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Lakes and rivers in the landscape: A quasi-variational inequality approach
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We consider an evolutionary quasi-variational inequality arising in a simplified model of a network of
lakes and rivers forming upon a given relief of the Earth. We regularize this model and derive its finite
element approximation, in which the water flow is confined to the mesh edges. The primal and mixed
formulations of the discretized quasi-variational inequality are used in the numerical simulations.
The corresponding steady state problems are also analyzed. Finally, we compare this approach to the
lattice algorithms employed in geographic information systems for the automatic extraction of river
networks from digital elevation data, and derive similar algorithms for our approximation.
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1. Introduction

During the last three decades a variety of methods have been proposed for the automatic extraction
of drainage networks from digital elevation datasets called digital elevation models or DEMs (see,
e.g., the reviews in [15, 18, 21, 27, 30, 31] and the references therein). Usually, although not always,
the employed DEM carries relief elevations at the points of a regular equidistant grid (the raster
format) and at the core of most routing methods is the basic D8 (deterministic eight-neighbor)
algorithm. In this algorithm, the flow direction from each cell (grid point) is determined by the
comparison between the cell’s elevation and the elevations of its eight adjacent neighbors: the flow
direction is the direction of the neighbor with the maximal rate of the elevation descent. The flow
direction is, however, not determined by D8 in pits (the local minima of the relief) and also in flat
horizontal areas. These features of DEM-represented reliefs are the main obstacle to flow-routing
and extracting the realistic drainage (river channel) networks.

Typically, pits are considered spurious and, indeed, it is often the case for low resolution DEMs.
Unless a depression is assumed to represent a real closed lake, its elevations are most often raised
to the level of the lowest outflow. This, however, leads to the appearance of a flat area. Furthermore,
although exactly flat Earth surfaces are not typical, the raster DEMs of territories without well-
developed topographic features, interpolated from low-vertical-resolution digitized level contours
(vector format), do contain many such areas. Heuristic iterative algorithms for drainage enforcement
in flat regions include creating small artificial gradients, directing the flow towards the lowest
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watershed cell, etc. (see, e.g., [13, 16, 18, 21, 30]). These algorithms have been realized as efficient
computational procedures in various well-developed geographic information systems (GIS) and,
despite the admitted difficulty of flow routing in low-relief regions, are usually able to extract useful
information about the drainage network from a DEM.

In this work we consider a continuous analogue of flow routing models, the evolutionary
quasi-variational inequality (QVI) model [23], whose primal and mixed formulations determine,
respectively, the lakes and the net of drainage channels forming upon a given relief. Our aim is to
investigate the relation of this continuous model to the basic cellular models successfully employed
for river network delineation, and the subsequent analysis, in various geographic information
systems: we arrive at such a model in several approximation/discretization steps. We also study
and compute the arising discrete problems.

Physically, our continuous model is very simple. Rain water is discharged from a distributed,
usually uniform, source, flows downhill, and is collected into lakes at local depressions of the relief.
As a lake overflows, it passes additional water along a one-dimensional river, possibly, to another
lake below. The water can also leave the system through the open boundary.

Mathematically, however, the arising variational problem is complicated. First, the model [23]
is a singular limit of the QVI describing sandpile surface evolution and, in transition to this limit,
the material (water) flux becomes undetermined in the lakes. Second, the set of admissible functions
in this QVI is determined by a discontinuous equilibrium constraint. Third, over the hill slopes the
flux is singular: water, flowing towards the steepest descent, gathers into rivers, so the flux is a
vectorial measure with a partially one-dimensional support. Finally, the problem can be ill-posed:
in some cases, a slight local change of the relief can, in this model, lead to a significant change
of the river network. An avulsion, a sudden abandonment of a river channel and forming a new
watercourse, can sometimes be caused by a small reconstruction of a real landscape too. In practice,
however, this only means the DEM resolution must be sufficiently high to make the river valleys
noticeable.

To deal with the first complication, we replace the limiting continuous model for water by
the sand model with a positive, but very small, material angle of repose. In such a model the
flux is expected to be uniquely determined, while the lakes are represented by sandpiles whose
slopes, although not exactly horizontal, are only slightly inclined. This also leads to a natural
small-artificial-gradient solution to flow-routing in flat areas, automatically enforcing flows towards
the outlets and away from higher elevation areas, which is the aim of [13] and some other lattice
algorithms.

Following [5], we approximate the discontinuous equilibrium constraint by a continuous one;
and we refer to [5] also for a proof of existence of a solution to the mixed formulation of this
regularized QVI problem. However, numerical approximation of the flux variable based in that
work on the lowest order Raviart–Thomas finite element is inconvenient for the representation of
river networks, because the singular one-dimensional measures (rivers) become smeared. It would
be impractical to overcome smearing by adapting the finite element mesh to a dense river network
as, e.g., in a somewhat similar optimal transportation problem, where only a few transport rays have
had to be approximated, see Figure 2 in [4]. To represent river networks better, here we concurrently
approximate the free surface by continuous piecewise linear finite elements; and the water flux by
vectorial measures having support on the union of all element edges, with the vector measure being
constant on each element edge and in a direction parallel to that edge. Such a flux approximation
prevents numerical smearing of singular fluxes.
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Numerically, the regularized and discretized QVI problem is solved first using an augmented
Lagrangian method with splitting. Then, completing our reduction to a basic lattice model, we
employ efficient lake filling, flow routing and flux accumulation algorithms, typical of the models
used in GIS, for our discretization. This allows one to solve large scale steady state problems of
practical interest using high resolution DEMs.

Finally, we note that a related continuous lake-and-river model, obtained as a singular limit of a
nonlinear diffusion equation, was studied in [7].

The outline of this paper is as follows. As stated above, in this paper we employ a lake-and-river
model derived as a limit of the QVI model for sand surface evolution [22–24]. In the next section, we
briefly recall this sand evolution model, and its regularized version [5]. In Section 3, we introduce
our lake-and-river evolution model, and its finite element approximation. The corresponding steady
state problem is considered in Section 4. In Section 5, we state our numerical algorithms for solving
the QVI and illustrate properties of the discretization employed by two numerical examples with
artificial landscapes. Finally, in Section 6 we introduce, for our approximation, lake filling, flow
routing and flux accumulation algorithms and solve the steady state lake-and-river problem for a
real DEM of the Réunion island using a cellular-model-like approach.

2. A model for sand surface evolution

Let the initial support surface w0 be defined in a bounded domain ˝ � R
2 with a Lipschitz

boundary @˝ . We assume that w0 belongs to W 1;1
0 .˝/: Suppose sand is discharged onto this

surface from a distributed source with a given non-negative density f .x; t/ 2 L2.˝T /, where
˝T WD ˝ � .0; T /. The evolving surface of the growing pile w.x; t/ satisfies the material balance
equation

@tw C r : q D f in ˝T (2.1)

with the initial condition w.�; 0/ D w0.�/. Here q.x; t/ is the horizontal projection of the flux of
sand pouring down the pile surface.

The surface w can partly coincide with the support w0, and should be above the support
otherwise. Wherever w.x; t/ > w0.x/ the equilibrium condition is jrw.x; t/j 6 k0, where
k0 D tan � 2 R>0 and � is the material angle of repose. In the coincidence set f.x; t/ 2 ˝T W
w.x; t/ D w0.x/g this equilibrium condition is not applied, as the rigid support can be steeper.
Therefore the equilibrium condition for a growing sandpile in this model is

jrwj 6 M.w/ in ˝T ; (2.2a)

where for any ' 2 C.˝/

M.'/.x/ WD
�
k0 '.x/ > w0.x/;

maxfk0; jrw0.x/jg otherwise. (2.2b)

The surface flow of sand is forbidden wherever the surface is not steep enough, i.e., q D 0 if
jrwj < k0. In addition, flow is allowed only in the steepest descent direction, �rw, so we have
that �rw : q D jrwj jqj. As q can be nonzero only if the slope is critical, i.e., jrwj D M.w/, it
follows that

�rw : q D M.w/ jqj in ˝T : (2.3)
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Finally, we assume that material can leave the system freely through the domain boundary, so we
set w D 0 on @˝ . Our sand model consists of the mass balance equation (2.1) supplemented by the
conditions (2.2a,b), (2.3) and the stated boundary and initial conditions.

A more convenient form is a variational formulation of this model, which we now derive. The
flux q can be excluded, if only the free surface w is required to be found. Let us define, for any
� 2 C.˝/, the closed convex non-empty set

K.�/ WD ˚
' 2 W 1;1

0 .˝/ W jr'j 6 M.�/ a.e. in ˝
�
: (2.4)

Since M.w/ jqj C r' : q > 0 for any ' 2 K.w/, we deduce from (2.3) that r.' � w/ : q > 0 a.e.
in ˝ . Furthermore, on noting (2.2a) and that w D 0 on @˝ , we have that w 2 K.w/. Hence, for
a.a. t 2 .0; T / Z

˝

r : q .w � '/ dx > 0 8 ' 2 K.w/
and, making use of equation (2.1), we arrive at an evolutionary QVI:

Find w.x; t/ such that w.�; 0/ D w0.�/ and for a.a. t 2 .0; T / w 2 K.w/ solvesZ
˝

.@tw � f /.' �w/ dx > 0 8' 2 K.w/: (2.5)

This formulation, written solely for the pile surface, we will call the primal problem. If jrw0j 6 k0

a.e. in ˝ , then problem (2.5) becomes a variational inequality (K.w/ � K) and existence of a
unique solution, w 2 L1.0; T IK/ \ W 1;2.0; T IL2.˝//, has been shown in [2, 24]. The dual
variable, the surface flux q, can in this case be sought in the space of vector-valued bounded Radon
measures with an L2 divergence. Numerical schemes based upon dual variational formulations
written solely in terms of this variable, [3, 8], enable one to compute approximations both to the
evolving surface w and the flux q.

