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Parabolic optimal control problems on evolving surfaces subject to point-wise
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We consider control-constrained linear-quadratic optimal control problems on evolving hypersur-
faces in R”*1. In order to formulate well-posed problems, we prove existence and uniqueness of
weak solutions for the state equation, in the sense of vector-valued distributions. We then carry out
and prove convergence of the variational discretization of a distributed optimal control problem. In
the process, we investigate the convergence of a fully discrete approximation of the state equation,
and obtain optimal orders of convergence under weak regularity assumptions. We conclude with a
numerical example.
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1. Introduction

We investigate parabolic optimal control problems on evolving material hypersurfaces in R"*1,
Following [3], we consider a parabolic state equation in its weak form

d
o [ yoaro + / Vry-Vredl () = /y¢dr(r)+ / fedl®. (LD

() () () ()
where I’ = {F (t)}te[O’T] is a family of C2-smooth, compact n-dimensional surfaces in R"*1,
evolving smoothly in time with velocity V. Further assume f sufficiently smooth and let ¢ =
d:¢ + V Vg denote the material derivative of a smooth test function ¢.

We start by defining unique weak solutions for the state equation. The idea is to pull back the
problem onto a fixed domain, introducing distributional material derivatives in the sense of [17]
and a W(0, T')-like solution space. As a consequence, a large part of the theory developed around
W (0, T') for fixed domains applies, compare for example [17] and [16] .

An alternative approach to prove existence of weak solutions along the lines of [18] is taken
in [22], that entirely avoids the notion of vector-valued distributions.

Recent works also deal with the discretization of (1.1), both in space, compare [4], and time,
see [6] and [5].

In [4] order-optimal error bounds of type sup,¢o,77 Il [l L2(r () are derived for the discretization
of the state equation, assuming a slightly higher regularity of the state than is used in Section 5 and 6,

where we derive ( fOT Il - ”22( r (z))dt) * like bounds. A class of Runge-Kutta methods to tackle the

(© European Mathematical Society 2014


mailto:morten.vierling@uni-hamburg.de

138 M. VIERLING

space-discretized problem is investigated in [6], assuming among other things that one can evaluate
f in a point-wise fashion, i.e. that f(t) € L?(I'(t)) is well defined. For a fully discrete approach
and the according error bounds see [5]. There a backwards Euler method is considered for time
discretization whose implementation resembles our discontinuous Galerkin approach in Section 6.
Yet while the approach in [5] ultimately leads to sup,¢fo,77 || - [l2(r(r))-convergence, we allow for
non-smooth controls and thus cannot expect to obtain such strong convergence estimates.

Basic facts on control constrained parabolic optimal control problems and their discretization
can be found for example in [24] and [21], respectively.

The paper is structured as follows. We begin with a very short introduction into the setting in
Section 2. In order to formulate well posed optimal control problems we first proof the existence
of an appropriate weak solution in Section 3, complementing the existence results from [3]. We
then use the the results from Section 3 in order to formulate control constrained optimal control
problems in section 4. Afterwards, we examine the space- and time-discretization of the state
equation in Sections 5 and 6, before returning to the optimal control problems in Section 7. There
we apply variational discretization in the sense of [12] to achieve fully implementable optimization
algorithms. We end the paper by giving a numerical example in Section 8.

2. Setting

Before we can properly formulate (1.1), let us introduce some basic tools and clarify what our

assumptions are regarding the family {F (t)} ref0.T]"

ASSUMPTION 2.1 The hypersurface Iy = I'(0) € R**! is C2-smooth and compact (i.e. without
boundary). I" evolves along a C2-smooth velocity field V : R**! x [0, T] — R"*! with flow
@ : R x [0, T]> — R"*!, such that its restriction @$(-) : I'(s) — I'(¢) is a diffeomorphism
for every s,t € [0, T].

The assumption gives rise to a second representation of /"(¢) and in particular implies I"(¢) to
be orientable with a smooth unit normal field v(-,¢). As a consequence, the evolution of I" can be
described as the level set of the signed distance function d such that

r@)={xeR" |d(x,1)=0},

as well as |d(x,t)| = dist(x, I'(t)) and Vd(x,t) = v(x,t) for x € I'(t). Further, we have d (-, t) €
C2(N,(1)) for some tubular neighborhood N, (1) = {x € R"*! | |d(x,7)| < r} of I'(r). Due to
the uniform boundedness of the curvature of I"(¢) the radius 7 > 0 does not depend on ¢ € [0, T'].
The domain of d is Wt = {J,¢[o, ) N (#) x {t} which is a neighborhood of ( J,¢[o 71 I"(#) x {¢} in
R"+2.
Using d we can define the projection
ar N, () > TI'(@), a;(x)=x—d(x,t)Vd(x,t), 2.1

which allows us to extend any function ¢ : I'(f) — R to N,(t) by ¢(x) = ¢(a;(x)). Hence we
can represent the surface gradient in global exterior coordinates Vi ¢ = (I — v(-, t)v (., HTve
as the euclidean projection of the gradient of ¢ onto the tangential space of I"(¢). In the following
we will write Vr instead of V (), wherever it is clear which surface I"(¢) the gradient relates to.
We are going to exploit existing results on vector-valued distributions, which we recall here for
completeness. In order to define weak derivatives consider D((0, 7)), the space of real valued C *°-
smooth functions with compact support in (0, 7). Fix s € [0, T]. Each y € L%((0,T), H'(I'(s)))
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defines a vector-valued distribution 33 : 9((0,T)) — H'(I'(s)) through the H'(I'(s))-valued

integral [ y(¢)e(r)dz.
[0,7]

Its distributional derivative is said to lie in L2((0, T), H~!(I"(s))) if it can be represented by
w € L2((0,T), H'(I'(s))) in the following sense

Yo € 9((0.7), H' (I'(5))) : / (y(@). 9" ) L2(r sy + (WE), () g1 (rs)).H1 (r(syy 4 =0,
[0,7]

(2.2)
and we write y = w. Here and in the following, by H~! we denote the representation of the dual
(H1)* which arises from L? D> H! by completion.

Let us summarize the definition and some well known properties of the space W(0, T'), compare
[17, Ch. I, Theorems 3.1 and 2.1], [10, Ch. 5, Theorem 3], and [24, Theorem 3.10].

LEMMA 2.2 For s € [0, T], the space

Ws(0,T) = {v € L*>((0.T), H'(I'(s))) | v' € L*>((0.T), H~'(I'(5))) }

with scalar product fOT (- VYEiare)y (G ()Y a-1(r(s)dt is a Hilbert space.

1. W(0, T) is compactly embedded into C([0, T'], L?(I"(s))), the space of continuous L2-valued
functions.

2. Denote by ([0, T], H'(I'(s))) the space of C*-smooth H!(I'(s))-valued test functions on
[0, T]. The inclusion D ([0, T], H'(I"(s))) C Ws(0, T) is dense.

3. For two functions v,w € W(0,T) the product (v(¢), w(?))r2(r(s) is absolutely continuous
with respect to ¢ € [0, T'] and

d
& v(Ow@)dI(s) = (V' w)g—1(re)y.H (Fe) T (0 W) HI (), H-1 (M) »
I'(s)

a.e.in (0, T'), and as a consequence there holds the formula of integration by parts

/ (W w)g—1 g de = (), W) 2y — V) WE)) L2(resy) — / (v, W) g1 g1 de.

[r,t] [r,e]

3. Weak solutions

The scope of this section is to formulate appropriate function spaces and a related weak material
derivative, in order to prove the existence of unique weak solutions of (1.1) for quite weak right-hand
sides f.

We start by defining the strong material derivative for smooth functions f € C'(R"*!x [0, T]),
namely the derivative

fn = d% F(@5(x),8) = Vf(x, )V (x,1) + 3 f(x, 1), (3.1

s=t

along trajectories of the velocity field V. The material derivative has the following properties.
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LEMMA 3.1 Let f be sufficiently smooth. Then

%/fd]“(t)z/f-i-fdiVFVdF(l),

@) @)

and

d : .
& [ Ve sRar@ = [ 2Vrs Ve =290 fOrVITES +IVEF I div Y ar ),
) r)

with div oV = 372 Vi Vi and (D@ V)i = Vi,V
A proof and details can be found in the Appendix of [3].

LEMMA 3.2 Let J’(-) = detDp¢)®/(-) denote the Jacobian determinant of the matrix
representation of D ;) @; (- ) with respect to orthogonal bases of the respective tangent space.
By Assumption 2.1 J$ € C1([0, T]xI"(s)) and there exists C; > 0, such that forall s, 7 € [0, T]

1
— < min JS(y) < max J'(y) <Cy.
C; ~ yel(s) ¢ (V) yel(s) ¢ (V) !

Given Assumption 2.1, consider the family {L2(F (Z))} Then forv € L?(I"(¢)) we introduce

tel0,T]"
the pull-back
div=v(P;(+)) € LZ(F(S)),

which is a linear homeomorphism from L2(I"(¢)) into L?(I"(s)) for any s,¢ € [0, T]. Moreover ¢*
is a linear homeomorphism from H!(I"(¢)) into H'(I"(s)). Thus finally the adjoint operator, ¢3* :
H~Y(I'(s)) — H™Y(I'(t)) is also a linear homeomorphism. There exist constants Crary, Cury
independent of s, ¢, such that for all v € L2(I'(t)), or v € H(I'(t)) respectively, and for all
s,t €[0,T]

lo:vllat ey < Carmyllvlararey . 19702y < Craamlviliczarey) »

and thus ﬁnally ||¢‘;* ||£(H71 (T (), H=1(I" (1)) < CHI (-
Furthermore there holds 9, J; = ¢; (div r»)V)J /.

Proof. The proof of equivalence of the H 1_and the L2-norms follows the lines of, e.g., of [7, Ch.
9, SubSec. 4.1]. Now because || - [|g1(r()) and [|¢7(-)|g1(r(s)) are two equivalent norms on

H'(I'(t)) also their dual norms are equivalent, as shows the following short argument. The dual
norm of a functional from the dual space v* € (H vr (s)))* can now be expressed by

VA, W) g1 'yl S*u* v g ' ml
wp  oWeceoyaiae g >S(H COVHT@) (3
weH(I'(s)) ||w||H1(F(s)) veHI(T(t)) ||¢tv||H1(r(s))
and the bound on the norm of ¢ * follows from the equivalence of said H !-norms.
The last assertion is a by-product of the proof of Lemma 3.1, compare [3]. O

We need to state one more Lemma concerning continuous time-dependence of the previously
defined norms.
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LEMMA 3.3 Lets € [0, T]. For vy € H'(I'(s)), vo € L%(I'(s)), v3 € H™'(I'(s)) the following
expressions are continuous with respect to ¢ € [0, T']
lpsvillar ey - Iosv2lliaaray s 197 vslla—1 ey -

Proof. For the first two norms this is a standard task of shape calculus, compare, e.g., [7, Ch. 8,
Section 4.3.2]. By the change of variables formula we have

501131 ey = / (Vroi(Dr®) ™ (Dr®) " Vrvr +v7) JFdl(s),  (33)
I'(s)
which is a continuous function due to the regularity of @ stated in Assumption 2.1. Omit the term
involving the gradient in (3.3) and the same argument proves continuity of the L?-norm.

