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Parabolic optimal control problems on evolving surfaces subject to point-wise
box constraints on the control – theory and numerical realization
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We consider control-constrained linear-quadratic optimal control problems on evolving hypersur-
faces in R

nC1. In order to formulate well-posed problems, we prove existence and uniqueness of
weak solutions for the state equation, in the sense of vector-valued distributions. We then carry out
and prove convergence of the variational discretization of a distributed optimal control problem. In
the process, we investigate the convergence of a fully discrete approximation of the state equation,
and obtain optimal orders of convergence under weak regularity assumptions. We conclude with a
numerical example.
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1. Introduction

We investigate parabolic optimal control problems on evolving material hypersurfaces in R
nC1.

Following [3], we consider a parabolic state equation in its weak form

d
dt

Z
� .t/

y ' d� .t/C
Z

� .t/

r� y � r� ' d� .t/ D
Z

� .t/

y P' d� .t/C
Z

� .t/

f ' d� .t/ ; (1.1)

where � D ˚
� .t/

�t2Œ0;T � is a family of C 2-smooth, compact n-dimensional surfaces in R
nC1,

evolving smoothly in time with velocity V . Further assume f sufficiently smooth and let P' D
@t' C V r' denote the material derivative of a smooth test function '.

We start by defining unique weak solutions for the state equation. The idea is to pull back the
problem onto a fixed domain, introducing distributional material derivatives in the sense of [17]
and a W.0; T /-like solution space. As a consequence, a large part of the theory developed around
W.0; T / for fixed domains applies, compare for example [17] and [16] .

An alternative approach to prove existence of weak solutions along the lines of [18] is taken
in [22], that entirely avoids the notion of vector-valued distributions.

Recent works also deal with the discretization of (1.1), both in space, compare [4], and time,
see [6] and [5].

In [4] order-optimal error bounds of type supt2Œ0;T � k�kL2.� .t// are derived for the discretization
of the state equation, assuming a slightly higher regularity of the state than is used in Section 5 and 6,

where we derive
�R T

0
k � k2

L2.� .t//
dt
� 1

2

-like bounds. A class of Runge-Kutta methods to tackle the
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space-discretized problem is investigated in [6], assuming among other things that one can evaluate
f in a point-wise fashion, i.e. that f .t/ 2 L2.� .t// is well defined. For a fully discrete approach
and the according error bounds see [5]. There a backwards Euler method is considered for time
discretization whose implementation resembles our discontinuous Galerkin approach in Section 6.
Yet while the approach in [5] ultimately leads to supt2Œ0;T � k � kL2.� .t//-convergence, we allow for
non-smooth controls and thus cannot expect to obtain such strong convergence estimates.

Basic facts on control constrained parabolic optimal control problems and their discretization
can be found for example in [24] and [21], respectively.

The paper is structured as follows. We begin with a very short introduction into the setting in
Section 2. In order to formulate well posed optimal control problems we first proof the existence
of an appropriate weak solution in Section 3, complementing the existence results from [3]. We
then use the the results from Section 3 in order to formulate control constrained optimal control
problems in section 4. Afterwards, we examine the space- and time-discretization of the state
equation in Sections 5 and 6, before returning to the optimal control problems in Section 7. There
we apply variational discretization in the sense of [12] to achieve fully implementable optimization
algorithms. We end the paper by giving a numerical example in Section 8.

2. Setting

Before we can properly formulate (1.1), let us introduce some basic tools and clarify what our
assumptions are regarding the family

˚
� .t/

�
t2Œ0;T �

.

ASSUMPTION 2.1 The hypersurface �0 D � .0/ � R
nC1 is C 2-smooth and compact (i.e. without

boundary). � evolves along a C 2-smooth velocity field V W R
nC1 � Œ0; T � ! R

nC1 with flow
N̊ W RnC1 � Œ0; T �2 ! R

nC1, such that its restriction ˚s
t . � / W � .s/ ! � .t/ is a diffeomorphism

for every s; t 2 Œ0; T �.
The assumption gives rise to a second representation of � .t/ and in particular implies � .t/ to

be orientable with a smooth unit normal field �.�; t/. As a consequence, the evolution of � can be
described as the level set of the signed distance function d such that

� .t/ D ˚
x 2 R

nC1 j d.x; t/ D 0
�
;

as well as jd.x; t/j D dist.x; � .t// and rd.x; t/ D �.x; t/ for x 2 � .t/. Further, we have d.�; t/ 2
C 2.Nr.t// for some tubular neighborhood Nr .t/ D ˚

x 2 R
nC1 j jd.x; t/j 6 r

�
of � .t/. Due to

the uniform boundedness of the curvature of � .t/ the radius r > 0 does not depend on t 2 Œ0; T �.
The domain of d is NT D S

t2Œ0;T � Nr.t/ � ftg which is a neighborhood of
S

t2Œ0;T � � .t/ � ftg in
R

nC2.
Using d we can define the projection

at W Nr .t/ ! � .t/; at .x/ D x � d.x; t/rd.x; t/; (2.1)

which allows us to extend any function � W � .t/ ! R to Nr.t/ by N�.x/ D �.at .x//. Hence we
can represent the surface gradient in global exterior coordinates r� .t/� D .I � �.�; t/�.�; t/T /r N�
as the euclidean projection of the gradient of N� onto the tangential space of � .t/. In the following
we will write r� instead of r� .t/, wherever it is clear which surface � .t/ the gradient relates to.

We are going to exploit existing results on vector-valued distributions, which we recall here for
completeness. In order to define weak derivatives consider D..0; T //, the space of real valued C1-
smooth functions with compact support in .0; T /. Fix s 2 Œ0; T �. Each y 2 L2..0; T /;H 1.� .s///
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defines a vector-valued distribution Ty W D..0; T // ! H 1.� .s// through the H 1.� .s//-valued
integral

R
Œ0;T �

y.t/'.t/ dt .

Its distributional derivative is said to lie in L2..0; T /;H�1.� .s/// if it can be represented by
w 2 L2..0; T /;H�1.� .s/// in the following sense

8' 2 D
�
.0; T /;H 1.� .s/

�
/ W

Z
Œ0;T �

hy.t/; ' 0.t/iL2.� .s// C hw.t/; '.t/iH �1.� .s//;H 1.� .s// dt D 0 ;

(2.2)
and we write y0 D w. Here and in the following, by H�1 we denote the representation of the dual
.H 1/� which arises from L2 � H 1 by completion.

Let us summarize the definition and some well known properties of the spaceW.0; T /, compare
[17, Ch. I, Theorems 3.1 and 2.1], [10, Ch. 5, Theorem 3], and [24, Theorem 3.10].

LEMMA 2.2 For s 2 Œ0; T �, the space

Ws.0; T / D ˚
v 2 L2..0; T /;H 1.� .s///

ˇ̌
v0 2 L2..0; T /;H�1.� .s///

�
with scalar product

R T

0 h�; �iH 1.� .s// C h.�/0; .�/0iH �1.� .s//dt is a Hilbert space.
1. Ws.0; T / is compactly embedded into C.Œ0; T �; L2.� .s///, the space of continuous L2-valued

functions.
2. Denote by D.Œ0; T �;H 1.� .s/// the space of C1-smooth H 1.� .s//-valued test functions on
Œ0; T �. The inclusion D.Œ0; T �;H 1.� .s/// � Ws.0; T / is dense.

3. For two functions v;w 2 Ws.0; T / the product hv.t/; w.t/iL2.� .s// is absolutely continuous
with respect to t 2 Œ0; T � and

d
dt

Z
� .s/

v.t/w.t/ d� .s/ D hv0; wiH �1.� .s//;H 1.� .s// C hv;w0iH 1.� .s//;H �1.� .s// ;

a.e. in .0; T /, and as a consequence there holds the formula of integration by partsZ
Œr;t �

hv0; wiH �1;H 1 d� D hv.t/; w.t/iL2.� .s// � hv.r/; w.r/iL2.� .s// �
Z

Œr;t �

hv;w0iH 1;H �1 d� :

3. Weak solutions

The scope of this section is to formulate appropriate function spaces and a related weak material
derivative, in order to prove the existence of unique weak solutions of (1.1) for quite weak right-hand
sides f .

We start by defining the strong material derivative for smooth functions f 2 C 1.RnC1 � Œ0; T �/,
namely the derivative

Pf .x; t/ D d
ds

ˇ̌̌
sDt
f . N̊ t

s .x/; s/ D rf .x; t/V .x; t/ C @tf .x; t/; (3.1)

along trajectories of the velocity field V . The material derivative has the following properties.
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LEMMA 3.1 Let f be sufficiently smooth. Then

d
dt

Z
� .t/

f d� .t/ D
Z

� .t/

Pf C f div � V d� .t/;

and

d
dt

Z
� .t/

kr� f k2 d� .t/ D
Z

� .t/

2r� f � r�
Pf � 2r� f .D� V /r� f C kr� f k2 div � V d� .t/ ;

with div � .t/V D PnC1
iD1 ri

� .t/
V i and .D� .t/V /ij D rj

� .t/
V i .

A proof and details can be found in the Appendix of [3].

LEMMA 3.2 Let J s
t . � / D det D� .s/˚

s
t . � / denote the Jacobian determinant of the matrix

representation of D� .s/˚
s
t . � / with respect to orthogonal bases of the respective tangent space.

By Assumption 2.1 J s
t 2 C 1.Œ0; T ��� .s// and there existsCJ > 0, such that for all s; t 2 Œ0; T �

1

CJ

6 min
�2� .s/

J s
t .�/ 6 max

�2� .s/
J s

t .�/ 6 CJ :

Given Assumption 2.1, consider the family
˚
L2.� .t//

�
t2Œ0;T �

. Then for v 2 L2.� .t// we introduce
the pull-back

�s
t v D v

�
˚s

t . � /� 2 L2
�
� .s/

�
;

which is a linear homeomorphism from L2.� .t// into L2.� .s// for any s; t 2 Œ0; T �. Moreover �s
t

is a linear homeomorphism fromH 1.� .t// into H 1.� .s//. Thus finally the adjoint operator, �s
t

� W
H�1.� .s// ! H�1.� .t// is also a linear homeomorphism. There exist constants CL2.� /; CH 1.� /

independent of s; t , such that for all v 2 L2.� .t//, or v 2 H 1.� .t// respectively, and for all
s; t 2 Œ0; T �

k�s
t vkH 1.� .s// 6 CH 1.� /kvkH 1.� .t// ; k�s

t vkL2.� .s// 6 CL2.� /kvkL2.� .t// ;

and thus finally k�s
t

�kL.H �1.� .s//;H �1.� .t/// 6 CH 1.� /.
Furthermore there holds @tJ

s
t D �s

t . div � .t/V /J
s
t .

Proof. The proof of equivalence of the H 1- and the L2-norms follows the lines of, e.g., of [7, Ch.
9, SubSec. 4.1]. Now because k � kH 1.� .t// and k�s

t . � /kH 1.� .s// are two equivalent norms on
H 1.� .t// also their dual norms are equivalent, as shows the following short argument. The dual
norm of a functional from the dual space v� 2 �H 1.� .s//

�� can now be expressed by

sup
w2H 1.� .s//

hv�; wi.H 1.� .s///0;H 1.� .s//

kwkH 1.� .s//

D sup
v2H 1.� .t//

h�s
t

�v�; vi.H 1.� .t///0;H 1.� .t//

k�s
t vkH 1.� .s//

; (3.2)

and the bound on the norm of �s
t

� follows from the equivalence of said H 1-norms.
The last assertion is a by-product of the proof of Lemma 3.1, compare [3].

We need to state one more Lemma concerning continuous time-dependence of the previously
defined norms.
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LEMMA 3.3 Let s 2 Œ0; T �. For v1 2 H 1.� .s//, v2 2 L2.� .s//, v3 2 H�1.� .s// the following
expressions are continuous with respect to t 2 Œ0; T �

k�t
sv1kH 1.� .t// ; k�t

sv2kL2.� .t// ; k�s
t

�
v3kH �1.� .t// :

Proof. For the first two norms this is a standard task of shape calculus, compare, e.g., [7, Ch. 8,
Section 4.3.2]. By the change of variables formula we have

k�t
sv1k2

H 1.� .t//
D

Z
� .s/

�r� v1.D� .s/
N̊ s

t /
�1.D� .s/

N̊ s
t /

�T r� v1 C v2
1

�
J s

t d� .s/ ; (3.3)

which is a continuous function due to the regularity of ˚ stated in Assumption 2.1. Omit the term
involving the gradient in (3.3) and the same argument proves continuity of the L2-norm.

Moreover, since on the tangential space T� .s/ we have .D� .s/
N̊ s

s /
�1.D� .s/

N̊ s
s /

�T D idT � .s/,
and since there holds J s

s D 1 and ˚s
.�/.�/ 2 C 2.� .s/ � Œ0; T �;RnC1/ Equation (3.3) yields

jk�t
svk2

H 1.� .t//
� kvk2

H 1.� .s//
j 6 C jt � sjkvk2

H 1.� .s//
;

for all v 2 H 1.� .s//. Regarding (3.2) this allows us to estimate

1

.1C C js � t j/ 1
2

kv3kH �1.� .s// 6 k�s
t

�
v3kH �1.� .t// 6 1

.1� C js � t j/ 1
2

kv3kH �1.� .s// :

As far as Lemma 3.1 is concerned, for a family of functions ff .t/gt2Œ0;T �, f .t/ W � .t/ ! R,
one can define Pf at � D ˚0

t �0 simply by Pf .t/Œ�� D �t
0

d
dt
.�0

t f .t//Œ�0; t � D �t
0

d
dt
Œf .t/.˚0

t �0/�. If
ff .t/g can be smoothly extended, this is equivalent to (3.1). The following Lemmas aim at defining
a weak material derivative of f that translates into a weak derivative of the pull-back �0

t f .t/.