The QVI case is much more complicated. In this case it is less convenient to use a dual
formulation of the QVI (2.5) in terms of the surface flux alone. To derive a variational formulation
written for both variables, w and q, in the QVI case, we note that (2.2a) holds if and only if
M.w/j j C rw : > 0 a.e. in ˝T for any test field  . Replacing for a.a. t 2 .0; T / the relations
(2.2a) and (2.3) by the equivalent variational inequality,Z

˝

h
M.w/ .j j � jqj/� wr : . � q/

i
dx > 0 (2.6)

for any sufficiently smooth test field  , we obtain the mixed variational formulation (2.1) and (2.6).
Existence of a solution for a weak formulation of a regularized version of this problem has

recently been proved (under some additional assumptions on the domain and support) in [5]. Here
we also use such a regularization, and consider the sand surface evolution model with a continuous
operatorM" W C.˝/ ! C.˝/, replacing the operatorM in the equilibrium constraint (2.2a). For a
small " > 0, we approximate the initial data w0 2 W

1;1
0 .˝/ by w0;" 2 W

1;1
0 .˝/

T
C 1.˝/, and

define for any ' 2 C.˝/

M".'/.x/ WD

8̂<̂
:
k0 '.x/ > w0;".x/C ";

k1.x/C .k0 � k1.x//
�

'.x/�w0;".x/

"

�
'.x/ 2 Œw0;".x/; w0;".x/C "�;

k1.x/ WD maxfk0; jrw0;".x/jg '.x/ 6 w0;".x/

(2.7)
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in order to replace the jump of M at ' D w0 in (2.2b) by a continuous transition over an interval
of the length ". Omitting the details, see [5], we only note that there exists a weak solution fw; qg
to the regularized variational problem (2.1) and (2.6), with M replaced by M", such that w is a
weak solution to the corresponding regularized version of the primal QVI (2.5). We note that the
regularization ofM is useful also for the numerical solution of these problems. We remark also that
existence of w, a weak solution to this regularized version of (2.5), follows also from the recent
work of Rodrigues and Santos [26].

Finally, as is noted in [5], to prevent an uncontrollable material influx into the domain˝ through
its boundary @˝ , in the QVI case we should assume that n :rw0 < k0 (or n :rw0;" < k0) on @˝ ,
where n is the outward unit normal to @˝ . The boundary conditionw D 0 on @˝ and that solutions
to (2.5) are non-decreasing in time, see [5, 24], then ensure that there is no influx through the
boundary also for t > 0.

3. Lakes and rivers: A model and its approximation

Now let f 2 L2.˝T / be the precipitation rate, and rainwater, regarded as sand with zero repose
angle (k0 D 0), be flowing downhill in the steepest descent directions and accumulating into lakes
at local depressions of the Earth’s relief. We assume that water neither penetrates the soil nor
evaporates. Then both the equilibrium condition (2.2a, b) and the balance equation (2.1) remain
valid.

Contrary to sandpiles (k0 > 0), the flow in the lakes is not confined to a thin surface layer and
its direction is not determined as the steepest descent direction. Nevertheless, lake hydrodynamics
does not affect the free surface, which is either the horizontal lake surface, rw D 0 for w > w0,
or coincides with the Earth’s relief, w D w0. Although the flux q in the lakes is not determined
by our model uniquely, the degenerate (k0 D 0) primal QVI (2.5) still describes the free surface
evolution, see [23]. This inequality (or its regularized version) can be used to find the lake areas. It
is, however, the water flux in the coincidence set w D w0, which is usually the main interest. The
drainage (river) network is defined as the subset of ˝ in which jqj > q0, where q0 is the desired
resolution of a hydrological map.

Since the water flux in the lakes is not unique, it is convenient to regularize the problem further
and replace k0 D 0 by a small k0 > 0. Lakes in this case become piles with a negligibly small slope
incline. This regularization induces small artificial gradients also in flat surface areas and, therefore,
leads there to a natural way of flux routing.

To calculate the water flux one could approximate the regularized mixed formulation (2.1)
and (2.6), with M replaced by M", using the divergence conforming Raviart–Thomas elements
of the lowest order for the flux q and piecewise constants for the free surface w (see [5]). Such an
approach, however, would lead to a “smeared” representation of the singular water flux in the rivers,
inhibiting the delineation of rivers, and hence the derivation of hydrological maps. This makes this
representation inconvenient also for the analysis of river basins and for computing hydrological
characteristics of drainage networks. In this work we present a hydrology-oriented alternative: a
discrete approximation of the regularized model (2.1) and (2.6) in which rainwater flows through a
network of drainage channels.

Let˝h be a polygonal approximation of˝ , and T h be a regular partitioning of˝h into triangles
� so that

˝h D
[

�2T h

� with h WD max
�2T h

diam.�/:
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We assume that the vertices of T h lying on @˝h, the boundary of ˝h, also lie on @˝ . Let Vh and
Eh be the sets of vertices and oriented edges of T h, respectively. The edge ek;j 2 Eh is determined
by two neighboring vertices, vk; vj 2 Vh and is oriented from vk to vj . In addition, ie denotes the
unit vector in the direction of edge e 2 Eh. We define Vh

I WD Vh n Vh
B and Eh

I WD Eh n Eh
B , where

the subscripts B and I denote “boundary” and “internal”, respectively. So an edge e 2 Eh
B is such

that e � @˝h. Let C0.˝
h/ denote continuous functions on ˝h, which vanish on the boundary. We

then set

U h
0 WD ˚

' 2 C0.˝
h/ W 'j� is linear 8� 2 T h

�
; and

V h WD ˚
 2 ŒM.˝h/�2 W  D

X
e2Eh

 e ie dH1.e/
�
; (3.1)

where  e 2 R, dH1.e/ is the one-dimensional Hausdorff measure supported on edge e, and
M.˝h/ is the Banach space of bounded Radon measures; that is, M.˝h/ WD ŒC.˝h/��, the dual
of C.˝h/. The duality pairing between M.˝h/ and C.˝h/ is denoted by h�; �i, and is naturally
extended to vectors so that

h ; �i D
X

e2Eh

 e ie :

Z
e

� de 8 2 V h; � 2 �
C.˝h/

�2
: (3.2)

We denote by .�; �/ the standard inner product on ˝h. We introduce also for all '; � 2 U h
0

.'; �/h WD
X

�2T h

.'; �/h� ; where .'; �/h� WD 1
3

j� j
3X

j D1

'
�
v

.�/
j

	
�
�
v

.�/
j

	
(3.3)

with j� j and fv.�/
j g3

j D1 being the area and vertices of � .
Let W 0 2 U h

0 be such that W 0.vk/ D w0.vk/ for all vk 2 Vh, where w0 2 W
1;1

0 .˝/ is the
Earth’s relief on ˝ . Below, in some cases it will be convenient to allow for some water initially
upon the support surface W 0, so we assume the initial condition W 1 2 U h

0 is given and satisfies
W 1 > W 0.

The continuous piecewise linear representation of the relief, employed in our approximation, is
called a “triangulated irregular network” format (TIN) in the geographic literature, see, e.g., [17].
TIN DEMs can use different resolution in different parts of the domain, and so ensure accurate
surface representation using less sampling points than the raster DEMs. The disadvantage of using
such a format though is the need for less efficient and more complicated flow routing algorithms.
However, since, as in landscape evolution models [6, 25], the flow in our model is a priori confined
to the mesh edges, simple but efficient algorithms for lake filling, flow routing and flux accumulation
can be proposed, see Section 6 for details.

On partitioning Œ0; T � into possibly variable time steps �n WD tn � tn�1; n D 2; : : : ; N , and
defining � WD maxnD2;:::;N �n and

f n.�/ WD 1

�n

Z tn

tn�1

f .�; t/ dt 2 L2.˝/; n D 2; : : : ; N I

we then consider, as an approximation to (2.1) and (2.6) for 0 < k0 � 1, the finite-dimensional
problem:
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(Q) For n D 2; : : : ; N , find W n 2 U h
0 andQn 2 V h such that


W n �W n�1

�n

; '

�h

� hQn;r'i D
�ef n; '

�
8' 2 U h

0 ; (3.4a)˝j j � jQnj;M h
" .W

n/
˛ C ˝

 �Qn;rW n
˛
> 0 8 2 V h; (3.4b)

where ef n 2 L2.˝h/ is a nonnegative extension of f n from ˝ to ˝h, if ˝h 6� ˝ . In addition,
the approximationM h

" of the operatorM", which is a constant .> k0/ on any edge, will be defined
below. Although r' does not belong to ŒC.˝h/�2, h ;r'i is well-defined for any  2 V h and
any ' 2 U h

0 , because the scalar product ie :r' is continuous across any edge e 2 Eh
I .

