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Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera, 13–15,

Campus de Cantoblanco, 28049 Madrid, Spain

E-mail: dcg@icmat.es

RAFAEL GRANERO-BELINCHÓN
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In this work we study the evolution of the free boundary between two different fluids in a porous

medium where the permeability is a two dimensional step function. The medium can fill the whole

plane R2 or a bounded strip S D R � .��=2; �=2/. The system is in the stable regime if the denser

fluid is below the lighter one. First, we show local existence in Sobolev spaces by means of energy

method when the system is in the stable regime. Then we prove the existence of curves such that

they start in the stable regime and in finite time they reach the unstable one. This change of regime

(turning) was first proven in [5] for the homogenous Muskat problem with infinite depth.
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1. Introduction

In this work we study the evolution of the interface between two different incompressible fluids

with the same viscosity coefficient in a porous medium with two different permeabilities. This

problem is of practical importance because it is used as a model for a geothermal reservoir (see [6]

and references therein). The velocity of a fluid flowing in a porous medium satisfies Darcy’s law

(see [3, 23, 24])
�

�.Ex/
v D �rp � g�.Ex/.0; 1/; (1.1)

where � is the dynamic viscosity, �.Ex/ is the permeability of the medium, g is the acceleration

due to gravity, �.Ex/ is the density of the fluid, p.Ex/ is the pressure of the fluid and v.Ex/ is the

incompressible velocity field. In our favorite units, we can assume g D � D 1:

The spatial domains considered in this work are S D R2;T � R (infinite depth) and

R � .��=2; �=2/ (finite depth). We have two immiscible and incompressible fluids with the same

viscosity and different densities; �1 fill in the upper domain S1.t/ and �2 fill in the lower domain

S2.t/. The curve

z.˛; t/ D
˚�

z1.˛; t/; z2.˛; t/
�

W ˛ 2 R
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is the interface between the fluids. In particular we are making the ansatz that S1 and S2 are a

partition of S and they are separated by a curve z.

The system is in the stable regime if the denser fluid is below the lighter one, i.e. �2 > �1.

This is known in the literature as the Rayleigh-Taylor condition. The function that measures this

condition is defined as

RT .˛; t/ D �
�

rp2
�

z.˛; t/
�

� rp1
�

z.˛; t/
�

�

� @?
˛ z.˛; t/ > 0:

In the case with �.Ex/ � costant > 0, the motion of a fluid in a two-dimensional porous medium is

analogous to the Hele-Shaw cell problem (see [7, 9, 17, 19] and the references therein) and if the

fluids fill the whole plane (in the case with the same viscosity but different densities) the contour

equation satisfies (see [11])

@t f D �2 � �1

2�
P.V.

Z

R

�

@xf .x/ � @xf .x � �/
�

�

�2 C
�

f .x/ � f .x � �/
�2

d�: (1.2)

They show the existence of classical solution locally in time (see [11] and also [1, 15, 16, 20]) in the

Rayleigh-Taylor stable regime which means that �2 > �1, and maximum principles for kf .t/kL1

and k@xf .t/kL1 (see [12]). Moreover, in [5] the authors show that there exists initial data in H 4

such that k@xf kL1 blows up in finite time. Furthermore, in [4] the authors prove that there exist

analytic initial data in the stable regime for the Muskat problem such that the solution turns to the

unstable regime and later no longer belongs to C 4. In [8] the authors show an energy balance for L2

and that if initially k@xf0kL1 < 1, then there is global Lipschitz solution and if the initial datum

has kf0kH 3 < 1=5 then there is global classical solution. In [10, 27] the authors study the case with

different viscosities. In [21] the authors study the case where the interface reach the boundary in a

moving point with a constant (non-zero) angle.

The case where the fluid domain is the strip R�.�l; l/, with 0 < l , has been studied in [14–16].

In this regime the equation for the interface is

@t f .x; t/ D �2 � �1

8l
P.V.

Z

R

�

�

@xf .x/ � @xf .x � �/
�

sinh
�

�
2l

�
�

cosh
�

�
2l

�
� � cos

�

�
2l

�

f .x/ � f .x � �/
�

�

C .@xf .x/ C @xf .x � �/
�

sinh
�

�
2l

�
�

cosh
�

�
2l

�
�

C cos
�

�
2l

�

f .x/ C f .x � �/
�

�

�

d�: (1.3)

For equation (1.3) the authors in [14] obtain the existence of classical solution locally in time in

the stable regime case where the initial interface does not reach the boundaries, and the existence

of finite time singularities. These singularities mean that the curve is initially a graph in the stable

regime, and in finite time, the curve can not be parametrized as a graph and the interface turns to the

unstable regime. Also the authors study the effect of the boundaries on the evolution of the interface,

obtaining the maximum principle and a decay estimate for kf kL1 and the maximum principle for

k@xf kL1 for initial datum satisfying smallness conditions on k@xf0kL1 and on kf0kL1 . So, not

only the slope must be small, also amplitude of the curve plays a role. Both result differs from the

results corresponding to the infinite depth case (1.2). We note that the case with boundaries can also

be understood as a problem with different permeabilities where the permeability outside vanishes.
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FIG. 1. Physical situation

In the forthcoming work [18] the authors compare the different models (1.2), (1.3) and (1.6) from

the point of view of the existence of turning waves.

In this work we study the case where permeability �.Ex/ is a step function, more precisely, we

have a curve

h.˛/ D
˚�

h1.˛/; h2.˛/
�

W ˛ 2 R
	

separating two regions with different values for the permeability (see Figure 1). We study the regime

with infinite depth, for periodic and for “flat at infinity” initial datum, but also the case where the

depth is finite and equal to �
2

. In the region above the curve h.˛/ the permeability is �.Ex/ � �1,

while in the region below the curve h.˛/ the permeability is �.Ex/ � �2 ¤ �1. Note that the curve

h.˛/ is known and fixed. Then it follows from Darcy’s law that the vorticity is

!.Ex/ D $1.˛; t/ı
�

Ex � z.˛; t/
�

C $2.˛; t/ı
�

Ex � h.˛/
�

;

where $1 corresponds to the difference of the densities, $2 corresponding to the difference of

permeabilities and ı is the usual Dirac’s distribution. In fact both amplitudes for the vorticity are

quite different, while $1 is a derivative, the amplitude $2 has a nonlocal character (see (1.5), (1.7)

and Section 2). The equation for the interface, when h.x/ D .x; �h2/ and the fluid fill the whole

plane, is

@t f .x/ D �1.�2 � �1/

2�
P.V.

Z

R

�

@xf .x/ � @xf .ˇ/
�

.x � ˇ/

.x � ˇ/2 C
�

f .x/ � f .ˇ/
�2

dˇ

C 1

2�
P.V.

Z

R

$2.ˇ/.x � ˇ C @xf .x/
�

f .x/ C h2/
�

.x � ˇ/2 C
�

f .x/ C h2

�2
dˇ; (1.4)
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with

$2.x/ D �1 � �2

�2 C �1

�1.�2 � �1/

�
P.V.

Z

R

@xf .ˇ/
�

h2 C f .ˇ/
�

.x � ˇ/2 C
�

� h2 � f .ˇ/
�2

dˇ (1.5)

If the fluids fill the whole space but the initial curve is periodic the equation reduces to

@t f .x/ D �1.�2 � �1/

4�
P.V.

Z

T

sin.x � ˇ/
�

@xf .x/ � @xf .ˇ/
�

dˇ

cosh
�

f .x/ � f .ˇ/
� � cos.x � ˇ/

C 1

4�
P.V.

Z

T

.@xf .x/ sinh
�

f .x/ C h2

�

C sin.x � ˇ//$2.ˇ/dˇ

cosh
�

f .x/ C h2

�

� cos.x � ˇ/
; (1.6)

where the second vorticity amplitude can be written as

$2.x/ D �1.�2 � �1/

2�

�1 � �2

�1 C �2
P.V.

Z

T

sinh
�

h2 C f .ˇ/
�

@xf .ˇ/dˇ

cosh
�

h2 C f .ˇ/
�

� cos.x � ˇ/
: (1.7)

If we consider the regime where the amplitude of the wave and the depth of the medium are of the

same order then the equation for the interface, when the depth is chosen to be �=2, is

@t f .x/ D �1.�2 � �1/

4�
P.V.

Z

R

�

@xf .x/ � @xf .ˇ/
�

sinh.x � ˇ/

cosh.x � ˇ/ � cos
�

f .x/ � f .ˇ/
�dˇ

C �1.�2 � �1/

4�
P.V.

Z

R

�

@xf .x/ C @xf .ˇ/
�

sinh.x � ˇ/

cosh.x � ˇ/ C cos
�

f .x/ C f .ˇ/
�dˇ

C 1

4�
P.V.

Z

R

$2.ˇ/
�

sinh.x � ˇ/ C @xf .x/ sin
�

f .x/ C h2

�

�

cosh.x � ˇ/ � cos
�

f .x/ C h2

� dˇ

C 1

4�
P.V.

Z

R

$2.ˇ/
�

� sinh.x � ˇ/ C @xf .x/ sin
�

f .x/ � h2

�

�

cosh.x � ˇ/ C cos.f .x/ � h2/
dˇ; (1.8)

where

$2.x/ D K
�1.�2 � �1/

2�
P.V.

Z

R

@xf .ˇ/
sin
�

h2 C f .ˇ/
�

cosh.x � ˇ/ � cos
�

h2 C f .ˇ/
�dˇ

� K
�1.�2 � �1/

2�
P.V.

Z

R

@xf .ˇ/
sin
�

� h2 C f .ˇ/
�

cosh.x � ˇ/ C cos
�

� h2 C f .ˇ/
�dˇ

C K
2

p
2�

�1.�2 � �1/

2�
Gh2;K � P.V.

Z

R

@xf .ˇ/ sin
�

h2 C f .ˇ/
�

cosh.x � ˇ/ � cos
�

h2 C f .ˇ/
�dˇ

� K
2

p
2�

�1.�2 � �1/

2�
Gh2;K � P.V.

Z

R

@xf .ˇ/ sin
�

� h2 C f .ˇ/
�

cosh.x � ˇ/ C cos
�

� h2 C f .ˇ/
�dˇ; (1.9)

with

Gh2;K.x/ D F
�1

0

@

F

�

sin.2h2/
cosh.x/Ccos.2h2/

�

.�/

1 C Kp
2�

F

�

sin.2h2/
cosh.x/Ccos.2h2/

�

.�/

1

A

a Schwartz function.



LOCAL SOLVABILITY AND TURNING FOR THE INHOMOGENEOUS MUSKAT PROBLEM 179

REMARK 1 For notational simplicity, we denote K D �1��2

�1C�2
and we drop the t dependence.

The plan of the paper is as follows: In Section 2 we derive the contour equations (1.4), (1.6)

and (1.8). In Section 3 we show the local in time solvability and an energy balance for the L2

norm. In Section 4 we perform numerics and in Section 5 we obtain finite time singularities for

equations (1.4) (1.6) and (1.8) when the physical parameters are in some region and numerical

evidence showing that, in fact, every value is valid for the physical parameters.

2. The contour equation

In this section we derive the contour equations (1.4), (1.6) and (1.8), i.e. the equations for the

interface. First we obtain the equation in the infinite depth case, both, flat at infinity and periodic.

Given ! a scalar, ; z; curves, and a spatial domain ˝ D T or ˝ D R, we denote the Birkhoff–Rott

integral as

BR.!; z/ D P.V.