DEFINITION 3.4 Consider the disjoint union BL2 D S
t2Œ0;T �L

2.� .t// � ftg. The set of sections
f W Œ0; T � ! BL2 , t 7! .v; t/ inherits a canonical vector space structure from the spaces L2.� .t//

(addition and multiplications with scalars). Given Assumption 2.1, for s 2 Œ0; T � consider the space

L2
L2.� /

WD
n

Nv W Œ0; T � ! BL2 ; t 7! .vt ; t/
ˇ̌̌
�s

t v 2 L2
�
.0; T /; L2

�
� .s/

��o
:

Abusing notation, now and in the following we identify Nv.t/ D .vt ; t/ 2 L2
L2.� /

with v.t/ D vt .

In the same manner we define the space L2
H 1.� /

. For L2
H �1.� /

use �t
s

� instead of �s
t .

For ' 2 �
.�/
s D..0; T /;H 1.� .s/// D

n
' 2 L2

L2.� /

ˇ̌
�s

t ' 2 D..0; T /;H 1.� .s//
o
, it is clear

how to interpret P', namely P' D �t
s.�

s
t '/

0 2 H 1.� .t//. We say that y 2 L2
H 1.� /

has weak material
derivative Py.t/ 2 L2

H �1.� /
iff there holdsZ

Œ0;T �

h Py; 'iH �1.� .t//;H 1.� .t// dt D �
Z

Œ0;T �

hy; P'iL2.� .t// dt �
Z

Œ0;T �

Z
� .t/

y' div � V d� .t/ dt (3.4)

for all ' 2 �.�/
s D..0; T /;H 1.� .s///.
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LEMMA 3.5 Endowed with the scalar product

hf; giL2

L2.� /

D
Z

Œ0;T �

hf .t/; g.t/iL2.� .t// dt :

L2
L2.� /

is a Hilbert space. Analogously one can define scalar products on L2
H 1.� /

and L2
H �1.� /

.
All three spaces do not depend on s. Also the definition of the weak material derivative Py from 3.4
does not depend on s.

Proof. In order to define the scalar product of L2
L2.� /

, we must ensure measurability of

hf; giL2.� .t// W Œ0; T � ! R. Since hf; gi D 1
2
.kf C gk2 � kf k2 � kgk2/ it suffices to show

measurability of kf k2
L2.� .t//

for all f 2 L2
L2.� /

. By definition of the set L2
L2.� /

we have

�s
t f 2 L2.Œ0; T �; L2.� .s///. Hence, there exists a sequence of measurable simple functions Qfn

that converge pointwise a.e. to �s
t f in L2.� .s//. Each Qfn is the finite sum of measurable single-

valued functions, i.e. Qfn D PMn

iD1 fi;n1Bi
, Mn 2 N, fi;n 2 L2.� .s//, Œ0; T � � Bi measurable and

disjoint. By Lemma 3.3 the function

k�t
s

QfnkL2.� .t// D
MnX
iD1

k�t
sfi;nkL2.� .t//1Bi

is the finite sum of measurable functions and thus measurable. Using the continuity of the operator
�t

s , as stated in Lemma 3.2, one infers pointwise convergence a.e. of k�t
s

QfnkL2.� .t// towards
kf kL2.� .t// which in turn implies measurability of kf kL2.� .t//.

Again by Lemma 3.2 we now conclude integrability of kf kL2.� .t// and at the same time
equivalence of the norms

� Z
Œ0;T �

kf k2
L2.� .t//

dt
� 1

2

and
� Z

Œ0;T �

k�s
t f k2

L2.� .s//
dt
� 1

2

:

Completeness of L2
L2.� /

follows, since L2
L2.� /

and L2..0; T /; L2.� .s/// are isomorph. Again
because of Lemma 3.2, �s

t v 2 L2..0; T /; L2.� .s/// is equivalent to �r
t v 2 L2..0; T /; L2.� .r///,

thus the definition does not depend on the choice of s. For L2
H 1.� /

and L2
H �1.� /

we proceed
similarly.

We show that the definition of the weak material derivative does not depend on s 2 Œ0; T �. On
� .s/ Equation (3.4) reads

Z
Œ0;T �

h�t
s

� Py; Q'iH �1.� .s//;H 1.� .s// dt D �
Z

Œ0;T �

Z
� .s/

�
�s

t y Q' 0.t/C �s
t

�
y div � .t/V

� Q'�J s
t d� .s/ dt

(3.5)
for all Q' 2 D.Œ0; T �;H 1.� .s///. For r 2 Œ0; T �, we now transform the relation into one on � .r/,
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using �r
s , .�s

r /
� and �r

t D �r
s ı �s

tZ
Œ0;T �

h�t
r

� Py; �r
s Q'iH �1.� .r//;H 1.� .r// dt

D �
Z

Œ0;T �

Z
� .r/

�
�r

t y
�
�r

s Q'.t/�0 C �r
t

�
y div � .t/V

�
�r

s Q'
�
J r

t d� .r/ dt;

and because �r
s W H 1.� .s// ! H 1.� .r// is a linear homeomorphism, it also defines an

isomorphism between D.Œ0; T �;H 1.� .s/// and D.Œ0; T �;H 1.� .r///.

REMARK 3.6 Strictly speaking the elements of L2
X.� /

are equivalence classes of functions
coinciding a.e. in Œ0; T �, just like the elements of L2..0; T /; X.� .s///.

The definition of the weak derivative of y 2 L2
H 1.� /

in (3.4) translates into weak derivatives of
the pullback �s

t y. In order to make the connection between the two, we state the following

LEMMA 3.7 Let w 2 Ws.0; T / and f 2 C 1.Œ0; T � � � .s//. Then f w also lies in Ws.0; T / and

.f w/0 D @tf w„ƒ‚…
2L2.Œ0;T �;L2.� .s///

Cf w0 ;

where f w0 is to be understood as hf w0; 'iH �1.� .s//;H 1.� .s// D hw0; f 'iH �1.� .s//;H 1.� .s//.

Proof. Making use of the uniform continuity of f on the compact tube Œ0; T ��� .s/, one can show
that for ' 2 D

�
.0; T /;H 1.� .s//

�
the function f ' lies in Ws.0; T / and that .f '/0 D f 0' C f ' 0.

The claim then follows by integration by parts in Ws.0; T / asZ
Œ0;T �

hw0; f 'iH �1.� .s//;H 1.� .s// dt D �
Z

Œ0;T �

hw; .f '/0iH 1.� .s//;H �1.� .s// dt

D �
Z

Œ0;T �

hw; @tf 'iL2.� .s// dt �
Z

Œ0;T �

hw; f ' 0iL2.� .s// dt:

Reordering givesZ
Œ0;T �

hfw; ' 0iL2.� .s// dt D �
Z

Œ0;T �

h@tf w C f w0; 'iH �1.� .s//;H 1.� .s// dt

for any ' 2 D
�
.0; T /;H 1.� .s//

�
. Hence condition (2.2) holds for f w. Using the density

property stated in Lemma 2.2[2.], we can approximate f w by continuous H 1.� .s//-valued
functions and infer f w 2 L2..0; T /;H 1.� .s///. The same argument yields @tf w C fw0 2
L2..0; T /;H�1.� .s///.

Finally we can define our solution space of (1.1).

DEFINITION 3.8 The solution space W� is defined as follows

W� D
n
v 2 L2

H 1.� /

ˇ̌̌
Pv 2 L2

H �1.� /

o
:
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LEMMA 3.9 W� is Hilbert with the canonical scalar product
R T

0 h�; �iH 1.� .t//Ch P.�/; P.�/iH �1.� .t//dt .
Also y 2 W� iff �s

t y 2 Ws.0; T / for (every) s 2 Œ0; T �. For all Q' 2 D..0; T /;H 1.� .s/// there
holds Z

Œ0;T �

h�t
s

� Py; Q'iH �1.� .s//;H 1.� .s// dt D
Z

Œ0;T �

h.��s
t y
�0
; J s

t Q'iH �1.� .s//;H 1.� .s// dt: (3.6)

One has
cW k�s

t ykWs.0;T / 6 kykW�
6 CW k�s

t ykWs.0;T / ;

and cW ; CW > 0 do not depend on s 2 Œ0; T �.
Proof. For y 2 W� , observe that J s

t �
s
t y 2 L2.Œ0; T �;H 1.� .s// and rewrite (3.5) asZ

Œ0;T �

hJ s
t �

s
t y; @t Q'iL2.� .s// dt D �

Z
Œ0;T �

h�t
s

� Py; Q'iH �1.� .s//;H 1.� .s// dt

�
Z

Œ0;T �

h@tJ
s
t �

s
t y; Q'iL2.� .s// dt ; (3.7)

for Q' 2 D..0; T /;H 1.� .s///. Hence J s
t �

s
t y 2 Ws.0; T /, and from Lemma 3.7 it follows that also

�s
t y 2 Ws.0; T /, because 1

J s
t

2 C 1.Œ0; T � � � .s//. Note that we used @tJ
s
t D �s

t . div � .t/V /J
s
t ,

see Lemma 3.2. On the other hand, for any Qy 2 Ws.0; T / one has J s
t Qy 2 Ws.0; T / and thus

y D �t
s Qy 2 W� . Hence �s

.�/ constitutes an isomorphism between W� and Ws.0; T /.

Apply Lemma 3.7 a second time to obtain
�
J s

t Q'�0 D @tJ
s
t Q' C J s

t Q' 0 and because of Q'.0/ D
Q'.T / D 0 2 H 1.� .s// by integration by parts there follows from (3.7)Z

Œ0;T �

h�t
s

� Py; Q'iH �1.� .s//;H 1.� .s// dt D
Z

Œ0;T �

˝
.
�
�s

t y
�0
; J s

t Q'˛
H �1.� .s//;H 1.� .s//

dt ;

compare Lemma 2.2[3.]. This proves the second claim.
The claim of W� being Hilbert now follows. Observe that point-wise multiplication with J s

t

constitutes a linear homeomorphism in H 1.� .s// whose inverse is the multiplication by 1
J s

t
. One

easily checks kJ s
t 'kH 1.� .s// 6 ckJ s

t kC 1.� .s//k'kH 1.� .s// 6 Ck'kH 1.� .s//. This together with
Lemma 3.2 yields the equivalence of the two norms on W�Z

Œ0;T �

kyk2
H 1.� .t//

C k Pyk2
H �1.� .t//

dt and
Z

Œ0;T �

k�s
t yk2

H 1.� .s//
C k.�s

t y/
0k2

H �1.� .s//
dt :

Completeness of Ws.0; T / then implies completeness of W� .

REMARK 3.10 Formula (3.6) can be seen as a generalization of the following relation. Assume
�s

t y 2 D..0; T /;H 1.� .s///. ThenZ
Œ0;T �

h�t
s

� Py; Q'iH �1.� .s//;H 1.� .s// dt D
Z

Œ0;T �

h Py; �t
s Q'iL2.� .t// dt D

Z
Œ0;T �

˝ �
�s

t y
�0
; J s

t Q'˛
L2.� .s//

dt :
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Using Lemma 3.7 and 2.2, it is now easy to prove

LEMMA 3.11 For two functions v;w 2 W� the expression hv.t/; w.t/iL2.� .t// is absolutely
continuous with respect to t 2 Œ0; T � and

1

dt

Z
� .t/

vw d� .t/ D hPv;wiH �1.� .t//;H 1.� .t//

C hv; PwiH 1.� .t//;H �1.� .t// C
Z

� .t/

vw div � .t/V d� .t/ ;

a.e. in .0; T /, and there holds the formula of integration by parts

Z
Œs;t �

h Pv;wiH �1.� .�//;H 1.� .�// d� D hv;wiL2.� .t// � hv;wiL2.� .s//

�
Z

Œs;t �

h
hv; PwiH 1.� .�//;H �1.� .�// C

Z
� .�/

vw div � V d� .�/
i

d� :

We can now formulate (1.1) in a weak and slightly generalized manner. Let Qb 2 C 1.Œ0; T ���0/

and b D �t
0

Qb. We look for solutions u 2 W� that satisfy y.0/ D y0 2 L2.�0/ and for f 2 L2
H �1.� /

d
dt

Z
� .t/

y ' d� .t/C
Z

� .t/

r� y � r� ' C by' d� .t/ D h P'; yiH �1.� .t//;H 1.� .t//

C hf; 'iH �1.� .t//;H 1.� .t//; (3.8)

for all ' 2 W� and a.e. t 2 .0; T /. One may equivalently write (3.8) as

Py C�� .t/y C y. div � .t/V C b/ D f in H�1
�
� .t/

�
for a.e. t 2 .0; T /. We apply known existence and uniqueness results for the pulled-back equation
to prove

THEOREM 3.12 Let f 2 L2
H �1.� /

, y0 2 L2.�0/. There exists a unique y 2 W� , such that (3.8) is
fulfilled for all � 2 W� and a.e. t 2 .0; T /. There holds

kykW�
6 C

�ky0kL2.�0/ C kf kL2

H�1.� /

�
:

Proof. Let us relate equation (3.8) to the fixed domain � .s/ via

d
dt

Z
� .s/

Qy Q'J s
t d� .s/C

Z
� .s/

�r� Qy.D� .s/
N̊ s

t /
�1.D� .s/

N̊ s
t /

�T r� Q' C Qb Qy Q'�J s
t d� .s/

D h Q' 0; J s
t QyiH �1.� .s//;H 1.� .s// C h Qf ; J s

t Q'iH �1.� .s//;H 1.� .s// ;
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with Qy D �s
t y, Qf D 1