Moreover, since on the tangential space 7' 1"(s) we have (Dp(s)qu)_1 (Dp(s)@ss)_T = id7 (),
and since there holds J§ = 1 and &, (-) € C2%(I'(s) x [0, T], R**1) Equation (3.3) yields

20121 iy = 101201 ooy < 1= 511001 ey -
forall v € H!(I'(s)). Regarding (3.2) this allows us to estimate
1 - 1
m||v3||1rl(r(s)) < o7 vallg—1ray < m||v3||1rl(r(s))-
O

As far as Lemma 3.1 is concerned, for a family of functions { f(t)}sef0,77, f(2) : T' (1) = R,

one can define f aty = @yo simply by f (O[] = ¢35 (7 S (O)yo. 1] = b1/ ()@ yo)]. If
{f(t)} can be smoothly extended, this is equivalent to (3.1). The following Lemmas aim at defining
a weak material derivative of f that translates into a weak derivative of the pull-back ¢? £ (7).

DEFINITION 3.4 Consider the disjoint union 872> = U,E[O’T] L2(I'(t)) x {t}. The set of sections

f:[0,T] = ®;2,t — (v,t) inherits a canonical vector space structure from the spaces L2(I"(t))
(addition and multiplications with scalars). Given Assumption 2.1, for s € [0, T'] consider the space

Liap = {a [0,T] — Bpa. t > (vy.1) ‘ ¢Sv e L2 ((0, ), L2(r(s))) }

Abusing notation, now and in the following we identify v(t) = (v;,1) € Lz2(r) with v(t) = v;.
In the same manner we define the space L%l oy For leq,l () use ¢§* instead of ¢;.

For ¢ € ¢O9D((0,T), H(I'(5))) = {(p €12, | 410 € D(O.T), Hl(r(s))}, it is clear
how to interpret ¢, namely ¢ = ¢! (¢Sp) € H (I'(¢)). We say that y € L? has weak material

HU(TI)
derivative y(t) € L%, iff there holds

-t

/()}a(p>H—l(F(t)),H1(F(t))dt=_ / (yv¢>L2(F(t))dt_/ /W)diVFVdF(Z)dI (3.4)
[0.7] [0.7] [0.T] ['(¢)

forall g € ' D((0, T), H (I (s))).
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LEMMA 3.5 Endowed with the scalar product

fg)p = / (1) 80 12y dr -

L2(I)
[0,T]

Liz( [ is a Hilbert space. Analogously one can define scalar products on Lz, (r and L3, -
All three spaces do not depend on s. Also the definition of the weak material derivative y from 3.4

does not depend on s.

Proof. In order to define the scalar product of LiZ(F)’

(f.8) 2@y 1 [0.T] — R. Since (f.g) = 5(If + gl> = I fII* — llgll*) it suffices to show

measurability of ”f”i2(1“(t)) for all f € Li2(r)' By definition of the set leﬂ(r) we have

@S f € L*([0,T], L>(I"(s))). Hence, there exists a sequence of measurable simple functions f,
that converge pointwise a.e. to ¢? f in L?(I'(s)). Each f:, is the finite sum of measurable single-
valued functions, i.e. fn = Zf‘i”l finlp,, My €N, fin € L3(I'(s)), [0,T] D B; measurable and
disjoint. By Lemma 3.3 the function

we must ensure measurability of

M,
I fullz2cray = D168 finllL2cranls;
i=1

is the finite sum of measurable functions and thus measurable. Using the continuity of the operator
#%, as stated in Lemma 3.2, one infers pointwise convergence a.e. of [} full 21 () towards
I f L2 (r)) which in turn implies measurability of || f'[| L2 ())-

Again by Lemma 3.2 we now conclude integrability of | f||12(r()) and at the same time
equivalence of the norms

Nl—

1
2
(/ ||f||22(r(mdl) and (/ ||¢zsf||zz(r(s))dt)

[0,T] [0,7]

2

Completeness of L follows, since L2 and L2((0,T), L?>(I'(s))) are isomorph. Again

L2(I') L2(I)
because of Lemma 3.2, ¢5v € L2((0, T), L>(I'(s))) is equivalent to ¢7v € L>((0,T), L*(I'(r))),
thus the definition does not depend on the choice of s. For Lél( ry and L7 (ry We proceed
similarly.

We show that the definition of the weak material derivative does not depend on s € [0, T]. On
I'(s) Equation (3.4) reads

[ @5 awonmamd == [ [ @60+ 8l (v divrov)9) s arear
[0,T] [0,T] I"(s)
(3.5)
forall ¢ € ([0, T], H' (I'(s))). For r € [0, T], we now transform the relation into one on I"(r),
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using ¢¢, (¢;7)* and ¢ = @5 o ¢}

/ (DL Y. $18) a1 (1.1 (e A
[0,T]
== [ [ (0 @) + 67 (v aiv ryV) ¢70) J7 aryar
[0,7] I"(r)

and because ¢! : H(I'(s)) — HY(I'(r)) is a linear homeomorphism, it also defines an
isomorphism between D ([0, T'], H'(I'(s))) and D([0, T], H'(I"(r))). O

REMARK 3.6 Strictly speaking the elements of L)Z(( ry are equivalence classes of functions
coinciding a.e. in [0, T'], just like the elements of L2((0, T), X(I"(s))).

The definition of the weak derivative of y € L%{I &)
the pullback ¢7 y. In order to make the connection between the two, we state the following
LEMMA 3.7 Letw € W(0,T)and f € C'([0, T] x I"(s)). Then fw also lies in W;(0, T') and

(fw) = dfw  +fu,
N——
€L2([0,T1,L2(I'(5)))

in (3.4) translates into weak derivatives of

where fw’is to be understood as ( fw’, ©) g—1 () H1 (r(s)) = (W's fO) -1 (), H (I (s))-

Proof. Making use of the uniform continuity of f on the compact tube [0, 7] x I"(s), one can show
that for ¢ € $((0, T), HI(F(S))) the function f¢ lies in Ws(0, T) and that (f¢) = f'o + f¢'.
The claim then follows by integration by parts in W (0, T') as

/ (W', f0) 11y, B (r(sy) = — / (w, (fO))m1(resy. a1 (@) d

[0.7] [0.7]
=— /(w,atfﬁl))u(r(s))df— /(wvf§0/>L2(F(s))dt‘
[0.7] [0.7]

Reordering gives

/ (fw, @) L2(r(sydt = — / (0 fw + fw', @) =11y, B (1 (sy) A
[0,T] [0,T1]

for any ¢ € 9((0.T), H'(I'(s))). Hence condition (2.2) holds for fw. Using the density
property stated in Lemma 2.2[2.], we can approximate fw by continuous H'(I'(s))-valued
functions and infer fw € L2((0,T), H'(I'(s))). The same argument yields 9, fw + fw’ €
L%((0,T), H Y (I'(s))). O

Finally we can define our solution space of (1.1).

DEFINITION 3.8 The solution space Wr is defined as follows

_ 2 g 2
Wr={ve Ll |0l
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LEMMA 3.9 Wr is Hilbert with the canonical scalar product fOT (S YEvr@yt+ (), O) =1 (r@yde.
Also y € Wr iff ¢5y € W;(0,T) for (every) s € [0,T]. Forall ¢ € D((0,T), H'(I'(s))) there
holds

* .~ / ~
/ (B 9. @) -1y, H ey 4 = / (((¢7y) - D) =1 (resy, 1 (rsy A (3.6)
[0.7] [0.7]
One has
ew i yllwy 0.1y < Iy llwr < Cwllé;yllw,o.1) -
and ¢, Cw > 0 donotdependon s € [0, T].

Proof. Fory € Wr, observe that J3¢5y € L?([0, T], H'(I'(s)) and rewrite (3.5) as

/ (JEdi Y, 0e@) 12(r(sy df = — / (@579, @) rr—1 sy 11 (rsy) A
[0.7] [0.7]

- / (0:9707y.9)2(r(sy 4. (3.7
[0,T]

forg € D((0,T), H'(I'(s))). Hence J¢5y € Ws(0, T), and from Lemma 3.7 it follows that also
@7y € Ws(0,T), because JL? € C1([0, T] x I'(s)). Note that we used 3, J5 = ¢3(div rV)JIS,
see Lemma 3.2. On the other hand, for any y € W{(0,T) one has J7y € W;(0,T) and thus
y = ¢.y € Wr. Hence ¢f,) constitutes an isomorphism between W and W (0, T).

Apply Lemma 3.7 a second time to obtain (/@) = 8,J7¢ + JS@ and because of ¢(0) =
@(T) = 0 € H'(I'(s)) by integration by parts there follows from (3.7)

* . o~ I ~
/(¢>§ Y @) H-1(r(s).H () ¥ = / (((@72) - T2 81 (r sy i sy 9 -
[0.7] [0.7]

compare Lemma 2.2[3.]. This proves the second claim.
The claim of W being Hilbert now follows. Observe that point-wise multiplication with J}
constitutes a linear homeomorphism in H'(I"(s)) whose inverse is the multiplication by % One
t

easily checks [|[J7@llgirey < <l lcrarepllelararesy < Cllellarre))- This together with
Lemma 3.2 yields the equivalence of the two norms on W

/ ”y”;{l(['(t)) + ”J}Hzfl(['(t)) dr and / ||¢zsy”12ql(['(s)) + ”(d)fy)/”zfl(['(s)) dr.
[0,T] [0,T]

Completeness of W (0, T') then implies completeness of Wp. o

REMARK 3.10 Formula (3.6) can be seen as a generalization of the following relation. Assume
¢Sy € D((0,T), H(I'(5))). Then

* o~ . ~ / ~
/ (&g 9. O a1y (s 9 = / (V. 5P L2ry dt = / ((@79) TP sy A2 -
[0,T1] [0,T] [0,T]
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Using Lemma 3.7 and 2.2, it is now easy to prove

LEMMA 3.11 For two functions v,w € W the expression (v(7),w(?))12(r()) is absolutely
continuous with respect to t € [0, T'] and

1 .
& / vwdl'(t) = (0, W) g—1(rey), HI(I@))
()

+ (U, w>H1(F(t))’H71(F(t)) + / vw div p(,)VdF(t) s
@)

a.e. in (0, T'), and there holds the formula of integration by parts

/ (O, W) g=1(r@)), B (M) 9T = (V. W) L2(r@y) — (V. W) L2 (1 (s))
[s,]

_ / [0 ) a1 ey -1 oy + / vw div rV dF(o)] dr.
[s.2] I

We can now formulate (1.1) in a weak and slightly generalized manner. Let hecC! ([0, T x Ip)

and b = ¢ b. We look for solutions u € Wi that satisfy y(0) = yo € L2(I'p) and for f € Lé,l(r)

dt
() r@)

d .
— | yodI'(t) + / Vry -Vro +byedl’(t) = (¢, Y)u—1(r@),H (I'¢)

+ (L@ a-1rep.atirey. (38
forall p € Wr and a.e. t € (0, T). One may equivalently write (3.8) as
y+ Ar@yy + y(div ryV +b)= f in H (I (1))
fora.e. t € (0,T). We apply known existence and uniqueness results for the pulled-back equation
to prove

THEOREM 3.12 Let f € L%{“(F)’ yo € L?(Ip). There exists a unique y € W, such that (3.8) is

fulfilled for all ¢ € Wr and a.e. t € (0, T'). There holds

).