Z

˝

!.ˇ/BS.1.˛/; 2.˛/; z1.ˇ/; z2.ˇ//dˇ; (2.1)

where BS denotes the kernel of r?��1 (which depends on the domain). If the domain is R2 we

have

BS.x; y; �; �/ D 1

2�

�

� y � �

.y � �/2 C .x � �/2
;

x � �

.y � �/2 C .x � �/2

�

; (2.2)

for T � R we have

BS.x; y; �; �/ D 1

4�

� � sinh.y � �/

cosh.y � �/ � cos.x � �/
;

sin.x � �/

cosh.y � �/ � cos.x � �/

�

; (2.3)

and for R � .��=2; �=2/ the kernel is (see [14])

BS.x; y; �; �/ D 1

4�

�

� sin.y � �/

cosh.x � �/ � cos.y � �/
� sin.y C �/

cosh.x � �/ C cos.y C �/
;

sinh.x � �/

cosh.x � �/ � cos.y � �/
� sinh.x � �/

cosh.x � �/ C cos.y C �/

�

: (2.4)

2.1 Infinite depth

2.1.1 Assuming S D R2:. Using the kernel (2.2), we obtain

v.Ex/ D 1

2�
P.V.

Z

R

$1.ˇ/

�

Ex � z.ˇ/
�?

j Ex � z.ˇ/j2 dˇ C 1

2�
P.V.

Z

R

$2.ˇ/

�

Ex � h.ˇ/
�?

j Ex � h.ˇ/j2 dˇ; (2.5)

where .a; b/? D .�b; a/:

We have

v˙�z.˛/
�

D lim
�!0

v
�

z.˛/˙�@?
˛ z.˛/

�

D BR.$1; z/z CBR.$2; h/z � 1

2

$1.˛/

j@˛z.˛/j2 @˛z.˛/; (2.6)

and

v˙�h.˛/
�

D lim
�!0

v
�

h.˛/˙�@?
˛ h.˛/

�

D BR.$1; z/hCBR.$2; h/h� 1

2

$2.˛/

j@˛h.˛/j2 @˛h.˛/: (2.7)
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We observe that vC.z.˛// is the limit inside S1 (the upper subdomain) and v�.z.˛// is the limit

inside S2 (the lower subdomain). The curve z.˛/ doesn’t touch the curve h.˛/, so, the limit for the

curve h are in the same domain S i .

Using Darcy’s Law and assuming that the initial interface z.˛; 0/ is in the region with

permeability �1, we obtain

�

v��z.˛/
�

� vC�z.˛/
�

�

� @˛z.˛/ D �1

�

� @˛

�

p��z.˛/
�

� pC�z.˛/
�

�

�

� �1.�2 � �1/@˛z1.˛/

D 0 � �1.�2 � �1/@˛z2.˛/;

where in the last equality we have used the continuity of the pressure along the interface (see [10]).

Using (2.6) we conclude

$1.˛/ D ��1.�2 � �1/@˛z2.˛/: (2.8)

We need to determine $2. We consider

hv

�

i

D
 

v��h.˛/
�

�2
� vC�h.˛/

�

�1

!

� @˛h.˛/

D �@˛

�

p��h.˛/
�

� pC�h.˛/
�

�

D 0;

where the first equality is due to Darcy’s Law. Using the expression (2.7) we have

hv

�

i

D
�

1

�2
� 1

�1

�

�

BR.$1; z/h C BR.$2; h/h
�

� @˛h.˛/ C
�

1

2�2
C 1

2�1

�

$2: (2.9)

We take h.˛/ D .˛; �h2/, with h2 > 0 a fixed constant. Then

BR.$2; h/h � @˛h D
�

0;
1

2
H.$2/

�

� .1; 0/ D 0;

where H denotes the Hilbert transform. Finally, we have

$2.˛/ D �2KBR.$1; z/h � .1; 0/ D K
1

�
P.V.

Z

R

$1.ˇ/
�h2 � z2.ˇ/

jh.˛/ � z.ˇ/j2 dˇ; (2.10)

(see Remark 1 for the definition of K). The identity

Z

R

@ˇ log
�

�

A � z1.ˇ/
�2 C

�

B � z2.ˇ/
�2
�

D 0;

gives us

1

2�
P.V.

Z

R

�

� @˛z2.ˇ/
� z2.˛/ � z2.ˇ/

jz.˛/ � z.ˇ/j2 dˇ D 1

2�
P.V.

Z

R

@˛z1.ˇ/
z1.˛/ � z1.ˇ/

jz.˛/ � z.ˇ/j2 dˇ;

and
1

2�
P.V.

Z

R

@˛z2.ˇ/
h2 C z2.ˇ/

jh.˛/ � z.ˇ/j2 dˇ D 1

2�
P.V.

Z

R

@˛z1.ˇ/
h1.˛/ � z1.ˇ/

jh.˛/ � z.ˇ/j2 dˇ:
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Thus,

$2.˛/ D K
�1.�2 � �1/

�
P.V.

Z

R

@˛z2.ˇ/
h2 C z2.ˇ/

jh.˛/ � z.ˇ/j2 dˇ

D K
�1.�2 � �1/

�
P.V.

Z

R

@˛z1.ˇ/
h1.˛/ � z1.ˇ/

jh.˛/ � z.ˇ/j2 dˇ; (2.11)

and

BR.$1; z/z D ��1.�2 � �1/

2�
P.V.

Z

R

z1.˛/ � z1.ˇ/

jz.˛/ � z.ˇ/j2 @˛z.ˇ/dˇ

Due to the conservation of mass the curve z is advected by the flow, but we can add any tangential

term in the equation for the evolution of the interface without changing the shape of the resulting

curve (see [10]), i.e. we consider that the equation for the curve is

@t z.˛/ D v.˛/ C c.˛; t/@˛z.˛/:

Taking c.˛/ D �v1.˛/, we conclude

@t z D �1.�2 � �1/

2�
P.V.

Z

R

z1.˛/ � z1.ˇ/

jz.˛/ � z.ˇ/j2 .@˛z.˛/ � @˛z.ˇ//dˇ

C 1

2�
P.V.

Z

R

$2.ˇ/
.z.˛/ � h.ˇ//?

jz.˛/ � h.ˇ/j2 dˇ

C @˛z.˛/
1

2�
P.V.

Z

R

$2.ˇ/
z2.˛/ C h2

jz.˛/ � h.ˇ/j2 dˇ: (2.12)

By choosing this tangential term, if our initial datum can be parametrized as a graph, we have

@t z1 D 0: Therefore the parametrization as a graph propagates.

Finally we conclude (1.4) as the evolution equation for the interface (which initially is a graph

above the line y � �h2). We remark that the second vorticity (1.5) can be written in equivalent

ways

$2.x/ D K
�1.�2 � �1/

�
P.V.

Z

R

@xf .ˇ/
h2 C f .ˇ/

.x � ˇ/2 C
�

� h2 � f .ˇ/
�2

dˇ (2.13)

D K
�1.�2 � �1/

�
P.V.

Z

R

x � ˇ

.x � ˇ/2 C
�

� h2 � f .ˇ/
�2

dˇ (2.14)

D K
�1.�2 � �1/

2�
P.V.

Z

R

@x log
�

.x � ˇ/2 C
�

� h2 � f .ˇ/
�2
�

dˇ:

REMARK 2 Notice that in the case with different viscosities the expression for the amplitude of the

vorticity located at the interface z.˛/ (see equation (2.8)) is no longer valid. Instead, we have

��1.�2 � �1/@˛z2.˛/ D
�

�2 � �1
�

.BR.$1; z/z C BR.$2; h/z/ � @˛z.˛/ C
�

�2 C �1

2

�

$1:

To this integral equation, we add the equation (2.9) or (2.11). Thus, one needs to invert an operator.

This is a rather delicate issue that is beyond the scope of this paper (see [10] for further details in

the case �1 D �2).
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2.1.2 Assuming S D T � R. We have that (2.5) is still valid, but now $i are periodic functions

and z.˛ C 2k�/ D z.˛/ C .2k�; 0/. Using complex variables notation we have

Nv.Ex/ D 1

2�i
P.V.

Z

R

$1.ˇ/

Ex � z.ˇ/
dˇ C 1

2�i
P.V.

Z

R

$2.ˇ/

Ex � h.ˇ/
dˇ

D 1

2�i

0

@P.V.

Z �

��

C
X

k>1

 

Z .2kC1/�

.2k�1/�

C
Z �.2k�1/�

�.2kC1/�

!

1

A

$1.ˇ/

Ex � z.ˇ/
C $2.ˇ/

Ex � h.ˇ/
dˇ:

Changing variables and using the identity

1

z
C
X

k>1

2z

z2 � .2k�/2
D 1

2 tan.z=2/
; 8z 2 C;

we obtain

Nv.Ex/ D 1

4�i

�

P.V.

Z

T

$1.ˇ/

tan..Ex � z.ˇ//=2/
dˇ C P.V.

Z

T

$2.ˇ/

tan..Ex � h.ˇ//=2/
dˇ

�

:

Equivalently,

v.Ex/ D 1

4�

 

P.V.

Z

T

� sinh
�

y � z2.ˇ/
�

$1.ˇ/dˇ

cosh
�

y � z2.ˇ/
�

� cos
�

x � z1.ˇ/
�

CP.V.

Z

T

� sinh
�

y � h2.ˇ/
�

$2.ˇ/dˇ

cosh
�

y � h2.ˇ/
�

� cos
�

x � h1.ˇ/
�

!

C i

4�

 

P.V.

Z

T

sin
�

x � z1.ˇ/
�

$1.ˇ/dˇ

cosh
�

y � z2.ˇ/
� � cos

�

x � z1.ˇ/
�

CP.V.

Z

T

sin
�

x � h1.ˇ/
�

$2.ˇ/dˇ

cosh
�

y � h2.ˇ/
�

� cos
�

x � h1.ˇ/
�

!

:

Recall that (2.8) and (2.11) are still valid if h.˛/ D .˛; �h2/ for 0 < h2 a fixed constant. We have
Z

T

@ˇ log
�

cosh
�

B � z2.ˇ/
�

� cos
�

A � z1.ˇ/
�

�

dˇ D 0;

thus, the velocity in the curve when the correct tangential terms are added is

@t z.˛/ D 1

4�

 

�1.�2 � �1/P.V.

Z

T

sin
�

z1.˛/ � z1.ˇ/
��

@˛z.˛/ � @˛z.ˇ/
�

dˇ

cosh
�

z2.˛/ � z2.ˇ/
�

� cos
�

z1.˛/ � z1.ˇ/
�

C.@˛z1.˛/ � 1/P.V.

Z

T

sinh
�

z2.˛/ C h2

�

$2.ˇ/dˇ

cosh
�

z2.˛/ C h2

�

� cos
�

z1.˛/ � h1.ˇ/
�

!

C i

4�
P.V.

Z

T

�

@˛z2.˛/ sinh
�

z2.˛/ C h2

�

C sin
�

z1.˛/ � h1.ˇ/
�

�

$2.ˇ/dˇ

cosh
�

z2.˛/ C h2

�

� cos
�

z1.˛/ � h1.ˇ/
� : (2.15)
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We can do the same in order to write $2 as an integral on the torus.

$2.˛/ D �2KBR.$1; z/h � .1; 0/

D 1

2�
KP.V.

Z

T

sinh
�

� h2 � z2.ˇ/
�

$1.ˇ/dˇ

cosh
�

� h2 � z2.ˇ/
�

� cos
�

h1.˛/ � z1.ˇ/
�

D �1.�2 � �1/

2�
KP.V.

Z

T

sinh
�

h2 C z2.ˇ/
�

@˛z2.ˇ/dˇ

cosh
�

� h2 � z2.ˇ/
�

� cos
�

h1.˛/ � z1.ˇ/
� : (2.16)

If the initial datum can be parametrized as a graph the equation for the interface reduces to (1.6),

where the second vorticity amplitude (1.7) can be written as

$2.x/ D 1

2�
KP.V.

