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Boulevard des Aiguillettes B.P. 70239, 54506 Vandoeuvre-les-Nancy Cedex, France

E-mail: antoine.henrot@univ-lorraine.fr

PAOLO SALANI
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1. Introduction

An important class of shape optimization problems occurs when a free boundary problem is
considered. Of particular interest is the case of overdetermined boundary value problems, which
in general corresponds to a classical partial differential equation where both Dirichlet and Neumann
boundary conditions are imposed on the boundary of the domain. Obviously this over-determination
makes the domain itself unknown. Interesting questions are then the proof of the existence of a
solution, possibly uniqueness and the study of qualitative properties of a solution. A very large
amount of literature exists for such problems, depending on the governing operator and on the
overdetermined conditions which in many cases write as u D 0 and jruj Dconstant on @˝ ,
although several other kinds of overdetermined conditions and operators have been considered in
the literature (see for instance [4, 15, 16, 21, 22, 31, 33, 34] and references therein).

In particular here we will deal with a governing operator of the torsion type, that is with the
most classical equation:

��u D 1 in ˝ (1)

and of course everybody knows the famous result by Serrin [32] who proved that if a solution to
(1) exists with u D 0 and jruj D constant on the boundary of ˝ , then the set ˝ must be a ball
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and the function u is radial. After Serrin, many authors investigated such a problem and stability
results hold. More precisely it has been proved in [3] and in [7] that if jruj is almost constant on the
boundary of ˝ , then ˝ is not far from being a ball. A natural question is then to investigate what
happens in the case of a “genuine” non-constant boundary condition for the gradient. In particular
here we are interested in an overdetermined condition of the type

jru.x/j D g.x/ on @˝:

Let us quote that the same conditions have been already considered for differential problems
of the torsion and of the Bernoulli types in [1, 2, 5, 19, 24]. On the other hand in [6] the
Bernoulli interior problem equipped with overdetermined condition written as jru.x/j D g.�.x//

is considered, where � is the outer unit normal of the free boundary. At our knowledge an analogous
overdetermined condition (which would be very natural) for the torsion problem has not been
considered yet.

Let us now describe in detail the problem we are interested in; we will relate it below to the
existing literature.

For any bounded open set ˝ (or set of finite measure) we denote by u˝ the stress function of
˝; that is the solution of the torsion problem:(

��u˝ D 1 in ˝

u˝ D 0 on @˝;
(2)

or of its weak form

u˝ 2 H 1
0 .˝/; 8 v 2 H 1

0 .˝/ W
Z

˝

ru˝rv D
Z

˝

u˝ v; (3)

where H 1.˝/ is the Sobolev space of functions in L2.˝/ whose first derivatives are in L2.˝/ and
H 1

0 .˝/ is the closure in H 1.˝/ of smooth functions compactly supported in ˝ . Notice that the
stress function u˝ can be characterized as

G˝.u˝/ D minfG˝.v/; v 2 H 1
0 .˝/g where (4)

G˝.v/ D 1

2

Z
˝

jrvj2 dx �
Z

˝

v dx :

Let g be a function defined on R
N and satisfying8̂<

:̂
g W RN ! R positively homogeneous of degree ˛

(i.e. g.tx/ D t˛g.x/ 8t > 0; 8x 2 R
N ; ˛ > 0),

g Hölder continuous, g > 0 outside 0.
(5)

We are interested in solving the following overdetermined free boundary problem of the torsional
type with a non constant boundary condition:8̂<

:̂
��u˝ D 1 in ˝

u˝ D 0 on @˝

jru˝ j D g.x/ on @˝:

(6)
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In this context, this problem is close to the one considered by B. Gustafsson and H. Shahgholian
in [19]. In fact they study the partial differential equation ��u D f where f is a function (or a
measure) whose positive part .f /C has compact support (here and later we will denote by .f /C
the positive part of the function f , that is maxf0; f g). This makes a real difference with (6) as will
be clear in a while. Indeed they use the Alt-Caffarelli approach, consisting in minimizing

G˝.u˝/ C 1

2
�.˝/; (7)

where
�.˝/ WD

Z
˝

g2.x/ dx (8)

(they write it as a problem in the calculus of variations replacing ˝ by fu > 0g but it does not
change anything). Unfortunately, in our case, the fact that the support of .f /C � 1 is the whole
R

N makes the minimization problem (7) in general ill-posed, since the infimum can be �1 as it
is easily seen by explicit computations in the radial case. This is the reason for we have chosen a
different method.