IylIwr < C(llyoll2cry) + ”f”LiI*I(r)

Proof. Let us relate equation (3.8) to the fixed domain I"(s) via

d y @ v S\~ 5\ — ~ 7 o~ o~
ar / y@Jidr(s) + / (VFJ’(DF(s)(D,S) 1(DF(S)(DZS) Tqu) +by(p)Jts ars)
I'(s) I'(s)

= (0" I P a1 rey.ar ey T TP H-1(resy). 1 (I (s)) -
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with j = ¢Sy, f = Jqus;*f € L%((0,T), H~'(I'(s)) and for all 59 = @ € W;(0,T). This
again is equivalent to

(V. @IV —1(r sy, H (r(sy) + / yo (d’f(divr(t)V) + l;) J7dr(s)
I'(s)

+ / Vri(Drs®) " (Dre®) T VrgJEdr(s) = (£ I8 u-1 ey 2! (r))-
I'(s)

With ¥ = J/}¢ one gets for all v € Ws(0,T)

(V' Va1 (rey,a () T AW 7.9) = () a1 (i) B (1 s)) (3.9)

with a bilinear form

a(t,y.¢) = / Vi3 (Dre®@) ' (Dre®) T Vry dl(s)
I'(s)

+ [ 5 (#@vroV) +8) vare
I'(s)

. = = v
— / Vri(Dre®) " (Dre®) T Vrdf— dI(s).

t st
I'(s)

By Assumption 2.1 the bilinear form (Dp(s)qsts)_l[y](DF(S)qsts)_T[y] is positive definite on the
tangential space T}, I"(s) uniformly in s,¢ € [0,7] and y € I'(s). Thus, there exists ¢ > 0 such
that for some ko = 0 one has a(t, ¥, %) + koll¥lL2(r¢sy) = <V g (rs))- We are now in the
situation to apply for example [16, Ch. III, Theorem 1.2], to obtain a unique solution y € W (0, T)
to equation (3.9) for initial data ¢§yo € L?(I"(s)). Moreover the solution map is continuous

17 lwe0,1y < C(If 20,1y, -1 (resyy + 196 Y0llL2(rs))

Note again that ”f”LZ((O,T),H*I(F(s))) < Clflge2 Lo since the multiplication with J; is a
H—1(I)

globally bounded linear homeomorphism in H ' (I"(s)), as stated in the proof os Lemma 3.9.
The transformation of (3.8) into (3.9) works both ways, hence the uniqueness of y € Wr. The
norms can be estimated as in Lemma 3.2 and Lemma 3.9 and the theorem follows. O

With regard to order-optimal convergence estimates, sometimes a slightly higher regularity
than y € W is required. Assuming f € Liz(r) and yo € H!(Ip), one can apply a Galerkin
approximation argument, see [3, Theorems 4.4 and 4.5] for manifolds or [10] for open sets, to

obtain
1917+ sup [Vreyllza + / Y122 ey 2 < C (I 17 +IfI72 )
L2y t€l0,T] L 07] HET@) ( BT ©) LL2(F))

(3.10)
Note that from [17, Ch. I, Theorem 3.1] it then follows that ¢Sy € C([0, T], H(I"(s))).
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4. Control constrained optimal control problems

Using the results from the previous section, we can now formulate control-constrained optimal
control problems known for stationary domains, see for example [16] or [24]. We consider here
the case of a distributed control u € Liz ) In comparison to the case of controls on euclidean
open sets these controls are easier to implement in practice because all points on the surface are
accessible from the outside, i.e., the surrounding euclidean space. As to the practical relevance
of the (archetypical) problems under consideration observe that in addition to being of interest in
their own right from an engineering point of view they also can be seen as Tikhonov-regularized
parameter identification problems. Their unregularized, ill-posed counterparts then correspond to
the limiting case where the Tikhonov parameter & > 0 vanishes.

In our first example, given a moving surface as in Assumption 2.1, let S7 : L —

2
L2(I')
L?(I"(T)) denote the solution operator u +> y(T'), where y satisfies

yodl'(t) + / Vry -Vredl'(t) = (@, Y)u—1(re).H (r@) + (LMO)LEZ(” . (4D
r@) r@)

dr

for all ¢ € Wr, and with y(0) = 0 € L2(Ip). We know, that every function y € W has a
representation in C([0, 7], L?(I"(s))) for any s € [0, T'], compare Lemma 2.2, and the inclusion
¢f.) Wr C C([0,T], L?(I'(s))) is continuous (in fact compact). Thus S7 is a continuous linear
operator. Consider the Control problem

min O®) := 3[Sr(w) — yr? + 5l
ueLiZ(I‘) ) 2” r) yT”L2(F(T)) 2” ”L?}(m

(Pr) {

sta<u<b,

with o,a,b € R,a < b, @ > 0, and yr € L2(I'(T)). This is now a well posed problem. By
standard arguments, see for example [24, Theorem 3.15], using the weak lower semicontinuity of

O(:), one can conclude the existence of a unique solution u € Liz oy

For an other example let the linear continuous solution operator Sy : Liz ary Liz (ry 4
y, where y solves (4.1), and consider the problem
min,ez2  O@) = 3[Sa) — yal? + S lul?
L 2 2
Pa) L2 : Liagy 27 2

st.a<u<b,

2
LIy
The first order necessary optimality condition for (P;) reads

with @, a,b asaboveand y; € L Again there exists a unique solution, see [24, Theorem 3.16].

(Squ—ya,Sa(v—u));2 +a(u, v—u);2 = (otu—}—S;(Sdu—yd),v—u)Lz >0, 4.2
L2(I) L2(I) L2(I)
forallv € Uy = {v € leﬂ(r) | @ < v < b}. The adjoint operator S} : leﬂ(l’) — Li2(r) maps

vel?

12(r) Onto the solution p € Wr of

—(P-O)u-1(rey,H (@) T / Vrp-Vredl'(t) = <v’¢)"i2m’ (4.3)
r
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forall ¢ € Wr, and p(T) = 0 € L?(I"(T)). This follows if one tests (4.1) with p and (4.3) with

y. Integrate over [0, 7] and use y(0) = 0 and p(T) = O to arrive at (v, y);2 =(pu);2
L2(I) L2(I)
foru,v € Liz(r) arbitrary.
Note that via the time transform " = T — ¢ Equation (4.3) converts into equation (3.8) with
b = —div p() V. Therefore all the results from Section 3 also apply to (4.3).

The necessary condition (4.2) characterizes the optimum u as the orthogonal projection of
—éS; (Squ — yg) onto Uyqg. In our situation this is the pointwise application of the orthogonal
projection P, 5] : R — [a, b], as one easily shows by standard arguments.

Thus, introducing the adjoint state pg(u) = S7(Squ — y4), we can rewrite (4.2) as

u= P[a,b](_ épd (u))- 4.4)

Similarly the unique solution u of (Pr) is characterized by u = P, p (—é PT (u)), with pr(u) =
S7(Stu — yr). Note that however the adjoint state pr in general is less smooth than pg. This is

because the adjoint equation, i.e. the equation describing S7. : L*(I(T)) — Liz ary VP reads

=P @) a—1(r@y,H (r@)) T / Vrp-Vredl'(r) =0,
@)

for all ¢ € Wr and with p(T) = v € L?(I'(T)). While Theorem 3.12 applies, this is not the case
for the smoothness assertion (3.10), as long as y; € L2(I'(T)) \ H(I"(T)).

Before we can discuss the discretized control problems in Section 7, in the next two sections we
present some results on the discretization of the state equation.

5. Finite element discretization

We now discretize I" using an approximation I Oh of Iy which is globally of class C%!. For the sake
of convenience let us assume n = 2, i.e. I'(¢) is a hypersurface in R3.

Following [8] and [3], we consider I Oh = Ujes ; T,f consisting of triangles T,f with corners on
Iy, whose maximum diameter is denoted by #. With FEM error bounds in mind we assume the
family of triangulations {I Oh}h>0 to be regular in the usual sense that the angles of all triangles are
bounded away from zero uniformly in /4.

As detailed in [4] and [3] an evolving triangulation I"”(¢) of I'(¢) is obtained by subjecting the
vertices of I Oh to the flow @. Hence, the nodes of I"”(¢) reside on I"(¢) for all times ¢ € [0, T], the
triangles T,f being deformed into triangles T,f (t) by the movement of the vertices. Let mj, denote

71 in Iy Now X, () solves

the number of vertices {X}}
d
aX,(x) =V(X;(0).1), X;(0)=X]. (5.1
Consider the finite element space

Yu(t) = {<p e L2(I'(1) ) oeC(r@))andVi el : ¢

i) € HI(TZ(Z))}

of piecewise linear, globally continuous functions on I"”*(¢), and its nodal basis functions {¢; (t)};"zh1
that are one at exactly one vertex X;(¢) of I'"(¢) and zero at all others. While on I"*(¢) the notion
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of the space H! is a little bit more involved than in the smooth case we can still provide Y}, (¢) with
an appropriate norm, i.e., for ¢ € Yy(¢) let

ol = [ VreVewo+e?ar'o.
i)

For the finite element approach, it is crucial for the triangles T}f (¢) not to degenerate while ' (7)
evolves, which leads us to the following assumption.

ASSUMPTION 5.1 The angles of the triangles T,f (t) are bounded away from zero, uniformly
w.rt. h,i and 7. Also assume a;(I'"(t)) = I'(¢), with the restriction of a; to I'"(r) being a
homeomorphism between I'*(r) and I'(z).

While Assumption 5.1 may appear a rather strong one, a remeshing strategy using conformal
mappings, e.g., on topological torii was devised in [9] that yields meshes satisfying the assumption.
In order to ensure optimal approximation properties of the discretization of the surface, we require
d to be twice Lipschitz-continuously differentiable.

ASSUMPTION 5.2 d € CZ1(TL7).
Let us summarize some basic properties of the family {I""(¢)} t€[0,T]-

DEFINITION 5.3 Let <1§fh : I'(s) x [0, T] — R3 denote the flow of I"”, i.e. the unique continuous
map, such that qu’ (T (s)) = T, (t) and @f, ,, 18 affine linear on each T, (s). The velocity field of
the triangulated surface V}, = 9, q)g ,, 1s the piecewise linear interpolant of V' on each triangle T,f ).

As in Lemma 3.2 we define the pull-back ¢7 , : L2t (1)) — L2(I'(s)), pfv=vodl,
Finally let v”(¢) denote the normals of I'%(¢), defined on each Ti (1).