Let �j 2 U h
0 be the standard hat basis function associated with vertex vj 2 Vh

I ; that is, �j .vk/ D
ıjk for all vk 2 Vh

I . Then for any ' 2 U h
0 , we can write

'.x/ D
X

vj 2Vh
I

'j �j .x/; where 'j D '.vj /: (3.5)

For any  2 V h, it follows from (3.2) that

h ;r�j i D
X

eDek;j 2Eh
I

 e �
X

eDej;k2Eh
I

 e D
X

ek;j 2Eh
I

 ek;j
�

X
ej;k 2Eh

I

 ej;k
: (3.6)

On setting

sj WD .�j ; �j /
h D

Z
˝h

�j dx > 0 and F n
j WD 1

sj

Z
˝h

ef n
�j dx > 0 8vj 2 Vh

I ; (3.7)

and noting (3.5) and (3.6), we can rewrite (3.4a) as

sj
W n

j �W n�1
j

�n

C
X

ej;k 2Eh
I

Qn
ej;k

�
X

ek;j 2Eh
I

Qn
ek;j

D sj F
n

j 8vj 2 Vh
I : (3.8a)

Choosing  in (3.4b) such that  e D Qn
e for all edges e except one edge ek;j 2 Eh we obtain, on

noting (3.2) and (3.6), that

.j j � jQn
ek;j

j/ jek;j jM h
" .W

n/jek;j
C . �Qn

ek;j
/ .W n

j �W n
k / > 0 8 2 R 8ek;j 2 Eh;

(3.8b)
where jej is the length of edge e. Choosing  D 0 and  D 2Qn

ek;j
in (3.8b) yields that it is

equivalent to

jQn
ek;j

j jek;j jM h
" .W

n/jek;j
CQn

ek;j
.W n

j �W n
k / D 0 and

j j jek;j jM h
" .W

n/jek;j
C  .W n

j �W n
k / > 0 8 2 R 8ek;j 2 Eh:

(3.9)

It remains to define our edge approximationM h
" jek;j

, ek;j 2 Eh, of the operatorM".
In the regularized continuous QVI problem the inequality jrwj 6 M".w/ holds a.e.; and flow

is only allowed where jrwj D M".w/, and is in the direction of steepest descent. We would like a
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similar behavior for our network approximation (3.8a, b). However, in the network case the steepest
slope of surface descent along the edges generally differs from the steepest slope of ascent along
the edges from the same vertex. Only the slope of descent is important, and we will allow a nonzero
edge flux Qn

e , e 2 Eh, only if all of the following conditions hold:

(i) from the vertex of edge e with a higherW n value;
(ii) if for this vertex the edge e is the edge of steepest descent; (3.10)

(iii) if the surface slope along this edge is “critical”, i.e., j@ie
W nj D M h

" .W
n/ on e,

where @ie
W n WD ie :rW n and M h

" je is still to be defined.
If a solution exists to (Q), (3.4a,b) � (3.8a,b), then, on noting (3.9), it follows that

j@ie
W nj 6 M h

" .W
n/ on e 8e 2 Eh; n D 2; : : : ; N:

Furthermore, the flux Qn
e can be nonzero only if j@ie

W nj D M h
" .W

n/je and, in this case, Qn
e is

positive (negative) if the flow is in the direction ie (�ie). Taking this into account, we define our
approximationM h

" je for all edges e 2 Eh in two steps.
First, we define for any ' 2 U h

0 the steepest edge descent at each vertex vk 2 Vh as

@h
#'.vk/ WD max

n 'k � 'j

je.k; j /j W e.k; j / D ek;j 2 Eh or e.k; j / D ej;k 2 Eh
o
: (3.11)

Then similarly to (2.7), but using W 0 instead of w0;" and replacing jrw0;".vk/j by @h
#W

0.vk/, we
compute, for all vk 2 Vh, the vertex value

M h
" .'/.vk/ D

8̂̂̂<̂
ˆ̂:
k0 'k > W 0

k
C ";

k1.vk/C �
k0 � k1.vk/

	�'k�W 0
k

"

	
'k 2 ŒW 0

k
;W 0

k
C "�;

k1.vk/ WD max
˚
k0; @

h
#W

0.vk/
�

'k 6 W 0
k
:

(3.12)

Second, for each edge ek;j 2 Eh, we set the edge value

M h
" .'/jek;j

D
(
M h

" .'/.vk/ 'k > 'j ;

M h
" .'/.vj / otherwise.

(3.13)

We note that for any '; � 2 U h
0 and any vk 2 Vh that

0 < k0 6 M h
" .'/.vk/ 6 M h

" .�/.vk/ if �k 6 'k: (3.14)

Our discrete network model (Q), (3.4a,b) � (3.8a, b), is now fully defined and satisfies the desired
conditions (3.10) above. It follows from the equation in (3.9) as W n 2 U h

0 , (3.13) and (3.14) that

Qn

e
D 0 8e 2 Eh

B ; n D 2; : : : ; N: (3.15)

Associated with (Q) is the following discrete analogue of the primal QVI (2.5):
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(P) For n D 2; : : : ; N , find W n 2 Kh.W n/ such that�W n �W n�1

�n

; ' �W n
�h

>
�ef n; ' �W n

	 8' 2 Kh.W n/; (3.16)

where for any � 2 U h
0

Kh.�/ WD ˚
' 2 U h

0 W @h
#'.vj / 6 M h

" .�/.vj / 8vj 2 Vh
�

(3.17)

is a closed convex set, and is non-empty as '0 � 0 2 Kh.�/. We note that W 0 2 Kh.W 0/.
Adopting the notation (3.5) and (3.7), we can rewrite (3.16) as

X
vj 2Vh

I

sj

�W n
j �W n�1

j

�n

� F n
j

�
.'j �W n

j / > 0 8' 2 Kh.W n/: (3.18)

For future developments, we note that the inequality constraints @h
#'.vj / 6 M h

" .�/.vj / for all
vj 2 Vh appearing in the definition (3.17) are equivalent to the edge set of inequality pairs:

'` � 'k 6 jek;`jM h
" .�/.v`/ and 'k � '` 6 jek;`jM h

" .�/.vk/ 8ek;` 2 Eh
I : (3.19)

We note that the constraints in (3.19) are automatically satisfied for ek;` 2 Eh
B , as ' 2 U h

0 .
In the following theorems and lemmas we prove existence of a solution to the primal QVI (P)

and the mixed formulation (Q), and show their equivalence. First we prove a useful lemma.

LEMMA 3.1 (i) For any � 2 U h
0 we note that

Kh.�/ � Bh WD ˚
' 2 U h

0 W j'j 6 Dh in ˝h
�
; (3.20a)

where Dh 2 U h
0 is such that

Dh
j D dh.vj / max

˚
k0; jrW 0j0;1;˝h

� 8vj 2 Vh (3.20b)

with dh.vj / being the length of the shortest edge path from vj 2 Vh to @˝h.
(ii) Let �.i/ 2 Kh.�.i//, i D 1; 2. Then �? 2 U h

0 such that

�?
j D max

˚
�

.1/
j ; �

.2/
j

� 8vj 2 Vh ) �? 2 Kh.�?/ � Kh.�.i//; i D 1; 2: (3.21)

Proof. (i) The desired result (3.20a,b) follows immediately from (3.17), (3.11) and (3.12).
(ii) Similarly, on noting (3.11) and (3.12), we have for any vj 2 Vh and i D 1 or 2 that

�?
j D �

.i/
j ) @h

#�
?.vj / 6 @h

#�
.i/.vj / 6 M h

" .�
.i//.vj / D M h

" .�
?/.vj /: (3.22)

Hence �? 2 Kh.�?/. Then noting that �� > �.i/, i D 1; 2, (3.14) and (3.17) yield the desired
result (3.21).

THEOREM 3.2 Let W 0 6 W 1 2 Kh.W 1/. Then there exists a solution fW ngN
nD2 to (P), (3.16) �

(3.18), and W 1 6 W 2 6 : : : 6 W N :
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Proof. To prove existence of a solution to (P), we will apply the Brouwer fixed point theorem. We
introduce the mapping 	 W U h

0 ! U h
0 such that given � 2 U h

0 , 	 � 2 Kh.�/ is the unique solution
of the convex minimization problem

min
'2Kh.�/

Gn.'/; (3.23)

where the quadratic functional

Gn.'/ WD 1

2�n

.'; '/h � 1

�n

.W n�1; '/h � .ef n; '/

D
X

vj 2Vh
I

sj

� 1

2�n

.'j /
2 �

h 1
�n

W n�1
j C F n

j

i
'j

�
: (3.24)

It follows from (3.20a) that 	 W Bh ! Bh. Therefore to apply the Brouwer fixed point theorem we
just need to show that 	 is continuous, as Bh is a bounded finite dimensional convex set.

Let f�.i/gi2N be such that �.i/ 2 Bh and �.i/ ! � 2 Bh as i ! 1. Then for all i 2 N,
	 �.i/ 2 Kh.�.i// is the unique solution of the convex minimization problem (3.23) with � replaced
by �.i/, and so is the unique solution of the corresponding variational inequality�

	�.i/ �W n�1; ' � 	 �.i/
	h > �n .ef n; ' � 	 �.i// 8' 2 Kh

�
�.i/

	
: (3.25)

As 	 �.i/ 2 Bh, 8i 2 N, there exists 
? 2 Bh and a subsequence f	 �.im/gim2N such that 	 �.im/ !