Z

T

sinh
�

� h2 � f .ˇ/
�

$1.ˇ/dˇ

cosh
�

� h2 � f .ˇ/
�

� cos.x � ˇ/

D �1.�2 � �1/

2�
KP.V.

Z

T

sinh
�

h2 C f .ˇ/
�

@xf .ˇ/dˇ

cosh
�

h2 C f .ˇ/
�

� cos.x � ˇ/
(2.17)

D �1.�2 � �1/

2�
KP.V.

Z

T

sin.x � ˇ/dˇ

cosh
�

h2 C f .ˇ/
�

� cos.x � ˇ/
: (2.18)

2.2 Finite depth

Now we consider the bounded porous medium R � .��=2; �=2/ (see Figure 1). This regime is

equivalent to the case with more than two �i because the boundaries can be understood as regions

with � D 0. As before,

v.x; y/ D P.V.

Z

R

$1.ˇ/BS
�

x; y; z1.ˇ/; z2.ˇ/
�

dˇ C P.V.

Z

R

$2.ˇ/BS
�

x; y; h1.ˇ/; h2.ˇ/
�

dˇ:

We assume that h.˛/ D .˛; �h2/ with 0 < h2 < �=2. We have that $1 is given by (2.8). The main

difference between the finite depth and the infinite depth is at the level of $2. As in the infinite

depth case we have

0 D
�

1

�2
� 1

�1

�

�

BR.$1; z/h C BR.$2; h/h
�

� @˛h.˛/ C
�

1

2�2
C 1

2�1

�

$2;

where now BR has the usual definition (2.1) in terms of BS in expression (2.4). In the unbounded

case we have an explicit expression for $2 (2.11) in terms of z and h, but now we have a Fredholm

integral equation of second kind:

$2.˛/ C K

2�
P.V.

Z

R

$2.ˇ/ sin.2h2/

cosh.˛ � ˇ/ C cos.2h2/
dˇ D �2KBR.$1; z/h � .1; 0/: (2.19)

After taking the Fourier transform, denoted by F .�/.�/, and using some of its basic properties, we

have

F .$2/.�/

�

1 C Kp
2�

F

�

sin.2h2/

cosh.x/ C cos.2h2/

�

.�/

�

D �2KF
�

BR.$1; z/h � .1; 0/
�

.�/:
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We can solve the equation for $2 for any jKj < ı.h2/ with

ı.h2/ D min

(

1;

p
2�

max�

ˇ

ˇ

ˇ
F

�

sin.2h2/
cosh.x/Ccos.2h2/

�
ˇ

ˇ

ˇ

)

: (2.20)

We obtain

$2.˛/ D �2KBR.$1; z/h � .1; 0/

C 2K
2

p
2�

BR.$1; z/h � .1; 0/ � F
�1

0

@

F

�

sin.2h2/
cosh.x/Ccos.2h2/

�

.�/

1 C Kp
2�

F

�

sin.2h2/
cosh.x/Ccos.2h2/

�

.�/

1

A : (2.21)

Now we observe that if s.�/ is a function in the Schwartz class, S, such that 1 C s.�/ > 0 we have

that
s.�/

1 C s.�/
2 S;

and we obtain

Gh2;K.x/ D F
�1

0

@

F

�

sin.2h2/
cosh.x/Ccos.2h2/

�

.�/

1 C Kp
2�

F

�

sin.2h2/
cosh.x/Ccos.2h2/

�

.�/

1

A 2 S:

Recall here that in order to obtain $2 we invert an integral operator. In general this is a delicate

issue (compare with [10]), but with our choice of h this point can be addressed in a simpler way.

Using
Z

R

@ˇ log
�

cosh
�

x � z1.ˇ/
�

˙ cos
�

y ˙ z2.ˇ/
�

�

dˇ D 0;

and adding the correct tangential term, we obtain

@t z.˛/ D �1.�2 � �1/

4�
P.V.

Z

R

�

@˛z.˛/ � @˛z.ˇ/
�

sinh
�

z1.˛/ � z1.ˇ/
�

cosh
�

z1.˛/ � z1.ˇ/
�

� cos
�

z2.˛/ � z2.ˇ/
�dˇ

C �1.�2 � �1/

4�
P.V.

Z

R

�

@˛z1.˛/ � @˛z1.ˇ/; @˛z2.˛/ C @˛z2.ˇ/
�

sinh
�

z1.˛/ � z1.ˇ/
�

cosh
�

z1.˛/ � z1.ˇ/
�

C cos
�

z2.˛/ C z2.ˇ/
� dˇ

C 1

4�
P.V.

Z

R

$2.ˇ/BS
�

z1.˛/; z2.˛/; ˇ; �h2

�

dˇ

C @˛z.˛/

4�
P.V.

Z

R

$2.ˇ/
sin.z2.˛/ C h2/

cosh
�

z1.˛/ � ˇ
�

� cos
�

z2.˛/ C h2

�dˇ

C @˛z.˛/

4�
P.V.

Z

R

$2.ˇ/
sin.z2.˛/ � h2/

cosh
�

z1.˛/ � ˇ
�

C cos
�

z2.˛/ � h2

�dˇ: (2.22)

If the initial curve can be parametrized as a graph the equation reduces to (1.8) where $2 is defined

in (1.9).

REMARK 3 If h2 D �=4 by an explicit computation we obtain ı.�=4/ D 1, thus, any K is valid.

Moreover, we have tested numerically that the same remains valid for any 0 < h2 < �=2, so (1.9)

would be correct for any K.
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3. Well-posedness in Sobolev spaces

3.1 Energy balance for the L2 norm

Here we obtain an energy balance inequality for the L2 norm of the solution of equation (1.8). We

define ˝1 D f.x; y/; f .x; t/ < y < �=2g, ˝2 D f.x; y/; �h2 < y < f .x; t//g and ˝3 D
f.x; y/; ��=2 < y < �h2g.

LEMMA 4 For every 0 < �1; �2 the smooth solutions of (1.8) in the stable regime, i.e. �2 > �1,

case verifies

kf .t/k2
L2.R/

C
Z t

0

kvk2
L2.R�.�h2;�=2//

�1.�2 � �1/
C

kvk2
L2.R�.��=2;�h2//

�2.�2 � �1/
ds D kf0k2

L2.R/
: (3.1)

Proof. We define the potentials

�1.x; y; t/ D �1.p.x; y; t/ C �1y/; if .x; y/ 2 ˝1;

�2.x; y; t/ D �1.p.x; y; t/ C �2y/; if .x; y/ 2 ˝2;

�3.x; y; t/ D �2.p.x; y; t/ C �2y/; if .x; y/ 2 ˝3:

We have vi D �r�i in each subdomain S i . Since the velocity is incompressible we have

0 D
Z

˝i

��i�i dxdy D �
Z

˝i

jvi j2dxdy C
Z

@˝i

�i@n�ids:

Moreover, the normal component of the velocity is continuous through the interface .x; f .x// and

the line where permeability changes .x; �h2/. Using the impermeable boundary conditions, we only

need to integrate over the curve .x; f .x; t// and .x; �h2/. Indeed, we have

0 D �
Z

˝1

jv1j2dxdy

C �1

Z

R

�

p
�

x; f .x; t/; t
�

C �1f .x; t/
��

� v
�

x; f .x; t/; t
�

�
�

@xf .x; t/; �1
�

�

dx; (3.2)

0 D �
Z

˝2

jv2j2dxdy

C �1

Z

R

�

p
�

x; f .x; t/; t
�

C �2f .x; t/
��

� v
�

x; f .x; t/; t
�

�
�

� @xf .x; t/; 1
�

�

dx

C �1

Z

R

�

p.x; �h2; t/ � �2h2

�� � v.x; �h2; t/ � .0; �1/
�

dx; (3.3)

0 D �
Z

˝3

jv3j2dxdy

C �2

Z

R

�

p.x; �h2; t/ � �2h2

��

� v.x; �h2; t/ � .0; 1/
�

dx: (3.4)

Inserting (3.4) in (3.3) we get

0 D �
Z

˝2

jv2j2dxdy � �1

�2

Z

˝3

jv3j2dxdy

C �1

Z

R

�

p
�

x; f .x; t/; t
�

C �2f .x; t/
��

� v
�

x; f .x; t/; t
�

�
�

� @xf .x; t/; 1
�

�

dx; (3.5)
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Thus, summing (3.5) and (3.2) together and using the continuity of the pressure and the velocity in

the normal direction, we obtain

Z

˝1[˝2

jvj2dxdy C �1

�2

Z

˝3

jvj2dxdy D �1

Z

R

.�2 � �1/f .x; t/
�

� @t f .x; t/
�

dx: (3.6)

Integrating in time we get the desired result (3.1).

3.2 Well-posedness for the infinite depth case

Let ˝ be the spatial domain considered, i.e. ˝ D R or ˝ D T. In this section we prove the short

time existence of classical solution for both spatial domains. We have the following result:

THEOREM 3.1 Consider 0 < h2 a fixed constant and the initial datum f0.x/ D f .x; 0/ 2 H k.˝/,

k > 3, such that �h2 < minx f0.x/. Then, if the Rayleigh-Taylor condition is satisfied, i.e. �2 �
�1 > 0, there exists an unique classical solution of (1.4) f 2 C.Œ0; T �; H k.˝// where T D T .f0/.

Moreover, we have f 2 C 1.Œ0; T �; C.˝// \ C.Œ0; T �; C 2.˝//:

Proof. We prove the result in the case ˝ D R, being the case ˝ D T similar. Let us consider the

usual Sobolev space H 3.R/ endowed with the norm

kf kH 3 D kf kL2 C k�3f kL2 ;

where � D
p

��. Define the energy

EŒf � WD kf kH 3 C kd hŒf �kL1 ; (3.7)

with

d hŒf �.x; ˇ/ D 1

.x � ˇ/2 C .f .x/ C h2/2
: (3.8)

To use the classical energy method we need a priori estimates. To simplify notation we drop the

physical parameters present in the problem by considering �1.�2 � �1/ D 2� and K D 1
2

. The

sign of the difference between the permeabilities will not be important to obtain local existence. We

denote c a constant that can changes from one line to another.

Estimates on k$2kH 3 . Given f .x/ such that EŒf � < 1 we consider $2 as defined in (2.13).

Then we have that k$2kH 3 6 c.EŒf � C 1/k for some constants c; k.

We proceed now to prove this claim. We start with the L2 norm. Changing variables in (2.13)

we have

k$2k2
L2 6 c











P.V.

Z

B.0;1/

@xf .x � ˇ/
�

h2 C f .x � ˇ/
�

ˇ2 C
�

h2 C f .x � ˇ/
�2

dˇ











2

L2

C c











P.V.

Z

Bc.0;1/

@xf .x � ˇ/
�

h2 C f .x � ˇ/
�

ˇ2 C �

h2 C f .x � ˇ/
�2

dˇ











2

L2

D A1 C A2:
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The inner term, A1; can be bounded as follows

A1 D
Z

R

P.V.

Z

B.0;1/

@xf .x � ˇ/
�

h2 C f .x � ˇ/
�

ˇ2 C
�

h2 C f .x � ˇ/
�2

dˇdx

� P.V.

Z

B.0;1/

@xf .x � �/
�

h2 C f .x � �/
�

�2 C
�

h2 C f .x � �/
�2

d�dx

6 ckd hŒf �k2
L1 .1 C kf kL1 /2k@xf k2

L2 :

In the last inequality we have used Cauchy–Schwartz inequality and Tonelli’s Theorem. For the

outer part we have

A2 D
Z

R

P.V.

