction. When V.�; � / is

given by (1.16) we have the flow characterizing the sharp interface motion studied in this paper.

A given flow on M produces an evolution in C1.˝/ through the following device: Let m be

any function from M to C1.˝/; we write m.�; � / to denote m.� / evaluated at � 2 ˝ . Then a

time dependent functionm.�; t/ may be defined on ˝ as follows:

m.�; t/ WD m.�; �t /: (2.4)

There is an obvious but useful decomposition of vector fields on M. Given a vector field V on

M we may apply the decomposition

V.�; � / D V .0/.�; � /C hV i� ; (2.5)

where

hV i� WD 1

j� j

Z

�

V.�; � /dS� ; (2.6)

and

V .0/.�; � / WD V.�; � / � hV i� :

Since hV i� is constant then by its definition V .0/ is orthogonal to the constants in the L2.� / inner

product i.e., satisfies
Z

�

V .0/.�; � /dS� D 0;

and therefore, it generates a volume preserving flow in the sense that for any t the area enclosed by

� D �t is constant.

Under the ansatz given below, in this paper, we derive separate equations for the components

V .0/.�; � / and hV i� for each of the vector fields Vj .

ANSATZ 2.2 Let V0; V1; V2; � � � be a sequence of vector fields on M andm0; m1; m2; � � � functions

from M to C1.˝/. For any given initial interface �0 in M and all N > 0, let �
.N /
t be the solution

of

d�
.N /
t

dt
D
h

N �1
X

j D0

"jVj

i �

�
.N /
t

�

with �
.N /

0 D �0: (2.7)

We define the functionm.N /.�; t/ by

m.N /.�; t/ D m0

�d.�; �
.N /
t /

"

�

C
N
X

j D1

"jmj .�; �
.N /
t /; (2.8)

and notice that m.N /.�; t/ depends on t only through �
.N /
t .
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We set

m0.z/ WD r
� "

"0

z
�

Nm.z/C
 

1 � r
� "

"0

z
�

!

sgn.z/; (2.9)

where Nm.z/ WD tanh.z=
p
2/ 1 defined for any z 2 R is the unique solution of the Euler–Lagrange

equation

�m00.z/C f .m.z// D 0; z 2 R; lim
z!˙1

m.z/ D ˙1;

and r is a smooth even unimodal cut-off function, r.u/ D 1 for juj < 1
2

and r.u/ D 0 for u > 1.

In addition, let

mj .�; �
.N /
t / WD hj

�d.�; �
.N /
t /

"
; s.�; �

.N /
t /

�

C �j .�; �
.N /
t /; � 2 ˝; j D 1; � � � ; N; (2.10)

where hj are C1.˝/ functions equal to 0 in ˝ n N."0/ and when d.�; �
.N /
t / D 0. The functions

�j , j D 1; � � � ; N are in C1.˝/, satisfy the Neumann boundary conditions on @˝ and admit a

global Lipschitz bound, independent of ", i.e.,

k�j kLip.˝/ 6 C; j D 1; � � � ; N;

where C is a constant independent of ".

Notational convention. Below we denote by m.N /.�; t/ WD m.N /.�; �
.N /
t / and �.N �1/.�; t/ WD

�.N �1/.�; �
.N /
t /. If there is no ambiguity we write � or �t for �

.N /
t . In what follows, we write

C to designate a generic positive constant independent on ". Its actual numerical value may change

from one occurrence to the next.

REMARK 2.3 The Ansatz 2.2 must be modified when G1 and G2 depend on time. The (2.8) should

be replaced by

m.N /.�; t/ D m0

�d.�; �
.N /
t /

"

�

C
N
X

j D1

"jmj

�

�; t; �
.N /
t

�

:

Notice that m.N /.�; t/ depends now on t not only through �
.N /
t . One can verify that the first order

functionm0 keeps to depend on t only trough �
.N /
t .

2.2 Main results

We start constructing a function m.N /.�; �t /, for � 2 ˝ and t 2 Œ0; T � where T is the lifetime of

(2.7) and show that it is an approximate solution of (1.8). We make the following assumptions on

the forcing terms G1 and G2.

1 The explicit form of the solution is never used. We will use only its qualitative properties.
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A1: Assumptions for G1 and G2.

For any N > 1 we require

Gi .�I "/ D
N �1
X

j D0

"jGi;j .�/C "NGi;N .�; "/; jGi;N .�; "/j 6 C;

Gi;j 2 C1.˝/; j D 1; � � � ; N � 1; i D 1; 2;

@�G2;j D 0 on @˝; j D 1; � � � ; N:

(2.11)

REMARK 2.4 We requireGi;j 2 C1.˝/ for j D 1; � � � ; N �1 and for i D 1; 2 to avoid regularity

problems, but this assumption can be relaxed.

THEOREM 2.5 Let N > 1 and G1 and G2 be as in assumptions A1. There exist vector fields Vj ,

j D 0; � � � ; .N � 1/ and functions mj , j D 0; � � � ; N as prescribed in the Ansatz 2.2 having the

following properties: Let T denote the lifetime of the solution of (2.7) in M. Then there is a constant

CN so that for all t < T

@tm
.N /.�; t/ D �

�

� "�m.N /.�; t/C 1

"
f
�

m.N /.�; t/
�

�
N �1
X

j D0

"jG2;j .�/
�

C
N �1
X

j D0

"jG1;j .�/C�R.N /.�; t/; (2.12)

where

sup
�2˝;t2Œ0;T �

ˇ

ˇ

ˇ
R.N /.�; t/

ˇ

ˇ

ˇ
6 CN "

N �1: (2.13)

Finally, the sequences of vector fields and functions are essentially uniquely determined since given

Vj for j < k then Vk is determined up to O."kC1/, and similarly, given mj for j < k then mk is

determined up to O."kC1/.

REMARK 2.6 In Theorem 2.5 and in the following, the symbol O."m/ denotes terms which are of

order "m uniformly in all their variables. The qualified nature of uniqueness stated in this theorem

is an indication that there will be choices to be made at every stage of the approximation.

The proof of Theorem 2.5 follows the main lines of the scheme introduced in [14] and it is

proven in Section 5. There, the complete result relating the solution of (2.12) and its sharp interface

limit is given. The construction behind the proof is patterned on the Hilbert expansion of kinetic

theory. We refer the interested reader to [14, Section 3.2] where this connection is discussed. We

first construct an approximate solution up to order N of the chemical potential �" (cf. (1.10))

assuming that the left hand side of (1.10) is known and it is given by the Ansatz 2.2. This is

done in Section 3. We, then, insert the constructed approximate chemical potential into (1.11). The

approximate solution m.N / is determined provided certain compatibility conditions are verified.

This is done in Section 4. Finally in Section 5 we construct . Qm.N /; Q�.N �1// where Qm.N / is an "N

modification of m.N / and Q�.N �1/ is an "N �1 modification of �.N �1/ and we show Theorem 2.5.

Let Vj , j D 1; � � � ; N � 1, be the sequence of vector fields introduced in the Ansatz 2.2.

According to (2.5), we split them as

Vj .�; � / D V
.0/

j .�; � /C hVj i� ; j D 1; � � � ; N � 1:
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The term V
.0/

j is determined in Theorem 4.1 by applying the Dirichelet-Neumann operator in the

context of potential theory, while the term hVj i� , which is constant on � , is determined in Theorem

3.1.

As already explained in the introduction, the leading term V0 in the vector field
PN �1

j D0 "
jVj

�

�
.N /
t

�

governing the interfacial flow (cf. (2.7)) is given by

V0.�; �t / D V
.0/

0 .�; �t /C hV0i�t
:

The family of curves f�t 2 M; t 2 Œ0; T �g driven by V0 is the solution of the moving boundary

problem (1.18). For a curve � 2 M, the term V
.0/

0 .� / is determined, see Lemma 4.5 as a real

valued function on � given by

V
.0/

0 .�; � / D Œ@��0;0;0�� .�/; � 2 �; (2.14)

where the brackets on the right denote the jump in the normal derivative across � . For each � 2 M,

�0;0;0 is the solution of

��.�/ D 0 for � 2 ˝ n �; (2.15)

subject to the boundary conditions

�.�/ D S
�

K.�/ �
R

�
K.�/dS�

j� j
�

C 1

4

�

B0;0;0.�/ �
R

�
B0;0;0.�/dS�

j� j
�

on �; @�� D 0 on @˝: (2.16)

The term B0;0;0 (cf. (4.39)) is given by

B0;0;0.�/ D �2
�

Q�0;0;0.�/CG2;0.�/
�

; � 2 �; (2.17)

where (cf. (4.38))

Q�0;0;0.�/ D hV0i� 2

Z

�

G.�; �/dS� �
Z

˝

G.�; �/G1;0.�/d�; (2.18)

for G.�; �/ the Green function in ˝ , with Neumann boundary condition on @˝ , satisfying the

equation

�G.�; �/ D ı.� � �/� 1

j˝j ; (2.19)

so that
Z

˝

G.�; �/d� D
Z

˝

G.�; �/d� D 0 : (2.20)

The second step is to show that there is an actual solution of (1.8) close to the constructed

approximate solution m.N /.�; �/ whenever both of them start from the initial datum m"
0, see (1.12).

This step for the standard Cahn–Hilliard equation (i.e. for G1 D G2 D 0) has been proved in the

work of Alikakos, Bates and Chen, [1], by application of spectral estimates. We use the spectral

estimates as in [1]. Namely the linear operator

Lw D �
�

"�w � 1

"
f 0
�

m.N /.t/
�

w
�

;
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that one obtains linearizing (1.8) at m.N /.t/, t 2 Œ0; T �; the solution constructed in Theorem 2.5,

is the same as in [1]. The approximate solution has the requirements needed to apply the spectral

estimates proven by [2] in two space dimensions and by [15] in arbitrary space dimensions and

in more general setting. The assumptions imposed on the forcing terms G1 and G2 together with

the assumption (2.21) are enough to have these terms under control. We state the theorem and we

outline in the appendix the proof.

Let p > 0 and k � kp;˝ be the usual norm in Lp.˝/, then for T > 0 we define the norm

kukp;˝T
WD
�

Z T

0

kukp
p;˝dt

�1=p

:

THEOREM 2.7 Take N > 1, G1 and G2 as in Assumption A1. Further assume that

Z

˝

G1;N .�; "/d� D 0; 8" > 0: (2.21)

Let m.N /.t/ for t 2 Œ0; T � where T is the lifetime of (2.7), be the solution of (2.12). Let m" be the

solution of the generalized Cahn–Hilliard equation (1.8) supplemented by the boundary conditions

(1.14) and having initial datumm".�; 0/ D m.N /.�; 0/, � 2 ˝ . Then, there exists "0 > 0 so that for

all " 2 .0; "0�, for any pair � > 13
3

, N > 3�C5
3

, it holds that

km" �m.N /k3;˝T
6 "�: (2.22)

REMARK 2.8 The result of the previous theorem coincides with the analogous result in Lp.˝T /

norm of Theorem 2.1 of [1] for the case G1 D G2 D 0 in dimensions n D 2, since 3 D p D 2nC4
nC2

and since � > 13
3

D .nC 2/n2C6nC10
4nC16

.