? as im ! 1. On noting that M h

" .�/.vk/ for all vk 2 Vh is continuous, recall (3.12), we have that
if ' 2 Kh.�/ then for all i 2 N

'.i/ WD .1C ı.i//�1 ' 2 Kh.�.i//;

where ı.i/ WD max
vk2Vh

jM h
" .�/.vk/�M h

" .�
.i//.vk/j

k0

! 0 as i ! 1: (3.26)

Hence, on replacing ' in (3.25) by '.i/, we can pass to the limit im ! 1 for the subsequence in
(3.25) to obtain that 
? 2 Kh.�/ satisfies�


? �W n�1; ' � 
?
	h > �n .ef n; ' � 
?/ 8' 2 Kh.�/: (3.27)

Hence 
? D 	 �, and as this is the unique solution of (3.27) the whole sequence 	 �.i/ ! 	 �

as i ! 1. Therefore the mapping 	 W Bh ! Bh is continuous, and so the Brouwer fixed point
theorem yields that it has a fixed pointW n. Hence there exists a solution fW ngN

nD2 to (P), (3.16) �
(3.18).

We now show that W n > W n�1, n D 2; : : : ; N . Let '? 2 U h
0 be such that '?

k
D W n

k
C

ŒW n�1
k

�W n
k
�C D maxfW n

k
;W n�1

k
g for all vk 2 Vh, where Œa�C WD maxfa; 0g for all a 2 R. As

W n�1 2 Kh.W n�1/ and W n 2 Kh.W n/, it follows from (3.21) that '? 2 Kh.W n/. Choosing
' D '? in (3.18), and noting (3.7), yields thatX

vj 2Eh
I

sj
�
W n�1

j �W n
j

�2

C 6 ��n

X
vj 2Eh

I

sj F
n

j

�
W n�1

j �W n
j

�
C 6 0I

and henceW n > W n�1.
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For the next result, we introduce

Ah WD ˚
 W f k;`gek;`2Eh

I
with  k;` 2 R

�
; (3.28a)

Ah
>0 WD ˚

 2 Ah W  k;` 2 R>0 8ek;` 2 Eh
I

�
: (3.28b)

Existence of a solution to the mixed formulation (Q) is a consequence of Theorem 3.2 and the
following equivalence result.

THEOREM 3.3 If fW ngN
nD2 solves (P), then there exists fQngN

nD2 such that fW n;QngN
nD2 solves

(Q). Hence there exists a solution fW n;QngN
nD2 to (Q), (3.4a,b) � (3.8a,b).

Proof. Let fW ngN
nD2 solve (P), (3.16) � (3.18). Then ' D W n is the unique solution to the

following convex minimization problem

min
'2Kh.W n/

Gn.'/; (3.29)

where Gn.�/ is defined by (3.24).
In the regularized model k0 > 0, the Slater constraint qualification hypothesis (see, e.g., (5.34)

on p. 69 in [9]) is obviously satisfied with '0 � 0; that is, @h
#'

0.vj / < M h
" .W

n/.vj / for all
vj 2 Vh. On recalling (3.19), we now introduce the Lagrangian

Ln.'; ˛; ˇ/ WD Gn.'/C
X

ek;`2Eh
I

˛k;`

�
'` � 'k � jek;`jM h

" .W
n/.v`/

�
C

X
ek;`2Eh

I

ˇk;`

�
'k � '` � jek;`jM h

" .W
n/.vk/

�
;

where ˛; ˇ 2 Ah. It follows from the Kuhn–Tucker theorem (see, e.g., Theorem 5.2 in [9]) that
there exist Lagrange multipliers ˛?; ˇ? 2 Ah

>0 such that fW n; ˛?; ˇ?g is a saddle point of the
Lagrangian, i.e.,

Ln.W n; ˛; ˇ/ 6 Ln.W n; ˛?; ˇ?/ 6 Ln.'; ˛?; ˇ?/ 8' 2 U h
0 8˛; ˇ 2 Ah

>0: (3.30)

The first inequality in (3.30) yields that

˛?
k;`

�
W n

` �W n
k � jek;`jM h

" .W
n/.v`/

� D 0 and

ˇ?
k;`

�
W n

k �W n
` � jek;`jM h

" .W
n/.vk/

� D 0 8ek;` 2 Eh
I : (3.31)

Hence ˛?
k;`

can be positive only if W n
`

� W n
k

D jek;`jM h
" .W

n/.v`/. In this case W n
`
> W n

k
, so

ˇ?
k;`

D 0 and, on noting (3.13), M h
" .W

n/jek;`
D M h

" .W
n/.v`/. Setting Qn

ek;`
D ˇ?

k;`
� ˛?

k;`
D

�˛?
k;`
< 0, we obtain from (3.31) that

jQn
ek;`

j jek;`jM h
" .W

n/jek;`
CQn

ek;`
.W n

` �W n
k / D 0: (3.32)

Similarly, if ˇ?
k;`
> 0 then W n

k
�W n

`
D jek;`jM h

" .W
n/.vk/, and hence W n

k
> W n

`
, ˛?

k;`
D 0 and

M h
" .W

n/jek;`
D M h

" .W
n/.vk/. Once again we set Qn

ek;`
D ˇ?

k;`
� ˛?

k;`
D ˇ?

k;`
> 0, and obtain
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from (3.31) the same relation (3.32) again. If both Lagrange multipliers, ˛?
k;`

and ˇ?
k;`

, related to
the edge ek;` 2 Eh

I are zero we set Qn
ek;`

D ˇ?
k;`

� ˛?
k;`

D 0, so (3.32) holds. Therefore, on setting
Qn

ek;`
D ˇ?

k;`
� ˛?

k;`
for all ek;` 2 Eh

I , and Qn
ek;`

D 0 for all ek;` 2 Eh
B , we obtain that (3.32) holds

for all ek;` 2 Eh; that is, the equation in (3.9) holds for all ek;` 2 Eh.
We now prove that the inequality in (3.9) holds for all ek;` 2 Eh. It follows from (3.13) and

as W n 2 Kh.W n/ that if W n
`

> W n
k

then M h
" .W

n/jek;`
D M h

" .W
n/.v`/ > .W n

`
� W n

k
/=jek;`j,

and so j j jek;`jM h
" .W

n/jek;`
C  .W n

`
� W n

k
/ > .j j C  / .W n

`
� W n

k
/ > 0 for all  2 R.

Similarly, if W n
`

6 W n
k

then M h
" .W

n/jek;`
D M h

" .W
n/.vk/ > .W n

k
� W n

`
/=jek;`j, and so

j j jek;`jM h
" .w

n/jek;`
C  .W n

`
� W n

k
/ > .j j �  / .W n

k
� W n

`
/ > 0 for all  2 R. Hence

(3.9), and so (3.8b), holds.
To show that (3.8a) holds we use the second inequality in (3.30), which yields that

sj

�W n
j �W n�1

j

�n

� F n
j

�
C

X
ek;j 2Eh

I

.˛?
k;j � ˇ?

k;j /C
X

ej;`2Eh
I

.ˇ?
j;` � ˛?

j;`/ D 0 8vj 2 Vh
I I

and then note that Qn
ek;`

D ˇ?
k;`

� ˛?
k;`

for all ek;l 2 Eh
I . Therefore fW n;QngN

nD2 satisfy (3.8a, b),
and hence (Q), (3.4a, b).

As we have already proved existence of a solution fW ngN
nD2 to (P) for anyW 1 2 Kh.W 1/ such

that W 1 > W 0 in Theorem 3.2, the above establishes the existence, for the same initial condition
W 1, of a solution fW n;QngN

nD2 to (Q).

If fW ngN
nD2 solves (P), an alternative way of finding fQngN

nD2 such that fW n;QngN
nD2 solves

(Q) is given in the following lemma.

LEMMA 3.4 Let fW ngN
nD2 solve (P), (3.16) � (3.18). Let

Y h;n WD
n
 2 V h W h ;r'i D

�W n �W n�1

�n

; '
�h � .ef n; '/ 8' 2 U h

0

o
; n D 2; : : : ; N:

(3.33)

Then there exists Qn 2 Y h;n such that˝jQnj;M h
" .W

n/i 6 hj j;M h
" .W

n/
˛ 8 2 Y h;n; n D 2; : : : ; N: (3.34)

It follows that fW n;QngN
nD2 solves (Q), (3.4a,b) � (3.8a,b).

Proof. If fW ngN
nD2 solves (P), then we showed in Theorem 3.3 that there exists fQngN

nD2 such that
fW n;QngN

nD2 solves (Q), (3.4a, b). As Qn 2 Y h;n, the affine manifold Y h;n, n D 2; : : : ; N , is
non-empty. Moreover, (3.4b) yields that Qn 2 Y h;n is such that˝jQnj;M h

" .W
n/

˛ C ˝
Qn;rW n

˛
6

˝j j;M h
" .W

n/
˛ C ˝

 ;rW n
˛ 8 2 V h; n D 2; : : : ; N:

(3.35)

As  2 Y h;n yields that

h ;rW ni D
�W n �W n�1

�n

;W n
�h � .ef n;W n/; n D 2; : : : ; N;



LAKES AND RIVERS IN THE LANDSCAPE 281

the desired result (3.34) follows immediately from (3.35).

Next, we prove the other half of the equivalence result in Theorem 3.3.

THEOREM 3.5 If fW n;QngN
nD2 solves (Q), (3.4a,b) � (3.8a,b), then fW ngN

nD2 solves (P), (3.16)
� (3.18).