Z

Bc.0;1/

@xf .x � ˇ/
�

h2 C f .x � ˇ/
�

ˇ2 C
�

h2 C f .x � ˇ/
�2

dˇdx

� P.V.

Z

Bc .0;1/

@xf .x � �/
�

h2 C f .x � �/
�

�2 C
�

h2 C f .x � �/
�2

d�dx

6 c.1 C kf kL1 /2k@xf k2
L2 ;

where we have used that
R1

1
dˇ

ˇ2
< 1 and Cauchy–Schwartz inequality. We change variables in

(2.14) to obtain

$2.x/ D P.V.

Z

R

ˇ

ˇ2 C
�

h2 C f .x � ˇ/
�2

dˇ:

Now it is clear that $2 is at the level of f in terms of regularity and the inequality follows using

the same techniques. Using Sobolev embedding we conclude this step.

Estimates on kd hŒf �kL1 . The first integral in (1.4) can be bounded as follows

I1 6











P.V.

Z

R

.x � ˇ/
�

@xf .x/ � @xf .ˇ/
�

.x � ˇ/2 C
�

f .x/ � f .ˇ/
�2

dˇ











L1

6 c.EŒf � C 1/k;

for some positive and finite k. The new term is the second integral in (1.4).

I2 6











1

2�
P.V.

Z

R

$2.x � ˇ/.ˇ C @xf .x/
�

f .x/ C h2/
�

ˇ2 C
�

f .x/ C h2

�2
dˇ











L1

6









1

2�
P.V.

Z

B.0;1/

dˇ









L1

C








1

2�
P.V.

Z

Bc.0;1/

dˇ









L1

D A1 C A2:

Easily we have

A1 6 ck$2kL1 kd hŒf �kL1

�

1 C k@xf kL1 .kf kL1 C 1/
�

:
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We split A2 D B1 C B2

B1 D 1

2�
P.V.

Z

Bc .0;1/

$2.x � ˇ/ˇ

ˇ2 C
�

f .x/ C h2

�2
˙ $2.x � ˇ/ˇ

ˇ2
dˇ

6 ck$2kL1 .kf kL1 C 1/2 C ckH$2kL1 C ck@x$2kL1 ;

where H denotes the Hilbert transform. Now we conclude the desired bound using the previous

estimate on k$2kH 3 and Sobolev embedding. The second term can be bounded as

B2 D 1

2�
P.V.

Z

Bc .0;1/

$2.x � ˇ/@xf .x/
�

f .x/ C h2

�

ˇ2 C .f .x/ C h2/2
dˇ 6 ck$2kL1.kf kL1 C 1/k@xf kL1 :

We obtain the following useful estimate

k@t f kL1 6 c.EŒf � C 1/k: (3.9)

We have

d

dt
d hŒf � D �@t f .x/2

�

f .x/ C h2

�

.ˇ2 C �

f .x/ C h2/2
�2

6 cd hŒf �kd hŒf �kL1 .kf kL1 C 1/k@t f kL1 :

Thus, integrating in time and using (3.9),

kd hŒf �.t C h/kL1 6 kd hŒf �.t/kL1 ec
R tCh

t .EŒf �C1/k

;

and we conclude this step

d

dt
kd hŒf �kL1 D lim

h!0

kd hŒf �.t C h/kL1 � kd hŒf �.t/kL1

h
6 c.EŒf � C 1/k:

Estimates on k@3
xf kL2 . As before, the bound for the term coming from the first integral in (1.4)

can be obtained as in [11], so it only remains the term coming from the second integral. We have

I2 D 1

2�

Z

R

@3
xf .x/P.V.

Z

R

@3
x

 

$2.x � ˇ/.ˇ C @xf .x/
�

f .x/ C h2/
�

ˇ2 C
�

f .x/ C h2

�2

!

dˇdx:

For the sake of brevity we only bound the terms with higher order, being the remaining terms

analogous. We have

I2 D J3 C J4 C J5 C J6 C J7 C l.o.t.;
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with

J3 D 1

2�

Z

R

@3
xf .x/P.V.

Z

R

@3
x$2.x � ˇ/ˇ

ˇ2 C
�

f .x/ C h2

�2
dˇdx;

J4 D 1

2�

Z

R

@3
xf .x/P.V.

Z

R

@3
x$2.x � ˇ/@xf .x/

�

f .x/ C h2

�

ˇ2 C .f .x/ C h2/2
dˇdx;

J5 D 1

2�

Z

R

@3
xf .x/P.V.

Z

R

2$2.x � ˇ/.ˇ C @xf .x/
�

f .x/ C h2/
��

� f .x/ � h2

�

@3
xf .x/

�

ˇ2 C .f .x/ C h2

�2
/2

dˇdx;

J6 D 1

2�

Z

R

@3
xf .x/P.V.

Z

R

$2.x � ˇ/
�

f .x/ C h2

�

@4
xf .x/

ˇ2 C
�

f .x/ C h2

�2
dˇdx;

and

J7 D 1

2�

Z

R

@3
xf .x/P.V.

Z

R

4$2.x � ˇ/@xf .x/@3
xf .x/

ˇ2 C .f .x/ C h2/2
dˇdx:

In order to bound J3 we use the symmetries in the formulae (@x D �@ˇ ) and we integrate by parts:

J3 D 1

2�

Z

R

@3
xf .x/P.V.

Z

R

@2
x$2.x � ˇ/@ˇ

 

ˇ

ˇ2 C
�

f .x/ C h2

�2

!

dˇdx

6 ck@3
xf kL2 k@2

x$2kL2 .kd hŒf �k2
L1 C kd hŒf �kL1 C 1/:

In J4 we use Cauchy–Schwartz inequality to obtain

J4 6 c.kd hŒf �kL1 C 1/k@3
xf kL2 k@3

x$2kL2 k@xf kL1.kf kL1 C h2/

The bounds for J5 and J7 are similar:

J5 6 c
�

kd hŒf �k2
L1 C 1/k@3

xf k2
L2 k$2kL1.1 C k@xf kL1.kf kL1 C h2/

�

.kf kL1 C h2/;

J7 6 c.kd hŒf �kL1 C 1/k@3
xf k2

L2 k$2kL1 k@xf kL1 :

Finally, we integrate by parts in J6 and we get

J6 6 ck@3
xf k2

L2 .kd hŒf �kL1 C 1/
�

k@x$2kL1 .kf kL1 C 1/ C k$2kL1k@xf kL1

�

C ck@3
xf k2

L2.kd hŒf �k2
L1 C 1/k$2kL1 k@xf kL1.kf kL1 C 1/2:

As a conclusion, we obtain
d

dt
k@3

xf kL2 6 c
�

EŒf � C 1
�k

:

Putting all the estimates together we get the desired bound for the energy:

d

dt
EŒf � 6 c

�

EŒf � C 1
�k

: (3.10)
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Regularization. This step is classical, so, we only sketch this part (see [22] for the details). We

regularize the problem and we show that the regularized problems have a solution using Picard’s

Theorem on a ball in H 3. Using the previous energy estimates and the fact that the initial energy

is finite, these solutions have the same time of existence (T depending only on the initial datum)

and we can show that they are a Cauchy sequence in C.Œ0; T �; L2/. From here we obtain f 2
C.Œ0; T �; H s.˝// \ L1.Œ0; T �; H 3.˝// where T D T .f0/ and 0 < s < 3, a solution to (1.4) as

the limit of these regularized solutions. The continuity of the strongest norm H 3 for positive times

follows from the parabolic character of the equation. The continuity of kf .t/kH 3 at t D 0 follows

from the fact that f .t/ * f0 in H 3 and from the energy estimates.

Uniqueness. Only remains to show that the solution is unique. Let us suppose that for the same

initial datum f0 there are two smooth solutions f 1 and f 2 with finite energy as defined in (3.7) and

consider f D f 1 � f 2. Following the same ideas as in the energy estimates we obtain

d

dt
kf kL2 6 c

�

f0; EŒf 1�; EŒf 2�
�

kf kL2 :

Now we conclude using Gronwall inequality.

3.3 Well-posedness for the finite depth case

In this section we prove the short time existence of classical solution in the case where the depth is

finite. We have the following result:

THEOREM 3.2 Consider 0 < h2 < �=2 a constant and f0.x/ D f .x; 0/ 2 H k.R/, k > 3, an initial

datum such that kf0kL1 < �=2 and �h2 < minx f0.x/. Then, if the Rayleigh-Taylor condition is

satisfied, i.e. �2 � �1 > 0, there exists an unique classical solution of (1.8) f 2 C.Œ0; T �; H k.R//

where T D T .f0/. Moreover, we have f 2 C 1.Œ0; T �; C.R// \ C.Œ0; T �; C 2.R//:

Proof. Let us consider the usual Sobolev space H 3.R/, being the other cases analogous, and define

the energy

EŒf � D kf kH 3 C kd hŒf �kL1 C kdŒf �kL1 ; (3.11)

with

d hŒf �.x; ˇ/ D 1

cosh.x � ˇ/ � cos
�

f .x/ C h2

� ; (3.12)

and

dŒf �.x; ˇ/ D 1

cosh.x � ˇ/ C cos
�

f .x/ C f .ˇ/
� : (3.13)

We note that d hŒf � represents the distance between f and h and dŒf � the distance between f

and the boundaries. To simplify notation we drop the physical parameters present in the problem

by considering �1.�2 � �1/ D 4� and K D 1
2

. Again, the sign of the difference between the

permeabilities will not be important to obtain local existence. We write (1.8) as @t f D I1 C I2 C
I3 C I4, being I1; I2 the integrals corresponding $1 and I3; I4 the integrals involving $2. We

denote c a constant that can changes from one line to another.
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Estimate on k$2kH 3 . Given f .x/ such that EŒf � < 1 and consider $2 as defined in (1.9). Then

we have that k$2kH 3 6 c.EŒf � C 1/k . We need to bound kJ1kH 3 and kJ2kH 3 with

J1 D P.V.

Z

R

@xf .x � ˇ/
sin
�

h2 C f .x � ˇ/
�

cosh.ˇ/ � cos
�

h2 C f .x � ˇ/
�dˇ

J2 D �P.V.

Z

R

@xf .x � ˇ/
sin
�

� h2 C f .x � ˇ/
�

cosh.ˇ/ C cos
�

� h2 C f .x � ˇ/
�dˇ:

We have

kJ1kL2 6











P.V.

Z

B.0;1/

@xf .x � ˇ/ sin
�

h2 C f .x � ˇ/
�

cosh.ˇ/ � cos
�

h2 C f .x � ˇ/
� dˇ











L2

C










P.V.

Z

Bc.0;1/

@xf .x � ˇ/ sin
�

h2 C f .x � ˇ/
�

cosh.ˇ/ � cos
�

h2 C f .x � ˇ/
� dˇ











L2

6 ck@xf kL2kd hŒf �kL1 C ck@xf kL2 ;

where we have used Tonelli’s Theorem and Cauchy–Schwartz inequality. Recall that f � h2 2
�

�2h2; �
2

� h2

�

, thus

1

cosh.x � ˇ/ C cos
�

f .x/ � h2

� <
1

cosh.x � ˇ/ � c.h2/
;

and the kernel corresponding to $2 can not be singular and we also obtain

kJ2kL2 6 ck@xf kL2 :

Now, as Gh2;K 2 S, we can use the Young’s inequality for the convolution terms obtaining bounds

with an universal constant depending on h2 and K. Indeed, we have

kGh2;K � Ji kL2 6 ckJi kL2 ;

and we obtain

k$2kL2 6 c.EŒf � C 1/k:

Now we observe that

J1 D P.V.

Z

R

sinh.ˇ/

cosh.ˇ/ � cos.h2 C f
�

x � ˇ/
�dˇ;

J2 D P.V.