REMARK 2.9 Set QG1;N �1 D G1;N �1 C "G1;N and therefore QG1;N D 0. Determine the velocity

field VN �1 replacing G1;N �1 with QG1;N �1. In this way the condition (2.21) of Theorem 2.7 is

trivially satisfied.

3. The construction of the approximate chemical potential

In this section, we apply potential theory to show the following result.

THEOREM 3.1 Take N > 1 and G1 as in Assumption A1. Let �
.N /
t , t 2 Œ0; T �, be the solution

of (2.7) in M, with T its lifetime, see (2.3). Let m.N /.�; � .N /
t / be as in the Ansatz 2.2. There is a

unique way to determine the hVj i.� .N /
t /, j D 0; � � � ; .N � 1/, such that there exists a unique (up

to a constant in �) expansion

�.N �1/.�; t/ D
N �1
X

iD0

"i�i .�; t/ in ˝ � .0; T /; (3.1)

with

@tm
.N /.�; t/ D ��.N �1/.�; t/C

N �1
X

j D0

"jG1;j .�/CR1.�; t; "/ in ˝ � .0; T /; (3.2)
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with R1 given in (3.14). Further �.N �1/.�; t/, for t 2 .0; T /, is a C1.˝/ function satisfying the

Neumann homogeneous boundary conditions on @˝ ,

sup
�;t2˝�Œ0;T �

jR1.�; t; "/j 6 C.T /"N �1; (3.3)

and

sup
t2Œ0;T �

j
Z

˝

R1.�; t; "/d�j 6 C.T /"N ; (3.4)

where C.T / is a constant independent of ". Moreover, the terms �i appearing in (3.1) are specified

by (3.18), (3.27) and (3.38) below.

We look for a function �.N �1/ from M to C1.˝/ having the form

�.N �1/.�; � / D
N �1
X

iD0

"i�i .�; � /; � 2 ˝; @��i D 0 on @˝; (3.5)

where �i , i D 0; � � � ; N � 1 are functions to be determined. We insert into (1.10) the function

m.N /, given by the Ansatz 2.2, and �.N �1/ given by (3.5), where both are evaluated at � WD �
.N /
t ,

for �
.N /
t the solution of (2.7). Therefore, we obtain .N � 1/ Laplace equations for �i .�; � .N /

t /,

i D 1; � � � ; .N � 1/. The compatibility conditions are needed in order to solve these equations and

determine hVj i.� .N /
t / for j D 0; � � � ; .N � 1/.

When differentiating m.N /.�; � .N /
t / with respect to t we need to take into account that m.N /

depends on �t through a fast and slow scale. The fast scale brings a factor "�1.

DEFINITION 3.2 Let m be a function from M to C1.˝/ of the type h
�

d.�;� /
"

; s.�; � /
�

and V be

a vector field on M. We define

DVm.�; � / WD 1

"
h0
�d.�; � /

"
; s.�; � /

�

V
�

s.�/
�

; (3.6)

where the prime indicates the derivative of h with respect to the first variable z D d.�;� /
"

.

In addition, for anyWN WD PN �1
j D0 "

jVj with V0; � � � ; VN �1 vector fields on M, we define

DWN
m.�; � / WD

N �1
X

j D0

"jDVj
m.�; � /: (3.7)

Note that by the orthogonality of r�d with respect to the surface there is no contribution in (3.6)

from s.�; � /. Therefore, cf. [14] for the detailed computations, differentiating (2.8) with respect to

t , applying the chain rule at the right-hand side (here the velocity will appear since mj are defined

on � ) and then using (2.10), (3.6) and (3.7), we arrive at

@tm
.N / D DWN

.m.N // D DV0
m0 C "

�

DV1
m0 CDV0

m1

�

C "2
�

DV1
m1 CDV0

m2 CDV2
m0

�

C � � � C "N �1
h

N �1
X

iD0

DVi
mN �1�i

i

CRN C E; (3.8)
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where

RN � "N
h

N �1
X

iD0

DVi
mN �i

i

C O."N /: (3.9)

The m0 is the function defined in (2.9) and the term E � E.�; t; "/ is obtained by differentiating

r
�d.�; �t /

"0

�

, the unimodal function appearing in the definition of m0, with respect to the velocity

field. E is given by

E D 1

"0

r 0
�d.�; �t /

"0

�h

N �1
X

iD0

"iVi .�.�/; t/
i

˚

Nm � Œ1Ifd.�;�t />0g � 1Ifd.�;�t /<0g�
	

: (3.10)

Note that E is exponentially small since r 0 is different from zero only for "0

2"
6 jzj 6

"0

"
while

Nm converges exponentially fast to ˙1 as z ! ˙1, [14]. Taking into account (3.8) and (1.10) we

obtain a set of N equations for the �i , i D 0; � � � ; N � 1.

Zero order term in ":

8

<

:

DV0
m0 � 1

"
V0m

0 D ��0 CG1;0 for � 2 ˝; t 2 Œ0; T �;
@��0 D 0 on @˝;

(3.11)

where G1;0 is the zero order term in " of G1.

First order term in ":

(

ŒDV1
m0 CDV0

m1� D ��1 CG1;1 for � 2 ˝; t 2 Œ0; T �;
@��1 D 0 on @˝:

(3.12)

n-th order term in " (n 6 N � 1):

8

ˆ

<

ˆ

:

�

n
X

iD0

DVi
mn�i

�

D ��n CG1;n for � 2 ˝; t 2 Œ0; T �;

@��n D 0 on @˝:

(3.13)

Remainder term:

The remainder term, see (3.9) and (3.10), is given by

R1.�; t; "/ D "NG1;N .�; "/CRN .�; t; "/C E.�; t; "/: (3.14)

Since the derivative in RN (cf. (3.9)) brings down a factor "�1 then this yields easily the next

estimate for R1

sup
.�;t/2˝�Œ0;T �

jR1.�; t/j 6 C.T /"N �1: (3.15)
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Further, one gains an extra power of " when integrating R1, since the terms of order "N �1 have

support in N."0/

sup
t2Œ0;T �

Z

˝

jR1.�; t; "/jd� 6 C.T /"N : (3.16)

In the sequel, we prove existence and uniqueness (up to a constant) of solutions of the equations

obtained so far at different orders. In Lemma 3.3 and in Lemma 3.5 we consider the first and second

order equation respectively. Finally, in Lemma 3.6 we outline the proof for solving the equation to

a generic order. In the next lemma we write in an explicit way the dependence of the mean velocity

on ". This is done in order to get easily the leading velocity field governing the interfacial flows, see

(2.7).

LEMMA 3.3 Under the conditions

V0.�; �t / D V
.0/

0 .�; �t /C hV0i�t
Œ1C c0."/�;

R

�t
V

.0/
0 .�; �t /dS� D 0; hV0i�t

D 1
2j�t j

R

˝
G1;0.�/d�; t 2 Œ0; T �;

(3.17)

where c0."/ defined in (3.24) goes to zero exponentially fast as " ! 0, there exists a unique solution

(up to constants in �) of (3.11) given by

�0.�; �t / D �0;0.�; �t /C Q�0.�; �t /; (3.18)

where

�0;0.�; �t / D
Z

˝

G.�; �/

�

1

"
m0

0

�d.�; �t /

"

�

V
.0/

0 .s.�/; �t /

�

d�C c0.t/: (3.19)

Here, c0.t/ is a constant (in �) to be determined, and

Q�0.�; �t / D hV0i�t
Œ1C c0."/�

Z

˝

G.�; �/

�

1

"
m0

0

�d.�; �t /

"

�

�

d��
Z

˝

G.�; �/G1;0.�/d�: (3.20)

The term �0 is in C1.˝/ for any t 2 Œ0; T �.
Proof. Because @��0 D 0 on @˝ , the solvability of (3.11) requires that for all t 2 Œ0; T �

Z

˝

�

1

"
m0

0

�d.�; �t /

"

�

V0.s.�/; t/

�

d��
Z

˝

G1;0.�/d� D 0: (3.21)

In two dimensions (note that in three dimensions there will be extra terms), by using local

coordinates it follows that
Z

˝

�

1

"
m0

0

�d.�; �t /

"

�

V0

�

s.�/; t
�

�

d� D
Z

N."0/

�

1

"
m0

0

�d.�; �t /

"

�

V0

�

s.�/; t
�

�

d�

D 1

"

Z

�

Z

"0
"

�
"0
"

m0
0.z/V0.s; t/".1 � "zK.s//dsdz

D
Z

�

Z

"0
"

�
"0
"

m0
0.z/V0.s; t/dsdz � "

Z

�

Z

"0
"

�
"0
"

zm0
0.z/K.s/V0.s; t/dsdz

D
Z

�

Z

"0
"

�
"0
"

m0
0.z/V0.s; t/dsdz D 2.1� e�

"0
" /

Z

�t

V0.�; �t /dS�:

(3.22)
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The last line holds true since m0
0 is even and exponentially decreasing. Replacing now (3.22) in

(3.21), we obtain
Z

˝

G1;0.�/d� D 2.1� e�
"0
" /

Z

�t

V0.�; �t /dS�: (3.23)

Taking into account the splitting V0 D V
.0/

0 C hV0i� Œ1 C c0."/�, (cf. the first and second equality

in (3.17)), and using (3.23), we arrive at

Z

�t

V0.�; �t /dS� D j�t jhV0i�

�

1C c0."/
�

D 1

2

�

1C c0."/
�

Z

˝

G1;0.�/d�;

where

c0."/ WD e�
"0
"

.1� e�
"0
" /
: (3.24)

This forces us to take V0 satisfying the third relation of (3.17). By potential theory, once the

compatibility condition is satisfied, the solution is given by (3.18).

REMARK 3.4 Note that hV0i�t
and Q�0.�; �t / are completely determined once we know m0. The

quantity �0;0.�; �t / depends on c0.t/ and V
.0/

0 . These quantities will be determined when proving

Theorem 4.1.

3.1 The first order term in "

For the derivation of the first order correction we need to prove the solvability of equation (3.12).