J s
t
�t

s
�
f 2 L2..0; T /;H�1.� .s// and for all �s

t ' D Q' 2 Ws.0; T /. This
again is equivalent to

h Qy0; Q'J s
t iH �1.� .s//;H 1.� .s// C

Z
� .s/

Qy Q'
�
�s

t .div� .t/V /C Qb
�
J s

t d� .s/

C
Z

� .s/

r� Qy.D� .s/
N̊ s

t /
�1.D� .s/

N̊ s
t /

�T r� Q'J s
t d� .s/ D h Qf ; J s

t Q'iH �1.� .s//;H 1.� .s//:

With  D J s
t Q' one gets for all  2 Ws.0; T /

h Qy0;  iH �1.� .s//;H 1.� .s// C a.t; Qy; / D h Qf ; iH �1.� .s//;H 1.� .s// ; (3.9)

with a bilinear form

a.t; Qy; / D
Z

� .s/

r� Qy.D� .s/
N̊ s

t /
�1.D� .s/

N̊ s
t /

�T r� d� .s/

C
Z

� .s/

Qy
�
�s

t .div� .t/V /C Qb
�
 d� .s/

�
Z

� .s/

r� Qy.D� .s/
N̊ s

t /
�1.D� .s/

N̊ s
t /

�T r� J
s
t

 

J s
t

d� .s/:

By Assumption 2.1 the bilinear form .D� .s/
N̊ s

t /
�1Œ��.D� .s/

N̊ s
t /

�T Œ�� is positive definite on the
tangential space T�� .s/ uniformly in s; t 2 Œ0; T � and � 2 � .s/. Thus, there exists c > 0 such
that for some k0 > 0 one has a.t;  ;  / C k0k kL2.� .s// > ck kH 1.� .s//. We are now in the
situation to apply for example [16, Ch. III, Theorem 1.2], to obtain a unique solution Qy 2 Ws.0; T /

to equation (3.9) for initial data �s
0y0 2 L2.� .s//. Moreover the solution map is continuous

k QykWs.0;T / 6 C
�k Qf kL2..0;T /;H �1.� .s/// C k�s

0y0kL2.� .s//

�
Note again that k Qf kL2..0;T /;H �1.� .s/// 6 Ckf kL2

H�1.� /

, since the multiplication with J s
t is a

globally bounded linear homeomorphism in H 1.� .s//, as stated in the proof os Lemma 3.9.
The transformation of (3.8) into (3.9) works both ways, hence the uniqueness of y 2 W� . The

norms can be estimated as in Lemma 3.2 and Lemma 3.9 and the theorem follows.

With regard to order-optimal convergence estimates, sometimes a slightly higher regularity
than y 2 W� is required. Assuming f 2 L2

L2.� /
and y0 2 H 1.�0/, one can apply a Galerkin

approximation argument, see [3, Theorems 4.4 and 4.5] for manifolds or [10] for open sets, to
obtain

k Pyk2

L2

L2.� /

C sup
t2Œ0;T �

kr� .t/yk2
L2.� .t//

C
Z

Œ0;T �

kyk2
H 2.� .t//

dt 6 C
�kyk2

H 1.� .0//
C kf k2

L2

L2.� /

�
:

(3.10)
Note that from [17, Ch. I, Theorem 3.1] it then follows that �s

t y 2 C.Œ0; T �;H 1.� .s///.
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4. Control constrained optimal control problems

Using the results from the previous section, we can now formulate control-constrained optimal
control problems known for stationary domains, see for example [16] or [24]. We consider here
the case of a distributed control u 2 L2

L2.� /
. In comparison to the case of controls on euclidean

open sets these controls are easier to implement in practice because all points on the surface are
accessible from the outside, i.e., the surrounding euclidean space. As to the practical relevance
of the (archetypical) problems under consideration observe that in addition to being of interest in
their own right from an engineering point of view they also can be seen as Tikhonov-regularized
parameter identification problems. Their unregularized, ill-posed counterparts then correspond to
the limiting case where the Tikhonov parameter ˛ > 0 vanishes.

In our first example, given a moving surface as in Assumption 2.1, let ST W L2
L2.� /

!
L2.� .T // denote the solution operator u 7! y.T /, where y satisfies

d
dt

Z
� .t/

y ' d� .t/C
Z

� .t/

r� y � r� ' d� .t/ D h P'; yiH �1.� .t//;H 1.� .t// C hu; 'iL2

L2.� /

; (4.1)

for all ' 2 W� , and with y.0/ D 0 2 L2.�0/. We know, that every function y 2 W� has a
representation in C.Œ0; T �; L2.� .s/// for any s 2 Œ0; T �, compare Lemma 2.2, and the inclusion
�s

.�/W� � C.Œ0; T �; L2.� .s/// is continuous (in fact compact). Thus ST is a continuous linear
operator. Consider the Control problem

.PT /

(
minu2L2

L2.� /

O.u/ WD 1
2
kST .u/ � yT k2

L2.� .T //
C ˛

2
kuk2

L2

L2 .� /

s.t. a 6 u 6 b ;

with ˛; a; b 2 R, a < b, ˛ > 0, and yT 2 L2.� .T //. This is now a well posed problem. By
standard arguments, see for example [24, Theorem 3.15], using the weak lower semicontinuity of
O.�/, one can conclude the existence of a unique solution u 2 L2

L2.� /
.

For an other example let the linear continuous solution operator Sd W L2
L2.� /

! L2
L2.� /

, u 7!
y, where y solves (4.1), and consider the problem

.Pd /

8<
:

minu2L2

L2.� /

O.u/ WD 1
2
kSd .u/ � yd k2

L2

L2.� /

C ˛
2
kuk2

L2

L2.� /

s.t. a 6 u 6 b ;

with ˛; a; b as above and yd 2 L2
L2.� /

. Again there exists a unique solution, see [24, Theorem 3.16].
The first order necessary optimality condition for .Pd / reads

hSdu�yd ; Sd .v�u/iL2

L2.� /

C˛hu; v�uiL2

L2.� /

D h˛uCS�
d .Sdu�yd /; v�uiL2

L2.� /

> 0 ; (4.2)

for all v 2 Uad D fv 2 L2
L2.� /

j a 6 v 6 bg. The adjoint operator S�
d

W L2
L2.� /

! L2
L2.� /

maps
v 2 L2

L2.� /
onto the solution p 2 W� of

�h Pp; 'iH �1.� .t//;H 1.� .t// C
Z

� .t/

r� p � r� ' d� .t/ D hv; 'iL2

L2.� /

; (4.3)
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for all ' 2 W� , and p.T / D 0 2 L2.� .T //. This follows if one tests (4.1) with p and (4.3) with
y. Integrate over Œ0; T � and use y.0/ D 0 and p.T / D 0 to arrive at hv; yiL2

L2.� /

D hp; uiL2

L2.� /

,

for u; v 2 L2
L2.� /

arbitrary.
Note that via the time transform t 0 D T � t Equation (4.3) converts into equation (3.8) with

b D � div � .t/V . Therefore all the results from Section 3 also apply to (4.3).
The necessary condition (4.2) characterizes the optimum u as the orthogonal projection of

� 1
˛
S�

d
.Sdu � yd / onto Uad. In our situation this is the pointwise application of the orthogonal

projection PŒa;b� W R ! Œa; b�, as one easily shows by standard arguments.
Thus, introducing the adjoint state pd .u/ D S�

d
.Sdu � yd /, we can rewrite (4.2) as

u D PŒa;b�

�
� 1

˛
pd .u/

�
: (4.4)

Similarly the unique solution u of .PT / is characterized by u D PŒa;b�

�� 1
˛
pT .u/

�
, with pT .u/ D

S�
T .STu � yT /. Note that however the adjoint state pT in general is less smooth than pd . This is

because the adjoint equation, i.e. the equation describing S�
T W L2.� .T // ! L2

L2.� /
, v 7! p, reads

�h Pp; 'iH �1.� .t//;H 1.� .t// C
Z

� .t/

r� p � r� ' d� .t/ D 0 ;

for all ' 2 W� and with p.T / D v 2 L2.� .T //. While Theorem 3.12 applies, this is not the case
for the smoothness assertion (3.10), as long as yd 2 L2.� .T // nH 1.� .T //.

Before we can discuss the discretized control problems in Section 7, in the next two sections we
present some results on the discretization of the state equation.

5. Finite element discretization

We now discretize � using an approximation� h
0 of �0 which is globally of class C 0;1. For the sake

of convenience let us assume n D 2, i.e. � .t/ is a hypersurface in R
3.

Following [8] and [3], we consider � h
0 D S

i2Ih
T i

h
consisting of triangles T i

h
with corners on

�0, whose maximum diameter is denoted by h. With FEM error bounds in mind we assume the
family of triangulations f� h

0 gh>0 to be regular in the usual sense that the angles of all triangles are
bounded away from zero uniformly in h.

As detailed in [4] and [3] an evolving triangulation � h.t/ of � .t/ is obtained by subjecting the
vertices of � h

0 to the flow N̊ . Hence, the nodes of � h.t/ reside on � .t/ for all times t 2 Œ0; T �, the
triangles T i

h
being deformed into triangles T i

h
.t/ by the movement of the vertices. Let mh denote

the number of vertices fX0
j gmh

j D1 in � h
0 . Now Xj .t/ solves

d
dt
Xj .t/ D V.Xj .t/; t/; Xj .0/ D X0

j : (5.1)

Consider the finite element space

Yh.t/ D
n
' 2 L2

�
� h.t/

� ˇ̌̌
' 2 C.� h.t// and 8i 2 Ih W ' ˇ̌

T i
h

.t/
2 ˘1

�
T i

h.t/
�o

of piecewise linear, globally continuous functions on� h.t/, and its nodal basis functions f'j .t/gmh

j D1

that are one at exactly one vertex Xi .t/ of � h.t/ and zero at all others. While on � h.t/ the notion
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of the space H 1 is a little bit more involved than in the smooth case we can still provide Yh.t/ with
an appropriate norm, i.e., for ' 2 Yh.t/ let

k'k2
Yh.t/ D

Z
� h.t/

r� h'r� h' C '2 d� h.t/ :

For the finite element approach, it is crucial for the triangles T i
h
.t/ not to degenerate while � h.t/

evolves, which leads us to the following assumption.

ASSUMPTION 5.1 The angles of the triangles T i
h
.t/ are bounded away from zero, uniformly

w.r.t. h; i and t . Also assume at .�
h.t// D � .t/, with the restriction of at to � h.t/ being a

homeomorphism between � h.t/ and � .t/.

While Assumption 5.1 may appear a rather strong one, a remeshing strategy using conformal
mappings, e.g., on topological torii was devised in [9] that yields meshes satisfying the assumption.
In order to ensure optimal approximation properties of the discretization of the surface, we require
d to be twice Lipschitz-continuously differentiable.

ASSUMPTION 5.2 d 2 C 2;1.NT /.

Let us summarize some basic properties of the family f� h.t/gt2Œ0;T �.

DEFINITION 5.3 Let ˚s
�;h W � h.s/� Œ0; T � ! R

3 denote the flow of � h, i.e. the unique continuous
map, such that ˚s

t;h
.T i

h
.s// D T i

h
.t/ and ˚s

t;h
is affine linear on each T i

h
.s/. The velocity field of

the triangulated surface Vh D @t˚
0
t;h

is the piecewise linear interpolant of V on each triangle T i
h
.t/.

As in Lemma 3.2 we define the pull-back �s
t;h

W L2.� h.t// ! L2.� h.s//, �s
t;h
v D v ı ˚ t

s;h
.

Finally let �h.t/ denote the normals of � h.t/, defined on each T i
h
.t/.

LEMMA 5.4 There holds ˚r
t;h

D ˚s
t;h

ı ˚r
s;h

and thus ˚ t
s;h

ı ˚s
t;h

D id� h.s/.
The piecewise constant Jacobian determinant J s

t;h
of ˚s

t;h
satisfies for all s; t 2 Œ0; T �

1

C h
J

6 min
�2� .s/

J s
t;h.�/ 6 max

�2� .s/
J s

t;h.�/ 6 C h
J ; (5.2)

for some constant C h
J > 0 that does not depend on h > 0. Moreover J s

t;h
and D� h.s/˚

s
t;h

W
T� h.s/ ! T� h.t/ � R

3 are differentiable with respect to time in the interior of each T i
h
.s/.

The nodal basis functions have the transport property

P'i D �t
0;h

d
dt
�0

t;h'i � 0 ; 1 6 i 6 mh : (5.3)

Proof. Consider a Triangle T i
h
.s/, s 2 Œ0; T �. W.l.o.g. let X1.s/; X2.s/; X3.s/ denote its vertices.