Z

R

sinh.ˇ/

cosh.ˇ/ C cos
�

� h2 C f .x � ˇ/
�dˇ;

and we obtain k@3
xJikL2 6 c.EŒf � C 1/k . Using Young inequality we conclude

k$2kH 3 6 c
�

EŒf � C 1
�k

:
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Estimates on kd hŒf �kL1 and kdŒf �kL1 . The integrals corresponding to $1 in (1.8) can be

bounded (see [14]) as

jI1 C I2j 6 c.EŒf � C 1/k:

The new terms are the integrals I3 and I4, those involving $2 in (1.8). We have, when splitted

accordingly to the decay at infinity,

I3 C I4 D J3 C J4;

where

jJ3j 6











1

4�
P.V.

Z

R

$2.x � ˇ/ sinh.ˇ/

cosh.ˇ/ � cos
�

f .x/ C h2

� � $2.x � ˇ/ sinh.ˇ/

cosh.ˇ/ C cos.f .x/ � h2/
dˇ











L1

6 ck$2kL1

�

kd hŒf �kL1 C 1
�

;

and

jJ4j 6







1

4�
P.V.

Z

R

$2.x � ˇ/@xf .x/ sin.f .x/ C h2/

cosh.ˇ/ � cos.f .x/ C h2/

C $2.x � ˇ/@xf .x/ sin.f .x/ � h2/

cosh.ˇ/ C cos.f .x/ � h2/
dˇ






L1

6 ck$2kL1 k@xf kL1

�

kd hŒf �kL1 C 1
�

:

We conclude the following useful estimate

k@t f kL1 6 c
�

EŒf � C 1
�k

: (3.14)

We have

d

dt
d hŒf � D � sin

�

f .x/ C h2

�

@t f .x/

.cosh.x � ˇ/ � cos
�

f .x/ C h2/
�2

6 d hŒf �kd hŒf �kL1 k@t f kL1 :

Thus, using (3.14) and integrating in time, we obtain the desired bound for d hŒf �:

d

dt
kd hŒf �kL1 D lim

h!0

kd hŒf �.t C h/kL1 � kd hŒf �.t/kL1

h
6 c.EŒf � C 1/k:

To obtain the corresponding bound for dŒf � we proceed in the same way and we use (3.14) (see [14]

for the details).

Estimates on k@3
xf kL2 . As before, see [14] for the details concerning the terms coming from $1

in (1.8). It only remains the terms coming from $2:

I D
Z

R

P.V.

Z

R

@3
xf .x/@3

x

 

$2.ˇ/
�

sinh.x � ˇ/ C @xf .x/ sin.f .x/ C h2/
�

cosh.x � ˇ/ � cos.f .x/ C h2/

C$2.ˇ/
�

� sinh.x � ˇ/ C @xf .x/ sin.f .x/ � h2/
�

cosh.x � ˇ/ C cos
�

f .x/ � h2

�

!

dˇdx:
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We split

I D J7 C J8 C J9 C l.o.t.:

The lower order terms (l.o.t.) can be obtained in a similar way, so we only study the terms Ji . We

have

J7 6

Z

R

P.V.

Z

R

@3
xf .x/@3

x$2.x � ˇ/ sinh.ˇ/

cosh.ˇ/ � cos.f .x/ C h2/
� @3

xf .x/@3
x$2.x � ˇ/ sinh.ˇ/

cosh.ˇ/ C cos.f .x/ � h2/
dˇdx

6 ck@3
xf kL2k@3

x$2kL2 .kd hŒf � C 1k/;

J8 6

Z

R

P.V.

Z

R

@3
xf .x/@3

x$2.x � ˇ/@xf .x/ sin.f .x/ C h2/

cosh.ˇ/ � cos.f .x/ C h2/

� @3
xf .x/@3

x$2.x � ˇ/@xf .x/ sin.f .x/ C h2/

cosh.ˇ/ C cos.f .x/ � h2/
dˇdx

6 ck@3
xf kL2k@3

x$2kL2 k@xf kL1 .kd hŒf � C 1k/:

The term J9 is given by

J9 D 1

2

Z

R

P.V.

Z

R

@x

�

@3
xf .x/

�2

 

$2.ˇ/ sin
�

f .x/ C h2

�

cosh.x � ˇ/ � cos
�

f .x/ C h2

�

C $2.ˇ/ sin
�

f .x/ � h2

�

cosh.x � ˇ/ C cos.f .x/ � h2/

!

dˇdx:

Integrating by parts

jJ9j 6 ck@3
xf kL2 .kd hŒf �kL1 C 1/.k@x$2kL1 C k$2kL1 k@xf kL1/

C ck@3
xf kL2.kd hŒf �k2

L1 C 1/k$2kL1 .1 C k@xf kL1 /

Regularization and uniqueness. These steps follow the same lines as in Theorem 3.1. This

concludes the result.

4. Numerical simulations

In this section we perform numerical simulations to better understand the role of $2. We consider

equation (1.6) where �1 D 1, �2 � �1 D 4� and h2 D �=2. For each initial datum we

approximate the solution of (1.6) corresponding to different K. Indeed, we take different �2 to

get K D �999
1001

; �1
3

; 0; 1
3

and 999
1001

.

To perform the simulations we follow the ideas in [13]. The interface is approximated using

cubic splines with N spatial nodes. The spatial operator is approximated with Lobatto quadrature

(using the function quadl in Matlab). Then, three different integrals appear for a fixed node xi . The

integral between xi�1 and xi , the integral between xi and xiC1 and the nonsingular ones. In the two

first integrals we use Taylor theorem to remove the zeros present in the integrand. In the nonsingular
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integrals the integrand is made explicit using the splines. We use a classical explicit Runge–Kutta

method of order 4 to integrate in time. In the simulations we take N D 120 and dt D 10�3.

The case 1 (see Figure 2 and 3) approximates the solution corresponding to the initial datum

f0.x/ D �
��

2
� 0:000001

�

e�x12

:

The case 2 (see Figures 4 and 5) approximates the solution corresponding to the initial datum

f0.x/ D �
��

2
� 0:000001

�

cos.x2/:

The case 3 (see Figure 6 and 7) approximates the solution corresponding to the initial datum

f0.x/ D �
��

2
� 0:000001

�

e�.x�2/12 �
��

2
� 0:000001

�

e�.xC2/12 C e�x2

cos2.x/:

In these simulations we observe that kf kC 1 decays but rather differently depending on K. If

K < 0 the decay of kf kL1 is faster when compared with the case K D 0. In the case where

K > 0 the term corresponding to $2 slows down the decay of kf kL1 but we observe still a

decay. Particularly, we observe that if K � 1 (�2 � 0) the decay is initially almost zero and then

slowly increases. When the evolution of k@xf kL1 is considered the situation is reversed. Now the

simulations corresponding to K > 0 have the faster decay. With these result we can not define a

stable regime for K in which the evolution would be smoother. Recall that we know that there is not

any hypothesis on the sign or size of K to ensure the existence (see Theorem 3.1 and 3.2).

FIG. 2. Evolution of �kf kL1 for different K in case 1
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FIG. 3. Evolution of k@xf kL1 for different K in case 1

FIG. 4. Evolution of �kf kL1 for different K in case 2

5. Turning waves

In this section we prove finite time singularities for equations (1.4), (1.6) and (1.8). These

singularities mean that the curve turns over or, equivalently, in finite time they can not be
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FIG. 5. Evolution of k@xf kL1 for different K in case 2

FIG. 6. Evolution of �kf kL1 for different K in case 3

parametrized as graphs. The proof of turning waves follows the steps and ideas in [5] for the

homogenous infinitely deep case where here we have to deal with the difficulties coming from

the boundaries and the delta coming from the jump in the permeabilities.
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FIG. 7. Evolution of k@xf kL1 for different K in case 3

5.1 Infinite depth

Let ˝ be the spatial domain considered, i.e. ˝ D R or ˝ D T. We have

THEOREM 5.1 Let us suppose that the Rayleigh–Taylor condition is satisfied, i.e. �2 � �1 > 0.

Then there exists f0.x/ D f .x; 0/ 2 H 3.˝/, an admissible (see Theorem 3.1) initial datum, such

that, for any possible choice of �1; �2 > 0 and h2 >> 1, there exists a solution of (1.4) and (1.6) for

which limt!T � k@xf .t/kL1 D 1 in finite time 0 < T � < 1. For short time t > T � the solution

can be continued but it is not a graph.

Proof. To simplify notation we drop the physical parameters present in the problem by considering

�1.�2 � �1/ D 2� . The proof has three steps. First we consider solutions which are arbitrary

curves (not necessary graphs) and we translate the singularity formation to the fact @˛v1.0/ D
@t @˛z1.0/ < 0. The second step is to construct a family of curves such that this expression is

negative. Thus, we have that if there exists, forward and backward in time, a solution in the Rayleigh-

Taylor stable case corresponding to initial data which are arbitrary curves then, we have proved that

there is a singularity in finite time. The last step is to prove, using a Cauchy-Kovalevsky theorem,

that there exists local in time solutions in this unstable case.

Obtaining the correct expression. Consider the case ˝ D R. Due to (2.12) we have

@˛@t z1.˛/ D I1 C I2 C I3;
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where

I1.˛/ D @˛P.V.

Z

R

z1.˛/ � z1.˛ � ˇ/
ˇ

ˇz.˛/ � z.˛ � ˇ/
ˇ

ˇ

2
.@˛z1.˛/ � @˛z1.˛ � ˇ//dˇ;

I2.˛/ D @˛

1

2�
P.V.

Z

R

$2.˛ � ˇ/
�z2.˛/ � h2

ˇ

ˇz.˛/ � h.˛ � ˇ/
ˇ

ˇ

2
dˇ;

I3.˛/ D @˛

 

@˛z1.˛/
1

2�
P.V.

Z

R

$2.˛ � ˇ/
z2.˛/ C h2

ˇ

ˇz.˛/ � h.˛ � ˇ/
ˇ

ˇ

2
dˇ

!

:

Assume now that the following conditions for z.˛/ holds:

� zi .˛/ are odd functions,

� @˛z1.0/ D 0; @˛z1.˛/ > 0 8˛ ¤ 0, and @˛z2.0/ > 0,

� z.˛/ ¤ h.˛/ 8˛.

The previous hypotheses mean that z is a curve satisfying the arc-chord condition and @˛z.0/ only

has vertical component. Due to these conditions on z we have @˛z1.0/ D 0 and @2
˛z1 is odd (and

then the second derivative at zero is zero) and we get that I3.0/ D 0. For I1 we get

I1.0/ D P.V.

Z

R

@2
˛z1.ˇ/z1.ˇ/ C

�

@˛z1.ˇ/
�2

�

z1.ˇ/
�2 C

�

z2.ˇ/
�2

dˇ � 2P.V.

Z

R

�

@˛z1.ˇ/z1.ˇ/
�2

�

�

z1.ˇ/
�2 C

�

z2.ˇ/
�2
�2

dˇ

C 2P.V.

Z

R

@˛z1.ˇ/z1.ˇ/z2.ˇ/
�

@˛z2.0/ � @˛z2.ˇ/
�

�

�

z1.ˇ/
�2 C

�

z2.ˇ/
�2
�2

dˇ:

We integrate by parts and we obtain, after some lengthy computations,

I1.0/ D 4@˛z2.0/P.V.

Z 1

0

@˛z1.ˇ/z1.ˇ/z2.ˇ/
�

.z1.ˇ/
�2 C

�

z2.ˇ/
�2

/2
dˇ: (5.1)

For the term with the second vorticity we have

I2.0/ D 1

2�
P.V.

Z

R

@ˇ $2.�ˇ/h2

ˇ2 C h2
2

dˇ C 1

2�
P.V.