LEMMA 3.5 There exists a unique (up to constants in �) solution �1 of (3.12) provided that

V1.�t / � V
.0/

1 .�t /C hV1i�t
; (3.25)

with
Z

�t

V
.0/

1 .�; �t /dS� D 0; 8t 2 Œ0; T �; (3.26)

and hV1i�t
chosen according to

hV1i�t
D 1

2j�t j
�

1C c0."/
�

h

Z

˝

G1;1.�/d� � b1.t/
i

;

where b1.t/ is defined in (3.30) and c0."/ in (3.24). The solution is given by

�1.�; t/ D �1;0.�; t/C Q�1.�; t/; (3.27)

where Q�1 is defined in (3.35), while

�1;0.�; t/ D
Z

˝

G.�; �/

�

1

"
m0

0

�d.�; �t /

"

�

V
.0/

1 .s.�/; t/

�

d�C c1.t/: (3.28)

Here, c1.t/ is a constant (in �) to be determined. In addition, the solution is a C1.˝/ function for

any t 2 Œ0; T �.
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Proof. The solvability of (3.12) requires that

Z

˝

ŒDV1
m0 CDV0

m1�d� �
Z

˝

G1;1.�/d� D 0; (3.29)

for any t 2 Œ0; T �. Here, we are assuming that m1, m0 and V0 are already determined and so we

define

b1.t/ D
Z

˝

DV0
m1d�: (3.30)

Proceeding as in (3.22) we obtain

Z

˝

DV1
m0d� D 2

�

1� e�
"0
"

�

Z

�t

V1.�/dS�: (3.31)

Taking into account the decomposition (3.25) and relation (3.26) we have

Z

�t

V1.�; �t /dS� D j�t jhV1i�t
:

Therefore, relation (3.29) is satisfied if

hV1i�t
D 1

2j�t j
�

1C c0."/
�

h

Z

˝

G1;1.�/d� � b1.t/
i

; (3.32)

where c0."/ is defined in (3.24). This determines hV1i�t
, the projection of V1.�t / onto the constants.

The solution of (3.12) exists and it is given by

�1.�; t/ D
Z

˝

G.�; �/ŒDV1
m0 CDV0

m1�d��
Z

˝

G.�; �/G1;1.�/d�C c1.t/: (3.33)

Since we shall use the decomposition (3.25), it is convenient to write

�1.�; t/ D �1;0.�; t/C Q�1.�; t/; (3.34)

where �1;0.�; t/ is given in (3.28) and Q�1 is defined as follows

Q�1.�; t/ D
Z

˝

G.�; �/DV0
m1d�C hV1i�t

Z

˝

G.�; �/

�

1

"
m0

0

�d.�; �t /

"

�

�

d�

�
Z

˝

G.�; �/G1;1.�/d�: (3.35)

LEMMA 3.6 The solution �j .�; t/ of (3.13) for 2 6 j 6 N � 1 exists and is unique (up to constant

in �) provided that

Vj .�t / � V
.0/

j .�t /C hVj i�t
; (3.36)

Z

�

V
.0/

j .s; �t /ds D 0; 8t 2 Œ0; T �; (3.37)
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and hVj i�t
is chosen according to (3.44). It is given by

�j .�; t/ D �j;0.�; t/C Q�j .�; t/; (3.38)

where

�j;0.�; t/ D
Z

˝

G.�; �/

�

1

"
m0

0

�d.�; �t /

"

�

V
.0/

j .s.�/; t/

�

d�C cj .t/; (3.39)

and

Q�j .�; t/ D
Z

˝

G.�; �/
h

j �1
X

nD0

DVn
mj �n

i

d�

C hVj i�t

Z

˝

G.�; �/

�

1

"
m0

0

�d.�; �t /

"

�

�

d�C
Z

˝

G.�; �/G1;j .�/d�: (3.40)

The solution �j .�; t/ for t 2 .0; T � is a C1.˝/ function.

Proof. The proof is analogous to the proof of Lemma 3.5. The solution exists if

Z

˝

h

j
X

nD0

DVn
mj �n

i

d� �
Z

˝

G1;j .�/d� D 0; (3.41)

for any t 2 Œ0; T �. Here, DVn
mj �n for n D 0; � � � ; j � 1 are determined and so, we define

bj .t/ D
Z

˝

h

j �1
X

nD0

DVn
mj �n

i

d�: (3.42)

Requiring (3.36) and (3.37) we obtain

Z

˝

DVj
m0d� D 2j�t j

�

1 � e�
e0
"

�

hVj i�t
: (3.43)

Hence, to fulfill relation (3.41), we must take

hVj i�t
D 1

2j�t j
�

1C c0."/
�

h

Z

˝

G1;j .�/d� � bj .t/
i

; (3.44)

where c0."/ is defined in (3.24). This determines hVj i�t
, the projection of Vj .�t / onto the constants.

It still remains to determine the orthogonal part V
.0/

j . The solution of (3.13) exists and is given

by (3.38).

3.2 Proof of Theorem 3.1

From Lemma 3.3, Lemma 3.5 and Lemma 3.6 we have that �.N �1/ satisfies by construction (3.2).

The remainder R1 is defined in (3.14) and estimated in (3.15) and (3.16). The term �.N �1/.�; t/
for t 2 Œ0; T � satisfies the homogeneous Neumann boundary conditions by construction. Thus,

Theorem 3.1 holds true.
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4. Derivation of the equations form.N /

The next theorem assures the existence and (essential) uniqueness of the functions mj , j D
0; � � � ; N , having the properties required in the Ansatz 2.2. Existence and uniqueness are obtained

provided that a certain compatibility condition is satisfied. This determines V
.0/

j , the orthogonal part

of the velocity field.

THEOREM 4.1 Take N > 1 and G2 as in Assumption A1. Let T be the lifetime of the solution

of (2.7) in M. Let �.N �1/.�; t/, t 2 Œ0; T � be the function constructed in Theorem 3.1. Then it is

possible to choose the vector fields V
.0/

j so that there existmj , j D 0; � � � ; N , having the properties

prescribed in the Ansatz 2.2 such that

�.N �1/.�; t/ D �"�m.N /.�; t/C 1

"
f
�

m.N /.�; t/
�

�
N �1
X

j D0

"jG2;j .�/CR2.�; t; "/ in ˝�.0; T �;

(4.1)

with R2 given by (4.71). Further, m.N /.�; t/ for t 2 Œ0; T � is a C1.˝/ function that satisfies the

homogeneous Neumann boundary conditions and

sup
�2˝

sup
t2Œ0;T �

jR2.�; t; "/j 6 C"N : (4.2)

Finally, the choice of the term V
.0/

j is specified by the equations (4.31), (4.51) and (4.63) given

below.

In (1.11) we insert at the left-hand side the already determined function�.N �1/.�; � .N /
t / and we

obtain

�.N �1/.�; t/ D �"�m.�; t/C f .m.�; t//

"
�G2.�I "/ in ˝ � .0; T /: (4.3)

Then �.N �1/ is written in terms of m.N /, chosen according to the ansatz. Here, we prove that there

exists a unique way to find the functionm.N /, having indeed the property required in the ansatz and

satisfying equation (4.3) in a certain sense (to be specified in the sequel).

The existence of any mj , j D 0; � � � ; N is obtained provided that a compatibility condition is

satisfied. This compatibility condition forces us to define properly V
.0/

j , j D 0; � � � ; .N � 1/.

We distinguish two main steps:

– Step 1: Determination at any order of the equations. This is carried out in Section 4.1.

– Step 2: Analysis of the equations derived at Step 1. This will be done in the Section 4.2.

In the present and in the next section �t is kept fixed, therefore, for the sake of a simpler notation we

drop the subscript t , except of the cases that a subscript use may add some clarity in our arguments.

4.1 Determination of the equations for mj , j D 0; � � �N
To separate the fast and slow scale ofm.N / near the surface � , we write the Laplacian in the system

of local coordinates introduced in Section 2.1. The expansion in " of the Laplacian written in this

coordinate system is reported in the Appendix, Section A.2. We then match the right and left terms

of the equations having the same power of ", distinguishing the case where � 2 N."0/ from the one

with � 2 ˝ n N."0/. We therefore, get at any order two sets of equations: one for � 2 N."0/ and the
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other for � 2 ˝ n N."0/. Since the interface separates ˝ in two regions we will distinguish those

� 2 ˝ n N."0/ which are inside � from those � 2 ˝ n N."0/ which are outside � .

Taking into account formula (A.2.2) in the Appendix, denoting by 0 the derivative with respect

to z, and by an, bn, cn the quantities defined in (A.2.3), after simple, however lengthy computations

we obtain the following identity

"2�m.N /.z; s/ D
n

Nm00.z/C
N
X

nD1

"n
�

h00
n.z; s/C an.z; s/ Nm0

�

o

C
n

N
X

nD2

"n

n�1
X

iD1

an�i .z; s/h
0
i .z; s/C

N
X

nD3

"n
h

n�2
X

iD1

bn�i .z; s/
d 2

ds2
hi .z; s/

i

C
N
X

nD4

"n

n�3
X

iD1

cn�i .z; s/
d

ds
hi .z; s/

o

C "2�
h

N
X

iD1

"i�i .�/
i

C E1.�; t; "/C "N C1A.�; t; "/; (4.4)

with

sup
.�;t/2˝�Œ0;T �

jA.�; t; "/j 6 C.T /; (4.5)

sup
t2Œ0;T �

Z

˝

d�jA.�; t; "/j 6 "C.T /; (4.6)

E1.�; "/ � "2�r
�d.�; � /

"0

�n

Nm.d.�; � /
"

/ �
�

1Ifd.�;� />0g � 1Ifd.�;� /<0g

�

o

C 2"2rr � r
h

Nm.d.�; � /
"

/
i

; (4.7)

and

lim
"!0

sup
.�;t/2˝�Œ0;T �

jE1.�; t; "/j D 0: (4.8)

Let us now define fi such that

f .m.N // D f .m0/C f 0.m0/
h

N
X

iD1

"imi

i

C
N
X

iD2

"ifi .m0; m1; : : : ; mi�1/C "N C1BN C1.�; "/;

(4.9)

sup
�2˝;t2Œ0;T �

jBN C1.�; t; "/j 6 C: (4.10)

One can easily obtain fi for any i D 2; � � � ; N by using Taylor expansions up to N � 1 order for f

aroundm0 and collecting then the terms of the same power of ".

We insert (4.4) and (4.9) into (4.3) and equate terms having the same order in " (when estimated

with the L1.˝/ norm) obtaining, this way, two equations at any order, one for � 2 ˝ n N."0/, and

the other for � 2 N."0/. The equation for � 2 ˝ n N."0/ will determine �i which are the slowly

varying terms, while the one for � 2 N."0/ will determine hi i.e. the rapidly decaying terms. When
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deriving the equations for � 2 N."0/ then terms of the type ��i ."z; s/ appear. The �i are C1

functions, since they are proportional to �i , and they have the same type of singularity in " when

differentiated in �. So, the terms "nC1��n�1."z; s/ are of order O."n/, and therefore, we write them

in the "n order equation.