LEMMA 5.4 There holds &/, = &@;, o @_, and thus P!, o @}, =1dpn(y.
The piecewise constant Jacoblan determlnant J? th of <1§ th satisfies for all 5,7 € [0,T]

1
— < min J, max J 5.2
C;l F() th()/) yel(s) th(y) ( )
for some constant C 5’ > 0 that does not depend on i > 0. Moreover J, and D)@/,

TT"(s) — TI"(t) C R? are differentiable with respect to time in the interior of each T’ ().
The nodal basis functions have the transport property

d .
oi = ¢5,ha¢>2h¢)i =0, 1<i<my. (5.3)

Proof. Consider a Triangle T,f (s), s € [0,T]. W.Lo.g. let X1(s), X2(s), X3(s) denote its vertices.
Then, using matrices X' (1) = (Xa(f) — X1(7), X3(t) — X1(2)), we can write y € T,(s) in
reduced barycentric coordinates as Ay (s) = (X' ()T X'(s))™' X (s)T (y — X1(5)). On T} (s) the
transformation @* ;i 1s uniquely defined by /X@ y(t) = A, (s) and thus

@2, =X OX )TX () X ) (y — X1()) + X1.0).
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In the relative interior of T}f (s) the map @], : T,f (s) — T}f (¢) is differentiable and its derivative
Dri @ : R3 D TT}(s) - TTj(r) C R? can be represented in terms of the standard basis of
R? by the matrix D%, = X (1) X' (s)T X" (s)) ' X' (s)T .

Now one easily proves that the angle condition in Assumption 5.1 ensures the existence of ¢ > 0
such that AT X7 (s)T X! (s)A = ¢ min(|| X2(s) — X1(s)|1%. | X3(s) — X1(s)[|?)||A||? for all A € R?,

. . _ . _1

s € [0, T]. Hence, [|(X" (s)" X" ()" [l2 < (¢ min([| X2(s) = X1()[1*, | X3(s) — X1(s)[|*)) ", and
since [ X7 ()T 113, X7 ()13 < 2max([|X2(s) — X1 ()], [ X3(s) — X1(s)]1%) we get

1Dz @2adr Il max((|Xa(s) = X1 I [ X3() = X1 (0)]?)
layl 7 min([Xa0) = Xt )P [Xa () — X ()2

foralldy e T T}f (s). Using again Assumption 5.1 one concludes that the quotient of edge lengths
is uniformly bounded.
Also, one easily verifies for r, ¢ € [0, T]

We have thh

i) = \/det(%(s)TDT},;(S)cI%Sh)TDT},;(S)d)tsh%(s)) on the triangle T,f (s), where
}Il s El El )

the derivative is represented with respect to an orthonormal basis B(s) of 7'Tj (s). As per above
considerations the spectral radius of DT},; (S)<Dts 5 is uniformly bounded. Hence, there exists C ;‘ >0
such that Jts,h < C;’. Because we can switch s and ¢ and since by (5.4) we have (<15tSJl)_1 = <Ds”h
and thus Tih =Ji, < C" we conclude

1
Vs,t €[0,T]: Vy e I} i S I5.() <C}.
J

The trajectories CDtS’hy, y € I'’*(s), the Jacobian determinants Jz 5> and the entries of D;jz are
differentiable for t, because the trajectories X;(z), 1 < j < my are, compare (5.1). Hence also
D F(S)@ih is differentiable as a map into R3. The velocity Vj(y,s) = 9, <1§zs’h)/ equals V' at the
vertices and depends linearly on the coordinates A,. As for the transport property (5.3), it is a
consequence of the piecewise linear transformations of the piecewise linear Ansatz functions ¢;
which implies ¢?,h¢)i (t) = ¢;(0), compare [3, Prop. 5.4]. O

REMARK 5.5 Similarly one can prove the map @, : I'"(s) — I'"(t) to be bi-Lipschitz with
respect to the respective metrics. The Lipschitz constant L does not depend on s,¢ € [0, T'].

In order to compare functions defined on I"”(¢) with functions on I'(¢), for sufficiently small
h > 0 we use the projection a; from (2.1) to lift a function y € L2(I'* (1)) to I'(¢)

v a:(x)) = y(x), VYxel"@),
and for y € L2(I'(t)) we define the inverse lift

yi(x) = y(ar(x)), Vxel@).
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For small mesh parameters & the lift operation (-); : L2(I'(t)) — L2(1"h) defines a linear
homeomorphism with inverse (-)l . Moreover, there exists ¢j,, > 0 such that

max( 1],

2 12 2
|||()l ||£(L2(F(t)),L2(Fh(Z))) - “() ||£(L2(Fh(z)),L2(F(z))) - 1‘) < Cinh”, (5.5)

as shows the following lemma.
LEMMA 5.6 The restriction of a; to I'"(¢) is a piecewise diffeomorphism. Denote by & the

Jacobian determinant of ;| pny I'"(t) — I'(t),i.e. 8, = |det(M)| where M € R>*2 represents

the Derivative da; (x) : To ' (1) — Ta(x) " (t) with respect to arbitrary orthonormal bases of the
respective tangential space. For small 4 > 0 there holds

sup sup |1 — 8, < Ch?,
t€l0,T]1 I'(¢)

In particular a;|pa () is a diffeomorphism on each triangle T}f (t). Now i = |det(M~1)|, so that
by the change of variable formula

1
‘ / v drh () — / vdF(t)‘:)/vS—l—vdF(Z) < e[Vl (.
h

Th@) r@) )

Also there exists C > 0 such that
L. sup,cio.7) 168 (D) Loo(rn(yy < Ch?, where the material derivative is to be understood in the
sense of @?, and

2. supsepo.r) 1P — R)®|lLoo(reyy < Ch?, where ®), = i (I —d¥)Ph (I —dR), K =
Ox;x;d, and @ = {8;; — v;v; :’;11 and P" = {§;; — vl.hvj}.’ :’;11 are the projections on the
respective tangential space.

Proof. A proof of assertion /. can be found in [4, Lemma 5.4], for a proof of the rest of the lemma
see [3, Lemma 5.1]. O

. . . . 2 2
The next Lemma concerns the continuity of the lift operations between L7 , ) and L7, oy

LEMMA 5.7 Using the pull-back ¢} , we can define Liz (riy 3 in Definition 3.4. For sufficiently
small # > 0 the lift operation (-)/ constitutes a continuous isomorphism between L d

L

2
12(r) a0

2, (o With inverse (-);. There holds

(flvgl>L22 _(ﬁg>L22 Scimhzl(ﬁg)Lz |
L2(r

hy L2(I) L2(I)

2 . . . .
Proof. In order to define L L2rm it suffices to consider the action of CDZS’h on each triangle

T,f (s) thus defining Liz T’ Definition 3.4 applies since the restrictions of the flow are smooth.
h .
Because the edges are of Lebesgue measure zero we have L2(I'(t)) = @ielh LZ(TZ (1))

and thus canonically it follows L? = Diey, Li2(T"(z)) as well as [y (- Vr2rneydt =
h

L2(rn)
T
Yieny Jo &) acriydt-
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Let ¥; = ®foa;o CD;) ,, denote the mapping between I Oh and Ip induced by the projection
a;. By Assumption 5.2 and by the construction of qStO and <Dz0h is follows that ¥; : Foh — [y is

a diffeomorphism on each triangle T}f (0) and globally one-to-one and onto. Also ¥; and its spatial
derivatives are continuous w.r.t. time 7.

We will show that ¥ : Foh x [0,T] = Io x[0,T], (y,t) — (¥(y).t) is a piecewise
diffeomorphism whose Jacobian determinant is bounded away from zero. By Assumption 5.1
we already have that ¥ is globally one-to-one. Together this implies that the pull-back with ¥
constitutes an isomorphism between L2(I'p x [0, T]) and L2(I'}' x [0, T]). This again means that

¢, fi € L2(0.T).L2(I'$)) < ¢ f € L([0.T), LA(Ip)) .

As to ¥ being al local diffeomorphism, the sets T} = U,E[O,T] T,f () are a partition of Foh x[0, T].In
the interior of each T}f the map Uisa diffeomorphism. In fact, let y € int(T}f) forsome 1 <i < my,.
Compute

I)Igzuﬁ(y) ;W (y) ).

Drguton¥ ) = ( 0 1

We have D rl ¥ = Dr®DrngyaD g qﬁgh. Its Jacobian determinant is the product of the
determinants J§, 8, and J zO , that are each bounded away from zero, uniformly in y and #, compare

(5.2), and the Lemmas 5.6 and 3.2. Hence the Jacobian determinant of ¥ is bounded away from
Zero.
As to continuity of (-);, by Lemma 5.6 we have that

ez, , = oe, |=] [ [ reGr-Darow| <ciiison |

2(rh) L2(I) 0
[0,T] I"(2)

Now, instead of dealing with Problem (3.8) directly, w.l.o.g. we consider the equation

yedl(t) + / Vry -Vre +pyedl(t) = (@, y)2rey + (L @) 2rey . (5:6)
() r@)

dr

with /i € R large enough to ensure u := b + = 1. Note that y solves (5.6) iff ey solves (3.8)
with right-hand side e*’ f.
In order to formulate the space-discretization of (5.6), consider the trial space

mp
Hy, = {Z i@ (t) € Loy | i € HY([0,T]) ¢ = H'([0. T)™" .

i=1

The following definition of weak material derivatives for functions in H }h exploits the fact that A }h

is isomorph to H ([0, T])™" . It thus avoids the issue of extending the theory from Section 3 for the
smooth surfaces I'(¢) to our Lipschitz approximations 1'% (z).
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LEMMA 5.8 The weak material derivative of v = >, 9; (1)g; () € H}h is v = ¢, (¢2,v) =

Y 6L (t)gi(2). Let further w € H}I,h , then (v, w) 2 is absolutely continuous and

d
o / vwdl () = / bw + vib + vw div 1, V;, a4 (1)
@) rh@)

Proof. Observe v = ¢ , (62 ,0)" = ¢f , (72 i (1) 0)) = b6 (72 U7 (1)@i (0)) because
(@2,0(1) (7) = $¢1(0)(y) = Oforall y € I, as in (5.3).
Apply Lemma 3.1 on each triangle to see that (¢; (1), ; (1)) L2 h (s is smooth and

d .
_(wi(t)’ (pj([)>L2(Fh(z)) = / DiQj div Iy Vh drh(l)

dr
i)
Now
mp
(v, w)2rrey) = Z Ui ()W ()i (1), 95 () L2(rney)
ij=1
and the second assertion follows, since v;, w; € H([0,T]), 1 <i,j < my. O

We approximate (5.6) by the following semi-discrete Problem. Consider a piecewise smooth,
globally Lipschitz approximation A of w;, suchthat A > 1. Find y € H }h such that forall ¢ € H }h

d .
i / yhodl () + / Venyn-Veng +2yp@ T (1) = (0. ) 2(rn ey + i @) L2 0y -

rh) rh)

6.7
and y,(0) = yé’ € Y3(0). One possible choice would be A = u;, fp = f; and yé’ = P(f’((yo)l)
with P(f’ the L2(T, Oh)-orthogonal projection onto Y3(0).