We use a variational approach which consists in looking at (6) as the optimality conditions of
some shape optimization problem. More precisely, let J be the functional defined as the opposite of
the torsional rigidity:

J.˝/ D 1

2

Z
˝

jru˝ j2 dx �
Z

˝

u˝ dx D �1

2

Z
˝

u˝ dx D �1

2

Z
˝

jru˝ j2 dx: (9)

and consider � as defined in (8). The shape optimization problem we are interested in, consists in
minimizing J with the constraint

�.˝/ WD
Z

˝

g2.x/ dx 6 1: (10)

Let us point out that this introduces a further difficulty since we have to deal with a Lagrange
multiplier. The choice of a homogeneous function g, allows us to encounter this difficulty (see the
proof of Corollary 2.2) since it permits to estimate the value of the Lagrange multiplier. However
we point out that the existence of a solution to the shape optimization problem is guaranteed under
the simple assumption g.x/ > 0 outside the origin and lim g.x/ D C1 for jxj ! C1.

We remark that this shape optimization problem is a variant of the famous Saint-Venant problem,
and hence it has its own practical interest. In the classical Saint-Venant problem one looks for the
shape of the set with given area which has maximal torsional rigidity; in [29] G. Polyà proved that
the answer is the ball. Here we solve the same problem in the class of non-uniformly dense sets,
whose density depends on the function g.

The paper is organized as follows. In Section 2 we prove the main results of the paper: existence
and regularity of a minimizer for our shape optimization problem and, as a consequence, the
existence of a solution to the free boundary problem. In Section 3 we prove some basic properties:
the origin is in general inside the solution, monotonicity with respect to g and uniqueness of the
solution when ˛ > 1. In Section 4 we investigate starshape and we prove the starshapedness of
solutions for ˛ ¤ 1. Section 5 is devoted to prove the convexity of the solution, under suitable
assumptions. In Section 6 we prove some symmetry results and we study the stability of the radiality
when g is close to be radially symmetric. Finally in Section 7 we investigate the relationship between
the shape of the solution and the shape of the level sets of g, giving some a priori bounds for the
solution ˝ in terms on G1 D fx 2 R

n W g.x/ 6 1g.
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2. The shape optimization problem

We consider the energy functional J.�/ defined in (9). We recall that, by the maximum principle, J

is decreasing with respect to set inclusion that is: ˝1 � ˝2 implies J.˝1/ > J.˝2/.
In this section, we want to minimize the functional J.˝/ among open sets satisfying (10). Let

us remark that the measure of sets ˝ satisfying (10) is bounded since g.x/ diverges at infinity for
homogeneity.

As already emphasized, the homogeneity of g plays a crucial role. In particular it makes the
problem having a nice behavior with respect to homotheties. More precisely, for every t > 0,
˝ � R

N , it holds

J.t˝/ D �1

2

Z
t˝

t2u˝.x=t/ dx D t2CN J.˝/;

�.t˝/ D
Z

t˝

g2.x/ dx D t2˛CN �.˝/;

where the first equality follows from the fact that the stress function of t˝ is

ut˝.x/ D t2u˝.
x

t
/:

Therefore the two following problems are equivalent from a qualitative point of view:

min
˝�RN

˚
J.˝/ W �.˝/ 6 1

�
; (11)

min
˝�RN

�.˝/� 2CN
2˛CN J.˝/: (12)

Let us state our main result on existence and regularity of a solution to Problem (11) or (12), whose
proof is given in Section 2.1. In particular we stress that the existence part in Theorem 2.1 does not
need the homogeneity property of g but it holds under the weaker assumption g > 0 outside the
origin and g tends to infinity for jxj ! 1.

THEOREM 2.1 Problem (11) admits a solution ˝ . This one is C 1;ˇ in dimension N D 2. In
dimension N > 3, the reduced boundary @red ˝ is C 1;ˇ and @˝n@red ˝ has zero .N �1/-Hausdorff
measure.

The existence of a solution to the overdetermined Free Boundary Problem (6) follows:

COROLLARY 2.2 Let g satisfy (5) for some ˛ > 0, ˛ 6D 1. Then there exists a solution to the
overdetermined Free Boundary Problem (6).