In the following we will use the notation f .˙1/ (or f .m.˙1/// in ˝ n N."0/. This refers

to the fact that � separates ˝ in two sets, i.e. ˝C which is the part outside � and ˝� the part

inside � . Therefore, ˙ refers to different regions of .˝ n N."0// \ ˝˙. It is convenient to write

the external potential G2;i , for i D 0; � � � ; N in local coordinates when � 2 N."0/. We therefore

identify G2;i .�/ D G2;i .d.�; � /; s.�; � //, for i D 0; � � � ; N .

Zero order term in ":

Matching gives

0 D �r
� "

"0

z
�

m00
0.z/C f .m0.z// for z 2

h

� "0

"
;
"0

"

i

; (4.11)

and

f .m0.˙1// D 0 for � 2 ˝ n N."0/: (4.12)

First order term in ":

Again matching gives for z 2
�

� "0

"
; "0

"

�

and s 2 �

�0."z; s/ D �
�

h00
1.z; s/ �K.s/m0

0.z/
�

C f 0.m0/ Œh1.z; s/C �1."z; s/� �G2;0."z; s/ (4.13)

and

�0.�/ D f 0. Nm.˙1//�1.�/ �G2;0.�/ for � 2 ˝ n N."0/: (4.14)

Second order term in ":

�1."z; s/ D �
�

h00
2.z; s/ �K2.s/zm0

0.z/ �K.s/h0
1.z; s/

�

C f 0
�

m0.z/
��

h2.z; s/C �2."z; s/
�

� "��1."z; s/C f2.m0; m1/."z; s/ �G2;1."z; s/;

(4.15)

�1.�/ D f 0
�

Nm.˙1/
�

�2.�/C f2

�

Nm.˙1/; �1.�/
�

� "��1.�/ �G2;1.�/ for � 2 ˝ n N."0/:

(4.16)

More explicitly the f2 term for � 2 N."0/ is given by

f2.m0; m1/."z; s/ D 1

2
f 00.m0.z//

�

h2
1.z; s/C �2

1."z; s/C 2�1."z; s/h1.z; s/
�

;

and by

f2

�

Nm.˙1/; �1.�/
�

D 1

2
f 00
�

Nm.˙1/
�

�2
1.�/;

for � 2 ˝ n N."0/.
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n-th order term in " (3 6 n 6 N ):

�n�1."z; s/ D � h00
n.z; s/C an.z; s/m

0
0.z/C

n�1
X

iD1

an�i .z; s/h
0
i .z; s/

C
n�2
X

iD1

bn�i .z; s/
d 2

ds2
hi .z; s/C 1Ifn>4g

n�3
X

iD1

cn�i .z; s/
d

ds
hi .z; s/

� "��n�1."z; s/C f 0.m0/ Œhn.z; s/C �n."z; s/�

C fn.m0; m1; m2; : : : ; mn�1/."z; s/ �G2;n�1."z; s/; � 2 N."0/;

(4.17)

�n�1.�/ D �"��n�1.�/C f 0.˙1/�n.�/C fn.˙1; �1; �2; : : : ; �n�1/.�/ �G2;n�1.�/; (4.18)

for � 2 ˝ n N."0/.

Remainder term:

The remainder QR2.�; t; "/ � QR2 is the following:

" QR2 D "N C1G2;N C "N C1AC "N C2��N C E1 C "N C1BN C1: (4.19)

From (4.5), (4.8) and (4.10) we obtain

sup
.�;t/2˝�Œ0;T �

ˇ

ˇ QR2.�; t; "/
ˇ

ˇ 6 C"N : (4.20)

REMARK 4.2 Since, for i D 0; � � � ; N , we required @�G2;i D 0 on @˝ then the �i constructed in

Theorem 3.1 satisfy @��i D 0 on @˝; to obtain @�mi D 0 on @˝ it is enough to have @��i D 0 on

@˝ .

4.2 Analysis of compatibility conditions

Our aim is to analyze the equations obtained so far in the previous section. The strategy is to find first

at each order in " the slowly varying part �i by solving the equations for � 2 ˝nN."0; �
.N /
t /. Then,

we extend �i globally in ˝ and determine the rapidly decaying part hi by solving the equations

in � 2 N. "0

2
; �

.N /
t /. However here, in order to continue to arbitrary order, it is convenient to

modify the way we extract the compatibility condition required for solving the equation for hi . The

modification is to add and subtract to each order a term of lower order "iC1˛i .s; � / Nm0.z/, with

˛i .�; � / 2 C1.� /. Adding and subtracting terms does not change, of course, the total quantity

but it modifies the equation we obtain at each single order. In the following, for the sake of short

notation, we write ˛i .s/ � ˛i .s; � /.

At each order i > 1 in " the associate functionmi splits into two parts. The first is the function

�i defined globally in ˝ and satisfying Neumann condition on the boundary of ˝ while the other

part is the function hi which differs from zero only in a tubular neighborhood of � , N."0; � /, and

is exponentially decaying to zero far from � .

The zero order term is different in the sense thatm0 far from the interfaces relaxes exponentially

fast to ˙1. We first state the following lemma, which is taken from [1]. We shall use this lemma to
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determine the condition for solvability of equations of the type (4.23), where L is the operator on

L2.R/ defined by

Lg.z/ D �g00.z/C f 0
�

Nm.z/
�

g.z/: (4.21)

The operator L is self adjoint onL2.R/ and has a null space spanned by Nm0. Therefore, the condition

for solvability of Lh1 D g is
Z

R

g.z/ Nm0.z/dz D 0: (4.22)

LEMMA 4.3 (see [1]) Let A.z; s; t/ defined for z 2 R, s 2 � , t 2 Œ0; T �. Assume that there exists

A˙.s; t/ such that A.z; s; t/ � A˙.s; t/ D O.e�˛jzj/ as jzj ! 1 for s 2 � and t 2 Œ0; T �. Then

for each s 2 � and t 2 Œ0; T �
.Lw/.z; s; t/ D A.z; s; t/ for z 2 R;

w.0; s; t/ D 0; w.�; s; t/ 2 L1.R/;
(4.23)

has a solution if and only if
Z

R

A.z; s; t/ Nm0.z/dz D 0 for all s 2 �; t 2 Œ0; T �: (4.24)

In addition if the solution exists, then it is unique and satisfies

D`
z

h

w.z; s; t/ C A˙.s; t/

f 0.1/

i

D O.e�˛jzj/ as jzj ! 1; for ` D 0; 1; 2: (4.25)

Furthermore, if A.z; s; t/ satisfies

Dm
s D

n
t D

`
z

�

A.z; s; t/ � A˙.s; t/
�

D O.e�˛jzj/;

then

Dm
s D

n
t D

`
z

h

w.z; s; t/C A˙.s; t/

f 0.1/

i

D O.e�˛jzj/;

for allm D 0; 1; � � � ;M , n D 0; 1; � � � ; N , and ` D 0; 1; � � � ; LC2. Further, since L is a preserving

parity operator, the solution w.z; s; t/ is odd (even) with respect to z if A.z; s; t/ is odd (even) with

respect to z for s 2 � and t 2 Œ0; T �.
REMARK 4.4 Note that ifA.�; �; �/ 2 C1 .R � � � Œ0; T �/ then the solutionw.�; �; �/ of the problem

(4.23) is a function in C1 .R � � � Œ0; T �/. This would be always the case whenever we apply

Lemma 4.3.

The compatibility conditions must hold for every � in M, and so, in our derivation we refer to

� WD �t .

4.2.1 Zero order term in ". For � 2 N. "0

2
/ using (4.11) we obtain

0 D � Nm00.z/C f
�

Nm.z/
�

for z 2
h

� "0

2"
;
"0

2"

i

; (4.26)

while (4.12) yields

0 D f .˙1/ for � 2 ˝ n N."0/: (4.27)

The above relations determinem0, more specifically m0.z/ D Nm.z/, where Nm solves the equation

�m00.z/C f
�

m.z/
�

D 0; z 2 R:
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4.2.2 First order term in " and determination of V0 via the Fredholm alternative. As explained

at the beginning of this section, it is convenient for solving (4.13) to add a term "˛1.s; � / Nm0.z/,

s 2 � and z 2 R, with ˛1.�; � / to be determined. This term will be subtracted to the second order.

Recalling the definition of L, see (4.21), and adding "˛1.s/ Nm0.z/, we write (4.13) as

�0."z; s/� f 0
�

Nm.z/
�

�1."z; s/�K.s/ Nm0.z/C "˛1.s/ Nm0.z/CG2;0."z; s/ D .Lh1/.z; s/; (4.28)

for s 2 � , jzj 6
"0

2"
. By (4.14) we obtain

�1.�/ D �0.�/CG2;0.�/

f 0
�

Nm.˙1/
� ; � 2 ˝ n N."0/: (4.29)

We extend this definition of �1 globally in˝ . We then insert (4.29) into (4.28) obtaining for s 2 � ,

jzj 6
"0

2"

�0."z; s/
h

1 � f 0
�

Nm.z/
�

f 0.˙1/
i

C
 

1 � f 0
�

Nm.z/
�

f 0.˙1/

!

G2;0."z; s/ �K.s/ Nm0.z/C "˛1.s/ Nm0.z/

D .Lh1/.z; s/: (4.30)

Since the left hand side of (4.30) tends exponentially to 0 as z ! ˙1, if the solution of (4.30)

exists (cf. Lemma 4.3), then it decays exponentially fast to 0. We can, therefore, extend (4.30) for

any z in R.

We prove the next result.

LEMMA 4.5 Set

V
.0/

0 .�; � / D T�

�

S

�

K.�/ �
R

�
K.�/dS�

j� j

�

C 1

4

�

B0;0;0.�/ �
R

�
B0;0;0.�/dS�

j� j

��

.�/; � 2 �;
(4.31)

where

S D 1

4

Z

R

�

Nm0.z/
�2
dz; (4.32)

and B0;0;0.�/ is defined in (4.39) while T� is the Dirichlet–Neuman operator given by (A.1.4). Then

there exists a uniquely determined ˛1.�; � / 2 C1.� / and a unique solution h1.�; s/ of (4.30)

with s 2 � , such that h1.0; s/ D 0 and h1.�; s/ 2 L1.R/. Moreover, h1.�; s/ for s 2 � and its

derivatives with respect to z decay exponentially fast to 0 as z tends to ˙1. Further h1.�; s/ D
Qh1.�; s/C "q".�; s/ where Qh1.�; s/ is an even function of z, Qh1.0; s/ D 0 and Qh1.�; s/ 2 L1.R/.

Proof. We start determining Qh1 as solution of

�0.0; s/

"

1 � f 0
�

Nm.z/
�

f 0.˙1/

#

C
 

1 � f 0
�

Nm.z/
�

f 0.˙1/

!