Proof. Let fW n;QngN
nD2 solve (Q), (3.8a,b). Suppose that @h

#W
n.vk/ > M

h
" .W

n/.vk/ at a vertex
vk 2 Vh. Then there exists an edge e 2 Eh, e D ek;j or e D ej;k , such that W n

k
> W n

j and
.W n

k
� W n

j /=jej > M h
" .W

n/.vk/ D M h
" .W

n/je, on noting (3.13). However, then the inequality
(3.9), and hence (3.8b), cannot be true. Therefore, it follows that @h

#W
n.vk/ 6 M h

" .W
n/.vk/ at

every vertex vk 2 Vh, and so W n 2 Kh.W n/.
It follows from (3.8a) that for any ' 2 Kh.W n/

X
vj 2Vh

I

sj

�W n
j �W n�1

j

�n

� F n
j

�
.'j �W n

j /

D
X

vj 2Vh
I

� X
ek;j 2Eh

I

Qn
ek;j

�
X

ej;k2Eh
I

Qn
ej;k

�
.'j �W n

j / DW S: (3.36)

Since ' D W n D 0 at the boundary vertices, one can assume each edge e 2 Eh
I appears twice on

the right-hand side of (3.36) and, using (3.9), we obtain that

S D
X

ek;j 2Eh
I

Qn
ek;j

�
.W n

k �W n
j / � .'k � 'j /

�
D

X
ek;j 2Eh

I

h
jQn

ek;j
j jek;j jM h

" .W
n/jek;j

�Qn
ek;j

.'k � 'j /
i
:

The latter sum is nonnegative. Indeed, @h
#'.v`/ 6 M h

" .W
n/.v`/ for all v` 2 Vh. Hence, if

W n
k

> W n
j then the equation in (3.9) yields that Qn

ek;j
> 0, and (3.13) that .'k � 'j /=jek;j j 6

M h
" .W

n/.vk/ D M h
" .W

n/jek;j
. Similarly, if W n

k
< W n

j then Qn
ek;j

6 0 and .'j � 'k/=jek;j j 6
M h

" .W
n/.vj / D M h

" .W
n/jek;j

. This proves that S > 0, and hence, on recalling (3.36), that W n

solves (3.18). Therefore fW ngN
nD2 solves (P).

4. Steady state problem

THEOREM 4.1 Let fW ng1
nD2 be a solution to (P) for W 1 2 Kh.W 1/ with W 1 > W 0 and ef n > 0

for all n > 2. Then there exists W 2 U h
0 such that

lim
n!1W n D W 2 Kh.W / and W 0 6 W 1 6 W n�1 6 W n 6 W 8n > 2:

In addition, if limn!1 ef n D ef and limn!1 �n D � > 0 then W is a solution to the problem
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(PS) Find W 2 Kh.W / such that

0 >
�ef ; ' �W 	 8' 2 Kh.W /: (4.1)

Proof. By Theorem 3.2, W n�1 6 W n for any n > 2. Since W n 2 Kh.W n/, we have also that
W n 6 Dh on recalling (3.20a). Therefore the monotonic increasing sequence fW ngn>2 is bounded
above. Hence, there existsW 2 U h

0 such that

lim
n!1W n D W and W 0 6 W 1 6 W n�1 6 W n 6 W 8n > 2:

To show that W 2 Kh.W /, we note that M h
" is continuous and so

@h
#W.vj / D lim

n!1 @h
#W

n.vj / 6 lim
n!1M h

" .W
n/.vj / D M h

" .W /.vj / 8vj 2 Vh:

Furthermore, since W > W n, for any n > 2, it follows from (3.14) and (3.17) that Kh.W / �
Kh.W n/. Let ' 2 Kh.W /, so that ' 2 Kh.W n/ for all n > 2. If ef n ! ef and �n ! � > 0 as
n ! 1, then passing to the limit n ! 1 in (3.16) yields the desired inequality (4.1).

Associated with the steady state QVI problem (PS ) is the following stationary version of
problem (Q):

(QS) Find W 2 U h
0 andQ 2 V h such that

�hQ;r'i D �ef ; '	 8' 2 U h
0 ; (4.2a)

hj j � jQj;M h
" .W /i C h �Q;rW i > 0 8 2 V h: (4.2b)

We have the following analogues of Theorems 3.3 and 3.5, and Lemma 3.4.

THEOREM 4.2 If W solves (PS ), (4.1), then there exists Q such that fW;Qg solves (QS ). Hence
there exists a solution fW;Qg to (QS ), (4.2a,b).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of
Theorem 3.3.

LEMMA 4.3 Let W solve (PS ), (4.1). Let

Y h WD ˚
 2 V h W h ;r'i D �.ef ; '/ 8' 2 U h

0

�
: (4.3)

Then there exists Q 2 Y h such that

hjQj;M h
" .W /i 6 hj j;M h

" .W /i 8 2 Y h: (4.4)

It follows that fW;Qg solves (QS ), (4.2a, b).

Proof. The proof is the direct analogue of that for the evolution case given in the proof of
Lemma 3.4.

THEOREM 4.4 If fW;Qg solves (QS ), (4.2a, b), thenW solves (PS ), (4.1).
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Proof. The proof is the direct analogue of that for the evolution case given in the proof of
Theorem 3.5.

In general, with different sources ef n, n > 2, and starting from different initial states W 1 in
Theorem 4.1, one arrives at different solutions to the steady state problem (PS ). However, we show
below that if the source is strictly positive then the stationary solution W is unique.

THEOREM 4.5 If ef > 0, then (PS /, (4.1), has a unique solution W . This solution is the same for
every positive source ef and satisfies

W > W 0; @h
#W.vk/ > k0 8vk 2 Vh

I and W > � 8� 2 Kh.�/: (4.5)

In addition, W is the maximal steady state solution to (PS ); that is, if W 0 is any solution to (PS )
with a source ef 0 > 0, then W > W 0 is also a solution to this problem. Furthermore,Wj D W 0

j for
every vj 2 Vh

I such that
R

˝h
ef 0 �j dx > 0.

Proof. Existence of a solution W > W 0 to (PS ) follows from Theorem 4.1. If there exist two
solutions W .i/ 2 Kh.W .i//, i D 1; 2, let W ? 2 U h

0 be such that W ?
k

D maxfW .1/

k
;W

.2/

k
g for all

vk 2 Vh. It follows from (3.21) thatW ? 2 Kh.W .i//, i D 1; 2, and, as ef > 0, .ef ;W ?�W .j // > 0

for either j D 1 or 2, which contradicts W .j / solving (PS ), (4.1). Therefore, the solution W 2
Kh.W / to (PS ) is unique.

We now show that this unique solution is independent of the particular choice of ef > 0. For
i D 1; 2, let W .i/ 2 Kh.W .i// be the unique solution of (PS ), (4.1), with ef D ef .i/. If W .1/ ¤
W .2/, on defining W ? 2 U h

0 as above it follows that W ? 2 Kh.W .i//, i D 1; 2, and, as ef .j / > 0,
.ef .j /;W ? � W .j // > 0 for either j D 1 or 2 which contradicts W .j / solving (PS ), (4.1), withef D ef .j /. Therefore, W .1/ D W .2/ and so the unique solution W to (PS ) is independent of the
particular choice of ef > 0.

We now show that @h
#W.vk/ > k0 for all vk 2 Vh

I . If not, let @h
#W.vj / < k0 for some vj 2 Vh

I

and then chooseW ? 2 U h
0 such that

W ?
k D Wk; k ¤ j; and W ?

j > Wj with @h
#W

?.vj / D k0: (4.6)

It follows from (3.11) that

@h
#W

?.vk/ 6 @h
#W.vk/ 6 M h

" .W /.vk/; k ¤ j; and @h
#W

?.vj / D k0 6 M h
" .W /.vj /:

(4.7)

Hence,W ? 2 Kh.W /, and, as ef > 0, .ef ;W ? �W / > 0, which contradictsW solving (PS ), (4.1).
Therefore, the unique solutionW 2 Kh.W / to (PS ) is such that @h

#W.vk/ > k0 for all vk 2 Vh
I .

If � 2 Kh.�/ and W 6> �, let �? 2 U h
0 be such that �?

k
D maxfWk; �kg for all vk 2 Vh. It

follows from (3.21) that �? 2 Kh.W /, and, as ef > 0, .ef ; �? � W / > 0, which contradicts W
solving (PS ). Therefore, we have that W > �.