REMARK 2.3 The overdetermined boundary condition jru˝.x/j D g.x/ holds on the regular part
of the boundary of ˝ .

Proof of Corollary 2.2. Let ˝ be a solution of the shape optimization problem (11) given by
Theorem 2.1. Since the reduced boundary of ˝ is C 1;ˇ , by classical regularity results, the gradient
of u˝ is defined almost everywhere on the boundary. We can then write the optimality conditions.
For that purpose, we use the classical shape derivative as defined, for example in [23, chapter 5].
The derivative of the functional J at ˝ in the direction of some deformation field V is given by

dJ.˝I V / D �
Z

˝

hru˝ ; ru0i � 1

2

Z
@˝

jru˝ j2hV; ni; (13)
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where u0 is the derivative with respect to the domain of u˝ , solution of(
��u0 D 0 in ˝

u0 D � @u˝

@n
hV; ni on @˝:

(14)

By Green formula and (14),
R

˝hru˝ ; ru0i D 0. On the other hand, the derivative of the constraint
� is

d�.˝I V / D
Z

@˝

g2hV; ni: (15)

By the optimality condition there exists a Lagrange multiplier � such that, for any deformation field
V , we have

dJ.˝I V / D � d�.˝I V /;

and, according to (13), (15) this writes as

�1

2

Z
@˝

jru˝ j2hV; ni D �

Z
@˝

g2hV; ni: (16)

Since equality (16) must hold for any V , we get

jru˝ j2 D �2�g2 on @˝:

Let us remark that � cannot be zero by unique continuation property (or Hopf’s lemma). Now,
replacing ˝ by t˝ where

t D .�2�/
1

2.˛�1/ ;

and taking into account that

jrut˝.x/j D t jru˝.x=t/j D t.�2�/1=2g.x=t/ D t1�˛.�2�/1=2g.x/ D g.x/;

we get the desired result.

REMARK 2.4 The case ˛ D 1 is a special one. As we can see explicitly in the radially symmetric
situation, it is possible to have no solution or an infinite number of solutions. Indeed, let g.x/ D
ajxj, as it is easily proved by Schwarz symmetrization (see section 6), the solution has to be a ball.
Now, looking for a ball BR of radius R solving (6) is equivalent to solve g.R/ D R=N (because
uBR

D .R2 � jxj2/=2N ) and the result follows according to the value of a.

2.1 Proof of Theorem 2.1

The proof splits into two parts which are separated in four paragraphs. In the first part we prove the
existence (and boundedness) of a solution, while in the latter the proof of regularity is presented.

More precisely in Paragraph 2.1.1 we follow the lines of [18], cf. also [23] and we use a
concentration-compactness argument as in [10] to prove the existence of a minimizer which is a
quasi-open set and which may be unbounded. We refer to [23] for a precise definition and discussion
of the concept of quasi-open set; let us only remind that if u 2 H 1.RN /, then its super level sets
fu > tg are quasi-open, for each t 2 R.

In Paragraph 2.1.2, using the notion of local shape subsolution introduced in [11], we prove
that the minimizer is in fact bounded. In Paragraphs 2.1.4, 2.1.3 we prove the regularity of the
minimizer as in [8] (see also [9]). The main difficulty is to prove that it is actually an open set, then
we can conclude to higher regularity by classical techniques from free boundary problems like in [5]
and [19].
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2.1.1 Proof of existence. Let us introduce the following auxiliary problem

min
˚
G.v/I v 2 H 1.RN /; �.˝v/ 6 1

�
; (17)

where ˝v denotes the quasi-open set ˝v WD fx 2 R
N I v.x/ > 0g, � is defined in (8) and G is the

functional defined by

G.v/ D 1

2

Z
RN

jrvj2 dx �
Z
RN

v dx : (18)

Let us prove the existence of a minimizer u for problem (17).
We use the classical Poincaré inequality, valid for any set of bounded measure (see Lemma

4.5.3 in [23]). As already noticed, the constraint �.˝v/ 6 1 implies that the measure of ˝v is
uniformly bounded, that is 9m > 0; j˝vj 6 m. The Poincaré inequality writes as follows: there
exists C D C.N / > 0 such that for every v 2 H 1.RN / satisfying j˝vj 6 m it holdsZ

RN

v2 6 C m
2
N

Z
RN

jrvj2: (19)

Therefore, since
R

˝v
v 6 m1=2

�R
RN v2

�1=2, we have

2G.v/ >
Z
RN

jrvj2 � C 0kvkH 1.RN /;

and G.v/ is estimated from below and a minimizing sequence un is necessarily bounded in
H 1.RN /.