Z

R

�$2.�ˇ/@˛z2.0/

ˇ2 C h2
2

dˇ

� 1

2�
P.V.

Z

R

2$2.�ˇ/ˇh2

.ˇ2 C h2
2/2

dˇ � 1

2�
P.V.

Z

R

@˛z2.0/$2.�ˇ/.�h2
2/

.ˇ2 C h2
2/2

dˇ;

and, after an integration by parts we obtain

I2.0/ D �@˛z2.0/

2�
P.V.

Z 1

0

�

$2.ˇ/ C $2.�ˇ/
�

ˇ2

.ˇ2 C h2
2/2

dˇ: (5.2)
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Putting all together we obtain that in the flat at infinity case the important quantity for the singularity

is

@˛v1.0/ D @˛z2.0/

0

B

@
4P.V.

Z 1

0

@˛z1.ˇ/z1.ˇ/z2.ˇ/
�

�

z1.ˇ/
�2 C

�

z2.ˇ/
�2
�2

dˇ

� 1

2�
P.V.

Z 1

0

�

$2.ˇ/ C $2.�ˇ/
�

ˇ2

.ˇ2 C h2
2/2

dˇ

!

; (5.3)

where, due to (2.11), $2 is defined as

$2.ˇ/ D 2KP.V.

Z

R

�

h2 C z2./
�

@˛z2./
�

h2 C z2./
�2 C

�

ˇ � z1./
�2

d: (5.4)

We apply the same procedure to equation (2.15) and we get the important quantity in the periodic

setting (recall the superscript p in the notation denoting that we are in the periodic setting):

@˛v
p
1 .0/ D @˛z2.0/

 

Z �

0

@˛z1.ˇ/ sin
�

z1.ˇ/
�

sinh
�

z2.ˇ/
�

�

cosh
�

z2.ˇ/
�

� cos
�

z1.ˇ/
�

�2
dˇ

C 1

4�

Z �

0

�

$
p
2 .ˇ/ C $

p
2 .�ˇ/

��

� 1 C cosh.h2/ cos.ˇ/
�

�

cosh.h2/ � cos.ˇ/
�2

dˇ

!

; (5.5)

and, due to (2.16),

$
p
2 .ˇ/ D K

Z

T

sin
�

ˇ � z1./
�

@˛z1./

cosh
�

h2 C z2./
�

� cos
�

ˇ � z1./
�d: (5.6)

Taking the appropriate curve. To clarify the proof, let us consider first the periodic setting. Given

1 < h2, we consider a; b; constants such that 2 < b 6 a and let us define

z1.˛/ D ˛ � sin.˛/;

and

z2.˛/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

sin.a˛/

a
if 0 6 ˛ 6

�

a
;

sin
�

� ˛�.�=a/
.�=a/�.�=b/

�

b
if

�

a
< ˛ <

�

b
;

��h2=2
�
2

� �
b

�

�

˛ � �

b

�

if
�

b
6 ˛ <

�

2
;

�
��h2=2

�
2

� �
b

�

�

˛ � � C �

b

�

if
�

2
6 ˛ < �

�

1 � 1

b

�

;

0 if �
�

1 � 1

b

�

6 ˛:

(5.7)
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FIG. 8. z2 in (5.7) for a D 5; b D 3; h2 D �=2

Due to the definition of z2, we have

h2

2
6 h2 C z2.˛/ 6

3h2

2
;

and using (5.6), we get

j$p
2 .ˇ/j 6

4�

cosh.h2=2/ � 1
:

Inserting this curve in (5.5) we obtain

@˛v
p
1 .0/ 6 Ia C I

h2

b
C I

h2

2 ;

with

Ia D
Z �=a

0

�

1 � cos.ˇ/
�

sin
�

ˇ � sin.ˇ/
�

sinh
�

sin.aˇ/
a

�

�

cosh
�

sin.aˇ/
a

�

� cos
�

ˇ � sin.ˇ/
�

�2
dˇ;

I
h2

b
D
Z �=2

.�=bC�/=3

�

1 � cos.ˇ/
�

sin
�

ˇ � sin.ˇ/
�

sinh
�

��h2=2
�
2

� �

b

��

ˇ � �
b

�

�

�

cosh
�

��h2=2
�
2

� �

b

��

ˇ � �
b

�

�

� cos
�

ˇ � sin.ˇ/
�

�2
dˇ

C
Z .2���=b/=3/

�=2

�

1 � cos.ˇ/
�

sin
�

ˇ � sin.ˇ/
�

sinh
�

�
�

�h2=2
�
2

� �

b

�

�

˛ � � C �
b

�

�

�

cosh
�

�
�

�h2=2
�
2

� �

b

�

˛ � � C �
b

�

��

� cos
�

ˇ � sin.ˇ/
�

�2
dˇ;
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and I
h2

2 is the integral involving the second vorticity $
p
2 . We remark that Ia does not depend on

h2. The sign of I
h2

b
is the same as the sign of z2, thus we get I

h2

b
< 0 and this is independent of the

choice of a and h2. Now we fix b and we take h2 sufficiently large such that

I
h2

b
C I

h2

2 6 I
h2

b
C 2�

cosh.h2=2/ � 1

1 C cosh.h2/

.cosh.h2/ � 1/2
< 0:

We can do that because
cb sinh.h2=3/

�

cosh.h2=2/ C 1
�2

6 jI h2

b
j

or, equivalently,

I
h2

b
C I

h2

2 D �jI h2

b
j C I

h2

2 6 � cb sinh.h2=3/

.cosh
�

h2=2/ � 1
�2

C 2�

cosh.h2=2/ � 1

1 C cosh.h2/
�

cosh.h2/ � 1
�2

< 0;

if h2 is large enough. The integral Ia is well defined and positive, but goes to zero as a grows. Then,

fixed b and h2 in such a way I
h2

b
CI

h2

2 < 0, we take a sufficiently large such that IaCI
h2

b
CI

h2

2 < 0.

We are done with the periodic case.

We proceed with the flat at infinity case. We take 2 < b 6 a as before and 0 < ı < 1 and define

z1.˛/ D ˛ � sin.˛/ exp.�˛2/; (5.8)

and

z2.˛/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

sin.a˛/

a
if 0 6 ˛ 6

�

a
;

sin
�

� ˛�.�=a/
.�=a/�.�=b/

�

b
if

�

a
< ˛ <

�

b
;

 

�hı
2

�
2

� �
b

!

�

˛ � �

b

�

if
�

b
6 ˛ <

�

2
;

�
 

�hı
2

�
2

� �
b

!

�

˛ � � C �

b

�

if
�

2
6 ˛ < �

�

1 � 1

b

�

;

0 if �
�

1 � 1

b

�

6 ˛:

(5.9)

We have

h2 � hı
2 < h2 C z2.ˇ/ < h2 C hı

2;

and we assume 1 < h2 � hı
2. Inserting the curve (5.8) and (5.9) in (5.4) and changing variables, we

obtain

j$2.ˇ/j 6 2P.V.

Z

R

.h2 C hı
2/hı

2

�

�
2

� �
b

��1

.h2 � hı
2/2 C

�

 � sin.ˇ � /e�.ˇ�/2
�2

d:

We split the integral in two parts:

J1 D 2P.V.

Z

B.0;2.h2�hı
2

//

.h2 C hı
2/hı

2

�

�
2

� �
b

��1

.h2 � hı
2/2 C

�

 � sin.ˇ � /e�.ˇ�/2
�2

d 6 8hı
2

��

2
� �

b

��1

;
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and

J2 D 2P.V.

Z

Bc.0;2.h2�hı
2

//

.h2 C hı
2/hı

2

�

�
2

� �
b

��1

.h2 � hı
2/2 C

�

 � sin.ˇ � /e�.ˇ�/2
�2

d:

We have

K1 D P.V.

Z 1

2.h2�hı
2

/

1

.h2 � hı
2/2 C . � sin.ˇ � /e�.ˇ�/2

/2
d

6 P.V.

Z 1

2.h2�hı
2

/

1

.h2 � hı
2/2 C 2 � 2 sin.ˇ � /e�.ˇ�/2

d

6 P.V.

Z 1

2.h2�hı
2

/

1

.h2 � hı
2 � /2 C 2.h2 � hı

2 � sin.ˇ � /e�.ˇ�/2
/
d;

and using that h2 is such that 1 < h2 � hı
2, we get

K1 6 P.V.

Z 1

2.h2�hı
2

/

1

.h2 � hı
2 � /2

d D 1

h2 � hı
2

:

The remaining integral is

K2 D P.V.

Z �2.h2�hı
2

/

�1

1

.h2 � hı
2/2 C

�

 � sin.ˇ � /e�.ˇ�/2
�2

d

6 P.V.

Z �2.h2�hı

2
/

�1

1

.h2 � hı
2/2 C 2 � 2 sin.ˇ � /e�.ˇ�/2

d

6 P.V.

Z �2.h2�hı
2

/

�1

1

.h2 � hı
2 C /2 � 2

�

h2 � hı
2 C sin.ˇ � /e�.ˇ�/2

�d;

and using that h2 is such that 1 < h2 � hı
2, we get

K2 6 P.V.

Z �2.h2�hı
2

/

�1

1

.h2 � hı
2 C /2

d D 1

h2 � hı
2

:

Putting all together we get

J2 6 4hı
2

��

2
� �

b

��1

;

and

j$2.ˇ/j 6 12hı
2

��

2
� �

b

��1

:

Using this bound in (5.3) we get

jI h2

2 j 6 3hı�1
2

��

2
� �

b

��1

:

Then, as before,

@˛v1.0/ 6 Ia C I
h2

b
C I

h2

2 ;
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where Ia; I
h2

b
are the integrals I1.0/ on the intervals .0; �=a/ and ..�=b C �/=3; .2� � �=b/=3/,

respectively. We have

cb

2hı
2

3.hı
2/4

6 jI h2

b
j

thus,

I
h2

b
C I

h2

2 D �jI h2

b
j C I

h2

2 6 �cb

2h�3ı
2

3
C 3hı�1

2

��

2
� �

b

��1

:

To ensure that the decay of I
h2

2 is faster than the decay of I
h2

b
we take ı < 1=4. Now, fixing b, we

can obtain 1 < h2 and 0 < ı < 1=4 such that 1 < h2 � hı
2 and I

h2

b
C I

h2

2 < 0. Taking a >> b we

obtain a curve such that @˛v1.0/ < 0. In order to conclude the argument it is enough to approximate

these curves (5.7) and (5.9) by analytic functions. We are done with this step of the proof.

Showing the forward and backward solvability. At this point, we need to prove that there is a

solution forward and backward in time corresponding to these curves (5.7) and (5.9). Indeed, if this

solution exists then, due to the previous step, we obtain that, for a short time t < 0, the solution is

a graph with finite H 3.˝/ energy (in fact, it is analytic). This graph at time t D 0 has a blow up

for k@xf kL1 and, for a short time t > 0, the solution can not be parametrized as a graph. We show

the result corresponding to the flat at infinity case, being the periodic one analogous. We consider

curves z satisfying the arc-chord condition and such that

lim
j˛j!1

ˇ

ˇz.˛/ � .˛; 0/
ˇ

ˇ D 0:

We define the complex strip Br D f� C i�; � 2 R; j�j < rg; and the spaces

Xr D fz D .z1; z2/ analytic curves satisfying the arc-chord condition on Brg; (5.10)

with norm

kzk2
r D kz./ � .; 0/k2

H 3.Br /
;

where H 3.Br / denotes the Hardy–Sobolev space on the strip with the norm

kf k2
r D

X

˙

Z

R

ˇ

ˇf .� ˙ ri/
ˇ

ˇ

2
d� C

Z

R

ˇ

ˇ@3
˛f .� ˙ ri/

ˇ

ˇ

2
d�; (5.11)

(see [2]). These spaces form a Banach scale. For notational convenience we write  D ˛ ˙ ir ,

 0 D ˛ ˙ ir 0. Recall that, for 0 < r 0 < r ,

k@˛ � kL2.Br0 / 6
C

r � r 0 k � kL2.Br /: (5.12)
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We consider the complex extension of (2.11) and (2.12), which is given by

@t z./ D P.V.