G2;0.0; s/ �K.s/ Nm0.z/C " Q̨1.s/ Nm0.z/

D .L Qh1/.z; s/: (4.33)

Equation (4.33) differs from (4.30) only for terms of order ". Namely jG2;0.0; s/ � G2;0."z; s/j 6

C"jzj and j�0.0; s/ � �0."z; s/j 6 C"jzj. For any fixed s 2 � , the condition for the existence of
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Qh1 requires that

Z

R

�0.0; s/
h

1 � f 0
�

Nm.z/
�

f 0.˙1/
i

Nm0.z/dz C
Z

R

G2;0.0; s/

"

1 � f 0
�

Nm.z/
�

f 0.˙1/

#

Nm0.z/dz

D
�

K.s/ � " Q̨1.s/
�

Z

R

�

Nm0.z/
�2
dz for s 2 �: (4.34)

Taking into account that
R

R
f 0. Nm.z// Nm0.z/dz D f .1/ � f .�1/ D 0 and

R Nm0.z/dz D 2 formula

(4.34) can be written as

2
�

�0.0; s/CG2;0.0; s/
�

D ŒK.s/ � " Q̨1.s/�

Z

R

�

Nm0.z/
�2
dz for s 2 �: (4.35)

Recalling (3.18) we obtain

2�0;0.0; s/ D �2 Q�0.0; s/ � 2G2;0.0; s/C ŒK.s/ � " Q̨1.s/�

Z

R

�

Nm0.z/
�2
dz for s 2 �: (4.36)

Further, we set

�0;0;0.�/ D 2

Z

�

V
.0/

0 .�/G.�; �/dS� C c0.t/; � 2 ˝; (4.37)

Q�0;0;0.�/ D 2hV0i�

Z

�

G.�; �/dS� �
Z

˝

G.�; �/G1;0.�/d�; � 2 ˝; (4.38)

and

B0;0;0.s/ D �2
�

Q�0;0;0.0; s/CG2;0.0; s/
�

: (4.39)

It is immediate to see that

�0;0.�/ � �0;0;0.�/ ' ";

Q�0.�/ � Q�0;0;0.�/ ' ":

We first choose V
.0/

0 imposing for s 2 � , cf. (4.36), the next identity

2�0;0;0.�/ D B0;0;0.�/CK.�/

Z

R

�

Nm0.z/
�2
dz � 2 �: (4.40)

Inserting (4.37) in (4.40) and integrating over � we obtain that

4

Z

�

dS�

Z

�

V
.0/

0 .�/G.�; �/dS� C 2c0.t/j� j D
Z

�

K.�/dS�

Z

R

�

Nm0.z/
�2
dz C

Z

�

B0;0;0.�/dS� ;

(4.41)

and therefore,

c0.t/ D 1

2j� j
h

Z

�

K.�/dS�

Z

R

�

Nm0.z/
�2
dz C

Z

�

B0;0;0.�/dS�

� 4

Z

�

dS�

Z

�

V
.0/

0 .�/G.�; �/dS�

i

: (4.42)
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We note that c0.t/ is written in terms of the velocity field V
.0/

0 which still needs to be determined.

We insert c0.t/, as in (4.42), into (4.40) to obtain the equation determining V
.0/

0

S� V
.0/

0 .�; � / D S

�

K.�/ �
R

�
K.�/dS�

j� j

�

C 1

4

�

B0;0;0.�/ �
R

�
B0;0;0.�/dS�

j� j

�

; � 2 �:

Here, S� is the linear operator defined in (A.1.5) and S the quantity defined in (4.32). Applying the

Dirichlet–Neumann operator, see (A.1.6), we arrive at (4.31). The above determines first V
.0/

0 and

then c0.t/, see (4.42). Now since V
.0/

0 and c0.t/ are chosen, we may then simply choose Q̨1.s/ so

that (4.34) is satisfied. Then for any s 2 � , the existence of a unique Qh1 satisfying Qh1.0; s/ D 0 is

assured; Qh1 is exponentially decaying to zero as jzj ! 1. Since the left-hand side of (4.33) is even,

then the solution Qh1.�; s/ is even as a function of z.

Define "q".�; s/ D h1.�; s/ � Qh1.�; s/ and subtract (4.33) to (4.30). We have that q".�; s/ satisfies

1

"

h

1 � f 0
�

Nm.z/
�

f 0.˙1/
i

�

�0."z; s/ � �0.0; s/CG2;0."z; s/ �G2;0.0; s/
�

C
�

˛1.s/ � Q̨1.s/
�

Nm0.z/

D .Lq"/.z; s/; (4.43)

where ˛1.�/must still be determined. We determine ˛1.�/ so that the following solvability condition

for q".�; s/ holds:

1

"

Z

dz Nm0.z/

"

1 � f 0
�

Nm.z/
�

f 0.˙1/

#

�

�0."z; s/ � �0.0; s/CG2;0."z; s/ �G2;0.0; s/
�

C
�

˛1.s/ � Q̨1.s/
�

Z

dz
�

Nm0.z/
�2 D 0: (4.44)

By Lemma 4.3 we have that for all s 2 � , q".0; s/ D 0, q".0; s/ 2 L1.R/.

REMARK 4.6 Let us denote by

�F
0;0;0 D �0;0;0 C Q�0;0;0;

the quantities defined in (4.37) and (4.38). Taking into account (2.19) and the definition of hV0i� D
1

2j�t j

R

˝ G1;0.�/d�, see (3.17), we have that �F
0;0;0 is the solution of

��.�/ D �G1;0.�/ for � 2 ˝ n �; (4.45)

�.�/ D 2SK.�/�G2;0.�/ on �; @�� D 0 on @˝: (4.46)

One deduces (4.46) by (4.40), taking into account the definition of S and (4.39).

4.2.3 Second order term in ". From (4.16) we have that

�2.�/ D 1

f 0.˙1/
�

�1.�/ � f2

�

Nm.˙1/; �1.�/
�

C "��1 CG2;1.�/
�

; � 2 ˝ n N."0/: (4.47)

As was done before, we extend the validity of (4.47) globally in ˝ . We insert (4.47) into (4.15).

Further, we add and subtract to the next order "˛2.s/ Nm0.z/ to obtain

�1."z; s/

"

1 � f 0
�

Nm.z/
�

f 0.˙1/

#

� A2.z; s/C "˛2.s/ Nm0.z/ D .Lh2/.z; s/; (4.48)
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where we set

A2.z; s/ D
�

G2;1."z; s/C "��1."z; s/ � f2.˙1; �1/."z; s/
�

"

1 � f 0
�

Nm.z/
�

f 0.˙1/

#

�K2.s/z Nm0.z/ �K.s/h0
1.z; s/C ˛1.s/ Nm0.z/: (4.49)

All the quantities in (4.49) have been already determined. Furthermore,

lim
jzj!1

A2.z; s/ D 0; s 2 �; (4.50)

the convergence being exponentially fast. As done before, we extend (4.48) in R.

LEMMA 4.7 Set

V
.0/

1 .�; � / D T�

�

1

4
B1.�/ � 1

4j� j

Z

�

B1.s/ds

�

.�/; � 2 �; (4.51)

where B1.s/ is defined in (4.54) and T� is the Dirichlet–Neumann operator. Then there exist

uniquely determined ˛2.�; � / 2 C1.� / and h2.�; s/ 2 Ł1.R/ with h2.0; s/ D 0 for s 2 � ,

solutions of (4.48). Moreover h2.�; s/ and its derivatives with respect to z decay exponentially to 0,

as z tends to ˙1.

Proof. The solvability condition, see (4.24), is satisfied provided that for s 2 � and t 2 Œ0; T � the

next relation holds true

Z

R

�1."z; s/

"

1� f 0
� Nm.z/�

f 0.1/

#

Nm0.z/dz D
Z

R

A2.z; s/ Nm0.z/dz � "˛2.s/

Z

R

�

Nm0.z/
�2
dz; (4.52)

where �1 is defined in (3.34). The term Q�1 of �1 has been already completely determined. As in

the previous case, still to be determined are the constant c1.t/, the velocity V
.0/

1 and ˛2.s/. First,

we write (4.52) as

Z

R

�1;0."z; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#

Nm0.z/dz D B1.s/ � "˛2.s/

Z

R

�

Nm0.z/
�2
dz; (4.53)

where

B1.s/ D
Z

R

(

A2.z; s/ � Q�1."z; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#)

Nm0.z/dz: (4.54)

Let now

�1;0;0.�/ WD 2

Z

�

V
.0/

1 .�/G.�; �/dS� C c1.t/; � 2 ˝: (4.55)

Since �1;0;0.�/ � �1;0.�/ ' ", we choose V1 by imposing

Z

R

�1;0;0.0; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#

Nm0.z/dz D B1.s/; (4.56)
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and obtain

�1;0;0.0; s/ D 1

2
B1.s/; s 2 �: (4.57)

Inserting (4.55) in (4.57) and integrating over � we arrive at

c1.t/ D 1

j�t j

�

1

2

Z

�t

B1.�/dS� � 2
Z

�t

dS�

Z

�t

V
.0/

1 .�/G.�; �/dS�

�

: (4.58)

Observe that
R

�
V

.0/
1 .s/ds D 0 and let S� be the linear operator defined in (A.1.5). Then obviously,

(4.57) can be written as

S� V
.0/

1 .�/ D 1

4
B1.�/ � 1

4j� j

Z

�

B1.s/ds; � 2 �;

and thus, applying the Dirichlet–Neumann operator (see (A.1.6)) we obtain (4.51). This determines

the (constant in �) c1.t/. Now, since V
.0/

1 and c1.t/ are determined we may choose ˛2.s/ so that

(4.53) is satisfied.