Now we use a concentration compactness argument for the quasi-open sets An D fun > 0g.
Following [10, Theorem 2.2] two situations may occur:
� Dichotomy: There exists a sequence QAn � An such that QAn D A1

n [ A2
n with d.A1

n; A2
n/ ! C1

and lim inf jAi
nj > 0. The resolvent operators satisfy kRAn

� RA1
n[A2

n
k ! 0 in the operator norm

(see [10] for details on the resolvent operator).
� Compactness: There exists a sequence of vectors yn 2 R

N and a positive Borel measure �

(vanishing on sets of zero capacity) such that yn C An � -converges to the measure � (and the
resolvent operators satisfy kRynCAn

� R�k ! 0 in the operator norm).
Notice that in the situation of Problem (17), dichotomy cannot occur because since g2 ! C1
at infinity, the constraint

R
An

g2 6 1 prevents a subpart of An of measure bounded from below to
move to infinity. Thus, we are in the compactness situation and we denote by A� the regular set of
the limit measure �, defined as

A� WD
n [

A W A is finely open, �.A/ < 1
o
:

Then the sequence vn.x/ D un.x � yn/ D RynCAn
.1/ converges to v D R�.1/ 2 H 1

0 .A�/ weakly
in H 1 and almost everywhere (and A� D fv > 0g D ˝v). Notice that at this point we can not
say that ˝v provides a solution to minimization problem (17), since the constraint is not translation
invariant. We can avoid this problem arguing for instance as in [12], proving that the sequence
fyng is bounded, thanks again to the behavior of g at infinity. Indeed first choose R > 0 such thatR

B.O;R/ v2 dx D ˛ > 0 (here and in the sequel we denote by B.x; R/ the ball centered at x with
radius R); by the convergence of vn to v, we haveZ

B.0;R/

v2
ndx D

Z
B.�yn;R/

u2
ndx D

Z
B.�yn;R/\An

u2
ndx > ˛

2
(20)
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for n large enough. Since jAnj is bounded, kunk1 is bounded, say kunk1 6 M ; then (20) implies

jAn \ B.�yn; R/j > ˛

2M 2
;

whence
1 >

Z
An

g2dx >
Z

An\B.�yn;R/

g2dx > ˛

2M 2
inf

B.�yn;R/
g2 :

The latter leads to a contradiction if we assume that kynk is unbounded, since we would have
infB.�yn;R/ g2 ! 1. So far, we have proved yn is bounded. Then it converges to some y0 (up to
a subsequence) and the sequence un converges to u.x/ D v.x C y0/ weakly in H 1 and almost
everywhere. We set ˝� D fu > 0g D A� � y0 and by Fatou Lemma, we infer thatZ

�˝� g2dx 6 lim inf
Z

�˝un
g2dx 6 1

and so the constraint is satisfied. We deduce that ˝� provides a solution of the shape optimization
problem (9), (10), as it is classical in situations where the objective function J is monotone
decreasing with respect to set inclusion.

2.1.2 Proof of boundedness. We recall the definition of local shape subsolution introduced by
D. Bucur in [11]: a set A is a local shape subsolution for the energy problem if there exist ı > 0

and � > 0 such that for any quasi-open set QA � A with ku QA � uAkL2 < ı we have

J.A/ C �jAj 6 J. QA/ C �j QAj: (21)

In [11, Theorem 2.2], it is proved that any local shape subsolution is bounded (and has finite
perimeter). Thus our aim is to prove that ˝� is a local shape subsolution. We argue by contradiction:
let us assume that there exists a sequence 	n going to 0 and a sequence ˝n � ˝� such that

J.˝n/ C 	nj˝nj < J.˝�/ C 	nj˝�j: (22)

We can assume that ˝n is an increasing sequence converging to ˝� in the L2.RN /-norm of u˝n
,

that is kun � ukL2.RN / tends to zero, where u D u˝� . Indeed, if ˝n converges to a strictly
smaller set, then equation (22) cannot hold by monotonicity of the energy J and this would give a
contradiction. Fix tn > 1 such that

�.tn˝n/ D t2˛CN
n

Z
˝n

g2 D 1:

Then necessarily tn ! 1. By minimality of ˝�, J.tn˝n/ D tN C2
n J.˝n/ > J.˝�/.