Z

R

�

z1./ � z1. � ˇ/
��

@˛z./ � @˛z. � ˇ/
�

�

z1./ � z1. � ˇ/
�2 C

�

z2./ � z2. � ˇ/
�2

dˇ

C 1

2�
P.V.

Z

R

$2. � ˇ/
�

z./ � h. � ˇ/
�?

�

z1./ � . � ˇ/
�2 C

�

z2./ C h2

�2
dˇ

C @˛z./
1

2�
P.V.

Z

R

�

z2./ C h2

�

$2. � ˇ/
�

z1./ � . � ˇ/
�2 C

�

z2./ C h2

�2
dˇ; (5.13)

with

$2./ D 2K P.V.

Z

R

�

h2 C z2. � ˇ/
�

@˛z2. � ˇ/
�

 � z1. � ˇ/
�2 C

�

h2 C z2. � ˇ/
�2

dˇ: (5.14)

Recall the fact that in the case of a real variable graph $2 has the same regularity as f , but in the

case of an arbitrary curve $2 is, roughly speaking, at the level of the first derivative of the interface.

This fact will be used below. We define

d �Œz�.; ˇ/ D ˇ2

�

z1./ � z1. � ˇ/
�2 C

�

z2./ � z2. � ˇ/
�2

; (5.15)

d hŒz�.; ˇ/ D 1 C ˇ2

�

z1./ � . � ˇ/
�2 C

�

z2./ C h2

�2
: (5.16)

The function d � is the complex extension of the arc chord condition and we need it to bound the

terms with $1. The function d h comes from the different permeabilities and we use it to bound

the terms with $2. We observe that both are bounded functions for the considered curves. Consider

0 < r 0 < r and the set

OR D fz 2 Xr such that kzkr < R; kd �Œz�kL1.Br / < R; kd hŒz�kL1.Br / < Rg;

where d �Œz� and d hŒz� are defined in (5.15) and (5.16). Then we claim that, for z; w 2 OR, the

right-hand side of (5.13), F W OR ! Xr0 is continuous and the following inequalities holds:

kF Œz�kH 3.Br0 / 6
CR

r � r 0 kzkr ; (5.17)

kF Œz� � F Œw�kH 3.Br0 / 6
CR

r � r 0 kz � wkH 3.Br /; (5.18)

sup
2Br ;ˇ2R

jF Œz�./ � F Œz�. � ˇ/j 6 CRjˇj: (5.19)

The claim for the spatial operator corresponding to $1 has been studied in [5], thus, we only deal

with the new terms containing $2. For the sake of brevity we only bound some terms, being the

other analogous. Using Tonelli’s theorem and Cauchy–Schwartz inequality we have that

k$2kL2.Br0 / 6 ckd hŒz�kL1

�

1 C kz2kL1.Br0 /

�

k@˛z2kL2.Br0 /:
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Moreover, we get

k$2kH 2.Br / 6 CRkzkr : (5.20)

For @3
˛$2 the procedure is similar but we lose one derivative. Using (5.12) and Sobolev embedding

we conclude

k$2kH 3.Br0 / 6
CR

r � r 0 kzkr : (5.21)

From here inequality (5.17) follows. Inequality (5.18), for the terms involving $1, can be obtained

using the properties of the Hilbert transform as in [5]. Let’s change slightly the notation and write

$2Œz�./ for the integral in (5.14). We split

A1 D P.V.

Z

R

�

$2Œz�. 0 � ˇ/ � $2Œw�. 0 � ˇ/
��

z. 0/ � h. 0 � ˇ/
�?

�

z1. 0/ � . 0 � ˇ/
�2 C

�

z2. 0/ C h2

�2
dˇ

C P.V.

Z

R

$2Œw�. 0 � ˇ/
�

�

z. 0/ � h. 0 � ˇ/
�? �

�

w. 0/ � h. 0 � ˇ/
�?�

�

z1. 0/ � . 0 � ˇ/
�2 C

�

z2. 0/ C h2

�2
dˇ

C P.V.

Z

R

$2Œw�. 0 � ˇ/.w. 0/ � h. 0 � ˇ//? d hŒz�. 0; ˇ/ � d hŒw�. 0; ˇ/

1 C ˇ2
dˇ

D B1 C B2 C B3:

In B3 we need some extra decay at infinity to ensure the finiteness of the integral. We compute

jd hŒz� � d hŒw�j 6 CR

jd hŒz�d hŒw�j
1 C ˇ2

j.1 C ˇ/.z1 � w1/ C z2 � w2j < CRjz � wj j1 C ˇj
1 C ˇ2

;

and, due to Sobolev embedding, we get

kB3kL2.Br0 / 6 CRk$2Œw�kL2.Br0 /kz � wkL1.Br0 / 6
CR

r � r 0 kz � wkH 3.Br /:

For the second term we obtain the same bound

kB2kL2.Br0 / 6 CRk$2Œw�kL2.Br0 /kz � wkL1.Br0 / 6
CR

r � r 0 kz � wkH 3.Br /:

We split B1 componentwise. In the first coordinate we have

kC1kL2.Br0 / D










P.V.

Z

R

�

$2Œz�. 0 � ˇ/ � $2Œw�. 0 � ˇ/
��

� z2. 0/ � h2

�

�

z1. 0/ � . 0 � ˇ/
�2 C

�

z2. 0/ C h2

�2
dˇ











L2.Br0 /

6 CRk$2Œz� � $2Œw�kL2.Br0 /:

In the second coordinate we need to ensure the integrability at infinity. We get

C2 D P.V.

Z

R

�

$2Œz�. 0 � ˇ/ � $2Œw�. 0 � ˇ/
��

z1. 0/ �  0�

�

z1. 0/ � . 0 � ˇ/
�2 C

�

z2. 0/ C h2

�2
dˇ

C P.V.

Z

R

�

$2Œz�. 0 � ˇ/ � $2Œw�. 0 � ˇ/
�

�ˇd hŒz�

1 C ˇ2
� 1

ˇ

�

dˇ

C H$2Œz�. 0/ � H$2Œw�. 0/;
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and, with this splitting and the properties of the Hilbert transform, we obtain

kC2kL2.Br0 / 6 CRk$2Œz� � $2Œw�kL2.Br0 /:

We get

$2Œz� � $2Œw� D C3 C C4 C C5;

where

C3 D 2K P.V.

Z

R

�

z2. � ˇ/ � w2. � ˇ/
�

@˛z2. � ˇ/
�

 � z1. � ˇ/
�2 C

�

h2 C z2. � ˇ/
�2

dˇ;

C4 D 2K P.V.

Z

R

�

h2 C w2. � ˇ/
��

@˛z2. � ˇ/ � @˛w2. � ˇ/
�

�

 � z1. � ˇ/
�2 C

�

h2 C z2. � ˇ/
�2

dˇ;

and

C5 D 2K P.V.

Z

R

.h2 C w2. � ˇ//@˛w2. � ˇ/
d hŒz�. � ˇ; �ˇ/ � d hŒw�. � ˇ; �ˇ/

1 C ˇ2
dˇ:

From these expressions we obtain

kC3kL2.Br0 / 6 CRkz � wkL1 k@˛z2kL2.Br0 /;

kC4kL2.Br0 / 6 CRk@˛.z � w/kL2.Br0 /;

and

kC5kL2.Br0 / 6 CRkz � wkL1 k@˛z2kL2.Br0 /:

Collecting all these estimates, and due to Sobolev embedding and (5.12) we obtain

kB1kL2.Br0 /

CR

r � r 0 kz � wkH 3.Br /:

We are done with (5.18). Inequality (5.19) is equivalent to the bound j@t @˛zj < CR. Such a bound

for the terms involving $2 can be obtained from (5.16) and (5.20). For instance

A2 D P.V.

Z

R

@˛$2. � ˇ/
�

z./ � h. � ˇ/
�?

�

z1./ � . � ˇ/
�2 C .z2./ C h2/2

dˇ D

� P.V.

Z

R

$2. � ˇ/@ˇ

 

�

z./ � h. � ˇ/
�?

�

z1./ � . � ˇ/
�2 C .z2./ C h2/2

!

dˇ

6 CRk$2kH 2.Br /kd hŒz�kL1 :

The remaining terms can be handled in a similar way. Now we can finish with the forward and

backward solvability step. Take z.0/ the analytic extension of z in (5.9) ((5.7) for the periodic

case). We have z.0/ 2 Xr0
for some r0 > 0, it satisfies the arc-chord condition and does not reach
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the curve h, thus, there exists R0 such that z.0/ 2 OR0
. We take r < r0 and R > R0 in order to

define OR and we consider the iterates

znC1 D z.0/ C
Z t

0

F Œzn�ds; z0 D z.0/;

and assume by induction that zk 2 OR for k 6 n. Then, following the proofs in [5, 14, 25, 26], we

obtain a time TCK > 0 of existence. It remains to show that

kd �ŒznC1�kL1.Br /; kd hŒznC1�kL1.Br / < R;

for some times TA; TB > 0 respectively. Then we choose T D minfTCK ; TA; TBg and we finish the

proof. As d � has been studied in [5] we only deal with d h. Due to (5.17) and the definition of z.0/,

we have
�

d CŒznC1�
��1

>
1

R0

� CR.t2 C t/;

and, if we take a sufficiently small TB we can ensure that for t < TB we have d hŒznC1� < R. We

conclude the proof of the Theorem.

We observe that in the periodic case the curve z is of the same order as h2, so, even if h2 >> 1,

this result is not some kind of linearization. The same result is valid if K << 1 for any h2 (see

Theorem 5.2). Moreover, we have numerical evidence showing that for every jKj < 1 and h2 D �=2

(and not h2 >> 1) there are curves showing turning effect.

NUMERICAL EVIDENCE 5 There are curves such that for every jKj < 1 and h2 D �=2 turn over.