Finally, ifW 0 solves (PS ) with a source ef 0 > 0 then (4.5) yields thatW > W 0, and so .ef 0;W �
W 0/ > 0. It follows from (3.14) and (3.17) that W 2 Kh.W / � Kh.W 0/. Since W 0 is a solution
to (PS ) with ef 0, only equality .ef 0;W � W 0/ D 0 is possible. In addition, W is also a solution to
(PS ) with ef 0. Moreover, W D W 0 in the “support” of ef 0 or, more precisely, Wj D W 0

j for every
vj 2 Vh

I such that
R

˝h
ef 0 �j dx > 0.
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5. Numerical solution

5.1 The augmented Lagrangian method

In order to find a solution fW n;QngN
nD2 to (Q), (3.4a, b), we first find a solution fW ngN

nD2 to (P),
(3.16), recall Lemma 3.4. For n D 2; : : : ; N , we also note that W n 2 Kh.W n/ is the unique
solution to (3.29). We propose to solve this iteratively. Setting W n;0 D W n�1, then for m > 1 find

W n;m WD arg min
W 2Kh.W n;m�1/

Gn.W / (5.1)

until the sequence fW n;mgm2N converges up to a given tolerance. Then set W n D W n;m.
In view of (3.19), the minimization problem (5.1) can be written as

min
W 2Kh.W n;m�1/

Gn.W /

� min
W 2U h

0

n
Gn.W / W Wk �W`

jek;`j 2 � �M n;m�1
`

;M
n;m�1
k

� 8ek;` 2 Eh
I

o
� min

W 2U h
0

; p2Ah

n
Gn.W /C

X
ek;`2Eh

I

I
Œ�M

n;m�1
`

;M
n;m�1
k

�
.pk;`/ W Wk �W`

jek;`j D pk;` 8ek;` 2 Eh
I

o
;

(5.2)

where M n;m�1
j D M h

" .W
n;m�1/.vj / for all vj 2 Vh, and for Œa; b� � R,

IŒa;b�.�/ WD
(

0 � 2 Œa; b�;
1 � 62 Œa; b� (5.3)

is its indicator function.
We now extend the augmented Lagrangian method with splitting, see algorithm ALG2 on p. 170

in [14]. For all W 2 U h
0 and p; � 2 Ah, let

Ln;m�1
� .W; p; �/ WD

Gn.W /C
X

ek;`2Eh
I

h
I

Œ�M
n;m�1
`

;M
n;m�1
k

�
.pk;`/C �k;`

�Wk �W`

jek;`j � pk;`

�

C �

2

�Wk �W`

jek;`j � pk;`

�2i
(5.4)

be the augmented Lagrangian, where � 2 R>0 is a parameter. The splitting method is then:
GivenW n;0 2 U h

0 and pn;0; �n;0 2 Ah, form > 1

W n;m WD arg min
W 2U h

0

Ln;m�1
� .W; pn;m�1; �n;m�1/; (5.5a)

pn;m WD arg min
p2Ah

Ln;m
� .W n;m; p; �n;m�1/; (5.5b)

�
n;m
k;`

D �
n;m�1
k;`

C �
�W n;m

k
�W

n;m
`

jek;`j � p
n;m
k;`

�
8ek;` 2 Eh

I : (5.5c)
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The minimization problem (5.5a) leads to the following well-posed linear system forW n;m 2 U h
0

sj
W

n;m
j �W n�1

j

�n

C
X

ej;k2Eh
I

h�n;m�1
j;k

jej;kj C �

jej;kj
�W n;m

j �W
n;m

k

jej;kj � p
n;m�1
j;k

�i

�
X

ek;j 2Eh
I

h�n;m�1
k;j

jek;j j C �

jek;j j
�W n;m

k
�W n;m

j

jek;j j � p
n;m�1
k;j

�i
D sj F

n
j ;

8vj 2 Vh
I :

(5.6)

The unique solution of (5.5b) is

p
n;m
k;`

D max

(
�M n;m

`
;min

n
M

n;m
k

;
�

n;m�1
k;`

�
C W

n;m
k

�W n;m
`

jek;`j
o)

8ek;` 2 Eh
I : (5.7)

The above is an extension of algorithm ALG2 in [14] from the variational inequality case to the QVI
case. In the variational inequality case, e.g., M h

" .'/ � k0 > 0 or more generally a given positive
~ 2 C.˝h/, then M n;m

j � Mj � ~.vj / for all vj 2 Vh and the algorithm (5.5a–c) is guaranteed
to converge for any choice of positive �; that is,

W n;m ! W n 2 U h
0 ; pn;m ! pn 2 Ah; �n;m ! �n 2 Ah as m ! 1; (5.8)

see [14]. Although we have no convergence proof of (5.5a–c) in the QVI case, in practice it was
possible to obtain convergence even for reasonably small values of " in (3.12), see the numerical
examples below, by adjusting the parameter � and, if necessary, decreasing the time step �n. We
note that we have used a similar approach for the QVI problem arising in the modelling of growing
sandpiles, see [5]. An alternative iterative numerical method for the QVI problem (Q), (3.4a, b),
similar to that in [4], is based on the approximation of the non-differentiable nonlinearity j � j by
1
r
j � jr with 0 < r � 1 � 1.

If (5.5a–c) converges in the QVI case, i.e., (5.8) holds, then it follows from (5.5c) that

pn
k;` D W n

k
�W n

`

jek;`j 8ek;` 2 Eh
I : (5.9)

On setting

Qn
ek;`

D �n
k;`

jek;`j 8ek;` 2 Eh
I and Qn

ek;`
D 0 8ek;` 2 Eh

B ; (5.10)

it follows from (5.8), (5.6) and (5.9) that (3.8a) holds. In addition, (5.8), (5.7), (5.9) and (5.10) yield
for all ek;` 2 Eh

I that

pn
k;` D M h

" .W
n/.vk/ ) �n

k;` > 0 ) Qn
ek;`

> 0;

pn
k;` 2 .�M h

" .W
n/.v`/;M

h
" .W

n/.vk// ) �n
k;` D 0 ) Qn

ek;`
D 0; (5.11)

pn
k;` D �M h

" .W
n/.v`/ ) �n

k;` 6 0 ) Qn
ek;`

6 0:
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Finally, it follows from (5.11), (5.9), (5.10) and (3.13) that (3.9), and hence (3.8b), holds. Therefore
fW n;QngN

nD2 solve (Q), (3.8a,b).
Although the converged �n 2 Ah leads to Qn 2 V h, via (5.10), so that fW n;QngN

nD2 solves
(Q), our numerical experiments showed that convergence, as m ! 1, of �n;m is much slower
than that ofW n;m. Even ifW n;m converged with a severe tolerance, there still remained nodes from
which the calculated fluxQn;m was not directed solely along the edge of steepest descent, but partly
along some other edges too. Visually, this is exhibited in the unnatural river splits, which disappear
from the river plots only after significantly more iterations. It was more efficient to find Qn using
Lemma 3.4 as follows.

Given fW ngN
nD2 solving (P), (3.16) � (3.18), we find fQngN

nD2 such that fW n;QngN
nD2 solves

(Q), (3.4a, b) � (3.8a, b), by recasting the weighted L1 minimization problem (3.34) as a standard
linear programming problem. On recalling (3.1), we know for n D 2; : : : ; N that

Qn D
X

ek;`2Eh
I

Qn
ek;`

iek;`
dH1.ek;`/; (5.12)

where fQn
ek;`

gek;`2Eh
I

, Qn
ek;`

2 R, are to be determined. As we know W n, the signs of these fluxes
are also known. It follows from (3.10(i),(iii)) that Qn

ek;`
> .6/0 if W n

k
> .</W n

`
and Qn

ek;`
D 0 if

W n
k

D W n
`

. Therefore, for every ek;` 2 Eh
I we set

Sn
k;` D

�
1 W n

k
> W n

`
;

�1 W n
k

6 W n
`

so that eQn

k;` WD Sn
k;`
Qn

ek;`
D jQn

ek;`
j. In this notation, the minimization problem (3.34) can be

rewritten, on recalling (3.6), as find eQn 2 eY h;n such thatX
ek;`2Eh

I

an
k;`

eQn

k;` 6
X

ek;`2Eh
I

an
k;`

eQk;` 8eQ 2 eY h;n; (5.13)

where an
k;`

D jek;`jM h
" .W

n/jek;`
and

eY h;n WD
(
 2 Ah

>0 W
X

ej;k2Eh
I

Sn
j;k  j;k �

X
ek;j 2Eh

I

Sn
k;j  k;j D sj

�
F n

j � W n
j �W n�1

j

�n

�
8vj 2 Vh

I

)
:

The minimization problem (5.13) is a linear programming problem, and can be solved efficiently
using a standard procedure; e.g. linprog, see [19]. We note that a different method, applicable to
more generalL1 optimization problems (see, e.g., [10, p. 8]), reduces (3.34) to a linear programming
problem of higher dimension which, nevertheless, can also be solved very efficiently.

5.2 Numerical simulations

We precede the presentation of our numerical experiments by the following comment. Convergence,
even in some weak sense, of solutions fW n;QngN

nD1 of (Q), (3.4a,b), as the mesh parameters
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h; � ! 0 is difficult to expect in general because of two reasons. First, as was noted above,
the problem can be ill-conditioned in that small changes in the relief, w0, can, in some cases,
lead to dramatic changes of the river network. Second, limiting the possible flow direction to the
direction of the mesh edges can, in principle, lead to a non-negligible distortion of the river network.
Nevertheless, we expect a river (or wadi) with a pronounced valley to be well approximated by a
nearby zigzag path consisting of the mesh edges. Traditional lattice D8-algorithm-based methods
suffer from the same problems but, usually, are able to produce realistic hydrological maps. In the
numerical simulations presented in this section we use artificial landscapes to illustrate some typical
features of our approximation.