Plugging into (22) yields

J.˝�/

�
1 � tN C2

n

tN C2
n

�
6 	n.j˝�j � j˝nj/: (23)

We divide both sides of (23) by tN C2˛
n � 1 D R

˝� g2
�R

˝n
g2

��1 � 1 and we get

tN C2
n � 1

tN C2˛
n � 1

	
�J.˝�/

tN C2
n



6

	nj˝� n ˝nj R
˝n

g2R
˝�n˝n

g2
: (24)
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Now obviously, we just need to prove boundedness far from 0. Actually the proof of boundedness of
shape subsolution in Bucur’s paper [11] is done by contradiction and consists in applying an estimate
of Alt-Caffarelli type (which follows from the definition of shape subsolution) to a sequence of
points xn 2 ˝ whose norm is going to C1. Therefore we can assume that we are outside a fixed
ball B.0; R/ and R

˝�n˝n
g2

j˝� n ˝nj > min
RN nB.0;R/

g2 > 0:

We pass to the limit 	n ! 0 and tn ! 1; since the left-hand side of (24) converges to
N C2

N C2˛
.�J.˝�// > 0 and the right-hand side tends to 0, we reach the desired contradiction.

2.1.3 Proof of regularity. The proof of regularity of the optimal shape is very similar to the proof
given in [8] (see also [9]) where the constraint is j˝uj 6 1 instead of

R
˝u

g2 6 1. These papers are
themselves inspired by [5] and [19]. Thus, in the sequel, we will mainly emphasize the particularities
of our situation.

Before giving the details, we need to show some preliminary results.
Let us denote by u the minimizer of problem (17). Since we know that the minimizer is bounded,

let us denote by D a fixed ball containing ˝u. The first step is to prove that u is continuous in D

(and therefore the set ˝u D fx W u.x/ > 0g is open). To get rid of the constraint (in order to be
able to test with a wider class of functions), we first prove that the minimization problem (17) is
equivalent to a penalized problem.

LEMMA 2.5 There exists 	 > 0 such that for any v 2 H 1
0 .D/

G.u/ 6 G.v/ C 	

	Z
˝v

g2.x/ dx � 1


C
: (25)

It is remarkable that the two problems are equivalent, not only when 	 goes to infinity as usual,
but for a finite value of 	.

Proof of Lemma 2.5. For a fixed 	 > 0, let us denote by G� the functional

G�.v/ WD G.v/ C 	 .�.˝v/ � 1/C :

The existence of a minimizer u� for the problem

inf
v2H 1

0
.D/

G�.v/;

is obtained in an analogous way as the existence of a minimizer for problem (17) above. If
�.˝u�

/ 6 1, we get G�.u�/ D G.u�/ and since u� and u are both minimizers of G� and G,
the result follows. It remains to prove that we cannot have

�.˝u�
/ > 1; (26)

for 	 large enough. Assume, by contradiction, that it is the case and let us introduce ut D .u� � t/C.
Differentiating with respect to t and using the co-area formula, we get

d

dt

ˇ̌̌
tD0

Z
fu�>tg

jru�j2 dx D �
Z

fu�Dtg
jru�j dHN �1;

d

dt

ˇ̌̌
tD0

Z
fu�>tg

g2 dx D �
Z

fu�Dtg
g2

jru�j dHN �1;
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while
d

dt

ˇ̌̌
tD0

Z
fu�>tg

.u� � t/ dx D �
Z

fu�>tg
dx :

Thus d
dt

ˇ̌̌
tD0

G�.ut / > 0 yields

Z
fu�Dtg

1

2
jru�j C 	

g2

jru�j dHN �1 6
Z

fu�>tg
dx 6 jDj:

Now Z
fu�Dtg

1

2
jru�j C 	

g2

jru�j dHN �1 >
p

2	

Z
fu�Dtg

g dHN �1; (27)

therefore, if we can prove that
R

u�Dt
g dHN �1 is estimated from below by a positive constant, (27)

would lead to the desired contradiction for 	 large enough. This is the content of the following
lemma.