Then, using matrices X i .t/ D .X2.t/ � X1.t/; X3.t/ � X1.t//, we can write � 2 T i
h
.s/ in

reduced barycentric coordinates as 	� .s/ D .X i .s/TX i .s//�1X i .s/T .� � X1.s//. On T i
h
.s/ the

transformation ˚s
t;h

is uniquely defined by 	˚s
t;h

� .t/ D 	� .s/ and thus

˚s
t;h.�/ D X i .t/

�
X i .s/TX i .s/

��1
X i .s/T

�
� � X1.s/

�CX1.t/:
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In the relative interior of T i
h
.s/ the map ˚s

t;h
W T i

h
.s/ ! T i

h
.t/ is differentiable and its derivative

DT i
h

.s/˚
s
t;h

W R3 � T T i
h
.s/ ! T T i

h
.t/ � R

3 can be represented in terms of the standard basis of

R
3 by the matrix Di

s;t D X i .t/X i .s/TX i .s//�1X i .s/T :

Now one easily proves that the angle condition in Assumption 5.1 ensures the existence of c > 0
such that 	TX i .s/TX i .s/	 > c min.kX2.s/ � X1.s/k2; kX3.s/ � X1.s/k2/k	k2 for all 	 2 R

2,
s 2 Œ0; T �. Hence, k.X i .s/TX i .s//�1k2 6

�
c min.kX2.s/ �X1.s/k2; kX3.s/ �X1.s/k2/

��1, and
since kX i .s/T k2

2; kX i .s/k2
2 6 2max.kX2.s/ �X1.s/k2; kX3.s/ �X1.s/k2/ we get

kDT i
h

.s/˚
s
t;h

d�k
kd�k 6 C

max.kX2.s/� X1.s/k2; kX3.s/ � X1.s/k2/

min.kX2.s/ �X1.s/k2; kX3.s/ �X1.s/k2

for all d� 2 T T i
h
.s/. Using again Assumption 5.1 one concludes that the quotient of edge lengths

is uniformly bounded.
Also, one easily verifies for r; t 2 Œ0; T �

˚r
t;h� D .˚s

t;h ı ˚r
s;h/� and ˚ t

s;h˚
s
t;h D id� h.s/ : (5.4)

We have J s
t;h

ˇ̌̌
T i

h
.s/

D
q

det.B.s/TDT i
h

.s/˚
s
t;h
/TDT i

h
.s/˚

s
t;h
B.s// on the triangle T i

h
.s/, where

the derivative is represented with respect to an orthonormal basis B.s/ of T T i
h
.s/. As per above

considerations the spectral radius of DT i
h

.s/˚
s
t;h

is uniformly bounded. Hence, there exists C h
J > 0

such that J s
t;h

6 C h
J . Because we can switch s and t and since by (5.4) we have .˚s

t;h
/�1 D ˚ t

s;h

and thus 1
J s

t;h

D J t
s;h

6 C h
J we conclude

8s; t 2 Œ0; T � W 8� 2 � h
s

1

C h
J

6 J s
t;h.�/ 6 C h

J :

The trajectories ˚s
t;h
� , � 2 � h.s/, the Jacobian determinants J s

t;h
, and the entries of Di

s;t are
differentiable for t, because the trajectories Xj .t/, 1 6 j 6 mh are, compare (5.1). Hence also
D� .s/˚

s
t;h

is differentiable as a map into R
3. The velocity Vh.�; s/ D @t˚

s
t;h
� equals V at the

vertices and depends linearly on the coordinates 	� . As for the transport property (5.3), it is a
consequence of the piecewise linear transformations of the piecewise linear Ansatz functions 'i

which implies �0
t;h
'i .t/ D 'i .0/, compare [3, Prop. 5.4].

REMARK 5.5 Similarly one can prove the map ˚s
t;h

W � h.s/ ! � h.t/ to be bi-Lipschitz with
respect to the respective metrics. The Lipschitz constant L does not depend on s; t 2 Œ0; T �.

In order to compare functions defined on � h.t/ with functions on � .t/, for sufficiently small
h > 0 we use the projection at from (2.1) to lift a function y 2 L2.� h.t// to � .t/

yl
�
at .x/

� D y.x/; 8x 2 � h.t/;

and for y 2 L2.� .t// we define the inverse lift

yl.x/ D y
�
at .x/

�
; 8x 2 � h.t/ :
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For small mesh parameters h the lift operation .�/l W L2.� .t// ! L2.� h/ defines a linear
homeomorphism with inverse .�/l . Moreover, there exists cint > 0 such that

max
�ˇ̌k.�/lk2

L.L2.� .t//;L2.� h.t///
� 1

ˇ̌
;
ˇ̌k.�/lk2

L.L2.� h.t//;L2.� .t///
� 1

ˇ̌�
6 cinth

2 ; (5.5)

as shows the following lemma.

LEMMA 5.6 The restriction of at to � h.t/ is a piecewise diffeomorphism. Denote by ıh the
Jacobian determinant of at j� h.t/ W � h.t/ ! � .t/, i.e. ıh D jdet.M/j where M 2 R

2�2 represents
the Derivative dat .x/ W Tx�

h.t/ ! Ta.x/� .t/ with respect to arbitrary orthonormal bases of the
respective tangential space. For small h > 0 there holds

sup
t2Œ0;T �

sup
� .t/

j1 � ıhj 6 Ch2 ;

In particular at j� h.t/ is a diffeomorphism on each triangle T i
h
.t/. Now 1

ıh
D jdet.M�1/j, so that

by the change of variable formulaˇ̌̌ Z
� h.t/

vl d� h.t/ �
Z

� .t/

v d� .t/
ˇ̌̌

D
ˇ̌̌ Z
� .t/

v
1

ıl
h

� v d� .t/
ˇ̌̌

6 cinth
2kvkL1.� /:

Also there exists C > 0 such that
1. supt2Œ0;T � kPıh.t/kL1.� h.t// 6 Ch2, where the material derivative is to be understood in the

sense of ˚0
t;h

and
2. supt2Œ0;T � kP .I � Rl

h
/P kL1.� .t// 6 Ch2, where Rh D 1

ıl
h

.I � dH/P h .I � dH/, Hij D
@xi xj

d , and P D fıij � �i�j gnC1
i;j D1 and P h D fıij � �h

i �
h
j gnC1

i;j D1 are the projections on the
respective tangential space.

Proof. A proof of assertion 1. can be found in [4, Lemma 5.4], for a proof of the rest of the lemma
see [3, Lemma 5.1].

The next Lemma concerns the continuity of the lift operations between L2
L2.� h/

and L2
L2.� /

.

LEMMA 5.7 Using the pull-back �s
t;h

we can define L2
L2.� h/

as in Definition 3.4. For sufficiently

small h > 0 the lift operation .�/l constitutes a continuous isomorphism between L2
L2.� /

and
L2

L2.� h/
with inverse .�/l . There holds

ˇ̌̌
hfl ; gl iL2

L2.� h/

� hf; giL2

L2.� /

ˇ̌̌
6 cinth

2jhf; giL2

L2.� /

j:

Proof. In order to define L2
L2.� h/

it suffices to consider the action of ˚s
t;h

on each triangle

T i
h
.s/ thus defining L2

L2.T i
h

/
. Definition 3.4 applies since the restrictions of the flow are smooth.

Because the edges are of Lebesgue measure zero we have L2.� .t// D L
i2Ih

L2.T i
h
.t//

and thus canonically it follows L2
L2.� h/

D L
i2Ih

L2

L2.T i
h

.t//
as well as

R T

0
h�; �iL2.� h.t//dt DP

i2Ih

R T

0
h�; �iL2.T i

h
.t//dt .
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Let 
t D ˚ t
0 ı at ı ˚0

t;h
denote the mapping between � h

0 and �0 induced by the projection
at . By Assumption 5.2 and by the construction of N̊ 0

t and ˚0
t;h

is follows that 
t W � h
0 ! �0 is

a diffeomorphism on each triangle T i
h
.0/ and globally one-to-one and onto. Also 
t and its spatial

derivatives are continuous w.r.t. time t .
We will show that N
 W � h

0 � Œ0; T � ! �0 � Œ0; T �, .�; t/ 7! .
t .�/; t/ is a piecewise
diffeomorphism whose Jacobian determinant is bounded away from zero. By Assumption 5.1
we already have that N
 is globally one-to-one. Together this implies that the pull-back with N

constitutes an isomorphism between L2.�0 � Œ0; T �/ and L2.� h

0 � Œ0; T �/. This again means that

�0
t;hfl 2 L2.Œ0; T �; L2.� h

0 // , �0
t f 2 L2.Œ0; T �; L2.�0// :

As to N
 being al local diffeomorphism, the sets NT i
h

D S
t2Œ0;T � T

i
h
.t/ are a partition of� h

0 �Œ0; T �. In
the interior of each NT i

h
the map N
 is a diffeomorphism. In fact, let � 2 int.T i

h
/ for some 1 6 i 6 mh.

Compute

D� h
0

�Œ0;T �
N
.�/ D

� D� h
0

t .�/ @t
t .�/

0 1

�
:

We have D� h
0

t D D� .t/˚

t
0D� h.t/at D� h

0
˚0

t;h
. Its Jacobian determinant is the product of the

determinants J t
0 , ıh, and J 0

t;h
that are each bounded away from zero, uniformly in � and t , compare

(5.2), and the Lemmas 5.6 and 3.2. Hence the Jacobian determinant of N
 is bounded away from
zero.

As to continuity of .�/l , by Lemma 5.6 we have that

ˇ̌̌
hfl ; gl iL2

L2.� h/

� hf; giL2

L2.� /

ˇ̌̌
D
ˇ̌̌ Z
Œ0;T �

Z
� .t/

fg.
1

ıl
h

� 1/ d� .t/ dt
ˇ̌̌

6 cinth
2jhf; giL2

�
j:

Now, instead of dealing with Problem (3.8) directly, w.l.o.g. we consider the equation

d
dt

Z
� .t/

y ' d� .t/C
Z

� .t/

r� y � r� ' C �y' d� .t/ D h P'; yiL2.� .t// C hf; 'iL2.� .t// ; (5.6)

with N� 2 R large enough to ensure � WD b C N� > 1. Note that y solves (5.6) iff e N�ty solves (3.8)
with right-hand side e N�tf .

In order to formulate the space-discretization of (5.6), consider the trial space

H 1
Yh

D
(

mhX
iD1

Nyi .t/'i .t/ 2 L2
L2.� h/

ˇ̌ Nyi 2 H 1.Œ0; T �/

)
' H 1.Œ0; T �/mh :

The following definition of weak material derivatives for functions inH 1
Yh

exploits the fact thatH 1
Yh

is isomorph to H 1.Œ0; T �/mh . It thus avoids the issue of extending the theory from Section 3 for the
smooth surfaces � .t/ to our Lipschitz approximations � h.t/.
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LEMMA 5.8 The weak material derivative of v D Pmh

iD1 Nvi .t/'i .t/ 2 H 1
Yh

is Pv D �t
0;h
.�0

t;h
v/0 DPmh

iD1 Nv0
i .t/'i .t/. Let further w 2 H 1

Yh
, then hv;wiL2.� h.t// is absolutely continuous and

d
dt

Z
� h.t/

vw d� h.t/ D
Z

� h.t/

Pvw C v Pw C vw div �h
Vh d� h.t/ :

Proof. Observe Pv D �t
0;h
.�0

t;h
v/0 D �t

0;h

�Pmh

iD1 Nvi .t/'i .0/
�0 D �t

0;h

�Pmh

iD1 Nv0
i .t/'i .0/

�
because

.�0
t;h
'.t//0.�/ D d

dt
'i .0/.�/ D 0 for all � 2 � h

0 , as in (5.3).
Apply Lemma 3.1 on each triangle to see that h'i .t/; 'j .t/iL2.� h.t// is smooth and

d
dt

˝
'i .t/; 'j .t/

˛
L2.� h.t//

D
Z

� h.t/

'i'j div �h
Vh d� h.t/:

Now

hv;wiL2.� h.t// D
mhX

i;j D1

Nvi .t/ Nwj .t/h'i .t/; 'j .t/iL2.� h.t//

and the second assertion follows, since Nvi ; Nwj 2 H 1.Œ0; T �/, 1 6 i; j 6 mh.

We approximate (5.6) by the following semi-discrete Problem. Consider a piecewise smooth,
globally Lipschitz approximation 	 of �l , such that 	 > 1. Find y 2 H 1

Yh
such that for all ' 2 H 1

Yh

d
dt

Z
� h.t/

yh ' d� h.t/C
Z

� h.t/

r� hyh � r� h'C	yh' d� h.t/ D h P'; yiL2.� h.t// Chfh; 'iL2.� h.t// ;

(5.7)
and yh.0/ D yh

0 2 Yh.0/. One possible choice would be 	 D �l , fh D fl and yh
0 D P h

0 ..y0/l/

with P h
0 the L2.� h

0 /-orthogonal projection onto Yh.0/.
First of all let us state that (5.7) admits a unique solution in H 1

Yh
. This is because for yh DPmh

iD1 Nyi'i we can rewrite (5.7) as a smooth linear ODE with non-smooth inhomogeneity for the
coefficient vector Ny D fyigmh

iD1 2 H 1.Œ0; T �/mh

d
dt
�
M.t/ Nyh.t/

�C �
A�.t/

� Ny.t/ D F.t/; yh.0/ D yh
0 ; (5.8)

with smooth mass and stiffness matrices

M.t/ D fh'i ; 'j iL2.� h.t//gmh

i;j D1 and A�.t/ D
n Z

� h.t/

r� h'ir� h'j C 	'i'j d� h.t/
omh

i;j D1
;

and right-hand side F.t/ D fhfl ; 'iiL2.� h.t//gmh

iD1 2 L2.Œ0; T �;Rmh/, compare also [3]. Observe
that we used the continuity of the coefficients Nyi 2 H 1.Œ0; T �/ as well as P'i D 0. Existence of a
solution Nyh 2 H 1.Œ0; T �/mh of (5.8) can be argued by variation of constants or, more generally, one
can apply an existence result by Carathéodory, compare [1, Theorems 1.1 and 1.3]. Uniqueness of
yh is a consequence of the following lemma.
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LEMMA 5.9 (Stability) Let y0 2 L2.�0/ and f 2 L2
L2.� /

, and let yh solve (5.7) with yh
0 2 Yh.0/

and fh D fl . There exists C > 0, such that for sufficiently small h > 0 the solution satisfies

kyhk2
L2.� h.T //

C
Z T

0

Z
� h

�r� hyh

�2 C 	y2
h d� h.t/dt 6 C

�kyh
0 k2

L2.� h
0

/
C kf k2

L2

L2.� /

�
;

as well as

k Pyhk2

L2

L2.� h/

C ess sup
t2Œ0;T �

Z
� h

�r� hyh

�2 C 	y2
h d� h.t/ 6 C

�kyh
0 k2

Yh.0/ C kf k2

L2

L2.� /

�
:

The idea of the proof is the same as in the non-discretized case, see [3, Lemma 6.1].
Obviously the material derivative depends on the evolution of the surface, i.e. different

derivatives arise according to whether �s
t or �s

t;h
is applied to pull back a function to a fixed domain.