REMARK 4.8 Notice that �1;0;0 solves

��1;0;0 D 0 for � 2 ˝ n �;

�1;0;0.�/ D 1

2
B1.�/ on �:

(4.59)

4.2.4 n�th order term in ", 3 6 n 6 N . As previously, we determine the function �n for

� 2 ˝ n N."0/ from (4.18). Then, we extend the validity in ˝ obtaining

�n.�/ D 1

f 0.1/
Œ�n�1.�/C "��n�1.�/ � fn.˙1; �1; �2; � � � ; �n�1/.�/CG2;n�1.�/� ; � 2 ˝:

(4.60)

We then insert (4.60) into (4.17), we add and subtract to the next order the quantity "˛n.s/ Nm0.z/, to

the left hand side of (4.17) and we obtain

�n�1."z; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#

� An.z; s/C "˛n.s/ Nm0.z/ D .Lhn/.z; s/; (4.61)

where we set

An.z; s/ D �an�1.z; s/ Nm0 �
n�1
X

iD1

�

an�i .z; s/h
0
i .z; s/

�

�
n�2
X

iD1

bn�i .z; s/
d 2

ds2
hi .z; s/

� 1In>4

n�3
X

iD1

h

cn�i .z; s/
d

ds
hi .z; s/

i

� "��n�1."z; s/
h

1 � f 0
�

Nm.z/
�

f 0.1/

i

CG2;n�1."�/
h

1 � f 0
�

Nm.z/
�

f 0.1/

i

C f 0
�

Nm.z/
�

f 0.˙1/ fn.˙1; �1; �2; � � � ; �n�1/."z; s/

� fn.m0; m1; m2; � � � ; mn�1/."z; s/: (4.62)
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It is easy to verify that for all s 2 �

lim
jzj!1

An.z; s/ D 0;

where the convergence is exponentially fast. Namely there is no problem for those terms involving

Nm0, hi .�; s/ and their derivatives because of the exponential convergence to zero of all these terms

for all s 2 � . For the remaining terms recall that limjzj!1f
0. Nm.z// D f 0.˙1/, mi D hi C �i

with hi .z; s/ ! 0 as jzj ! 1 for all s 2 � , all limits being exponentially fast. Then one obtains

immediately

lim
jzj!1

"

1 � f 0
�

Nm.z/
�

f 0.˙1/

#

fn.˙1; �1; �2; � � � ; �n�1/."z; s/ D 0;

exponentially fast also. We extend (4.61) to hold on all of R and regard it as an equation for hn.�; s/
for s 2 � .

LEMMA 4.9 For any positive integer n, n 6 N , set

V
.0/

n�1.�; � / D T�

1

4

�

Bn�1.�/ � 1

j� j

Z

�

Bn�1.s/ds

�

for � 2 �; (4.63)

where Bn�1.s/ is defined in (4.66). Then there exist uniquely determined ˛n.�; � / 2 C1.� / and

hn.�; s/ 2 L1.R/ for s 2 � with hn.0; s/ D 0, solutions of (4.61). Moreover, hn.�; s/ for all s 2 � ,

and its derivatives with respect to z decay exponentially to 0 as z ! ˙1.

Proof. The solvability condition is satisfied provided that

Z

R

�n�1."z; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#

Nm0.z/dz D
Z

R

An.z; s/ Nm0.z/dz � "˛n.s/

Z

R

�

Nm0.z/
�2
dz:

(4.64)

Since in view of (3.38) �n�1 D �n�1;0 C Q�n�1 with Q�n�1 being already determined to satisfy

(4.64), we require that

Z

R

�n�1;0."z; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#

Nm0.z/dz D Bn�1.s/ � "˛n.s/

Z

R

�

Nm0.z/
�2
dz; (4.65)

where

Bn�1.s/ D
Z

R

(

An.z; s/ � Q�n�1."z; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#)

Nm0.z/dz: (4.66)

We set

�n�1;0;0.�/ D 2

Z

�

Vn�1.�/G.�; �/dS� C cn�1.t/: (4.67)

Since �n�1;0.�; t/ � �n�1;0;0.�; t/ ' " then we may determine Vn�1 by imposing

Z

R

�n�1;0;0.0; s/

"

1 � f 0
�

Nm.z/
�

f 0.1/

#

Nm0.z/dz D Bn�1.s/; (4.68)
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obtaining thus

�n�1;0;0.0; s/ D 1

2
Bn�1.s/ s 2 �: (4.69)

Inserting (4.67) in (4.69) and integrating over � we get

cn�1.t/ D 1

j� j

�

1

2

Z

�

Bn�1.�/dS� � 2

Z

�

dS�

Z

�

V
.0/

n�1.�/G.�; �/dS�

�

: (4.70)

We insert (4.70) into (4.67), so, (4.69) gives

S� V
.0/

n�1.�/ D 1

4

�

Bn�1.�/ � 1

j� j

Z

�

Bn�1.s/ds

�

; � 2 �;

and (4.63) follows. This determines V
.0/

n�1 first and then cn�1.t/. Therefore, we may define ˛n in

order to satisfy (4.65).

4.3 Proof of Theorem 4.1

To complete the proof of Theorem 4.1 we need to estimate the remainder term (cf. (4.19)) given by

"R2.�; t; "/ D " QR2.�; t; "/� "N C1˛N

�

s.�/; t
�

Nm0
�d.�; � /

"

�

: (4.71)

Since (4.20) holds true, we obtain that

sup
�2˝

sup
t2Œ0;T �

ˇ

ˇR2.�; t; "/
ˇ

ˇ 6 C"N : (4.72)

So, Theorem 4.1 is proved.

5. Proof of Theorem 2.5

The proof of Theorem 2.5 is an immediate consequence of the following result.

THEOREM 5.1 Take N > 1 and G1 and G2 as in Assumption A1. There exist vector fields Vj ,

j D 0; � � � ; .N � 1/ and functions mj , j D 0; � � � ; N from M to C1.˝/ as in the Ansatz 2.2

such that the following holds. For any �0 2 M, choose k0 > k.�0/, set "0 D 1
2k0

and let T be the

lifetime of the solution of (2.7) in M, according to (2.3). Then for all t < T and for all " 2 .0; "0�

we can construct . Qm.N /; Q�.N �1// 2 C1.˝�Œ0; T �/ where Qm.N / is an "N modification ofm.N /, i.e.

sup.�;t/2˝�Œ0;T � j Qm.N /.�; t/ �m.N /.�; t/j 6 C"N and Q�.N �1/ is an "N �1 modification of �.N �1/,

i.e. sup.�;t/2˝�Œ0;T � j Q�.N �1/.�; t/ � �.N �1/.�; t/j 6 C"N �1 satisfying

@t Qm.N /.�; t/ D � Q�.N �1/.�; t/CPN �1
j D0 "

jG1;j .�/ in ˝ � .0; T /;

Q�.N �1/.�; t/ D �"� Qm.N /.�; t/C 1
"
f . Qm.N /.�; t// �PN �1

j D0 "
jG2;j .�/CR.N /.�; t; "/

in ˝ � .0; T /;

(5.1)

where

sup
�2˝

sup
t2Œ0;T �

ˇ

ˇR.N /.�; t; "/
ˇ

ˇ 6 C"N �1:
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Further, Q�.N �1/.�; t/ and Qm.N /.�; t/, for t 2 Œ0; T �, satisfy Neumann homogeneous boundary

conditions on the boundary of ˝ . In addition

sup
t2Œ0;T �

sup
�2˝

ˇ

ˇ Q�.N �1/.�; t/ � �F
0;0;0.�; t/

ˇ

ˇ 6 C"; (5.2)

where �F
0;0;0 is the solution of

��.�/ D �G1;0.�/; � 2 ˝ n � .N /
t ; (5.3)

subject to the boundary conditions

�.�/ D 2SK.�/ �G2;0.�/ on �
.N /
t ; @�� D 0 on @˝; (5.4)

and

sup
t2Œ0;T �

sup

�2N."0;�
.N /
t /

ˇ

ˇ

ˇ
Qm.N /.�; t/ � Nm

�d.�; �
.N /
t /

"

�
ˇ

ˇ

ˇ
6 C"; (5.5)

sup
t2Œ0;T �

sup

�2˝nN."0/;�
.N /
t /

ˇ

ˇ

ˇ
Qm.N /.�; t/� 1

ˇ

ˇ

ˇ
6 C": (5.6)

Proof. Set

Qm.N /.�; t/ D m.N /.�; t/ �
Z t

0

NR1.�; "/d�; (5.7)

where

NR1.t; "/ D 1

j˝j

Z

˝

R1.�; t; "/d�;

and R1.�; t; "/ is the remainder in Theorem 3.1, defined in (3.14) and estimated in (3.3) and (3.4).

Let us denote by

Q�.N �1/.�; t/ D �.N �1/.�; t/C v.�; t/; (5.8)

where v.�; t/ solves

�v.�; t/ D R1.�; t; "/ � NR1.t; "/ for � 2 ˝;
@�v D 0 on @˝;

(5.9)

with the further requirement
Z

˝

v.�; t/d� D 0; t 2 Œ0; T �:

Since jR1.�; t; "/j 6 C.T /"N �1 we have that jv.�; t/j 6 C"N �1. The functions Qm.N / and Q�.N �1/

satisfy (5.1). Namely the first equation of (5.1) is satisfied by Theorem 3.1 and by construction, see

(5.7) and (5.9). The second equation is obtained from Theorem 4.1 adding and subtracting terms to

obtain Q�.N �1/ and Qm.N /. We obtain

Q�.N �1/ D �.N �1/ C v D �"� Qm.N / C 1

"
f
�

Qm.N /
�

CR.N /;
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where

R.N / � R.N /.�; t; "/ D 1

"

�

f
�

Qm.N / C
Z t

0

NR1.�; "/d�
�

� f . Qm.N //

�

CR2 C v;

and R2 is the remainder in Theorem 4.1, see (4.71). Since NR1 D O."N /, R2 D O."N /, v D
O."N �1/ and

1

"

�

f
�

Qm.N / C
Z t

0

NR1.�; "/d�
�

� f . Qm.N //

�

6
C

"

Z t

0

NR1.�; "/d� D O."N �1/; (5.10)

then the second equation of (5.1) is satisfied as well. In Remark 4.6 it is explained that if �F
0;0;0 D

�0;0;0 C Q�0;0;0, where�0;0;0 and Q�0;0;0 are the quantities defined in (4.37) and (4.38) then it verifies

(5.3) and (5.4). The relation (5.2) is then immediate from their definition and Theorem 3.1. The (5.5)

and (5.6) are satisfied by construction of the m.N /. Theorem 2.5 is then proved.

Appendix

A.1. The Dirichlet–Neumann operator

We recall in this section the main properties of the Dirichlet–Neumann operator which we have been

using through the paper. Some of these results were already presented in the Appendix of [14]. Let

G.�; �/ be the Green’s function in˝ defined in (2.19) and verifying (2.20). To define the Dirichlet–

Neumann operator we consider the following single layer potentials. Given a smooth function h

defined on � 2 M, consider the single layer potential

�h.�/ D
Z

�

G.�; �/h.�/dS�;

where dS� denotes the arc length measure along � . The function �h satisfies a Neumann boundary

condition on @˝ , and also the equation

��h.�/ D h.�/ � 1

j˝j

Z

�

h.�/dS�; � 2 �:

The curve � separates˝ in two subsets. We denote by˝�
� the interior of � and by˝C

� its exterior.

We denote by n the unit outer normal to ˝�
� . There is a discontinuity in the normal derivatives of

�h across � , so, we have that

h.�/ D 1

2
Œ@��h�� .�/; (A.1.1)

where the right-hand side denotes the jump of the normal derivatives at � 2 � , i.e.,

Œ@��h�� .�/ D .@��h/˝C

�

.�/ � .@��h/˝�
�
.�/:

This is a well known result from potential theory [24]. For � away from � ,

��h.�/ D � 1

j˝j

Z

�

h.�/dS�:
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Thus, the single layer potential is harmonic away from � if and only if
R

� h.�/dS� D 0. Otherwise,

it is subharmonic or superharmonic, according to whether �
R

�
h.�/dS� is positive or negative.