First of all let us state that (5.7) admits a unique solution in H;h. This is because for y; =
Z:"zhl Yi@; we can rewrite (5.7) as a smooth linear ODE with non-smooth inhomogeneity for the
coefficient vector y = {y;};, € H'([0, T])™*

& 070) + (40)50) = FO. - 30) = 54, 58)

with smooth mass and stiffness matrices
mp
MO = ool wd A0 ={ [ VraVrng + g ar o)
@)

3

Lj=1

and right-hand side F(¢) = {(fl,go,-)Lz(Fh(t))};"jl € L*([0, T],R™), compare also [3]. Observe
that we used the continuity of the coefficients y; € H'([0, T]) as well as ¢; = 0. Existence of a
solution y;, € H'([0, T])™" of (5.8) can be argued by variation of constants or, more generally, one
can apply an existence result by Carathéodory, compare [, Theorems 1.1 and 1.3]. Uniqueness of
v, is a consequence of the following lemma.
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LEMMA 5.9 (Stability) Let yo € L2(Ip) and f € Li2(F), and let y, solve (5.7) with y(’)’ € Y5(0)

and f, = fj. There exists C > 0, such that for sufficiently small # > 0 the solution satisfies

L=(I")

T
2
Iyl 2y + /0 / (Vrnyn) + 207l 0dr < C (16 a ey + 1122, -
rh

as well as

. 2
||yh||i2 +ess sup / (Vruyn)™ + Ayp drh() < C(Ily(’,’llih(o) + ||f||i2 ).
L2(rh) t€l0,T] f L2(I)
r

The idea of the proof is the same as in the non-discretized case, see [3, Lemma 6.1].
Obviously the material derivative depends on the evolution of the surface, i.e. different
derivatives arise according to whether ¢7 or ¢7 , is applied to pull back a function to a fixed domain.

In order to compare Z;l,’ with (z'h)l we need the following lemma.

LEMMA 5.10 Let y = >/, jig; € Hy . The lift y! lies in W with y! € L7, and for ae.
t € [0, T there holds
. .\
9! = ()| < CRIVr@y s

a.e.on I'(t).
Proof. We start by computing the material derivatives of ¢;(x,z) : Ny — R, @i(x,t) =
(pil (as(x),t), i.e. the constant extension of the trial function ¢;, 1 < i < my, along the normal
field of I"(¢), compare the proof of [3, Theorem 6.2]. Observe that qof is not smooth along the edges
of patches a,(Thj (t)). However, gof is smooth in the (relative) interior of all a,(Th’ ®)) .

Differentiate ¢; at some point y € relint(Th] (¢)) inside the relative interior of the facet to obtain

V@i (1) = Végilar(y),0)(Id = Vd(y,n)Vd(y,0)" —d(y,1)V?d(y,1)),

(5.9)
0@i(y.1) = 9:@(ar(y).1) + Vgi(a: (). )( = 3:d(y.)Vd(y.1) — d(y.1)9;Vd (y.1)).

By construction of ¢; we have V@; (a;(y))Vd(y,t) = quof (a:(y))Vv(as(y),t) = 0 since ¢; is
constant along orthogonal lines through I". Also, from d(®?(y),t) = 0 it follows 9;d = —VdV.
The (strong) material derivatives do not depend on the extension ¢;, but only on the values on
I" and I'", respectively. One gets ([Jf(at(y),t) = 0;pi(as(y),t) + Voi(a;(y),t)V(as(y),t) and
Qi(y.t) = 0:@i(y.t) + V@i (y, 1) Vi (y, t) which together with (5.9) leads us to

ol = @) + (V = Vi + d((Vd)Vi + 8,94) ) Vel (5.10)

in the relative interior of the patches a, (Thj ), j € Iy.
In order to prove that the pull-back ¢ := ¢%¢! lies in C ([0, T], L2(I)) N C([0, T], H'(I))

forall 1 <i < my we proceed in four steps.

1. We show that ¢ is globally Lipschitz on Iy x [0, T']. Observe, that (5.9) implies that all derivatives
of ¢ exist and are bounded on the interior of patches P} (1) = ®§(a,(T}(1))). Since ¥; =
®foa; o thO’h : Foh x [0,T] — I, smoothly maps the edges of Foh into Iy the domains
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Urero.1] P}’; (1) x{t} C I'b x [0, T] have piecewise C !-boundaries. Also, ¢ is continuous and we
are in the situation to apply Stoke’s theorem to confirm ¢ € W1°(I, x [0, T]). By Morrey’s
lemma, for a formulation on manifolds see [19], we conclude ¢ € C%1(I x [0,T]).

. Now as to the time derivative, fix ¢ > 0 and t € (0,7). Let L > 0 denote the global
Lipschitz constant of ¢ on I x [0,7T] and choose n > 0 sufficiently small such that
> ier, meas(Py \ Py ) < €2/8L?* where Py, = {y e Pl | By(y)C P} },'the balls B,,(y.)
being taken with respect to the metric of Io. Now, as stated above, the patches P (r) = ¥ (¢)(T})
move continuously across I}, and we can choose K sufficiently small such that foralli € I} and
k € (—K, K) we have P,’w(t) C P, (t + k). The derivative 3, ¢(y, 1) = ¢?¢Jf which is defined

a.e.on [ x [0, T'] then is continuous on the compact set X, = Uielh P;; n(l) x [t —K,t+ K]
and we have

iely

i [@a 0= -0k ar = 5 3 ([ @0+ 0 - 50 - dawn2any
To

i
Ph,n

+ [ @0 =50 - 050k Ty

Pi\Pj

Substituting ¢(y,t + k) — ¢(y,t) = 0:¢(y, )k + fol (0:0(y, t + thk) — 0@ (v, t))kdt on P;;’e
like in the proof of Lemma 3.7 we choose k small enough for

€2

sup [|3:¢(t + k) — 3, @ (1|12 < (5.11)

re[0.1] © = 2meas(Ip) ’

which is possible by uniform continuity of d;¢ on X,. Estimating the second addend by
(2Lk)* Y;¢p, meas(Py \ Py ) < €2/2yields

. 1 N -
11121 sup [|¢(t + k) = @(1) = 0:0 (k|2 () S €
-0

for every € > 0. Hence ¢ is differentiable into L?(I) with derivative 9,¢.

. Thus in order to show ¢ € C ([0, T], L2(I})) it remains to prove that 3, : [0, T] — L2(I%)
is continuous. By (5.9) 0,¢ is essentially bounded on I'y x [0, T']. Let M = 0|l oo (1, x[0,T])-
For € > 0 choose n > 0 sufficiently small such that }_;, meas(P; \ Py ) < €2/8M?2. As

above, choose K > 0 and X, accordingly. Now, choosing k > 0 small enough such that (5.11)
holds one arrives at

[9:6(¢ + ) = 9: 60 |72y = - ( / (3:@(c + k) — 8:6(1))” dTp

iely i
Pl
h.n

+ / (9:0(1 + k) — a,¢(z))2dro) <é.

Pp\Pj
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4. Continuity of @ : [0, T] — H'(I'p) follows similarly. In fact, the spatial partial derivatives of ¢
exhibit the same piecewise smooth structure as d; .
Finally, § = ¢¢! € C1([0, T], L(I)) N C([0, T], H') implies ;¢2¢! € Wy(0, T), and we
conclude y! € Wr as well as y! € leﬂ oy The estimate now is a consequence of (5.10). o
Before we proceed to the main result of this section, we need to understand the approximation
of elliptic equations on I'(¢) by finite elements on I (¢).

LEMMA 5.11 Fort € [0,T] and g € L2(I'(¢)), gr € L*(I'*(t)) consider

/ VrZ® -Vro+pZodl(t) = (8.¢)12rqy. Yo € H'(I(1)) (5.12)
()
and
h h
/ VrnZE Vrng + wZ§ o dI"(t) = (gh. @) r2rnay. Yo € Ya() (5.13)

IT'h(t)

with unique solutions Z¢ € H'(I'(¢)) and Z;‘:h € Yu(t). The solution operators S(¢)
LX(I'(t)) — L*(I'(t)), g v Z& and Sy(t) : L2t (1)) — Y, C L2(I(0)), gn > Z3"
are self-adjoint. There exists C independent of ¢ € [0, T'] such that

L Ve € i)t 110 g1y = 1013, 0 < CH216" 121 ey < 00 as well as

2. 10" Sk OO = SOl ewzrep,c2ray < Ch? and

310" SO0 = SOllewzronuiaray < Ch

Proof. The operators being well-defined and self-adjoint follows by standard arguments. Assertion

1. follows from Lemma 5.6[2.], since gol is continuous and piecewise smooth on I"(¢) and thus lies
in H1(I"(¢)) with

| Wreirarto = [ 19rePar@ + [ vre! (&) -10) Vrg aro),
i) r@) )

for details see, for example, [3, Lemma 5.2] and proof.

For a proof of 2. and 3. see [8, Theorem 8] and the discussion of (-); and (-)l* preceding
Lemma 4 in aforementioned article. The fact that C does not depend on ¢ is a consequence of
Assumption 2.1 and 5.1. O

THEOREM 5.12 Let Assumption 2.1, 5.1 and 5.2 hold and let y € W solve (5.6) for some f €
Lz2(1‘)’ yo € H'(I}), such that (3.10) holds. Let y, solve (5.7) with A = p; and f, = f; and

some approximation y(’)’ of (y9);. There exists C > 0 independent of y and /4 such that
I3 =3l3, < C (IO = 1Oy + 1 (150131 ) + 15615, 0 + ||f||§iz(m)).

Proof. Define z = S(t) (v} — ) and z;, = Si(t) (8s (yu — y1)) with S(z) and Sy(¢) as in
Lemma 5.11. Now &5 (yp, — y1) = (-)l* (y;l - y) and hence it follows from Lemma 5.11 [2.] that

*
Iz}, = zllz2 ey = IO SKO =)0k = llzray < CR2 v, = Ylzaray . (5.14)
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Observe now for z;, = Z:nzhl Z;p; using Lemma 5.10 we get
Y ={(v, — .0 r2raptity € H'([0, T)™ , and thus 2 = (4;)7'Y € H'([0, T))™" .