In order to compare Pzl
h

with . Pzh/
l we need the following lemma.

LEMMA 5.10 Let y D Pmh

iD1 Nyi'i 2 H 1
Yh

. The lift yl lies in W� with Pyl 2 L2
L2.� /

, and for a.e.
t 2 Œ0; T � there holds ˇ̌ Pyl � � Py�l ˇ̌ 6 Ch2kr� .t/y

l k
RnC1 ;

a.e. on � .t/.

Proof. We start by computing the material derivatives of N'i .x; t/ W NT ! R, N'i .x; t/ D
'l

i .at .x/; t/, i.e. the constant extension of the trial function 'i , 1 6 i 6 mh, along the normal
field of � .t/, compare the proof of [3, Theorem 6.2]. Observe that 'l

i is not smooth along the edges
of patches at .T

j

h
.t//. However, 'l

i is smooth in the (relative) interior of all at .T
j

h
.t// .

Differentiate N'i at some point � 2 relint.T j

h
.t// inside the relative interior of the facet to obtain

r N'i .�; t/ D r N'i .at .�/; t/
�
Id � rd.�; t/rd.�; t/T � d.�; t/r2d.�; t/

�
;

@t N'i .�; t/ D @t N'.at .�/; t/C r N'i .at .�/; t/
� � @td.�; t/rd.�; t/ � d.�; t/@t rd.�; t/

�
:

(5.9)

By construction of N'i we have r N'i .at .�//rd.�; t/ D r� '
l
i .at .�//r�.at .�/; t/ D 0 since N'i is

constant along orthogonal lines through � . Also, from d.˚0
t .�/; t/ � 0 it follows @td D �rdV .

The (strong) material derivatives do not depend on the extension N'i , but only on the values on
� and � h, respectively. One gets P'l

i .at .�/; t/ D @t N'i .at .�/; t/ C r N'i .at .�/; t/V .at .�/; t/ and
P'i .�; t/ D @t N'i .�; t/C r N'i .�; t/Vh.�; t/ which together with (5.9) leads us to

P'l
i D . P'i /

l C
�
V � Vh C d

�
.r2d/Vh C @t rd

��r� .t/'
l
i ; (5.10)

in the relative interior of the patches at .T
j

h
.t//, j 2 Ih.

In order to prove that the pull-back Q' WD �0
t '

l
i lies in C 1.Œ0; T �; L2.�0// \ C.Œ0; T �;H 1.�0//

for all 1 6 i 6 mh we proceed in four steps.
1. We show that Q' is globally Lipschitz on�0�Œ0; T �. Observe, that (5.9) implies that all derivatives

of Q' exist and are bounded on the interior of patches P i
h
.t/ D ˚ t

0.at .T
i
h
.t///. Since 
t D

˚ t
0 ı at ı ˚0

t;h
W � h

0 � Œ0; T � ! �0 smoothly maps the edges of � h
0 into �0 the domains
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S
t2Œ0;T � P

i
h
.t/� ftg � �0 � Œ0; T � have piecewise C 1-boundaries. Also, Q' is continuous and we

are in the situation to apply Stoke’s theorem to confirm Q' 2 W 1;1.�0 � Œ0; T �/. By Morrey’s
lemma, for a formulation on manifolds see [19], we conclude Q' 2 C 0;1.�0 � Œ0; T �/.

2. Now as to the time derivative, fix � > 0 and t 2 .0; T /. Let L > 0 denote the global
Lipschitz constant of Q' on �0 � Œ0; T � and choose  > 0 sufficiently small such thatP

i2Ih
meas.P i

h
n P i

h;�
/ 6 �2=8L2 where P i

h;�
D ˚

� 2 P i
h

ˇ̌
B�.�/ � P i

h

�
, the balls B�.�/

being taken with respect to the metric of �0. Now, as stated above, the patchesP i
h
.t/ D 
.t/.T i

h
/

move continuously across �0, and we can chooseK sufficiently small such that for all i 2 Ih and
k 2 .�K;K/ we have P i

h;�
.t/ � P i

h
.t C k/. The derivative @t Q'.�; t/ D �0

t P'l
i which is defined

a.e. on �0 � Œ0; T � then is continuous on the compact set K� D S
i2Ih

P i
h;�
.t/ � Œt �K; t CK�

and we have

1

k2

Z
�0

. Q'.t C k/� Q'.t/ � @t Q'.t/k/2 d�0 D 1

k2

X
i2Ih

� Z
P i

h;�

. Q'.t C k/ � Q'.t/ � @t Q'.t/k/2 d�0

C
Z

P i
h

nP i
h;�

. Q'.t C k/ � Q'.t/ � @t Q'.t/k/2 d�0

�
:

Substituting Q'.�; t C k/ � Q'.�; t/ D @t Q'.�; t/k C R 1

0
.@t Q'.�; t C �k/ � @t Q'.�; t//kd� on P i

h;	

like in the proof of Lemma 3.7 we choose k small enough for

sup
�2Œ0;1�

k@t Q'.t C �k/ � @t Q'.t/k21 6 �2

2meas.�0/
; (5.11)

which is possible by uniform continuity of @t Q' on K� . Estimating the second addend by
.2Lk/2

P
i2Ih

meas.P i
h

n P i
h;�
/ 6 �2=2 yields

lim sup
k!0

1

k
k Q'.t C k/ � Q'.t/ � @t Q'.t/kkL2.�0/ 6 � :

for every � > 0. Hence Q' is differentiable into L2.�0/ with derivative @t Q'.
3. Thus in order to show Q' 2 C 1.Œ0; T �; L2.�0// it remains to prove that @t Q' W Œ0; T � ! L2.�0/

is continuous. By (5.9) @t Q' is essentially bounded on �0 � Œ0; T �. Let M D k@t Q'kL1.�0�Œ0;T �/.
For � > 0 choose  > 0 sufficiently small such that

P
i2Ih

meas.P i
h

n P i
h;�
/ 6 �2=8M 2. As

above, choose K > 0 and K� accordingly. Now, choosing k > 0 small enough such that (5.11)
holds one arrives at

��@t Q'.t C k/ � @t Q'.t/��2

L2.�0/
D
X
i2Ih

� Z
P i

h;�

�
@t Q'.t C k/ � @t Q'.t/�2 d�0

C
Z

P i
h

nP i
h;�

�
@t Q'.t C k/ � @t Q'.t/�2 d�0

�
6 �2:
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4. Continuity of Q' W Œ0; T � ! H 1.�0/ follows similarly. In fact, the spatial partial derivatives of Q'
exhibit the same piecewise smooth structure as @t Q'.
Finally, Q' D �0

t '
l
i 2 C 1.Œ0; T �; L2.�0// \ C.Œ0; T �;H 1/ implies Nyi�

0
t '

l
i 2 W0.0; T /, and we

conclude yl 2 W� as well as Pyl 2 L2
L2.� /

. The estimate now is a consequence of (5.10).

Before we proceed to the main result of this section, we need to understand the approximation
of elliptic equations on � .t/ by finite elements on � h.t/.

LEMMA 5.11 For t 2 Œ0; T � and g 2 L2.� .t//, gh 2 L2.� h.t// considerZ
� .t/

r�Z
g � r� ' C �Zg' d� .t/ D hg; 'iL2.� .t//; 8' 2 H 1

�
� .t/

�
(5.12)

and Z
� h.t/

r� hZ
gh

h
� r� h' C �lZ

gh

h
' d� h.t/ D hgh; 'iL2.� h.t//; 8' 2 Yh.t/ (5.13)

with unique solutions Zg 2 H 1.� .t// and Z
gh

h
2 Yh.t/. The solution operators S.t/ W

L2.� .t// ! L2.� .t//, g 7! Zg and Sh.t/ W L2.� h.t// ! Yh � L2.� h.t//, gh 7! Z
gh

h

are self-adjoint. There exists C independent of t 2 Œ0; T � such that
1. 8' 2 Yh.t/ W jk'lk2

H 1.� .t//
� k'k2

Yh.t//
j 6 Ch2k'l k2

H 1.� .t//
< 1 as well as

2. k.�/lSh.t/.�/l � � S.t/kL.L2.� .t//;L2.� .t/// 6 Ch2 and
3. k.�/lSh.t/.�/l � � S.t/kL.L2.� .t//;H 1.� .t/// 6 Ch.

Proof. The operators being well-defined and self-adjoint follows by standard arguments. Assertion
1. follows from Lemma 5.6[2.], since 'l is continuous and piecewise smooth on � .t/ and thus lies
in H 1.� .t// withZ

� h.t/

kr� h'k2 d� h.t/ D
Z

� .t/

kr� '
lk2 d� .t/C

Z
� .t/

r� '
l
�
Rl

h � Id
�

r� '
l d� .t/ ;

for details see, for example, [3, Lemma 5.2] and proof.
For a proof of 2. and 3. see [8, Theorem 8] and the discussion of .�/l and .�/l �

preceding
Lemma 4 in aforementioned article. The fact that C does not depend on t is a consequence of
Assumption 2.1 and 5.1.

THEOREM 5.12 Let Assumption 2.1, 5.1 and 5.2 hold and let y 2 W� solve (5.6) for some f 2
L2

L2.� /
, y0 2 H 1.�0/, such that (3.10) holds. Let yh solve (5.7) with 	 D �l and fh D fl and

some approximation yh
0 of .y0/l . There exists C > 0 independent of y and h such that

kyl
h � yk2

L2

L2.� /

6 C
�
kyh.0/� yl .0/k2

L2.� h
0

/
C h4

�ky0k2
H 1.�0/

C kyh
0 k2

Yh.0/ C kf k2

L2

L2.� /

��
:

Proof. Define z D S.t/
�
yl

h
� y� and zh D Sh.t/ .ıh .yh � yl // with S.t/ and Sh.t/ as in

Lemma 5.11. Now ıh .yh � yl/ D .�/l� �
yl

h
� y

�
and hence it follows from Lemma 5.11 [2.] that

kzl
h � zkL2.� .t// D k..�/lSh.�/l � � S/.yl

h � y/kL2.� .t// 6 Ch2kyl
h � ykL2.� .t// ; (5.14)
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Observe now for zh D Pmh

iD1 Nzi'i using Lemma 5.10 we get

Y D fhyl
h � y; 'l

i iL2.� .t//gmh

iD1 2 H 1.Œ0; T �/mh ; and thus Nz D .A�/
�1Y 2 H 1.Œ0; T �/mh :

Hence Nz 2 H 1
Yh

and again by Lemma 5.10 zl
h

2 W� as well as Pzl
h
.t/ 2 L2.� .t//.

We can now test (5.6) with zl
h
, using (5.12) in the process, to obtain

d
dt

hy; zl
hiL2.� .t// C hy; yl

h � yiL2.� .t// D h Pzl
h
; yiL2.� .t// C hf; zl

hiL2.� .t//

C h��� y C �y; z � zl
hiL2.� .t// ; (5.15)

and testing (5.7) with zh gives

d
dt

hyh; zhiL2.� h.t// C hyl
h; y

l
h � yiL2.� .t// D hPzh; yhiL2.� h.t// C hfl ; zhiL2.� h.t// : (5.16)

Now, since the strong material derivative Pıh exists and is continuous on each triangle T i
h
.t/, the

scalar products h'i ; 'j ıhiL2.� h.t//, 1 6 i; j 6 mh, are differentiable with

d
dt

h'i ; 'j ıhiL2.� h.t// D
Z

� h.t/

ıh'i'j div � hVh C Pıh'i'j d� h.t/

and we have

d
dt

hyl
h; z

l
hiL2.� .t// D d

dt
hyh; zhıhiL2.� h.t//

D d
dt

hyh; zhiL2.� h.t// C hyh; Pzh.ıh � 1/iL2.� h.t// C hyh; zh
PıhiL2.� h.t//

C h Pyh; zh.ıh � 1/iL2.� h.t// C hyh; zh div � hVh.ıh � 1/iL2.� h.t//:

Hence, we can rewrite (5.16) by means of the L2.� .t//

d
dt

˝
yl

h; z
l
h

˛
L2.� .t//

C ˝
yl

h; y
l
h � y˛

L2.� .t//
D ˝
.Pzh/

l ; yl
h

˛
L2.� .t//

C ˝
f; zl

h

˛
L2.� .t//

CRh ; (5.17)

with

Rh D hyh; zh
PıhiL2.� h.t// C h Pyh; zh.ıh � 1/iL2.� h.t// C hyh; zh div � hVh.ıh � 1/iL2.� h.t//

C hfl ; zh.1 � ıh/iL2.� h.t// :