Every continuous function � harmonic away from � , satisfying the Neumann boundary condition

and the following relation
Z

˝

�.�/d� D 0; (A.1.2)

is the single layer potential of a uniquely determined function h defined on � and satisfying

Z

�

h.�/dS� D 0: (A.1.3)

Indeed, if �h is such a single layer potential, then from (2.20), we get that
R

˝
�h.�/d� D 0.

On the other hand, let � be any continuous function that is harmonic on˝�
� and˝C

� , and which

satisfies (A.1.2). Let us define h in � by

h.�/ D 1

2
Œ@���� .�/;

and refer to this as the Neumann data for �. By the divergence theorem we obtain

2

Z

�

h.�/dS� D
Z

�

@��
CdS� �

Z

�

@��
�dS� D �

Z

˝n�

��d� D 0;

where �˙ denotes the restriction of � in ˝˙. Hence, h satisfies (A.1.3).

Notice that � � �h satisfies the Neumann boundary conditions and

Œ@�.� � �h/�� .�/ D 0:

This means that � � �h is a constant. Since the integral is zero then � D �h. This proves the

one to one correspondence between single layer potentials of functions h satisfying (A.1.3), and

continuous functions � that are harmonic on˝�
� and˝C

� , and satisfy (A.1.2).

Next, given a continuous function � that is harmonic on ˝�
� and˝C

� , whether or not (A.1.2) is

satisfied, we define the function g on � by g WD �j� . We naturally refer to g as the Dirichlet data

for �. The Neumann data is Œ@���� . The Dirichlet–Neuman operator T� is defined by

T� g D 1

2
Œ@���� ; (A.1.4)

where � is the continuous function that is harmonic in ˝�
� and˝C

� , with �j� D g.

A simple argument shows that T� is a positive Hermitian operator. Indeed, let  be continuous

on ˝ , and harmonic on ˝�
� and ˝C

� , with  j� D h. Then it follows that

2

Z

�

hT� gds D
Z

�

 Œ@���� ds

D �
Z

˝
C

�

r � . .r�//d� �
Z

˝�
�

r � . .r�//d�

D �
Z

˝

r � r�d�:
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Taking h D 1, so that  D 1, we further see that the range of T� is orthogonal to the constants.

We let T� denote the Friedrichs extension of T� . It is easy to see, and well known, that the form

domain of T� is the Sobolev space H 1=2.� /, and that the kernel consists exactly of the constants.

There is an explicit formula for the inverse of T� restricted to the orthogonal complement of the

constants; we denote this by S� . Indeed, let v be any function on � with
R

�
v.s/ds D 0. Since the

single layer potential �v for v has Neumann data v, all we need to do is to subtract a constant to

make this function orthogonal to the constants on � , instead of being orthogonal to the constants

on ˝ . Therefore, the inverse S� is given by

S� v.�/ D
Z

�

G.�; �/v.�/dS� � 1

j� j

Z

�

Z

�

G.�; �/v.�/dS�dS� ; � 2 �: (A.1.5)

It is easily checked that the inverse operator is self adjoint on the orthogonal complement of the

constants. Now let h be an arbitrary smooth function on � satisfying
R

�
h.s/ds D 0, and consider

the single layer potential

�.�/ D
Z

�

G.�; �/h.�/dS�; � 2 ˝:

In general, the Dirichlet data for � do not integrate to zero on � and hence, are not directly related

to the Neumann data through the Dirichlet–Neumann operator. However, we can correct this by

subtracting a constant and defining the function

Q�.�/ D �.�/ � 1

j� j

Z

�

�.�/dS�:

Then obviously we have

Q�j� D S� h;

h D T�
Q�:

(A.1.6)

We can now express the vector field V driving the Mullins–Sekerka flow as

V D T�

�

K � 1

j� j

Z

�

K.s/ds
�

: (A.1.7)

We close by establishing notation for the two harmonic extension operators that will arise

throughout what follows:

The Neumann harmonic extension operator E�;N is defined by

.E�;N v/ .�/ D
Z

�

G.�; �/v.�/dS� � 1

j� j

Z

�

Z

�

G.�; �/v.�/dS�dS� ; � 2 ˝; (A.1.8)

where v is a function on � satisfying

Z

�

v.�/dS� D 0:

Notice that .E�;N v/ .�/ is the unique function that is continuous on˝ , harmonic on˝n� satisfying

Neumann boundary conditions on @˝ , with Neumann data v, and with zero integral over � .
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The Dirichlet harmonic extension operator E�;D is defined by setting E�;Dg.�/ to be the

harmonic function � on˝n� with Neumann boundary conditions on @� , and �j� D g. Here, there

is no restriction on the integral of g over � . Naturally, the Dirichlet extension can be expressed in

terms of the Neumann extension and the Dirichlet–Neumann operator. Relations (A.1.5) and (A.1.8)

give that

E�;Dg.�/ D E�;N

�

T�

�

g � 1

j� j

Z

�

g.�/dS�

�

�

.�/C 1

j� j

Z

�

g.�/dS�; � 2 ˝: (A.1.9)

A.2. The expansion in " of the Laplacian in local coordinates

Let f .z; s/, with z D d
"

, be a C 2 function from R�� to R. Then, in the two dimensional case, we

have that

"2�f.z; s/ D 1

1 �K.s/"z

�

�

�

1 �K.s/"z
�

fz

�

z
C "2

� fs

1 �K.s/"z

�

s

�

D fzz � "K.s/fz

1

1 �K.s/"z
C "2 fss

�

1 �K.s/"z
�2

C "3fs

d
ds
K.s/z

�

1 �K.s/"z
�3
:

(A.2.1)

Recalling that for jxj < 1 it holds that

1

.1 � x/ D
1
X

nD0

xn;
1

.1� x/2
D

1
X

nD0

nxn�1;
1

.1 � x/3
D 1

2

1
X

nD0

n.n � 1/xn�2;

we may rewrite (A.2.1) as follows

"2�f D fzz C
1
X

nD0

"nC1
˚

anC1.z; s/fz C bnC1.z; s/fss C cnC1.z; s/fs

	

; (A.2.2)

where

anC1.z; s/ D �KnC1.s/zn;

bnC1.z; s/ D nKn�1.s/zn�1;

cnC1.z; s/ D 1

2
n.n � 1/zn�1Kn�2.s/

d

ds
K.s/:

(A.2.3)

A.3. Proof of Theorem 2.7

The proof goes very much as in [1, Theorem 2.1]. Hence we outline only those points where the

presence of the G1 and G2 makes a difference. First of all the constructed functions m.N /.t/,

t 2 Œ0; T � satisfy the requirements needed to apply the spectral estimates proven by [2] and [15].

Namely, see (2.8), (2.10) and Lemma 4.5, we can always write for � 2 ˝ and 2 Œ0; T �

m.N /.�; t/ D m0

�d.�; �
.N /
t /

"

�

C " Qh1

�d.�; �
.N /
t /

"
; s.�; �

.N /
t /

�

C "2q".�; �
.N /
t /C "�".�; �

.N /
t /;
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where m0 is given in (2.9), Qh1.�; s/ is the function determined in Lemma 4.5 which is even as

function of z 2 R for any s 2 �
.N /
t , equal to 0 in ˝ n N."0/ and when d.�; �

.N /
t / D 0. We

denote by "2q".�; �
.N /
t / the remaining functions in the expansion of m.N / which are equal to zero

in˝ nN."0/ and by "�".�; �
.N /
t / the corrections to ˙1 in˝ nN."0/. Recallm.N /.�; t/ are C1.˝/

for any t 2 Œ0; T �. We immediate have, since Nm.�/ is odd while h1.�; s/ is even,
Z

R

Qh1.z; s/
�

Nm0.z/
�2
f 00
�

Nm.z/
�

dz D 6

Z

R

Qh1.z; s/
�

Nm0.z/
�2 Nm.z/dz D 0; 8s 2 � .N /

t :

This is one of the requirement needed to apply the spectral estimates. The remaining requirements

are immediately satisfied by the smoothness ofm.N /.�; t/ and by the fact that the j̊ , j D 1; : : : ; N

in the expansion of m.N / satisfy a global Lipschitz bound independent on ".

Then one proceeds as in [1]. Write (1.8) as the the following:

@tm
" D ��" CG1 in ˝T ;

�" D �"�m" C 1

"
f .m"/ �G2 in ˝T ;

m".�; 0/ D m"
0.�/; � 2 ˝;

@�m
" D @��m

" D 0 on @˝;

(A.3.1)

and (2.12) the the following:

@tm
.N / D ��.N / C

N �1
X

j D0

"jG1;j in ˝T ;

�.N / D �"�m.N / C 1

"
f .m.N // �

N �1
X

j D0

"jG2;j CR.N / in ˝T ;

m.N /.�; 0/ D m"
0.�/; � 2 ˝;

@�m
.N / D @��m

.N / D 0 on @˝:

(A.3.2)

Define R WD m" � m.N /. Then integrating R in space, by (A.3.1) and (A.3.2) and the fact that

R.�; 0/ D 0, we obtain

Z

˝

R.�; t/d� D
Z

˝

�

m" �m.N /
�

d� D
Z

˝

d�

Z t

0

@s

�

m" �m.N /
�

ds

D
Z

˝

d�

Z t

0

�

��" CG1 ���.N / �
N �1
X

j D0

"jG1;j

�

ds

D
Z t

0

ds

Z

˝

�
h

�" � �.N /
i

d� C "N

Z t

0

ds

Z

˝

h

G1;N

i

d�ds

D
Z t

0

ds

Z

˝

�
h

�" � �.N /
i

d� D 0;

(A.3.3)

since @� Œ�
" � �.N /� D 0 on @˝ , and (2.21) holds. Note that we need (and used for the above)

@�G2 D @�R
.N / D 0 on @˝ in order to have @� Œ�

" � �.N /� D 0 on @˝ . In addition, we need the
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residual R.N / satisfying a Neumann condition, i.e.,

@�R
.N / D 0 on @˝

which is true by construction, cf. system (5.1) and the b.c. on system solutions in the statement of

Theorem 5.1.

Hence, since by (A.3.3), for any t 2 Œ0; T �
R

˝
R.�; t/d� D 0 then there exists unique  .�; t/

such that

�� .�; t/ D R.�; t/ in ˝;

@� .�; t/ D 0 on @˝;
Z

˝

 .�; t/ D 0 for any t 2 Œ0; T �:
(A.3.4)

At this point one can continue the proof as in [1].
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3. ANTAL, T., DROZ, M., MAGNIN, J. & RÁCZ, Z., Formation of Liesengang patterns: A spinodal

decomposition scenarion, Phys. Rev. Lett. 83 (1999), 2880–2883. Zbl1270.35040

4. ANTONOPOULOU, D. C., BATES, P. W. & KARALI, G. D., Motion of a droplet for the mass conserving

Stochastic Allen-Cahn equation, preprint.