We start with a radially-symmetric non-regularized (" D 0 and k0 D 0) problem having an
analytical solution. We chose the relief in the form of a cone surrounded by a moat, see the left of
Figure 1. In polar coordinates fr; g

w0.r/ D

8̂<̂
:
0:3 � r 0 6 r 6 0:6;

r � 0:9 0:6 6 r 6 0:9;

0 r > 0:9:

(5.14)

Let f D 1 for r 6 0:2 and f D 0 outside of this disc. Rain water flows down the cone slopes,
so q.x; t/ D q.jxj; t/bx, and gradually fills the moat. Here bx is the unit vector in the direction
x. Equating the volumes of the discharged and the collected water, it is a simple matter to find
the height, H.t/, of the water layer above the lowest circle, r D 0:6, of the moat. This leads to
H.t/ D p

t=30 for t < 2:7. The flux q on the cone slopes above this layer, i.e. for r < 0:6�H.t/,
can be found from the mass balance equation @r .r q/ D r f with the initial condition q.0; t/ D 0,
yielding

q.r; t/ D

8̂̂̂<̂
ˆ̂:
0:5 r 0 6 r 6 0:2;

0:02 r�1 0:2 < r < 0:6 �H.t/;
undetermined 0:6 �H.t/ < r < 0:6CH.t/;

0 r > 0:6CH.t/:

(5.15)

Numerical solutions have been obtained with " D 0:01 and k0 D 0:005 (the model regularization
parameters), ˝ D .�1; 1/2, W 1 D W 0, �n D 0:01 (the constant time step) and � D 0:01

(the augmented Lagrangian parameter), and compared to the analytical solution at t D 0:5. For
computational ease, the integral .ef n; �/ on the right-hand sides of (3.4a) and (3.16) was replaced by
.ef n; �/h, and hence similarly in the definition of F n

j in (3.7).
Comparing the approximate surface W.�; tn/ � W n.�/ and the exact one, w.�; tn/, is

straightforward; we calculated the relative error in the approximateL1 norm:X
�2T h

j� j jw.x.�/; tn/�W n.x.�//jX
�2T h

j� j jw.x.�/; tn/j
; (5.16)

where x.�/ is the centroid of � . The flux comparison is far more complicated, as it requires to
compare the exact flow field q.�; tn/ (continuous in this example, but a measure in general) and the
singular vectorial measureQn.�/.

For a very crude check of the flux accuracy in this example we used the continuous radial vector
fields �

�
.x/ D jxj��1 x, where � 2 R>0, for which the integrals I� .t/ D R

˝.t/
q.x; t/ : �

�
.x/ dx
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can be found analytically. Here˝.t/ is the disc centered at the origin with radiusR.t/ D 0:6�H.t/
in which the exact flux is known. The integrals were compared, for several � values, to the following
approximation of the duality pairing of Qn and �

�
on ˝.t/:X

jx.e/j6R.tn/

jej jQnj jx.e/j��1 ie : x
.e/; (5.17)

where x.e/ is the midpoint of edge e 2 Eh
I .

We used two triangulations having approximately the same number of elements and not in any
way fitted to the relief w0 or the source f . The first mesh was a general Matlab-generated triangular
mesh with the maximal element size h D 0:025; and the second was a uniform mesh, which was
obtained by first dividing ˝ into squares with side length 2=100 D 0:02 and then dividing each
square into two triangles by its SW-NE diagonal. The surface w.�; 0:5/ was found numerically
(Figure 1, right) with the relative L1 error not exceeding 0.2 % for both meshes, recall (5.16). For
the non-uniform mesh, the approximate edge fluxes Qn yield the runoff picture seen in the left of
Figure 2. Here and below, to show the network of river channels we plot the edges e 2 Eh

I for which
the calculated flux jQn

e
j exceeds some threshold, with the plotted edges being thicker for a stronger

flux, and the plotting of “rivers” in “lakes” being suppressed. We see that the continuous water
flow, (5.15), is approximated by a set of channels bringing the discharged water towards the lake
that forms in the moat around the cone. Although the position of the channels seem random, their
azimuthal distribution is sufficiently uniform. For � D 0:1; 0:25; 0:5 and 1, the integrals I� .0:5/

have been approximated by (5.17) with relative errors smaller than 0.5 %.
Although the errors in I� .0:5/ were only about double those for the non-uniform mesh, the

calculated channels in this case are strongly influenced by the anisotropy of the mesh (Figure 2,
right). This effect is especially strong, because the conical surface itself has no pronounced relief
features such as typical river valleys of natural landscapes. D8 algorithms show a similar behavior
[11]; another well-known consequence of using a uniform mesh is the abundance of parallel
channels generated, especially, in flat areas [21].

For the “rippled” conical support

w0.r; / D
�

max
˚ � 0:95C r; 0:85 � r

�
1C 0:25 j sin.5/j 	 �

r 6 0:95;

0 r > 0:95;
(5.18)

see Figure 3; the approximate drainage channels generally follow ten relief valleys, see Figure 4 for
the simulation results computed at t D 0:06, before the time when the ten separated lakes begin

FIG. 1. Left: initial support w0; right: the approximate surface W.�; 0:5/
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FIG. 2. Computed drainage channels and exact lake boundaries (blue lines) at tn D 0:5. Also shown: level contours of W n

(black) and the source support boundary (red line). Left: results for a non-uniform mesh; right: results for the uniform mesh

FIG. 3. Rippled support w0

to merge, with the same non-uniform (left) and uniform (right) meshes as in the previous example.
In addition, the numerical scheme parameters were the same as before, except here the time step
�n D 0:002. Due to the presence of “river valleys”, the influence of the anisotropy of the uniform
mesh is weaker for this relief.

All simulations have been performed in Matlab R2012b (64 bit) on a PC with an Intel Core i5-
2400 3.10 GHz processor and 16 GB RAM. The primal QVI was solved using the extended ALG2
algorithm as described in Subsection 5.1 with the stopping criterion based solely on the convergence
of W n;m: the iterations were stopped if the relative change of this variable in the approximate L1

norm, the analogue of (5.16), is less than 10�7. In these examples, computing W n; n D 2; : : : ; N

(all time levels) took 2–3 minutes of CPU time. Then the approximate fluxQN was computed (with
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FIG. 4. Computed drainage channels at t D 0:06 for the relief w0 shown in Figure 3. Left: non-uniform mesh; right:
uniform mesh

a similar tolerance) in a few seconds using the standard Matlab linear programming solver, linprog,
via the rewritten formulation (5.13) of (3.34).

6. Lattice model approach

In DEMs it is difficult to distinguish the actual topographic depressions from false ones, caused
by a forest canopy, a bridge, a missed narrow gorge of a river etc. To ensure drainage continuity,
it is common practice to rectify all depressions and flat areas prior to any DEM usage in
hydrogeomorphic applications. In principle, it is possible to fill all depressions in the initial relief
W 0 by solving the regularized evolutionary problem (P) until the steady state is reached. For k0 > 0

the resulting surface W is also free of the flat horizontal areas, recall Theorem 4.5. This approach
is, however, too slow for practical applications that need high resolution DEMs of large areas.
Typically, modern GIS work with massive data sets containing around 106 to 108 cell elevations,
see, e.g., [20]; such DEMs are widely available. Solving problem (P) on a finite element mesh
representing the Earth’s relief with such accuracy is not practical.

Efficient drainage network extraction algorithms in GIS do not solve any evolutionary problems.
Most of these lattice algorithms first replace the raster (square-grid) DEM, representing the relief, by
a new one, where all pits (lakes) are filled. Then they treat the flat areas and determine the direction
of flow out of each cell. Finally, the accumulated water flux through every cell is computed. We
now present such algorithms in the context of our finite element model, which uses a TIN relief
representation and directs water fluxes along the mesh edges.
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6.1 Lake filling, flow routing and flux accumulation

We now consider the unregularized case, " D 0, and define, similarly to (3.17) and (3.12), for any
� 2 U h

0

Kh
0 .�/ WD ˚

' 2 U h
0 W @h

#'.vj / 6 M h
0 .�/.vj / 8vj 2 Vh

�
; (6.1a)

where M h
0 .�/.vj / D

(
k0 �j > W

0
j ;

maxfk0; @
h
#W

0.vj /g �j 6 W 0
j :

(6.1b)

It follows from (6.1a,b), (3.12) and (3.17) that for any " > 0 and any � 2 U h
0

M h
0 .�/.vj / 6 M h

" .�/.vj / 8vj 2 Vh ) Kh
0 .�/ � Kh.�/: (6.2)

For the given Earth relief W 0, we now construct a new relief, eW 0, such that

W 0 6 eW 0 2 Kh
0 .

eW 0/ � Kh.eW 0/ and @h
# eW 0.vj / > k0 8vj 2 Vh

I (6.3)

using the following iterative algorithm.
1. Set the “water level” Lj D C1 if vj 2 Vh

I and Lj D 0 if vj 2 Vh
B .

2. Set flag D 0. For each e.k; `/ 2 Eh
I :

	 Set

L0
k D max

˚
W 0

k ;minfLk; L` C k0 je.k; `/jg �
;

L0
` D max

˚
W 0

` ;minfL`; Lk C k0 je.k; `/jg �
:

	 If L0
k

¤ Lk or L0
`

¤ L`, set flag D 1.
	 Set Lk D L0

k
and L` D L0

`
.

3. If flag D 1 go to 2.
4. Set eW 0 D L 2 U h

0 .
The second condition in (6.3) yields that we obtain a relief without depressions and flat areas. For

k0 > 0 very small, the relief is almost horizontal in the “lake” domain eW 0 > W 0, as @h
# eW 0.vj / D

k0 if eW 0.vj / > W
0.vj /.

THEOREM 6.1 The above iterative algorithm yields eW 0 2 U h
0 satisfying (6.3). Moreover, there

exists only one function satisfying (6.3). Furthermore, eW 0 6 W , where W is the unique solution
of (PS ) for any ef > 0.