Subtracting (5.15) from (5.17) yields

d
dt

hyl
h � y; zl

hiL2.� .t// C kyl
h � yk2

L2.� .t//

D h.Pzh/
l � Pzl

h; yiL2.� .t// C hPzh; .yh � yl /ıhiL2.� h.t//

CRh C h��� y C �y; zl
h � ziL2.� .t// :
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From (5.13) we know hPzh; ıh.yh � yl /iL2.� h.t// D Nz0
h
A� Nzh D 1

2
d
dt
.NzhA� Nzh/� 1

2
NzhA

0
�
.t/Nzh, in the

notation of (5.8). Now, using (5.14) and

jRhj 6 Ch2kzhkL2.� h.t//

�kyhkL2.� h.t// C k PyhkL2.� h.t// C kfl kL2.� h.t//

�
we can estimate

1

2

d
dt
.NzhA�.t/Nzh/C kyl

h � yk2
L2.� .t//

6 C
�
h2kykL2.� .t//kr� h.t/zhk.L2.� h.t///nD1

C kzhk2
Yh.t/ C h2kykH 2.� .t//kyh � ylkL2.� h.t//

�C jRhj
6 1

2
kyh � yl k2

L2.� h.t//
C C

�
NzhA�.t/Nzh

C h4
�kyhk2

L2.� h.t//
C k Pyhk2

L2.� h.t//
C kfl k2

L2.� h.t//
C kyk2

H 2.� .t//

��
:

We can now apply Gronwall’s lemma for

Œ NzhA�.t/Nzh�
T
0 C

Z
Œ0;T �

kyl
h � yk2

L2.� .t//
dt

6 Ch4

Z
Œ0;T �

kyhk2
L2.� h.t//

C k Pyhk2
L2.� h.t//

C kflk2
L2.� h.t//

C kyk2
H 2.� .t//

dt ;
(5.18)

and with the stability estimate (3.10) and the Lemmas 5.9 and 5.7 we finally arrive at

Z
Œ0;T �

kyl
h � yk2

L2.� .t//
dt 6C

� Dhyl
h

.0/�y.0/;zhi
L2.�0/‚ …„ ƒZ

� h
0

�
r� h

0
zh

�2 C 	z2
h d� h

0

C h4
�ky0k2

H 1.�0/
C kyh

0 k2
Yh.0/ C kf k2

L2

L2.� /

��
:

(5.19)

Apply again (5.14) to prove the lemma.

REMARK 5.13 Depending on the regularity of y0, possible choices of yh
0 yielding O.h2/-

convergence of yl
h

comprehend the piecewise interpolation of .y0/l and the L2.�0/-orthogonal
projection of .y0/l onto Yh.0/. For the latter, the term involving zh in (5.19) vanishes completely,
but it’s H 1.�0/-stability requires further investigation.

The order of convergence is lower, if the solution of (5.6) does not satisfy the additional
regularity estimate (3.10).

THEOREM 5.14 Let Assumption 2.1, 5.1 and 5.2 hold and let y 2 W� solve (5.6) for f � 0, and
y0 2 L2.�0/. There exists C > 0 independent of y and h such that for the solution yh of (5.7) with
yh

0 D P h
0 ..y0/l / and fh � 0 there holds

kyl
h � yk2

L2

L2.� /

6 C
�
h2 C sup

t2Œ0;T �

k	l � �k2
L1.� .t//

�ky0k2
L2.�0/

:
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Proof. We proceed as in the proof of Theorem 5.12 up to (5.15) which now reads

d
dt

hy; zl
hiL2.� .t// C hy; yl

h � yiL2.� .t//

D h Pzl
h
; yiL2.� .t// C h��� y C �y; z � zl

hiH �1.� .t//;H 1.� .t// ;

Analogously to (5.14) we can apply Lemma 5.11[3.] and estimate the last term through

jh��� y C 	y; zl
h � ziH �1.� .t//;H 1.� .t//j 6 k ��� y C 	ykH �1.� .t//kzl

h � zkH 1.� .t//

6 k ��� y C 	ykH �1.� .t//Chkyl
h � ykL2.� .t//:

On the other hand (5.17) becomes

d
dt

hyl
h; z

l
hiL2.� .t// C hyl

h; y
l
h � yiL2.� .t// D h.Pzh/

l ; yl
hiL2.� .t// C h.�l �	/yh; zhiL2.� h.t// CRh:

Continue as in the proof of Theorem 5.12 to finally arrive at the analogue of (5.18)

Œ NzhA�.t/Nzh�
T
0 C

Z
Œ0;T �

kyl
h � yk2

L2.� .t//
dt

6 C.h4 C sup
t2Œ0;T �

k	l � �k2
L1.� .t///

Z
Œ0;T �

kyhk2
L2.� h.t//

dt

C Ch2

Z
Œ0;T �

kyk2
H 1.� .t//

C h2k Pyhk2
L2.� h.t//

dt:

Note that due to Lemma 5.6

j Nzh.0/A�.0/Nzh.0/j D jhyl
h.0/� y.0/; zhiL2.�0/j 6

D0 since yh
0

DP h
0

..y0/l /‚ …„ ƒ
jhyh.0/� yl .0/; zhiL2.� h

0
/j CCh2ky0k2

L2.�0/
:

In view of Lemma 5.9 it remains to bound
R T

0
h2k Pyhk2

L2.� h.t//
dt . Again thanks to Lemma 5.9 we

have Z T

0

k Pyhk2
L2.� h.t//

dt 6 Ckyh
0 k2

Yh.0/ :

But an inverse estimate, compare for example [2, Theorem 17.2], yields kyh
0 kH 1.� h

0
/ 6

C
h

kyh
0 k

L2.� h
0

/
, and because of the continuity of the lift .�/l and of theL2-projectionP h

0 the theorem
follows.

6. Implicit Euler discretization

In order to solve (3.8) we apply a vertical method of lines. The time discretization is carried out
by discontinuous Galerkin – implicit Euler discretization in L2

L2.� h/
. For N 2 N, consider an
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equidistant partition In D .tn�1; tn� of .0; T � with 1 6 n 6 N , k D T
N

and tn D kn. The trial
space for the discontinuous Galerkin method (DGM) is the space of ‘piecewise constant’ functions

W h
k D

n
v 2 L2

L2.� h/

ˇ̌̌
81 6 n 6 N W 9vn 2 Yh.tn/ W v � �t

tn;hv
n on In

o
:

Note that in the following we will omit the operators �s
t;h

when dealing with functions w 2 W h
k

.
Also, to further simplify notation let a.t I ; '/ D R

� h.t/

r� h � r� h' C 	 ' d� h.t/ as well as

h�; �in D h�; �iL2.� h.tn//. W.l.o.g. we temporarily assume

inf
t2Œ0;T �;�2� h.t/

	.�; t/ > M C 2 ; (6.1)

with M D sup�2Œ0;T � k div � h.�/VhkL1.� h.�// such that

a.t I'; '/ �M k'k2
L2.� h.t//

> k'k2
Yh.t/ C k'k2

L2.� h.t//

for all t 2 Œ0; T �, h > 0 and all ' 2 Yh.t/.
To motivate the DGM insert the Ansatz yk

h
.t/ D PN

nD1 �
t
tn;h

.yn1In
/ 2 W h

k
with yn 2 Yh.tn/

into (5.7). If one understands the time-derivative in (5.7) in a distributional sense, the material
derivative of yk

h
becomes Pyk

h
D PN

nD1.y
n � yn�1/ıtn�1

and integration over time formally yields

hyn � yn�1; 'in�1 C
Z
In

a.t Iyn; '/C hyn div � hVh; 'iL2.� h.t// dt D
Z
In

hfh; 'iL2.� h.t// dt ;

for smooth test functions '. In order to arrive at a scheme that is symmetric with respect to test and
ansatz space, we instead apply test functions ' 2 W h

k
. At the discontinuities we set ıtn�1

' D 'n.
Let it again be said that the above procedure is only a formal motivation for the shape of the method.

Using Pyn D P'n D 0 one obtainsZ
In

hyn div � hVh; 'iL2.� h.t// dt D hyn; 'nin � hyn; 'nin�1 :

Finally, to arrive at a computable scheme, lump the Integral over a.t; �; �/ and replace the right-hand
side appropriately. For arbitrary parameters yh

0 2 Yh.0/ and fh 2 L2
L2.� h/

we rewrite the scheme
as

y0
f D yh

0 ; 8' 2 W h
k ; 1 6 n 6 N W

hyn
f ; '

nin � hyn�1
f ; 'nin�1 C kan.y

n
f ; '

n/ D
Z
In

h�tn
t;h
fh; '

nin dt; (6.2)

where yh
0 , fh, and 	 are the same as in (5.7). For the approximation of the integral an we assume

an. ; '/ D a.tnI�tn
t;h
 ; �

tn
t;h
'/C rn. ; '/, with a remainder

jrn. ; '/j 6 Crkk kYh.tn/k'kYh.tn/ : (6.3)
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One possible choice is rn � 0 for 1 6 n 6 N , but when it comes to approximating an adjoint
equation such as (4.3) we will want to choose r more freely. In order to proof convergence of the
scheme (6.2) in L2

L2.� h/
we make use of stability properties of the adjoint scheme

zN C1
g D zT ; 8' 2 W h

k ; 1 6 n 6 N W
hzn

g ; '
nin � hznC1

g ; 'nin C kan.'
n; zn

g/ D
Z
In

h�tn
t;h
gh; '

nin dt: (6.4)

with gh 2 L2
L2.� h/

, zT 2 Yh.T /. In Section 7 it will be important that given snapshots f� h.tn/gN
nD1

of the surface (6.2) and (6.4) can be evaluated exactly for certain right-hand sides fh and gh, e.g.
gh 2 W h

k
. Let us introduce the mean value of a function y 2 L2

L2.� h/
over an interval In.

DEFINITION 6.1 Let �s
t;h

denote the pullback operator associated to the flow ˚s
t;h

as in Lemma 3.2
and let s 2 Œ0; T �. The mean value of a function y 2 L2

L2.� h/
is defined as Nyn.s/ D 1

k

R
In

�s
t;h
y dt

for t 2 In. Because Z
In

�s
t;hy dt D

Z
In

�s
r;h�

r
t;hy dt D �s

r;h

Z
In

�r
t;hy dt

„ ƒ‚ …
Nyn.r/

;

Nyn does not depend on s 2 Œ0; T �.
Similarly one could define the mean value of y 2 W� if one were to investigate a horizontal

method-of-lines approach.
Now for y0 � 0, zT � 0 the schemes are adjoint in the sense

k

NX
nD1

h Nf n
h ; zg in D k

NX
nD1

h Ngn
h; yf in ;

i.e. the discrete solution operators fh 7! yf and gh 7! zg are adjoint as operators from
.L2

L2.� h/
; h�; �ih;k/ into itself, where L2

L2.� h/
is equipped with the scalar product

hf; gih;k D k

NX
nD1

Z
In

h.�tn
t;h
f /; .�

tn
t;h
g/in dt : (6.5)

LEMMA 6.2 Let k � kh;k denote the norm induced by h�; �ih;k. The norms k � kL2

L2.� h/

and k � kh;k on

L2
L2.� h/

are equivalent and there holdsˇ̌hf; gih;k � hf; giL2

L2.� h/

ˇ̌
6 Ck

ˇ̌hf; giL2

L2.� h/

ˇ̌
:

Proof. The result follows from the identityZ
Œ0;T �

Z
� h.t/

fg d� h.t/ dt D
NX

nD1

Z
In

Z
� h.tn/

.�
tn
t;h
f /.�

tn
t;h
g/J t

tn;h d� h.tn/ dt;

and J tn
t being Lipschitz with J tn

tn;h
� 1.
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Note also that for z 2 W h
k

, since Pzn D 0 on In, we can apply the mean value theorem to obtain
for some t 2 In

jkznk2
L2.� h.t//

� kznk2
nj D kjhzn div � h.
n/Vh; z

niL2.� h.
n//j 6 Mkkznk2
L2.� h.
n//

(6.6)

with �n 2 .t; tn/. Apply (6.6) to itself to obtain for some Q�n 2 .�n; tn/

jkznk2
L2.� h.t//

� kznk2
nj 6 Mk

�
kznk2

n C �kznk2
L2.� h.
n//

� kznk2
n

��
6 Mk

�kznk2
n CMkkznk2

L2.� h. Q
n//

�
6 Mk

�
1C CL2.� h/Mk

� kznk2
n :

(6.7)

A similar continuity assertion holds for the Yh.t/-norm, as shows the following lemma.

LEMMA 6.3 Let y; z 2 H 1
Yh

, Q	 2 C.� h.s/ � Œ0; T �/, and 	 D �t
s;h

Q	. There exists C > 0 such that
for every s 2 Inˇ̌̌

ˇ
Z

In

a.sI�s
t;hy; �

s
t;hz/dt �

Z
In

a.t Iy; z/dt
ˇ̌̌
ˇ 6 Ck

Z
In

k�s
t;hykYh.s/k�s

t;hzkYh.s/dt ;

i.e. for z 2 W h
k

we haveˇ̌̌
ˇka.sI Nyn; zn/�

Z
In

a.t Iy; z/dt
ˇ̌̌
ˇ 6 Ck

Z
In

k�s
t;hykYh.s/kznkYh.s/dt :

In particular with 	 � 1 the estimates hold for a.t I'; '/ D k'k2
Yh.t/

.