Hence Z € H}I,h and again by Lemma 5.10 z, € W as well as z} (1) € L2(I'(1)).
We can now test (5.6) with z;l, using (5.12) in the process, to obtain

d I I ) I
a(y7zh)L2(F(t)) + (0vh = My = ) 2aay + 2 aey

+{(—=Ary + uy,z — Z;I)LZ(F(t)) , (5.15)
and testing (5.7) with z;, gives

d

E(yh»zh)L%Fh(t)) + heYh = Vr2ray = Enovndaaney + iz 2aney - (5:16)

Now, since the strong material derivative Sh exists and is continuous on each triangle T,f (1), the
scalar products (@i, ©;0n) 2(rn@y)> | < i, ] < my, are differentiable with

d . .
a(‘ﬂi,¢j8h)L2(1‘h(t)) = / Snpigj div pn Vi, + Sppi; dI (1)
rh)
and we have
d ; d
a(yh’zh)u(r(z)) = a(yh,zhfgh)u(rh(z))
d , .
= a(J’h,Zh>L2(rh(z)) + (Vns Z08n — D) 2(rnqyy + (Vhs 208n) 2(rn o)

+ (Vns 20 n — D) r2(rnqyy + (Vhs 20 div pn Vi (n — D) p2(rney)-
Hence, we can rewrite (5.16) by means of the L2(I"(t))

d
dr

with

(y;lzv Zfz)LZ(F(z)) + (Y;z yll’l - Y)LZ(r(z)) = ((Zh)lv yilz>L2(F(t)) +(f. Zfz)LZ(F(z)) +RY,(5.17)

R" = (yi, zu8n) 2(rngeyy + Oh 20 Bh = D) L2y + e 20 div pn Vi8n — D) 2rngey)
+ (1, 20 (1 = 8n)) L2(rh o) -

Subtracting (5.15) from (5.17) yields

d

I 1 1
a()’h =Y Zp)aaray + Ivh — Y||iz(p(t))
= (G = 2. V) 2@y + e Oh = YOSR) L2 (1)

+ RY + (=Ary + wy.zh — 2 2cray
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From (5.13) we know (2. 8, (yi — YD) 12(rh(ry) = ZpArZn = % 5 (ZnAaZn) — 3Zn A} (1)Zp, in the
notation of (5.8). Now, using (5.14) and

|R") < CR2||znll L2 rniy (I9nll2crnay + 13nlL2onyy + 1fillL2arnay)
we can estimate
1d _ _
EE(ZhA)L(I)Zh) + ”y}{, - y”iZ(['(t))

< C(R Iy l2ceap IV rnayzall Lz crn@yn=1
h
+ ||Zh||§zh(z) + h2||y||H2(F(t))||yh —yillL2crnay) + 1R

1 R i _
< E”yh - yl”LZ(['h(t)) + C(ZhA)L(t)Zh
+ h4(||yh”22(ph(,)) + ”J}h”iZ(ph(t)) + ”fl ”22(['/1([)) + ”y”%{z(p(t))))-

We can now apply Gronwall’s lemma for

Er s (02T + / 178 = Y122y

0,7
[0.71 (5.18)
<Ch* [ vl + 1l + 14117 + 17 d
= L2(Ih(2)) L2(Th(2)) L2(Th(2)) H2(L(®)
[0,T]
and with the stability estimate (3.10) and the Lemmas 5.9 and 5.7 we finally arrive at
=(YZ(0)—Y(0),Zh)L2(1-O)
2
I 2 2 g
— dr SC(/(V hZh) + Az drl
/ ”yh y”]}(r(,)) ry h 0 (5.19)
[0.7] e
h
+ B4 (1yol21 gy + 1VE13, @ + ||f||§i2m)) .
Apply again (5.14) to prove the lemma. O

REMARK 5.13 Depending on the regularity of yg, possible choices of y(’)’ yielding O (h?)-
convergence of y,ll comprehend the piecewise interpolation of (yg); and the L2(Ip)-orthogonal
projection of (y¢); onto Y3 (0). For the latter, the term involving z; in (5.19) vanishes completely,
but it’s H ! (Ip)-stability requires further investigation.

The order of convergence is lower, if the solution of (5.6) does not satisfy the additional
regularity estimate (3.10).

THEOREM 5.14 Let Assumption 2.1, 5.1 and 5.2 hold and let y € W solve (5.6) for f = 0, and
Yo € L%(I). There exists C > 0 independent of y and % such that for the solution y;, of (5.7) with
yi = Pl ((y0)1) and f; = 0 there holds

lyp = vI2 < C(H*+ sup A —plfo 1oll? 2y -
L35 ( rel0.7] L (F(t))) L2(Ip)



PARABOLIC OPTIMAL CONTROL PROBLEMS ON EVOLVING SURFACES 159

Proof. We proceed as in the proof of Theorem 5.12 up to (5.15) which now reads

d I I
EO}’ Z 2@y s Yh = Y L2araey)

) I
= (0. V) 2r@y) T (—Ary + 1.2 — 2 H-1(ra) HI(F@)) -
Analogously to (5.14) we can apply Lemma 5.11[3.] and estimate the last term through
(=Ary+2y.zh — 2 g—1rap.arranl < 1= Ary + 2 a-1rapllzh — 2l (ray
<= Ary + A la-1rayChllyh = Yl2rey-
On the other hand (5.17) becomes

d ; I N h
a(yhszh)lﬂ(r(t)) + Vs Y = Y2y = (CGn)'s yudr2rey) + (e =) Yhs Zn) L2(rneyy + R

Continue as in the proof of Theorem 5.12 to finally arrive at the analogue of (5.18)

Erdn (0T + /’nyi——yuiqrondr

[0,T1]
<CHh*+ sup A = plioocray) / IynlZ2 gy 4
t€l0,7T]
[0,7]
2 2 2 . 2
+Ch / ||Y||Hl(p(z)) + ”yh”LZ(Fh(t)) ds.
[0,T]

Note that due to Lemma 5.6

=0 since y(})' =P(§' (o)1)

126(0) 44 (0025 (0)] = |(y,0) = y(0). 24) L2y | < [(¥4(0) = y1(0). 28} 2y | +C 12 0ll7 1y -

In view of Lemma 5.9 it remains to bound fOT h2|| |l
have

iZ(Fh(z))dt' Again thanks to Lemma 5.9 we

T
.12 hy2
[ U oy < 1R, -

But an inverse estimate, compare for example [2, Theorem 17.2], yields || y6’|| H\(I) <

% IIy(’} I L2(rly and because of the continuity of the lift (-); and of the L2-projection P(f’ the theorem
follows. (]

6. Implicit Euler discretization

In order to solve (3.8) we apply a vertical method of lines. The time discretization is carried out

by discontinuous Galerkin — implicit Euler discretization in Liz iy’ For N € N, consider an
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equidistant partition I, = (t,—1,t,] of (0,T] with1 <n < N,k = % and t, = kn. The trial

space for the discontinuous Galerkin method (DGM) is the space of ‘piecewise constant’ functions
th = {v € LiZ(Fh) Vi<n<N: W' eYty): v= ¢§n5hv" on In} .

Note that in the following we will omit the operators ¢; , when dealing with functions w € th.

Also, to further simplify notation let a(;¥,¢) = [ Vpa¥ - Vg + AYg dr(r) as well as
()
(s hn = () L2(rn e,y - W-l.0.g. we temporarily assume

inf Aly,t) > M + 2, 6.1)
tel0,T],yel(¢)

with M = suptE[O’T] || div Th(r) Vh”Loo(['h (¥) such that

alt; ¢, @) — M”(p”iZ(ph(t)) = ”@”%h(t) + ”90”22([%(,))

forallt € [0,T],h > 0andall ¢ € Yy(¢).

To motivate the DGM insert the Ansatz y,’f (1) = Zflvzl d’;,,,h (y"1r,) € th with y" € Yy (¢,)
into (5.7). If one understands the time-derivative in (5.7) in a distributional sense, the material
derivative of y}’f becomes y}’f = Z,Ilvzl(y” — y"™1§,, , and integration over time formally yields

"=y @) +/a(t;y”,so) + (" div pn Vi, @) p2crngyy dt = /(fha(P>L2(Fh(z)) dr,
I Iy

for smooth test functions ¢. In order to arrive at a scheme that is symmetric with respect to test and

ansatz space, we instead apply test functions ¢ € th. At the discontinuities we set §;,_, ¢ = ¢".

Let it again be said that the above procedure is only a formal motivation for the shape of the method.
Using y" = ¢" = 0 one obtains

/(y” div rn Vi, @) p2crngy dt = (0", 0" )n — (3" 0" )n—1.
I

Finally, to arrive at a computable scheme, lump the Integral over a(z, -, ) and replace the right-hand

side appropriately. For arbitrary parameters yé’ € Yy(0) and fy € Liz (rny We rewrite the scheme
as

50" = (VL 0" + kan(3F, 9" = /(¢ﬁj’hfh,<p")ndz, (6.2)
I

where yé’, Jfn, and A are the same as in (5.7). For the approximation of the integral a,, we assume
a, (¥, 9) = a(ty; ¢Zlh v, ¢Z’hg0) + v, (¥, ), with a remainder

[tn (¥, )| < Ck 1Yy, a2y, @) - (6.3)
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One possible choice is t, = 0 for 1 < n < N, but when it comes to approximating an adjoint
equation such as (4.3) we will want to choose v more freely. In order to proof convergence of the

scheme (6.2) in leﬂ iy We make use of stability properties of the adjoint scheme
zév+1:zT, Vgoeth, 1<n<N:
(0. @")n — (22 ") + kan (" 2) = / (@ gn g ndr. 6D
I
with gj, € Li2(rh)’ zr € Yu(T). In Section 7 it will be important that given snapshots {Fh(t,,)},’l\’:1

of the surface (6.2) and (6.4) can be evaluated exactly for certain right-hand sides f; and g, e.g.

gn € th. Let us introduce the mean value of a function y € Liz (rhy OVer an interval I,.

DEFINITION 6.1 Let ¢y, denote the pullback operator associated to the flow @7, as in Lemma 3.2

and let s € [0, T']. The mean value of a function y € Li2(rh) is defined as y"(s) = %If ¢f’hy dt

fort € I,. Because
/¢f,hy dr = /¢:,h¢tr,hy dr = ¢f,h/¢,r,hy dr,
Iy I, 1,

———
yn(r)

y™ does not depend on s € [0, T].

Similarly one could define the mean value of y € Wr if one were to investigate a horizontal
method-of-lines approach.
Now for yo = 0, zr = 0 the schemes are adjoint in the sense

N N
kY (i zg)n =k Y (&R yr)n
n=1 n=1

i.e. the discrete solution operators f, +— yy and g, + zg are adjoint as operators from

(L7, (ry: - dne) into itself, where L7, () is equipped with the scalar product
N
(g =k - [ (@00 @ ar. 6.5)
n=11n

LEMMA 6.2 Let || - ||, denote the norm induced by (-, ) x. The norms || - ||L22
L2(
L

and ||+ ||k on
rhy

are equivalent and there holds

(f &)k — ([ 8)

Proof. The result follows from the identity

|/ fedrh =3 | | @nnenes,,artoa.

[0.T] I (1) "=, rh)

2
L2(rh)
| < Ck|(f.g).2

L2(rh)

.

2
LLZ(NL)

and J/" being Lipschitz with Jt’: L= L O
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Note also that for z € th, since 2" = 0 on [,, we can apply the mean value theorem to obtain
forsomet € I,

[Iz" ”iZ(Fh(t)) =" ||ﬁ| = k|{(z" div Fh(@n)Vh,Zn>L2(Fh(@,,))| < Mk|z" ”iZ(Fh(@n)) (6.6)
with ®,, € (¢,t,). Apply (6.6) to itself to obtain for some O, € (O, ty)

27122y = 127121 < ME(113 4+ (1212 2o,y — 12712))
< MK(I2" 12 + MKIZ"12, g, )

6.7)

A similar continuity assertion holds for the Y} (¢)-norm, as shows the following lemma.

LEMMA 6.3 Let y,z € H} | Ae C(I'(s) x[0,T]),and A = ¢* hi' There exists C > 0 such that
h 5
forevery s € I,

/Ia(s;cﬁf,hy,qﬁf,hZ)dt—/I a(z; y, z)dt

SCk[Hﬁﬁanwhﬂnmw,

ie. forz € th we have

ka(s; y™,z") — / a(t; y, z)de

Iy

ka[nwﬁwn@mwnmm.