5. ANTONOPOULOU, D. C., BLOMKER, D. & KARALI, G. D., Front motion in the one-dimensional

stochastic Cahn–Hilliard equation, SIAM J. Math. Anal. 44 (2012), 3242–3280. Zbl1270.35040

MR3023410

6. ANTONOPOULOU, D. C. & KARALI, G. D., Existence of solution for a generalized Stochastic Cahn–

Hilliard Equation on convex domains, Discrete Contin. Dyn. Syst. B 16 (2011), 31–55. Zbl1227.35163

MR2799541

7. ANTONOPOULOU, D. C., KARALI, G. D. & KOSSIORIS, G. T., Asymptotics for a generalized Cahn-

Hilliard equation with forcing terms, Discrete Contin. Dyn. Syst. A 30 (2011), 1037–1054. Zbl1222.

35017 MR2812952

8. CAGINALP, G., A conserved phase system: implication for kinetic undercooling, Phys. Rev. B 38 (1988),

789–891.

9. CAGINALP, G., The dynamics of a conserved phase field system: Stefan like, Hele–Shaw, and Cahn–

Hilliard models as asymptotic limits, IMA J. Appl. Math. 44, (1990), 77–94. Zbl0712.35114 MR1044256

10. CAGINALP, G. & CHEN, X., Convergence of the phase field model to its sharp interface limits, European

J. Appl. Math. 9 (1998), 417–445. Zbl0930.35024 MR1643668

11. CAHN, J. W. & HILLIARD, J. E., Free energy of a nonuniform system, I. Interfacial free energy, J. Chem.

Phys. 28 (1958), 258–267.

Zbl 0828.35105
http://www.emis.de/MATH-item?0828.35105
MR 1308851
http://www.ams.org/mathscinet-getitem?mr=1308851
Zbl 0798.35123
http://www.emis.de/MATH-item?0798.35123
MR 1237062
http://www.ams.org/mathscinet-getitem?mr=1237062
Zbl 1270.35040
http://www.emis.de/MATH-item?1270.35040
Zbl 1270.35040
http://www.emis.de/MATH-item?1270.35040
MR 3023410
http://www.ams.org/mathscinet-getitem?mr=3023410
Zbl 1227.35163
http://www.emis.de/MATH-item?1227.35163
MR 2799541
http://www.ams.org/mathscinet-getitem?mr=2799541
Zbl 1222.35017
Zbl 1222.35017
http://www.emis.de/MATH-item?1222.35017
MR 2812952
http://www.ams.org/mathscinet-getitem?mr=2812952
Zbl 0712.35114
http://www.emis.de/MATH-item?0712.35114
MR 1044256
http://www.ams.org/mathscinet-getitem?mr=1044256
Zbl 0930.35024
http://www.emis.de/MATH-item?0930.35024
MR 1643668
http://www.ams.org/mathscinet-getitem?mr=1643668


SHARP INTERFACE LIMIT FOR THE GENERALIZED CAHN–HILLIARD 103

12. CAHN, J. W. & HILLIARD, J. E., Free energy of a nonuniform system II, Thermodynamic basis, J. Chem.

Phys. 30 (1959), 1121–1124.

13. CARDON-WEBER, C., Cahn–Hilliard stochastic equation: Existence of the solution and of its density,

Bernoulli 7 (2001), 777–816. Zbl0995.60058 MR1867082

14. CARLEN, E. A., CARVALHO, M. C. & ORLANDI, E., Approximate solution of the Cahn–Hilliard

Equation via corrections to the Mullins-Sekerka motion, Arch. Rat. Mech. Anal. 178 (2005), 1–55.

Zbl1076.76009 MR2188465

15. CHEN, X., Spectrum of the Allen Cahn, Cahn–Hilliard and phase field equations for generic interface,

Comm. Partial Diff. Eqns. 19 (1994), 1371–1395. Zbl0811.35098 MR1284813

16. CHEN, X., Global asymptotic limit of solutions of the Cahn–Hilliard equation, J. Differential Geom. 44

(1996), 262–311. Zbl :0874.35045 MR1425577

17. COOK, H., Brownian motion in spinodal decomposition, Acta Metallurgica 18 (1970), 297–306.

18. DA PRATO, G. & DEBUSSCHE, A., Stochastic Cahn–Hilliard equation, Nonlin. Anal. Th. Meth. Appl. 26

(1996), 241–263. Zbl0838.60056 MR1359472

19. ELLIOTT, C. M. & ZHENG, S., On the Cahn–Hilliard equation, Arch. Rat. Mech. Anal. 96 (1986), 339–

357. Zbl0624.35048 MR0855754

20. ESCHER, J. & NISHIURA, Y., Smooth unique solutions for a modified Mullins–Sekerka model arising in

diblock copolymer, Hokkaido Mathematical Journal 31 (2002), 137–149 Zbl1017.35088 MR1888274

21. ESCHER, J. & SIMONETT, G., Classical solutions of multidimensional Hele–Shaw models, SIAM J. Math.

Anal. 28 (1997), 1028–1047. Zbl0888.35142 MR1466667

22. EVANS, L. C., Partial differential equations, American Mathematical Society, 1998. Zbl0902.35002

MR1625845

23. FUNAKI, T., The scaling limit for a Stochastic PDE and the separation of phases, Probab. Theory Relat.

Fields. 102 (1995), 221–288. Zbl0834.60066 MR1337253

24. GILBARG, D. & TRUDINGER, N. S., Elliptic partial differential equations of second order, Springer-

Verlag (1977) Zbl0361.35003 MR0473443

25. GURTIN, M. E., Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce

balance, Physica D 92 (1996), 178–192. Zbl0885.35121 MR1387065

26. HOHENBERG, P. C. & HALPERIN, B. I., Theory of dynamic critical phenomena, J. Rev. Mod. Phys., 49

(1977), 435–479.

27. KATSOULAKIS, M. A. & VLACHOS, D. G., From microscopic interactions to macroscopic laws of cluster

evolution, Phys. Rev. Letters 84 (2000), 1511–1514.

28. KITAHARA, K., OONO, Y. & JASNOW, D., Phase separation dynamics and external force field, Mod.

Phys. Letters B 2 (1988), 765–771.

29. NOVICK-COHEN, A., The Cahn–Hilliard equation, Handbook of differential equations: evolutionary

equations, Vol. 4, (2008) 201—228, Elsevier/North-Holland. Zbl1185.35001 MR2508166

30. OMELYANOV, G. A., DANILOV, V. G. & RADKEVICH, E. V. , Asymptotic solution of the conserved

phase field system in the fast relaxation case, European Journal of Applied Mathematics 9 (1998), 1–21.

Zbl0923.35082 MR1617005

31. OMELYANOV, G. A., DANILOV, V. G. & RADKEVICH, E. V., Soliton type asymptotic solutions

of the conserved phase field system, Portugaliae Mathematica 53 (1996), 471–501. Zbl0880.35120

MR1432150

32. OMELYANOV, G. A., DANILOV, V. G. & RADKEVICH, E. V., Tanh-type asymptotic solution of the

conserved phase field system, Adv. Math. Sci. Appl 8 (1998), 663–689. Zbl0921.35192 MR1657231

33. PEGO, R. L., Front migration in the non-linear Cahn-Hilliard equation, Proc. R. Soc. Lond. A 422 (1989),

261–278. Zbl0701.35159 MR0997638

34. STOTH, B., Convergence of the Cahn–Hilliard equation to the Mullins–Sekerka problem in spherical

Zbl 0995.60058
http://www.emis.de/MATH-item?0995.60058
MR 1867082
http://www.ams.org/mathscinet-getitem?mr=1867082
Zbl 1076.76009
http://www.emis.de/MATH-item?1076.76009
MR 2188465
http://www.ams.org/mathscinet-getitem?mr=2188465
Zbl 0811.35098
http://www.emis.de/MATH-item?0811.35098
MR 1284813
http://www.ams.org/mathscinet-getitem?mr=1284813
MR 1425577
http://www.ams.org/mathscinet-getitem?mr=1425577
Zbl 0838.60056
http://www.emis.de/MATH-item?0838.60056
MR 1359472
http://www.ams.org/mathscinet-getitem?mr=1359472
Zbl 0624.35048
http://www.emis.de/MATH-item?0624.35048
MR 0855754
http://www.ams.org/mathscinet-getitem?mr=0855754
Zbl 1017.35088
http://www.emis.de/MATH-item?1017.35088
MR 1888274
http://www.ams.org/mathscinet-getitem?mr=1888274
Zbl 0888.35142
http://www.emis.de/MATH-item?0888.35142
MR 1466667
http://www.ams.org/mathscinet-getitem?mr=1466667
Zbl 0902.35002
http://www.emis.de/MATH-item?0902.35002
MR 1625845
http://www.ams.org/mathscinet-getitem?mr=1625845
Zbl 0834.60066
http://www.emis.de/MATH-item?0834.60066
MR 1337253
http://www.ams.org/mathscinet-getitem?mr=1337253
Zbl 0361.35003
http://www.emis.de/MATH-item?0361.35003
MR 0473443
http://www.ams.org/mathscinet-getitem?mr=0473443
Zbl 0885.35121
http://www.emis.de/MATH-item?0885.35121
MR 1387065
http://www.ams.org/mathscinet-getitem?mr=1387065
Zbl 1185.35001
http://www.emis.de/MATH-item?1185.35001
MR 2508166
http://www.ams.org/mathscinet-getitem?mr=2508166
Zbl 0923.35082
http://www.emis.de/MATH-item?0923.35082
MR 1617005
http://www.ams.org/mathscinet-getitem?mr=1617005
Zbl 0880.35120
http://www.emis.de/MATH-item?0880.35120
MR 1432150
http://www.ams.org/mathscinet-getitem?mr=1432150
Zbl 0921.35192
http://www.emis.de/MATH-item?0921.35192
MR 1657231
http://www.ams.org/mathscinet-getitem?mr=1657231
Zbl 0701.35159
http://www.emis.de/MATH-item?0701.35159
MR 0997638
http://www.ams.org/mathscinet-getitem?mr=0997638


104 D. C. ANTONOPOULOU, G. KARALI AND E. ORLANDI

symmetry, J Dif Eq. 125 (1996), 154–183. Zbl0851.35011 MR1376064

35. WANG, Q.-F. & NAKAGIRI, S., Weak solutions of Cahn–Hilliard equations having forcing

terms and optimal control problems, Mathematical models in functional equations (Kyoto, 1999),
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