Proof. We abbreviate Q�.s; t/ D D� h.s/˚
s
t;h
.D� h.s/˚

s
t;h
/T J s

t;h
. Since Pzn � 0 we have

ˇ̌̌ Z
In

a.sI�s
t;hy; �

s
t;hz/dt �

Z
In

a.t Iy; z/dt
ˇ̌̌

D
ˇ̌̌ Z

In

Z
� h.s/

r� h�
s
t;hy

� Q�.s; s/ � Q�.s; t/�r� h�
s
t;hz C 	�s

t;hy.J
s
s;h � J s

t;h/�
s
t;hz d� h.s/dt

ˇ̌̌
:

The lemma follows from the fact that ˚s
t;h

it linear on each T i
h
.s/ and globally Lipschitz in time, as

by Lemma 5.4.

Let us formulate a crucial stability assertion for the adjoint scheme (6.4).

LEMMA 6.4 Let z 2 W h
k

solve (6.4) with right-hand side g 2 L2
L2.� h/

and final state zT D 0. For
sufficiently small k > 0 there exists C > 0, depending only on � , such that

max
16n6N

a.tnI zn; zn/C 1

k

NX
nD1

kznC1 � znk2
n C k

NX
nD1

kznk2
H 1.� .tn//

6 Ckgk2
h;k :
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Proof. Apply (6.4) to zn to obtain

hzn � znC1; znin C kan.z
n; zn/ D

Z
In

h�tn
t;h
g; znin dt :

This leads to

1

2

�kznk2
n C kznC1 � znk2

n � kznC1k2
n

�C kan.z
n; zn/ D

Z
In

h�tn
t;h
g; znin dt

6
Z
In

k�tn
t;h
gkL2.� h.tn// dtkznkn 6 1

2kM

� Z
In

k�tn
t;h
gkn dt

�2 C kM

2
kznk2

n:

Summing up and using (6.7) gives us

NX
nD1

�1
2

kznC1 � znk2
n �Mk

�
1C 1

2
CL2.� h/Mk

�kznk2
n C kan.z

n; zn/
�

6 1

2M
kgk2

h;k ;

such that for 0 < k < min
�

2
C

L2.� h/
M 2 ;

1
2Cr

�
k

2

NX
nD1

kznk2
H 1.� .tn//

6 k

NX
nD1

�
a.tnI zn; zn/C rn.z

n; zn/� �
1C CL2.� h/Mk

2

�
M kznk2

n

�

6 1

2M
kgk2

h;k : (6.8)

Now we test (6.4) with zn � znC1 to get

kzn � znC1k2
n C k

2

�
an.z

n; zn/C an.z
nC1 � zn; znC1 � zn/ � an.z

nC1; znC1/
�

D
Z
In

h�tn
t;h
g; zn � znC1in dt 6 1

2

� Z
In

k�tn
t;h
gk2

n dt
�2 C 1

2
kzn � znC1k2

n:

Summing up and using Lemma 6.3 on a as well as the estimate (6.3) on r we arrive at

k

2
a.tm; z

m; zm/C 1

2

NX
nDm

�
kznC1 � znk2

n

�

6 1

2
kkgk2

h;k C k

2

NX
nDmC1

a.tn�1I zn; zn/ � a.tnI zn; zn/C rn�1.z
n; zn/ � rn.z

n; zn/

6 1

2
kkgk2

h;k C k

2

NX
nDmC1

Ck
�
kznk2

H 1.� .tn//
C kznk2

H 1.� .tn�1//

�
:

Combine with (6.8) to arrive at the lemma.



164 M. VIERLING

The following Lemma shows, that it is sufficient to estimate the approximation error at the points
tn, 1 6 n 6 N to prove convergence in L2

L2.� h/
.

LEMMA 6.5 Let r 2 H 1.Œ0; T �; V /, V a separable Hilbert space, then there holds for � 2 In

kr � r.�/kL2.In;V / 6 kkr 0kL2.In;V / :

In our situation this implies for r 2 H 1
Yh

that
1. kr.�/ � Nrnk2

L2.� h.�//
6 Ck

R
In

kPrk2
L2.� h.t//

dt ;

2. and
R
In

kr.t/ � Nrnk2
L2.� h.t//

dt 6 Ck2
R

In

kPrk2
L2.� h.t//

dt :

Proof. For the fist assertion approximate r by ri 2 D.Œ0; T �; V / such that ri
H 1.Œ0;T �;V /�! r as

i ! 1. Use

kri � ri .�/kL2.In;V / D
� Z

In

����
Z t

�

r 0
i .�/d�

����2

V

dt
� 1

2

6
� Z

In

k

Z
In

��r 0
i .�/

��2

V
d� dt

� 1
2 6 kkr 0

i kL2.In;V / ;

and the fact that r 2 C.Œ0; T �; V /, compare [17, Theorem 3.1]. Hence the first part of the lemma
follows by passing to the limit.

In our situation this implies, since ��
t;h
r.t/ 2 H 1.Œ0; T �; Yh.�//

kNrn � r.�/k2
L2.� h.�//

D
��� 1
k

Z
In

��
t;hr.t/ � r.�/ dt

���2

L2.� h.�//
6 1

k

Z
In

�����
t;hr.t/ � r.�/

���2

L2.� h.�//
dt

6 k

Z
In

k���
t;hr.t/

�0k2
L2.� h.�//

dt 6 kC h
J

Z
In

kPrk2
L2.� h.t//

dt :

This proves 1., in order to get 2. integrate over In.

We are now prepared to prove the main result of this section.

THEOREM 6.6 Let f 2 L2
L2.� /

, and let yh and yh;k solve (5.7) and (6.2), respectively, with yh
0 2

L2.� h
0 / and fh D fl . There exists a constantC > 0 independent of h; k > 0 and of f and yh

0 such
that

kyh � yh;kkL2

L2.� h/

6 Ck
�k PyhkL2

L2.� h/

C kf kL2

L2.� /

C kyh
0 kL2.� h

0
/

�
:

Proof. The proof is inspired by [23, Theorem 5.2], compare also [26, Theorem 1.2.5] and [20,
Theorem 5.1]. Test (5.7) with �t

tn;h
', ' 2 Yh and integrate over In to obtain

hyh.tn/; 'in � hyh.tn�1/; 'in�1 C
Z

Œ0;T �

a.t Iyh; '/ dt D
Z

Œ0;T �

hfl ; 'iL2.� h.t// dt : (6.9)
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Solve the adjoint equation (6.4) for z with both right-hand side and test function ' D g DPN
nD1. Nyn

h
� yn

h;k
/1InZ

In

k Nyn
h � yn

h;kk2
n dt D hzn � znC1; Nyn

h � yn
h;kin C kan. Nyn

h � yn
h;k; z

n/ (6.10)

Subtract (6.9) from (6.2). Tested with z this yields

hyn
h;k � yh.tn/; z

nin � hyn�1
h;k � yh.tn�1/; z

nin�1 C kan.y
n
h;k � Nyn

h ; z
n/

D
Z
In

a.t Iyh; z
n/ dt � kan. Nyn

h ; z
n/C kh Nf n

l ; z
nin �

Z
In

hfl ; z
niL2.� h.t// dt

Let Nyh D PN
nD1 Nyn

h
1In

. Add (6.10) and sum up over 1 6 n 6 N to get

hfl ; zih;k � hfl ; ziL2

L2.� h/

C
NX

nD1

Z
In

k Nyh � yh;kk2
n dt C

Z
In

a.t Iyh; z
n/ dt � ka.tnI Nyn

h ; z
n/

D
NX

nD1

h
krn. Nyn

h ; z
n/C h Nyn

h � yh.tn/; z
nin � hyn�1

h;k � yh.tn�1/; z
nin�1 � hznC1; Nyn

h � yn
h;kin

i

D hyN
h;k � yh.tN /; z

N C1iN � hy0
h;k � yh.t0/; z

1i0 C
NX

nD1

krn. Nyn
h ; z

n/

C h Nyn
h � yh.tn/; z

n � znC1in

D
NX

nD1

krn. Nyn
h ; z

n/C h Nyn
h � yh.tn/; z

n � znC1in ;

and finally, bringing to bear everything we have, i.e. the estimates from Lemma 6.3 for a, from
Lemma 6.2 for the L2-norms, and the bound on r from (6.3), we arrive at

NX
nD1

Z
In

k Nyh � yh;kk2
n dt 6

�
k

NX
nD1

k Nyn
h � yh.tn/k2

n

� 1
2
� 1
k

NX
nD1

kzn � znC1k2
n

� 1
2

C C

 
k

NX
nD1

� Z
In

k�tn
t;h
yhkYh.tn/ dt

�2
! 1

2 �
k

NX
nD1

kznk2
Yh.tn/

� 1
2 C Ckkf kL2

L2.� /

kzl kL2

L2.� /„ ƒ‚ …
6C kzkh;k

:

Hence using Lemma 6.4 on z we can divide by k Nyh � yh;kkh;k . The Lemmas 6.2 and 6.3 allow
us to estimate the involved norms, and because of the stability of the space discretization, compare
Lemma 5.9, we can estimate the Yh.t/-term, to finally arrive at

k Nyh � yh;kkL2

L2.� h/

6 C

 �
k

NX
nD1

k Nyn
h � yh.tn/k2

n

� 1
2 C kkf kL2

L2.� /

C kkyh
0 kL2.� h

0
/

!
: (6.11)
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We now apply Lemma 6.5[2.] to the error ek D yh;k � yh and the averaged error Nek D yh;k � Nyh

and sum up to obtain kek � NekkL2

L2.� h/

6 Ckk PyhkL2

L2.� h/

. Combine with (6.11) and 6.5[1.] to

estimate

kekkL2

L2.� h/

6 Ckk PyhkL2

L2.� h/

C kNekkL2

L2.� h/

6 Ck
�
k PyhkL2

L2.� h/

C kf kL2

L2.� /

C kyh
0 kL2.� h

0
/

�
:

With view of the stability assertions from (3.10) and Lemma 5.9 and together with Theorem
5.12 we get the following Corollary.

COROLLARY 6.7 In the situation of Theorem 6.6 let in addition 	 D �l and y0 2 H 2.�0/, and
choose yh

0 as the piecewise linear interpolation of .y0/l . There exists a constant C > 0 independent
of h; k > 0 and of f and y0 such that

kyl
h;k � ykL2

L2.� /

6 C.h2 C k/
�
ky0kH 2.�0/ C kf kL2

L2.� /

�
:

As addressed in Remark 5.13, it should be possible to relax the condition on y0 into y0 2
H 1.�0/ using the L2.�0/-projection or the L2.� h

0 /-projection P h
0 .

But even in the case of low regularity we still get a uniform estimate.

COROLLARY 6.8 In the situation of Theorem 6.6 let only y0 2 L2.�0/ hold while f � 0. Let
further yh

0 D P h
0 ..y0/l/. There exists a constantC > 0 independent of h; k > 0 and of y0 such that

kyl
h;k � ykL2

L2.� /

6 C
�
hC sup

t2Œ0;T �

k	l � �kL1.� .t// C k

h

�
ky0kL2.�0/ :

Proof. Regarding Theorem 5.14 and 6.6 it remains to bound k PyhkL2

L2.� h/

. Like in the proof of

Theorem 5.14, using Lemma 5.9 and an inverse estimate, we arrive at the desired estimate.

In particular, for � > 0, choose k D �h2 and 	 such that supt2Œ0;T � k	l � �kL1.� .t// 6 Ch to
get an O.h/-convergent scheme.

REMARK 6.9 Note that our freedom in the choice of r now allows us to finally drop the conditions
on 	 and �, respectively, in (5.6), (5.7), and (6.1). Let us assume we want to approximate the
solution y of (5.6) with � � 0, y0 2 H 1.� .0//, and f 2 L2

L2.� /
. Now yh;k 2 W h

k
solves

y0
h;k D yh

0 ; 8' 2 W h
k ; 1 6 n 6 N W

hyn
h;k;'in � hyn�1

h;k ; 'in�1 C k

Z
� h.tn/

r� h.tn/y
n
h;k � r� h.tn/' d� h.tn/ D kh Nf n

h ; 'in ;
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iff yh;m;� D PN
nD1 e

��tnyn
h;k

1In
2 W h

k
, 	 > 0 solves

y0
h;k;� D yh

0 ; 8' 2 W h
k ; 1 6 n 6 N W

hyn
h;k;�; 'in � hyn�1

h;k;�; 'in�1 C k

Z
� h.tn/

r� h.tn/y
n
h;k;� � r� h.tn/' C 	yn

h;k;�' d� h.tn/

C krn.y
n
h;k;�; '/

D khe��tn�1 Nf n
h ; 'in;

with

krn. ; '/ D .e�k � 1 � 	k/h ; 'in C k.e�k � 1/

Z
� h.tn/

r� h.tn/ � r� h.tn/' d� h.tn/ :

Taking into account that ke��tf .t/ � PN
nD1 e

��tn 1In
f .t/kL2

L2.� /

6 kkf kL2

L2.� /

, we apply

Corollary 6.7 to yh;m;� and conclude kyl
h;k

� ykL2

L2.� /

6 Ce�T .h2 C k/.

7. Variational discretization

We now return to problem .Pd / which has the advantage over .PT /, that its adjoint equation satisfies
the regularity estimate (3.10). For .PT / this is not the case iff yT 2 L2.� .T // nH 1.� .T //. In the
spirit of [12], let us approximate .Pd / by

.Ph
d /

(
minu2L2

L2.� h/

O.u/ WD 1
2
kSh

d
.u/ � .yd /lk2

h;k
C ˛

2
kuk2

h;k

s.t. a 6 u 6 b ;

with f� h.t/gt2Œ0;T � as in Section 5 and Sh
d

W .L2
L2.� h/

; h�; �ih;k/ ! .L2
L2.� h/

; h�; �ih;k/, fh 7!
yf is defined through the scheme 6.2 with 	 � 0 and yh

0 � 0. We choose the scalar product
h�; �ih;k defined in (6.5) in order to obtain a computable scheme to evaluate Sh

d

�
, namely (6.4) with

zN C1 D 0. Given snapshots f� h.tn/gN
nD1, the product h�; �ih;k can be evaluated exactly for functions

'h 2 W h
k

as well as for PŒa;b�.'h/.