In particular with A = 1 the estimates hold for a(¢; ¢, ) = ||¢ ||§h o

Proof. We abbreviate A(s, 1) = D i @S, (D pagy®s ;)T J£,. Since 2 = 0 we have

‘/I a(s;q&fjhy,qﬁfjhz)dt—/l a(t;y,z)dt‘

= ‘ /, / Vends v (A(s.s) = A(s. 1)) Vi yz + A,y (IS, — IS8z dl (s)de |
" ris)

The lemma follows from the fact that @7, it linear on each T}f (s) and globally Lipschitz in time, as
by Lemma 5.4. o

Let us formulate a crucial stability assertion for the adjoint scheme (6.4).

LEMMA 64 Letz € th solve (6.4) with right-hand side g € Li2(1“h) and final state zr = 0. For

sufficiently small k£ > 0 there exists C > 0, depending only on I”, such that

N N
1
max a(t,;z",z") + - E ||zn+1 _Zn||’21 +k E ”Zn'lill(F(InD < C||g||i,k'
n=1

1<n<N
n=1
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Proof. Apply (6.4) to z" to obtain

(" = 2"t 2N, +ka, (2, 2" = /(q};:’hg,zn)n dr .

Iy

This leads to

(12712 + 12" = 2712 = 1271 2) + kan (", 2") = / (91,8, 2" )n di
I,

1 2 kM
< [ 18858 zrnn @127 < 5o ([ 188lhar)” + 0712,

| =

Summing up and using (6.7) gives us

N
1 1 1
0 (G = 2 = ME (L4 oy ME) 217 + ko (" =) < Slgl
n=1
: 1
such that for 0 < k < min (CLz(ph,Mz’ Z_Q)

a ny2 a n _n n _n CLZ(Fh)Mk ny2
> 1"y <k D (00322 + ("2 = (14 —HE=) M2 )
n=1 n=1

1
< m”g”i,k- (6.8)

k
2

Now we test (6.4) with z" — z"+1 to get

k
n _Zn+1||% (an(z Z") +a, (Zn+1 Zn’Zn+1 n) —ay ( n+1 n+1))

2
1
— [tz == e < 5 / I8l de) " + Sl = "

Iy

Iz

Summing up and using Lemma 6.3 on a as well as the estimate (6.3) on t we arrive at

k 1Y
Ea(lm,Zm,Zm) + 5 Z <||ZnJrl —Zn”%)

N

1 k
S Ekllglli,k +t5 > altwriz" ") — altn: 2", 2") + taor (2. 2") =t (2", 2")

n=m+1

N
1 k
< K18+ 5 D k(I B + 12" B )
n=m+1

Combine with (6.8) to arrive at the lemma. O
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The following Lemma shows, that it is sufficient to estimate the approximation error at the points
t,, 1 < n < N to prove convergence in LiZ(Fh)‘

LEMMA 6.5 Letr € H!([0,T], V), V a separable Hilbert space, then there holds for t € I,
Ilr =r@l2aw,vy <kl 2q,.v) -
In our situation this implies for r € H ;h that

2. and [ [|r(r) — 7| dr < Ck2 [ |17 dr.
I Iy

2 2
L2(Ih(1)) L2(I'h(1))

H'([0,T1,V
Proof. For the fist assertion approximate r by r; € 9([0,T], V) such that r; ([—>] ) r as

i — oo. Use
t
/ r{(@)d@

2 1

dt) >

1
s(/kﬁwﬁwwiwdgzsmmh%%m,

n

14

I~ r@lzzan = ( [ |
Iy

and the fact that r € C([0,T], V'), compare [17, Theorem 3.1]. Hence the first part of the lemma
follows by passing to the limit.
In our situation this implies, since ¢; ,r(7) € H'([0,T], Yn(2))

2 1
/1
L2(I' () k/
In

’ h .
<k [ 107 O) Bagrngon @t < KCE [ 1 agpuy
Iy I,

2
dr
L2(Ih(2)

brar (1) = (D)

17 = s ey = | [ #iwr @ = rorar
In

This proves 1., in order to get 2. integrate over [,. O
We are now prepared to prove the main result of this section.

THEOREM 6.6 Let f € Lz2(r)’ and let y, and yp « solve (5.7) and (6.2), respectively, with y(’)’ €
L2(F0h) and f = f;. There exists a constant C > 0 independent of &,k > 0 and of f and yé’ such

that

- 2
l ya yh,k”LLz(r ,

< ’ h
< Ck(”yh”Liz(r ) + ”f”Liz(m + llyo ||L2(F({1))‘

y

Proof. The proof is inspired by [23, Theorem 5.2], compare also [26, Theorem 1.2.5] and [20,
Theorem 5.1]. Test (5.7) with ¢§n »®> ¢ € Yy and integrate over I, to obtain

(Yr(tn)s @)n — (Yn(th—1), @In—1 + / a(t; yp, ) dt = /(flv@)LZ(Fh(t))dl- (6.9)
[0,T] [0,T]
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Solve the adjoint equation (6.4) for z with both right-hand side and test function ¢ = g =
N _
Zn=1(y;,l - y]'«ll,k)lln

/ 17h = v glmde = (2" = 2"FL 51— yi e + kan (G — yj g 2™ (6.10)
Iy

Subtract (6.9) from (6.2). Tested with z this yields

Vi =Y ). 2" — (Vi = Ynltn=1). 2" Vno1 + kan (V)i — 5. 2")

=/a(t;yh,Z")dt—kan(yZ,Z")+k(ﬁ”,Z”)n—/(ﬁ,z”)Lz(Fh(t))dt
I Iy

Let y, = Zflvzl yp1z,. Add (6.10) and sum up over I < n < N to get

L2(rh

N
(fl’z)h,k_(flvz>L2 )+ Z/||)7h_yh,k”5dt +/a(t,yh,zn)dt—ka(tn,);Z,Zn)
n=11n

Iy

N
= " [k 2" + G5 = va ), 20 = O35 = Ylt—1), 2"t = 5L 57 = V|

S
—_

N
= (e = ). 2V N = (e = ya(te). 2o + Y kea (g 2")

n=1
+ (Fp = yn(tn). 2" — 2",
N
= Y ke (h2") + (= yata), 2" = 2" )
n=1

and finally, bringing to bear everything we have, i.e. the estimates from Lemma 6.3 for a, from
Lemma 6.2 for the L2-norms, and the bound on t from (6.3), we arrive at

N N 1 XN 1
— — 2 2
> [ 1n = ynaliiar < (k Y057 = e 12) (3 Sol2" =1 2)
n=1 n=1

n=11n
N N2 N 1
+ C(k > ( / 2% 17,y ) ) (312" 0n)” + CHRI AUz, N2,
ne1 i el L=(I") L=(I")
<Clzlpx

Hence using Lemma 6.4 on z we can divide by ||yx» — yi kllnk. The Lemmas 6.2 and 6.3 allow
us to estimate the involved norms, and because of the stability of the space discretization, compare
Lemma 5.9, we can estimate the Y} (¢)-term, to finally arrive at

N 1
o — < (k17— 2)” +k +kyt . (611
10 = vnelz, ( 2:,: 17 — yn(ll 1£1le2, .+ FI36 gy |- ©10)
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We now apply Lemma 6.5[2.] to the error ex = y, x — yp and the averaged error ex = yp x — Vi
and sum up to obtain |ex — k||, 2 < Ckllynll2 . Combine with (6.11) and 6.5[1.] to
L2(rh) L2(rh)

estimate
e 2 < Ckly 2 + |le 2
lecllz, |, < Claliz, | +Neliz,

< Y h )
<Ch(Iinlez, , + 1702, |+ 158 lacry):
O

With view of the stability assertions from (3.10) and Lemma 5.9 and together with Theorem
5.12 we get the following Corollary.

COROLLARY 6.7 In the situation of Theorem 6.6 let in addition A = p; and yo € HZ?(Ip), and
choose y(’)’ as the piecewise linear interpolation of (y¢);. There exists a constant C > 0 independent
of h,k > 0 and of f and yq such that

1 2
i = vliz, < CO + (ol azy + 1/ 12z, )-

As addressed in Remark 5.13, it should be possible to relax the condition on yg into yo €
H'(I) using the L2(I)-projection or the L2(I')')-projection Pl
But even in the case of low regularity we still get a uniform estimate.

COROLLARY 6.8 In the situation of Theorem 6.6 let only yo € L?(Ip) hold while f = 0. Let
further yé’ = P(f’ ((y0)1)- There exists a constant C > 0 independent of /2, k > 0 and of yq such that

k

I9hie=¥liz, < C(h+ sup A" =iy + 7 )15l -

L2(I) t€f0,T]

Proof. Regarding Theorem 5.14 and 6.6 it remains to bound ||y || L2, - Like in the proof of
L= )

Theorem 5.14, using Lemma 5.9 and an inverse estimate, we arrive at the desired estimate. O

In particular, for ¥ > 0, choose k = «h? and A such that SUP; [0, 7] [Af — wllLeor@y < Chto
get an O(h)-convergent scheme.

REMARK 6.9 Note that our freedom in the choice of r now allows us to finally drop the conditions
on A and u, respectively, in (5.6), (5.7), and (6.1). Let us assume we want to approximate the

solution y of (5.6) with u = 0, yo € H'(I'(0)), and f € leﬂ(r)' Now yjx € W solves

yg’kzyé’, V‘/’Eth, l<n<N:

Y o®hn — it @)ne + k/ VrnanVhk  Vrne® AT ) = k(f . ¢)n .
I'ht,)
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W ypma = SN e~Hn v 1, € Wk A > 0solves
yg,k,x = y(’)’, Yo € th, 1<n<N:
Vihxea®n — h e @1 +k / Vrna)Yhia Vree)® + AVh i drh(e,)
rh(t,)
+kea(Vp 20 ®)
= k(e £ o).
with
kta (Y. 9) = (e — 1= 2k) (. @)n + k(e** = 1) / VennV - Vi@ Al (i) .
I (ty)

Taking into account that |e™*! (1) — Z,Ilv:l e~y f(t)] 2 < k| fll,2. . we apply
L2(I) L2(I)

Corollary 6.7 to yj m, and conclude ||y;l = yIILz2 < CerT(h? + k).
’ L4(I)

7. Variational discretization

We now return to problem (P ) which has the advantage over (IP7), that its adjoint equation satisfies
the regularity estimate (3.10). For (P7) this is not the case iff y7 € L>(I'(T)) \ H'(I'(T)). In the
spirit of [12], let us approximate (Py) by

: — 1y ch 2 2
(PZ) mmMELiz(ph) O(u) := 5”5,1(”) — (Yah ”h,k + %”””h,k
st.a<u<bh,
with {T""()};¢[0.7] as in Section 5 and S;’ : (Li2(rh)’ (k) — (Li2(rh)’ (o Vnk)s Jo =

yy is defined through the scheme 6.2 with A = 0 and y# = 0. We choose the scalar product
(-, "),k defined in (6.5) in order to obtain a computable scheme to evaluate .S h* namely (6.4) with
zN+1 = 0. Given snapshots {I"" (tn)}N_,, the product (-, ) x can be evaluated exactly for functions
on € th as well as for Py, p1(¢n).