Proof. On the first iteration of all edges e.k; `/ 2 Eh
I , Lj values become finite at all vj 2 Vh

I

connected by an edge to a boundary node. Then at the next iteration those connected to these nodes
become finite, and so on. Finally the Lj values at every vj 2 Vh

I become finite in a finite number of
iterations. Obviously, throughout the iterations Lj is monotonically decreasing and Lj > W 0

j for
all vj 2 Vh

I . Hence we have that eW 0 > W 0.
Whenever the value of L` strictly decreases, either L0

`
D Lk C k0 je.k; `/j or L0

`
D W 0

`
>

minfL`; Lk C k0 je.k; `/jg for some e.k; `/ 2 Eh
I . Since Lk > L0

k
, in the first case we get L0

`
>

L0
k

C k0 je.k; `/j so there is an edge along which L0 decreases from v` with at least the slope k0.
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In the second case, since L` > W 0
`

, we obtain that L0
`

> Lk C k0 je.k; `/j > L0
k

C k0 je.k; `/j.
Therefore for any v` 2 Vh

I after a strict decrease of L`, we have that @h
#L.v`/ > k0.

If at an iteration the level at v` remains unchanged, L0
`

D L`, edge descents of L0 from v` can
only become steeper since the L0 levels at the neighboring nodes do not increase. As @h

#eL.v`/ > k0

from a previous strict decrease in L`, e.g. becoming finite, we have that this remains true. Hence,
we have that @h

# eW 0.vj / > k0 at every vj 2 Vh
I .

To show that eW 0 2 Kh
0 .

eW 0/, we note that if eW 0
`

D W 0
`

then eW 0
`

� eW 0
k

6 W 0
`

� W 0
k

for all
e.k; `/ 2 Eh. Hence @h

# eW 0.v`/ 6 @h
#W

0.v`/ 6 M h
0 .W

0/.v`/, on recalling (6.1b). Otherwise, ifeW 0.v`/ > W 0.v`/, we have that eW 0.v`/ 6 eW 0.vk/ C k0 je.k; `/j for all e.k; `/ 2 Eh, so that
@h

# eW 0.v`/ 6 k0 D M h
0 .

eW 0/.v`/ also in this case. Hence, on recalling (6.1a) and (6.2), it follows
that eW 0 2 Kh

0 .
eW 0/ � Kh.eW 0/.

Suppose that W .1/ and W .2/ satisfy (6.3) and W .1/

`
< W

.2/

`
at some vertex v` 2 Vh

I . Choose
an edge path from v` to the boundary @˝h such that at each vertex the outflow edge is the steepest
descent of W .1/. Let vk be the vertex associated with edge e.k; `/ of this path. Then ŒW .2/

`
�

W
.2/

k
�=je.k; `/j 6 @h

#W
.2/.v`/ 6 k0, since W .2/

`
> W

.1/

`
> W 0

`
and W .2/ 2 Kh

0 .W
.2//. On the

other hand, at v` the edge e.k; `/ is the steepest descent edge for W .1/. From (6.3) it follows that
ŒW

.1/

`
�W .1/

k
�=je.k; `/j D @h

#W
.1/.v`/ > k0. HenceW .1/ decreases along the edge e.k; `/ at least

as fast as W .2/, and so the inequality W .1/ < W .2/ holds also at the next vertex, vk , of the path.
Continuing, we arrive at a contradiction at the last vertex since both functions must be zero at the
boundary nodes.

Finally, it immediately follows from eW 0 2 Kh.eW 0/ and (4.5) that eW 0 6 W .

Although, the conditions (6.3) satisfied uniquely by eW 0 are very similar to those, (4.5), satisfied
by W , the unique solution of (PS ) for any ef > 0, we only know that W > eW 0. The following
simple example shows that W may not be eW 0.

Let ˝h � Œ0; 4� with nodes vj D j , j D 0; : : : ; 4, and W 0
1 D W 0

3 D k0 and W 0
2 D �2k0.

It follows that eW 0
1 D eW 0

3 D k0 and eW 0
2 D 2k0. Now consider W 1 � eW 0 for the evolutionary

problem (P), (3.16), with ef n � ef > 0 for all n > 2. We see thatW 1 is not the steady state solution
W of (PS ), since “water” coming into node v1 from the source cannot flow out as W 1

1 D W 0
1 and

so M h
" .W

1/.v1/ D @h
#W

0.v1/ D 3k0 > k0 D @h
#W

1.v1/. Therefore W 1 increases. A simple
calculation yields that the steady state solution W is such that W1 D W3 D k0 C a and W2 D
2k0 C a, where a D 2k0 "=.2k0 C "/ for any " > 0.

Having constructed a new relief eW 0 via the above iterative algorithm, we now consider the flow
routing. This is now trivial as @h

# eW 0.vk/ > k0 > 0 for every vk 2 Vh
I . We define the outflow

direction �.k/ D j if e.k; j / 2 Eh
I is the edge of steepest descent from vk 2 Vh

I ; any one of them
if such an edge is not unique. For the flux accumulation, we first set the initial values of the vertex
fluxes eQk D .ef ; �k/ for every vk 2 Vh

I . Then, noting that water flows down the slopes of eW 0, we
arrange the nodes in Vh

I so thateW 0.vk1
/ > eW 0.vk2

/ > : : : > eW 0.vkN /;

where N D #Vh
I is the number of inner vertices, and set for i D 1; : : : ;NeQ�.ki / D eQ�.ki / C eQki

:
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Finally, for ek;j 2 Eh
B we set the edge flux Qek;j

D 0 and for ek;j 2 Eh
I set

Qek;j
D

8̂̂<̂
:̂

eQk �.k/ D j;

�eQj �.j / D k;

0 otherwise:

It is a simple matter to check, on noting (3.1), (3.6) and the steady state version of (3.8a), that
Q 2 Y h, recall (4.3). Moreover, Q 2 Y h solves (4.4) with M h

" .W / replaced by M h
0 .

eW 0/, on
noting the steady state version of (3.35) and that the fluxes Qek;j

, by construction, are only non-
trivial on critical edges.

We note that already on the first iteration of the lake filling algorithm, the vertices vj 2 Vh
I

connected by the edge of the steepest eW 0 descent to the domain boundary get their final level
values, Lj D eW 0

j . On the second iteration vertices vk , whose eW 0 steepest descent edge path to the
boundary consists of two edges, are fixed, i.e. Lk D eW 0

k
; and so on. Therefore the total number

of iterations required does not exceed the maximal number of edges in the eW 0 steepest descent
edge path from a mesh vertex to the boundary. Our numerical experiments show that this lake filling
algorithm is fast. In addition, the main part, in terms of CPU time, of the flow routing and flux
accumulation algorithm is the sorting of vertices, which needs only O.N logN / operations.

If a real depression is known, the lake filling algorithm can easily be extended to account for a
partially filled closed lake. It requires only to choose a vertex, vj , in this depression and set initially
Lj D L?

0 , where the desired level L?
0 > W 0

j and is less than the level of a fully filled depression.
The resulting profile eW 0 will then contain an inner lake with an almost horizontal surface at the
heightL?

0 . Then the flow routing algorithm can be modified with a flow direction to a fictitious sink
being assigned to all vertices corresponding to the remaining local minima of the relief and the edge
fluxes in the lake area disregarded.

6.2 A real relief example

In this example we used a DEM of the Réunion island (France), which is a 63 km long and 45 km
wide volcanic island in the Indian ocean. The island has a mountainous relief, see Figure 5, with
its highest point about 3000 m above sea level. The raster DEM of the Réunion was derived from
the worldwide elevation public domain database [28] collected in the “Shuttle Radar Topography
Mission” project [12]. The file contained the heights above the sea level in a 72.8 km by 66.2 km
rectangle ˝h (Figure 5, right) at the points of a regular 809 � 736 grid. The horizontal resolution
was thus 90 m; the ocean points elevation was zero and the vertical DEM resolution was 1 m.

In our numerical experiment we used a general Matlab-generated triangular mesh with h D
120m. It contained 1,155,917 triangles, 579,118 vertices, and 1,732,717 edges. Elevations of the
initial reliefW 0 at the mesh vertices,W 0

j , vj 2 Vh, were bilinearly interpolated from the DEM data
using Matlab’s interp2 routine. Unlike the time consuming domain triangulation and preparation of
the necessary mesh structures, the interpolation itself took less than one second.

We used k0 D 10�6 in the lake filling algorithm, see Section 6.1. The algorithm produced a
depressionless relief eW 0 after 98 iterations that took 13 seconds of CPU time. The flux accumulation
was computed for the uniform source ef � 1, so the water fluxes obtained can be regarded
as approximations to river basin areas. Together with flow routing, this computation took about
12 minutes.
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FIG. 5. Réunion island. The satellite image [29] (left) and a topographic map (right) derived using the SRTM [28] DEM
employed in our simulation

FIG. 6. DEM based hydrological maps of the Réunion island: Our simulation results (left) and the Arc Hydro [1] package
map (right)

In our map of the river network (Figure 6, left) we plotted edges ek;j 2 Eh
I with the flux

(drainage area) jQek;j
j > q0, where the resolution q0 was .1=2000/

R
˝h

ef dx D j˝hj=2000.
This resolution was adjusted to the unknown resolution of the map produced for the same DEM by
the Arc Hydro [1] (Figure 6, right), based on the Jenson and Domingue algorithm [16]. The thicker
lines in our map show rivers having basin areas not less than 10q0, and the rivers are not shown in
the lakes. Visually, the two maps are similar.
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