Let U h
ad D

n
v 2 L2

L2.� h/
j a 6 v 6 b

o
. As in (4.2) the first order necessary optimality

condition for an optimum uh of .Ph
d
/ is

h˛uh C Sh
d

�
.Sh

duh � .yd /l/; v � uhih;k > 0 ; 8v 2 Uad : (7.1)

First note that as in the continuous case the h�; �ih;k-orthogonal projection onto U h
ad coincides with

the point-wise projection PŒa;b�.v/. Similar to 4.4 we get

uh D PŒa;b�

�
� 1

˛
ph

d .u/
�
; ph

d .u/ D Sh
d

��
Sh

du � .yd /l
�
: (7.2)

Equation (7.2) is amenable to a semi-smooth Newton method that, while still being implementable,
operates entirely in L2

L2.� h/
. The implementation requires one to resolve the boundary between the
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inactive set Iu.tn/ D ˚
� 2 � .tn/

ˇ̌
a < � 1

˛
ph

d
.u/Œ�� < b

�
and the active set Au.tn/ D � h.tn/ n

Iu.tn/ for 1 6 n 6 N . For details on the implementation see [14] and [15]. Note that in order
to implement Sh

d
and Sh

d

�
according to (6.2) and (6.4) for right-hand sides in W h

k
, again one only

needs to know the snapshots f� h.tn/gN
nD0. The solution of .Ph

d
/ converges towards that of .Pd / and

the order of convergence is optimal in the sense that it is given by the order of convergence of Sh
d

and Sh
d

�
.

THEOREM 7.1 (Order of Convergence for .Ph
d
/) Let u 2 L2

L2.� /
, uh 2 L2

L2.� h/
be the solutions of

.Pd / and .Ph
d
/, respectively. Let C > 1. Then for sufficiently small h; k > 0 there holds

2˛
��ul

h � u
��2

L2

L2.� /

C ��yl
h � y

��2

L2

L2.� /

6 C
�
2
˝�
.�/lSh

d

�
.�/l � S�

d

�
.y � yd /; u � ul

h

˛
L2

L2.� /

C ���.�/lSh
d .�/l � Sd

�
u
��2

L2

L2.� /

�
;

with y D Sdu and yh D Sh
d
uh.

Proof. Let PU h
ad
.�/ denote the h�; �ih;k-orthogonal projection onto U h

ad. We have

ul D PŒa;b�

�
� 1

˛
pd .u/

�
l

D PŒa;b�

�
� 1

˛
pd .u/l

�
D PU h

ad

�
� 1
˛
pd .u/l

	
:

Since uh; ul 2 U h
ad we can plug uh into the variational inequality for PU h

ad
.�/ and ul into the

optimality condition (7.1)

h� 1
˛
pd .u/l � ul ; uh � ul ih;k 6 0 ; h˛uh C ph

d .uh/; ul � uhih;k > 0:

From here the proof is a standard task, compare [13, Theorem 3.4] and [14].

For the problem

.Ph
T /

(
minu2L2

L2.� h/

O.u/ WD 1
2
kSh

T .u/ � .yT /lk2
L2.� h.T //

C ˛
2
kuk2

L2

L2 .� h/

s.t. a 6 u 6 b ;

one can prove a similar result. Here the operator Sh
T is the map fh ! yf .T /, according to the

scheme (6.2) with 	 � 0.

THEOREM 7.2 (Order of Convergence for .Ph
T /) Let u 2 L2

L2.� /
, uh 2 L2

L2.� h/
be the solutions

of .PT / and .Ph
T /, respectively. Let C > 1. Then for sufficiently small h; k > 0 there holds

2˛
��ul

h � u
��2

L2

L2.� /

C ��yl
h � y

��2

L2.� .T //

6 C
�
2
˝�
.�/lSh

T

�
.�/l � S�

T

�
.y � yT /; u � ul

h

˛
L2

L2.� /

C ���.�/lSh
T .�/l � ST

�
u
��2

L2.� .T //

�
;

with y D STu and yh D Sh
Tuh.
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Now as to the convergence of
�
.�/lSh

d

�
.�/l � S�

d

�
, note that taking the adjoint does not

commute with the discretization. Indeed, apply the scheme (6.2) to the adjoint equation (4.3), i.e.
	 D �. div � .tn/V /l to get

zN C1
g D 0 ; 8' 2 W h

k ; 1 6 n 6 N WZ
In

h�tn
t;h
gh; 'in dt D hzn

g ; 'in � hznC1
g ; 'in

C k

Z
� h.tn/

r� h.tn/'r� h.tn/z
n
g � . div � .tn/V /l'z

n d� h.tn/C
Z
In

h' div � h.t/Vh; z
niL2.� h.t// dt ;

instead of (6.4).
In the situation of .Ph

d
/ however, this discrepancy can be remedied by Lemma 5.7 which implies

k.�/l � .�/l �kL.L2

L2.� /
;L2

L2.� h/
/; k.�/l � .�/l �kL.L2

L2.� h/
;L2

L2.� /
/ 6 Ch2 ;

and due to Lemma 6.2 which allows us to conclude

k.�/l �.�/l �kL.L2

L2.� /
;.L2

L2.� h/
;h�;�ih;k//; k.�/l �.�/l �kL.L2

L2.� h/
;.L2

L2.� h/
;h�;�ih;k// 6 C.h2Ck/; (7.3)

if we interpret .�/l ; .�/l as operators into or on .L2
L2.� h/

; h�; �ih;k/, respectively.
Hence we get the estimate���.�/lSh

d

�
.�/l � S�

d

��� 6
���..�/l � .�/l �/Sh

d

�
.�/l
���C

���.�/l �Sh
d

�
..�/l � .�/l �

/
���C

���.�/l �Sh
d

�
.�/l � � S�

d

���
6 C.k C h2/;

in the L.L2
L2.� /

; L2
L2.� /

/-operator norm.

As opposed to problem .Ph
d
/, in the case of .PT / it is easier to proof the convergence of Sh�

T

than that of Sh
T itself. In the sense of (6.2), consider the discretization of the adjoint operator S�

T

Sh
T

� W L2.� h.T // 3 zT 7! z 2 W h
k � .L2

L2.� h/
; h�; �ih;k/

according to the primal scheme after the time-transform t 0 D T � t

zN C1 D zT ; 8' 2 W h
k ; 1 6 n 6 N W

hzn; 'nin � hznC1; 'ninC1 C k

Z
� h.tn/

r� h.tn/z
nr� h.tn/'

n C div � h.tn/Vhz
n'n d� h.tn/ D 0:

Corollary 6.8 applies an yields k.�/lSh
T

�
.�/l � S�

T kL.L2.� .T //;L2

L2.� /
/ 6 C.hC k

h
/.

Now in addition to (7.3) we have just like in the time-dependent case

k.�/l � .�/l�kL.L2.� .T //;L2.� h.T /// 6 Ch2 ;
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FIG. 1. Selected time snapshots of Nuh computed for Example 8.1 on the Sphere after 4 refinements

compare [3, Lemma 5.1]. We conclude���.�/lSh
T

��
.�/l � ST

���
L.L2

L2.� /
;L2.� .T ///

6 C.hC k

h
/ :

Hence, the operator Sh
T D Sh

T

�� W .L2
L2.� h/

; h�; �ih;k/ ! L2.� h.T /// is a discretization of ST .

Also, the mapping Sh
T W uh 7! yh;k.T / is implemented by the scheme

y0 D 0; 8' 2 W h
k ; 1 6 n 6 N W

hyn; 'nin � hyn�1; 'nin

C k

Z
� h.tn/

r� h.tn/y
nr� h.tn/'

n C . div � h.tn/Vh/ly
n'n d� h.tn/ D kh Nun

h; '
nin;

as shows summation over 1 6 n 6 N .
If yT is more regular, such as yT 2 H 1.� .T //, then one might want to apply results from [5]

that state h2-convergence of the discretization Sh
T , yet not in the L.L2

L2.� /
; L2.� .T ///-norm. In

order to to so, it remains to ensure the regularity assumptions of [5, Theorem 4.4] to be met by the
optimal control u.

8. Example

Provided the results from [11] and [25] hold on surfaces, Equation (7.2) is semi-smooth due to the
smoothing properties of Sh�

d
, i.e. the stability ensured by Lemma 6.4. The lemma a priori holds only

in the case 	 > 1, but can be extended for arbitrary 	;� by rescaling, see Remark 6.9. By Lemma
6.4 the operator �s

�;hS
h
d

�
continuously maps .L2

L2.� h/
; h�; �ih;k/ into

L1�Œ0; T �; Yh.s/
� � Lp

�
Œ0; T �; Lp

�
� h.s/

�� ' Lp
�
Œ0; T � � � h.s/

�
for every 2 < p < 1. This would imply semi-smoothness of the operator

PŒa;b�

�
� 1

˛
�s

t;h

�
ph

d

�
�t

s;h.�/
��� W L2.Œ0; T � � � h.s// ! L2.Œ0; T � � � h.s//;

compare [25], and thus of equation (7.2).
We implemented a semi-smooth Newton Algorithm for (7.2), along the lines of [15].
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TABLE 1. L2-error, L1-error and the corresponding EOCs for Example 8.1

R ERRL2 EOCL2 ERR1 EOC1 R ERRL2 EOCL2 ERR1 EOC1
0 1.68e-01 — 8.71e-01 — 5 6.78e-03 2.15 1.08e-01 2.01
1 5.40e-02 — 7.88e-01 — 6 3.15e-03 2.09 5.01e-02 1.97
2 4.13e-02 2.45 5.32e-01 0.86 7 1.72e-03 2.03 2.80e-02 1.99
3 2.60e-02 1.78 3.78e-01 1.79 8 7.92e-04 2.02 1.31e-02 1.97
4 1.24e-02 2.21 1.82e-01 1.97

EXAMPLE 8.1 (High Regularity) Consider problem .Pd / with ˛ D 1, a D � 1
2

, b D 1
2

, T D 1, and

�0 � R
3 the unit sphere. Let � .t/ D N̊ t

0�0 with N̊ t
0.x; y; z/ D .x; y; z=�.t//T and �.t/ D e

sin.2�t/
4 .

In coordinates .x; y; z/ of R3 let Nu D PŒ� 1
2 ; 1

2 �.z sin.2�t// and yd D Qyd C Sd Nu with

Qyd D �˛
 ��

2
sin.2�t/ � 2�

�
cos.2�t/C sin.2�t/�2

x2 C y2 C �4z2

�
�2 C 1 � z2 �6 � �4

x2 C y2 C �4z2

�!
z:

Then Nu solves .Pd /.

In order to compute the solution Nuh of .Ph
d
/ we construct triangulations of �0 from our macro-

triangulation R0, i.e. the cube whose nodes reside on �0 triangulated into 12 rectangular triangles.
We generate RiC1 from Ri through longest edge refinement followed by projecting the inserted
vertices onto �0.

Table 1 shows the relative error in the L2
L2.� h/

-norm and the relative L1-error

ERR1 D k�s
t;h
. Nuh � Nul /kL1.Œ0;T ��� h.s//

k�s
t;h

Nul kL1.Œ0;T ��� h.s//

;

as well as the corresponding experimental orders of convergence

EOCi D ln
ERRi

ERRi�q

�
ln

Hi

Hi�q

��1

;

where H denotes the maximal edge length of � h
0 , see Table 2. Throughout this section we chose

q D 2 for both EOCL2 and EOCL1 , and the time step length is k D 1
20
H 2.

Figure 1 shows the solution of .Ph
d
/ at different points in time. Note that the white line marks the

border between active and inactive sets. On the active parts, the optimal control assumes the value
a or b, respectively.

Let us conclude with an example for .Ph
T / with a desired state yT that just barely lies in

L2.� .T //. In this situation we can only expect O.h/-convergence. We consider the unconstrained
problem

EXAMPLE 8.2 (Low Regularity) Consider problem .PT / with ˛ D 1, a D �1, b D 1, T D 1

and � .t/ as in Example 8.1. Let yT D 1
.xCy/0:49 .

Since we do not know the exact solution of Example 8.2, we estimate the relative error by
ERRi

L2 ' k Nul
i � NuiC2kL2

L2.� iC2/

=k NuiC2kL2

L2.� iC2/

, where Nui denotes the solution of .Ph
T / on the
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TABLE 2. L2-error and the corresponding EOC for Example 8.2. H is the maximal edge length of � h
0 (both examples).

R 1 2 3 4 5 6 7 8 9

ERRL2 0.1899 0.1444 0.1140 0.0701 0.0484 0.0306 0.0215 0.0147 0.0104
EOCL2 - - 1.2414 1.3272 1.3709 1.2617 1.2030 1.0781 1.0520

H 1.1547 0.9194 0.7654 0.5333 0.4099 0.2769 0.2085 0.1398 0.1047

i -th refinement f� i .t/gt2Œ0;T � of f� .t/gt2Œ0;T �. The lift .�/l is taken perpendicular to the smooth
surface � .t/. Table 2 shows the estimated L2-errors and corresponding EOCs. We computed
the L2.� h.T //-projection P h

T yT l analytically. Otherwise the error introduced by the numerical
integration of the non-smooth function yT would be dominant. It helps that all our triangulations
resolve the plane fx C y D 0g.
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