Let us consider first the periodic setting. Recall the fact that h2 D �=2 and let us define

z1.˛/ D ˛ � sin.˛/; z2.˛/ D sin.3˛/

3
� sin.˛/

�

e�.˛C2/2 C e�.˛�2/2�

for ˛ 2 T: (5.22)

Inserting this curve in (5.5) we obtain that for any possible �1 < K < 1,

I1.0/ C jI2.0/j < 0:

In particular

@˛v
p
1 .0/ D I1.0/ C I2.0/ < I1.0/ C jI2.0/j < 0:

Let us introduce the algorithm we use. We need to compute

@˛v
p
1 .0/ D

Z �

0

I1 C
Z �

0

I2;

where Ii means the i -integral in (5.5). Recall that Ii is two times differentiable, so, we can use

the sharp error bound for the trapezoidal rule. We denote dx the mesh size when we compute the

first integral. We approximate the integral of I1 using the trapezoidal rule between .0:1; �/. We

neglect the integral in the interval .0; 0:1/, paying with an error denoted by jE1
P V j D O.10�3/. The

trapezoidal rule gives us an error jE1
I j 6

dx2.��0:1/
12

k@2
˛I1kL1 . As we know the curve z, we can

bound @2
˛I1. We obtain

jE1
I j 6 dx2 .� � 0:1/

6
105:
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We take dx D 10�7. Putting all together we obtain

jE1j 6 jE1
P V j C jE1

I jC 6 3O.10�3/ D O.10�2/:

Then, we can ensure that

@˛z2.0/

Z �

0

@˛z1.ˇ/ sin
�

z1.ˇ/
�

sinh
�

z2.ˇ/
�

�

cosh
�

z2.ˇ/
�

� cos
�

z1.ˇ/
�

�2
dˇ 6 �0:7 C jE1j < �0:6: (5.23)

We need to control analytically the error in the integral involving $
p
2 . This second integral has the

error coming form the numerical integration, E2
I and a new error coming from the fact that $

p
2 is

known with some error. We denote this new error as E2
$ . Let us write Qdx the mesh size for the

second integral. Then, using the smoothness of I2, we have

jE2
I j 6

Qdx
2

16
k$

p
2 kC 2 6

Qdx
2

4
� 50:

We take Qdx D 10�4: It remains the error coming from $
p
2 . The second vorticity, $

p
2 , is given by

the integral (5.6). We compute the integral (5.6) using the same mesh size as for I2, Qdx. Thus, the

errors are

jE2
$ j 6 O.10�3/;

Putting all together we have

jE2j 6 jE2
I j C jE2

$ j 6 O.10�2/;

and we conclude
ˇ

ˇ

ˇ

ˇ

ˇ

@˛z2.0/

4�

Z �

0

�

$
p
2 .ˇ/ C $

p
2 .�ˇ/

��

� 1 C cosh.h2/ cos.ˇ/
�

�

cosh.h2/ � cos.ˇ/
�2

dˇ

ˇ

ˇ

ˇ

ˇ

ˇ

6 0:1 C jE2j < 0:2: (5.24)

Now, using (5.23) and (5.24), we obtain @˛v
p
1 .0/ < 0, and we are done with the periodic case. We

proceed with the flat at infinity case. We have to deal with the unboundedness of the domain so we

define

z1.˛/ D ˛ � sin.˛/ exp.�˛2=100/; z2.˛/ D sin.3˛/

3
� sin.˛/

�

e�.˛C2/2 C e�.˛�2/2
�

1fj˛j<�g:

(5.25)

Inserting this curve in (5.3) we obtain that for any possible �1 < K < 1,

I1.0/ C jI2.0/j < 0:

Then, as before,

@˛v1.0/ D I1.0/ C I2.0/ < I1.0/ C jI2.0/j < 0:

The function z2 is Lipschitz, so the same for I1, where now Ii are the expressions in (5.3) and the

second integral I2 is over an unbounded interval. To avoid these problems we compute the numerical

approximation of
Z ��dx

0:1

I1 C
Z L2

0

I2:
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Recall that $2 is given by (5.4) and then, due to the definition of z2, we can approximate it by

an integral over .0; � � Qdx/. The lack of analyticity of z2 and the truncation of I2.0/ introduces

two new sources of error. We denote them by E1
z2

and E2
R

. We take dx D 10�7; Qdx D 10�4 and

L2 D 2� . Using the bounds z1 6 � , @˛z1 6 2 and z2 6 h2 we obtain

jE1
z2

j 6

ˇ

ˇ

ˇ

ˇ

Z �

��dx

I1

ˇ

ˇ

ˇ

ˇ

6 dx � 0:2 � 4�2
6 8 � 10�7:

We have

j$2.ˇ/j 6 4�

�

h2 C max jz2./j
�

max j@˛z2./j
min

�

h2 C z2./
�2 C

�

ˇ � z1./
�2

d

6
4� � 3 � 2

min

�

h2 C z2./
�2 C

�

ˇ � z1./
�2

D C.ˇ/;

and we get C.ˇ/ < C.L2/ for ˇ > L2. Using this inequality we get the desired bound for the

second error as follows:

jE2
R
j 6

jC.L2/j
�

Z 1

L2

ˇ2

�

ˇ2 C
�

�
2

�2
�2

6
4� � 3 � 2

10
� 0:05 < 4 � 10�1:

The other errors can be bounded as before, obtaining,

jE1j 6 jE1
P V j C jE1

I j C jE1
z2

j D O.10�2/;

jE2j 6 jE2
$ j C jE2

I j C jE2
R
j D 0:42:

We conclude

@˛z2.0/ � 4P.V.

Z 1

0

@˛z1.ˇ/z1.ˇ/z2.ˇ/
�

�

z1.ˇ/
�2 C

�

z2.ˇ/
�2
�2

dˇ 6 �0:7 C jE1j < �0:6; (5.26)

and
ˇ

ˇ

ˇ

ˇ

ˇ

� 1

2�
P.V.

Z 1

0

�

$2.ˇ/ C $2.�ˇ/
�

ˇ2

.ˇ2 C h2
2/2

dˇ

ˇ

ˇ

ˇ

ˇ

ˇ

< 0:02 C jE2j < 0:5: (5.27)

Putting together (5.26) and (5.27) we conclude @˛v1.0/ < 0.

In order to complete a rigorous enclosure of the integral, we are left with the bounding of

the errors coming from the floating point representation and the computer operations and their

propagation. In a forthcoming paper (see [18]) we will deal with this matter. By using interval

arithmetics we will give a computer assisted proof of this result.

5.2 Finite depth

In this section we show the existence of finite time singularities for some curves and physical

parameters in an explicit range (see (5.30)). This result is a consequence of Theorem 4 in [14]

by means of a continuous dependence on the physical parameters. As a consequence the range of

physical parameters plays a role. Indeed, we have
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THEOREM 5.2 Let us suppose that the Rayleigh-Taylor condition is satisfied, i.e. �2 � �1 > 0,

and take 0 < h2 < �
2

. There are f0.x/ D f .x; 0/ 2 H 3.R/, an admissible (see Theorem

3.2) initial datum, such that, for any jKj small enough, there exists solutions of (1.8) such that

limt!T � k@xf .t/kL1 D 1 for 0 < T � < 1. For short time t > T � the solution can be continued

but it is not a graph.

Proof. The proof is similar to the proof in Theorem 5.1. First, using the result in [14] we obtain a

curve, z.0/, such that the integrals in @˛v1.0/ coming from $1 have a negative contribution. The

second step is to take K small enough, when compared with some quantities depending on the curve

z.0/, such that the contribution of the terms involving $2 is small enough to ensure the singularity.

Now, the third step is to prove, using a Cauchy-Kovalevsky theorem, that there exists local in time

solutions corresponding to the initial datum z.0/. To simplify notation we take �1.�2 � �1/ D 4� .

Then the parameters present in the problem are h2 and K.

Obtaining the correct expression. As in [14] and Theorem 5.1 we obtain

@˛v1.0/ D @t @˛z1.0/ D I1 C I2;

where

I1 D 2@˛z2.0/

Z 1

0

@˛z1.ˇ/ sinh
�

z1.ˇ/
�

sin
�

z2.ˇ/
�

�

cosh
�

z1.ˇ/
�

� cos
�

z2.ˇ/
�

�2
C @˛z1.ˇ/ sinh

�

z1.ˇ/
�

sin
�

z2.ˇ/
�

�

cosh
�

z1.ˇ/
�

C cos
�

z2.ˇ/
�

�2
dˇ;

and

I2 D @˛z2.0/

4�

Z

R

$2.�ˇ/
�

� cosh.ˇ/ cos.h2/ C 1
�

�

cosh.ˇ/ � cos.h2/
�2

dˇ

C @˛z2.0/

4�

Z

R

$2.�ˇ/
�

� cosh.ˇ/ cos.h2/ � cos2.h2/ C sin2.h2/
�

�

cosh.ˇ/ C cos.h2/
�2

dˇ:

Taking the appropriate curve and K. From Theorem 4 in [14] we know that there are initial curves

w0 such that I1 D �a2; a D a.w0/ > 0. We take one of this curves and we denote this smooth,

fixed curve as z.0/. We need to obtain K D K.z.0/; h2/ such that @˛v1.0/ D �a2 C I2 < 0. As in

(5.16) we define

d h
1 Œz�.; ˇ/ D cosh2.ˇ=2/

cosh
�

z1./ � . � ˇ/
�

� cos
�

z2./ C h2

� ; (5.28)

and

d h
2 Œz�.; ˇ/ D cosh2.ˇ=2/

cosh
�

z1./ � . � ˇ/
�

C cos
�

z2./ � h2

� : (5.29)

From the definition of I2 it is easy to obtain

jI2j 6 C.h2/@˛z2.0/k$2kL1 ;
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where

C.h2/ D 1

4�

Z

R

cosh.ˇ/ cos.h2/ C 1
�

cosh.ˇ/ � cos.h2/
�2

dˇ C 1

4�

Z

R

cosh.ˇ/ cos.h2/ C cos.2h2/
�

cosh.ˇ/ C cos.h2/
�2

dˇ:

From the definition of $2 for curves (which follows from (1.9) in a straightforward way) we obtain

k$2kL1 6 8Kk@˛z2kL1

�

kd h
1 Œz�kL1 C kd h

2 Œz�kL1

�

�

1 C Kp
2�

kGh2;KkL1

�

:

Fixing 0 < h2 < �=2 and collecting all the estimates we obtain

jI2j 6 C.h2/8@˛z2.0/Kk@˛z2kL1

�

kd h
1 Œz�kL1 C kd h

2 Œz�kL1

�

 

1 C Kp
2�

sup
jKj<1

kGh2;KkL1

!

:

Now it is enough to take

jK1.z.0/; h2/j <

�

C.h2/8@˛z2.0/k@˛z2kL1

��1
a2

�

kd h
1 Œz�kL1 C kd h

2 Œz�kL1

�

�

1 C 1p
2�

supjKj<1 kGh2;KkL1

� ; (5.30)

to ensure that @˛v1.0/ < 0 for this curve z.0/ and any jKj < jK1.z.0/; h2/j.

Showing the forward and backward solvability. We define

d �Œz�.; ˇ/ D sinh2.ˇ=2/

cosh
�

z1./ � z1. � ˇ/
� � cos

�

z2./ � z2. � ˇ/
� ; (5.31)

and

d CŒz�.; ˇ/ D cosh2.ˇ=2/

cosh
�

z1./ � z1. � ˇ/
�

C cos
�

z2./ � z2. � ˇ/
� : (5.32)

Using the equations (5.28), (5.29), (5.31) and (5.32), the proof of this step mimics the proof in

Theorem 5.1 and the proof in [14] and so we only sketch it. As before, we consider curves z

satisfying the arc-chord condition and such that

lim
j˛j!1

jz.˛/ � .˛; 0/j D 0:

We define the complex strip Br D f� C i�; � 2 R; j�j < rg; and the spaces (5.10) with norm (5.11)

(see [2]). We define the set

OR D
˚

z 2 Xr such that kzkr < R; kd �Œz�kL1.Br / < R; kd CŒz�kL1.Br / < R;

kd h
1 Œz�kL1.Br / < R; kd h

2 Œz�kL1.Br / < R
	

;

where d h
i Œz� and d ˙Œz� are defined in (5.28), (5.29), (5.31) and (5.32), respectively. As before, we

have that, for z; w 2 OR, complex extension of (2.22), F W OR ! Xr0 is continuous and the
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following inequalities holds:

kF Œz�kH 3.Br0 / 6
CR

r � r 0 kzkr ;

kF Œz� � F Œw�kH 3.Br0 / 6
CR

r � r 0 kz � wkH 3.Br /;

sup
2Br ;ˇ2R

jF Œz�./ � F Œz�. � ˇ/j 6 CRjˇj:

We consider

znC1 D z.0/ C
Z t

0

F Œzn�ds; z0 D z.0/:

Using the previous properties of F we obtain that, for T D T .z.0/; R/ small enough, znC1 2 OR;

for all n. The rest of the proof follows in the same way as in [25, 26].
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