L
condition for an optimum uy, of (]P’Z) is

Let U,d’(’i = {v € LZZ(M) la<v< b}. As in (4.2) the first order necessary optimality

*
(cup + SB(Shup — (ya)). v —up)nk =0, Vv € Uyg. (7.1)

First note that as in the continuous case the (-, -}, -orthogonal projection onto U:(’i coincides with
the point-wise projection P, 4](v). Similar to 4.4 we get

1 .
up = P[a,bl(— Epfé(u)), phau) =S8 (Shi— (va)). (1.2)

Equation (7.2) is amenable to a semi-smooth Newton method that, while still being implementable,

operates entirely in Liz iy’ The implementation requires one to resolve the boundary between the
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inactive set &y (tn) = {y € I'(ta) | @ < =1 p"(u)[y] < b} and the active set @y (t,) = I'"(tn) \

o
&, (ty) for 1 < n < N. For details on the implementation see [14] and [15]. Note that in order

to implement S é’ and S fi’* according to (6.2) and (6.4) for right-hand sides in th, again one only
needs to know the snapshots {I” h(tn)}flvzo. The solution of (]P’Z) converges towards that of (P;) and
the order of convergence is optimal in the sense that it is given by the order of convergence of S 5‘
and S

d

THEOREM 7.1 (Order of Convergence for (]P’Z)) Letu € L?ﬂ(r)’ up € Liz(rh) be the solutions of

(Pg) and (]P’Z), respectively. Let C > 1. Then for sufficiently small &, k > 0 there holds

l 2 1 2
sal—ulz, +h-yl

< C(AO'SE O =)0 =0 =)+ 1O SFO= Sl ).

with y = Sgu and y, = S;‘uh.

Proof. Let PU{& (-) denote the (-, -}, x-orthogonal projection onto U:(li- We have

1 1 1
u = P[a,b](_ &Pd(”))l = P[a,b]<_ &pd(u)z) =Pyn (—&Pd(u)l) :

Since up,u; € U,(f(’i we can plug uj into the variational inequality for PUhd (-) and u; into the
a
optimality condition (7.1)

1
(‘Epd(”)l —upup —up)pk <0, {oup 4+ phiun), ur —uphni = 0.

From here the proof is a standard task, compare [13, Theorem 3.4] and [14]. O

For the problem

min ;2 O®) := L||Sh(u) — 2 + 2 ul?
uELL2(1"h) ( ) 2” T( ) (yT)l”LZ(Fh(T)) 2” ”LiZ(rh)

(P})
st.a<u<b,

one can prove a similar result. Here the operator S? is the map f; — yy(T), according to the
scheme (6.2) with A = 0.

THEOREM 7.2 (Order of Convergence for (]P’}})) Letu € L?ﬂ(r)’ up € LiZ(Fh) be the solutions

of (Pr) and (]P’}}), respectively. Let C > 1. Then for sufficiently small /2, k > 0 there holds

el ~ulls, + k=i

< C(Z(((.)lsgi*(,)l —S7)(y —yr)u— Mé’)"?}(m + H((.)lsé’,(.)l - ST)uHiz(r(T)))’

with y = S7u and y;, = S%uh.
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Now as to the convergence of ((-)ZS‘};*(-)I - S;), note that taking the adjoint does not

commute with the discretization. Indeed, apply the scheme (6.2) to the adjoint equation (4.3), i.e.
A = —(div p¢,) V)i to get

Mt =0, Voew! 1<n<N:

[0 olndt = (251~ 200

In
+ k / VFh(zn)‘vah(z,,)ZZ - ( div F(tn)V)lql)Zn th(ln) + /((,0 div @) Vh,Zn)L2(Fh(t)) dr s
I (ty) In
instead of (6.4).

In the situation of (]P’Z) however, this discrepancy can be remedied by Lemma 5.7 which implies

* l * 2
[[OTRNO ”,Q(Li L25 )’ 1) = () ||£(Li L2500 < Ch*,

2L 2(rhy

and due to Lemma 6.2 which allows us to conclude

1010 g ez @20 ey S CORHR), (1.3)

1 *
2 ) ) — U 2
2(1")’(LL2(1‘/1)’("')}”/‘)) ”() () ”£(LL2(1"/1)’ L2arhy’

if we interpret (-);, (-)! as operators into or on (LiZ(Fh)’ (*,*)n.k), respectively.

Hence we get the estimate

[O'sE o= s;

<[ = mst o] + [orst o o] + |orsi o -3
< C(k + h?),

Lx(ry
As opposed to problem (IE”Z), in the case of (Pr) it is easier to proof the convergence of S;’,*
than that of S ;i itself. In the sense of (6.2), consider the discretization of the adjoint operator S

in the £(L? L7, (r)-Operator norm.

*
St LP(IMT)) 3 21 > 2 € W C (Lo s k)

according to the primal scheme after the time-transform ¢’ = T — ¢
ZN+1 =zr, V(peth, 1<n<N:

(2", " — (2" ") + k / V)2 " Vene)@" + div pug,)Vaz"¢" ar',) = o.

T (ty)

Corollary 6.8 applies an yields ||(-)IS;5*(-)1 — S;HQ(LZ(F(T))’Liz(p)) <Ch+ %).

Now in addition to (7.3) we have just like in the time-dependent case

l*
1) = O Newarey.c2arnayy) < Ch?,
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time=0.22 time=0.44 time=0.66 time=1 0.5

-05
FIG. 1. Selected time snapshots of % computed for Example 8.1 on the Sphere after 4 refinements
compare [3, Lemma 5.1]. We conclude
| oh** k
'S -I—STH <Ch+ ).
H() r 0 £(L2, L2 (D)) ( h)
Hence, the operator S} = S#M : (Liz(ﬂl), (k) — L2(I'"(T))) is a discretization of St.
Also, the mapping S;ﬁ s up = Yn i (T) is implemented by the scheme
0 _ h .
y'=0, VoeW' 1<n<N:
N P SN ™
+k / Vrh(z,,)ynvrh(tn)fﬂ" + (div Fh(t,,)Vh)lyn<Pn d[‘h(;n) = k(uy, 0" )n,
Th(tn)

as shows summationover 1 <n < N.

If y7 is more regular, such as y7 € H'(I'(T)), then one might want to apply results from [5]
that state h2-convergence of the discretization S, yet not in the L(L7, ) L*(I'(T)))-norm. In
order to to so, it remains to ensure the regularity assumptions of [5, Theorem 4.4] to be met by the
optimal control u.

8. Example

Provided the results from [11] and [25] hold on surfaces, Equation (7.2) is semi-smooth due to the
smoothing properties of S*, i.e. the stability ensured by Lemma 6.4. The lemma a priori holds only

in the case A = 1, but can be extended for arbitrary A, u by rescaling, see Remark 6.9. By Lemma

6.4 the operator ¢fh S;,’* continuously maps (Liz(rh), (*,*Yn k) into

L>([0. T], Yi(s)) C LP([o, 71, LP(Fh(s))) ~ L2([0.T] x ' (s))
for every 2 < p < oo. This would imply semi-smoothness of the operator

Pan( = 200 (Ph(#L40))) L0 T x PHGs)) — 120, 7] x THs)),

compare [25], and thus of equation (7.2).
We implemented a semi-smooth Newton Algorithm for (7.2), along the lines of [15].
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TABLE 1. L2-error, L -error and the corresponding EOCs for Example 8.1

4.13e-02 2.45 5.32e-01 0.86
2.60e-02 1.78 3.78e-01 1.79
1.24e-02 221 1.82e-01 1.97

1.72e-03 2.03 2.80e-02 1.99
7.92e-04 2.02 1.31e-02 1.97

ERR;> EOCp> ERRx EOCe R ERR;> EOC;» ERRxw EOCx
1.68¢-01  —  87le-01  — 5 67803 215 10801 201
540002  — 78801  — 6 31503 209  50le02 197
7
8

PN —o| R

EXAMPLE 8.1 (High Regularity) Consider problem (Py) witha = 1,a = —%, b= %, T =1, and

sin2mwt)

Iy C R3 the unit sphere. Let I'(t) = @4 Iy with &) (x, y,z) = (x,y,z/p(t))T andp(t) = e 2
In coordinates (x, y,z) of R3 let it = P[_%’%](z sin(2rt)) and yg = yg + Squ with

. T sin(2mt) p? ) , p*=pt
Yd :—O{((ESIH(znl)—27I)COS(27TI)+m( +1—-z m) z.

Then u solves (Py).

In order to compute the solution uy, of (]P’Z) we construct triangulations of Iy from our macro-
triangulation Ry, i.e. the cube whose nodes reside on Iy triangulated into 12 rectangular triangles.
We generate R;; from R; through longest edge refinement followed by projecting the inserted
vertices onto [.

Table | shows the relative error in the L?

1 oo
12(rmy~norm and the relative L°-error

&7, (U —up)|| oo h
ERR, — l#7 4 | oo [0, 71x 1 (5))

’

67 ptt1llLoo o, T1x 17 (5))
as well as the corresponding experimental orders of convergence
ERR; H; \—1
( In ) ,
ERR;_4 Hi_4

EOC, =1In

where H denotes the maximal edge length of I/, see Table 2. Throughout this section we chose
q = 2 forboth EOCy2 and EOCpeo, and the time step length is k = %Hz.

Figure | shows the solution of (]P’Z) at different points in time. Note that the white line marks the
border between active and inactive sets. On the active parts, the optimal control assumes the value
a or b, respectively.

Let us conclude with an example for (]P”;) with a desired state yr that just barely lies in
L?(I(T)). In this situation we can only expect O (/)-convergence. We consider the unconstrained
problem

EXAMPLE 8.2 (Low Regularity) Consider problem (Pr) withoe = 1,a = —oc0,b =00, T =1

and I"(¢) as in Example 8.1. Let yr = G0

Since we do not know the exact solution of Example 8.2, we estimate the relative error by

ERR;2 ~ ||L_££ —Uital2 [itiv2|l ;2 , where u; denotes the solution of (]P”}) on the
L2(ri+2) L2(ri+2)
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TABLE2. L2-error and the corresponding EOC for Example 8.2. H is the maximal edge length of I Oh (both examples).

R 1 2 3 4 5 6 7 8 9

ERR;> 0.1899 0.1444  0.1140  0.0701 0.0484  0.0306  0.0215 0.0147 0.0104

EOC;»

- - 1.2414 1.3272 1.3709 1.2617 1.2030 1.0781 1.0520
H 1.1547 09194  0.7654  0.5333  0.4099  0.2769  0.2085 0.1398  0.1047

i-th refinement {I" ()}refo,m7 of {I7(t)} 10,17 The lift (-)! is taken perpendicular to the smooth
surface I"(t). Table 2 shows the estimated L2-errors and corresponding EOCs. We computed
the L2(I""(T))-projection P# yr,; analytically. Otherwise the error introduced by the numerical
integration of the non-smooth function y7 would be dominant. It helps that all our triangulations
resolve the plane {x + y = 0}.
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