LEMMA 2.6 There exists a positive constant C such that for any measurable set ! � D withR
! g2 dx > 1, it holds Z

@!

g dHN �1 > C: (28)

Proof. Let us assume, by contradiction, that there exists a sequence !n such thatZ
!n

g2 dx > 1 and
Z

@!n

g dHN �1 6 1

n
:

For any R, let BR be the ball centered at O with radius R and

gR D minfg.x/ W x 2 R
N ; jxj D Rg:

We fix R > 0 such that
R

BR
g2 dx < 1=2. We have

j@!n n BRj gR 6
Z

@!nnBR

g dHN �1 6 1

n
:

Thus j@!n nBRj 6 1
ngR

. By the Relative Isoperimetric Inequality on R
N nBR, see for instance [14],

there exists a positive constant c0 such that

j!n n BRj 6 c0j@!n n BRj N
N �1 :

This implies that j!n n BRj can be chosen smaller than 1=2M where M D maxD g2, since
j@!n n BRj tends to zero. Hence

1 6
Z

!n

g2 dx D
Z

!nnBR

g2 dx C
Z

!n\BR

g2 dx <
1

2
C 1

2
;

which is a contradiction.
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REMARK 2.7 By homogeneity, statement (28) of Lemma 2.6 can also be written as:

9C > 0; such that 8! � D;

Z
@!

g dHN �1 > C

	Z
!

g2 dx


 ˛CN �1
2˛CN

: (29)

Notice that (29) is a kind of weighted isoperimetric inequality and has its own importance:
an interesting question would be to determine its optimal domains. Using the theory of quasi-
minimizers, one should be able to prove that such an optimal domain !� is regular. Now, the
differentiation with respect to the domain would give as first order optimality condition:

Hg C @g

@n
D �g2 on @!�;

where H is the mean curvature of the boundary of !� and � a Lagrange multiplier.

2.1.4 Details of the proof of regularity. Let us fix a ball B.x0; r/ with x0 in D and, as a test
function in Lemma 2.5, let us choose v defined as v D u in R

N n B.x0; r/ and v solution of(
��v D 1 in B.x0; r/

v D u on @B.x0; r/;

inside the ball. By the maximum principle v > 0 in B.x0; r/ and, therefore,

˝v D ˝u [ B.x0; r/;

where we recall that ˝v D fx W v.x/ > 0g. Thus, since
R

˝u
g2.x/ dx D 1, we have

0 6
Z

˝v

g2.x/ dx � 1 6
Z

B.x0;r/

g2 6 C rN :

It follows, from Lemma 2.5, that u satisfiesZ
B.x0;r/

jr.u � v/j2 6 	C rN

and, by classical regularity results (see, e.g., Theorem 3.5.2 in [28]), u is Hölder continuous on D.
Consequently the set ˝u is open as claimed at the beginning of the proof. In particular, following [9],
we can prove that u is Lipschitz on D.

Let us now study �u C �˝u
. The fact that �u C 1 D 0 on ˝u (in the sense of distributions) is

easily obtained using perturbations of the kind v D uC t' with ' 2 C 1
0 .˝u/. Then, following step

by step [8, Theorem 2.2,Proposition 2.3], one can prove that �uC�˝u
D �, where � is a (positive)

Radon measure, supported in @˝u and absolutely continuous with respect to the Hausdorff measure
HN �1 in D. Then, using a blow-up technique near the boundary points of @˝u, we prove more
precisely like in [8, Theorem 5.1] that

�u C �˝u
D gHN �1b@˝u:

We need for that purpose that g is estimated from below: g.x/ > c > 0 which is true as soon as we
are far from the origin. We can conclude using [19, Theorem 2.13, Theorem 2.17], at least outside
the origin where g D 0.
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3. Basic properties

In this section, we prove some basic properties of the solution to Problem (6) or (11). For that
purpose we will need in the sequel to assume that the solution ˝ is everywhere regular; then we set:

The solution ˝ of problem (6) or (11) is C 1;ˇ : (R)

According to Theorem 2.1, property (R) is true in dimension 2 and in higher dimension it consists
in assuming that the singular part of the boundary is empty.

The first property is a somewhat technical property which will be necessary in many cases in the
sequel. It states that the origin O is inside the domain (at least when ˛ > 1) and it is not surprising
of course. Indeed, since g is increasing with respect to jxj, one can easily imagine that translating
a domain ˝ toward the origin should make �.˝/ smaller while the torsion remains unchanged.
Unfortunately we can prove such a property only for ˛ > 1, as most of our next results.

PROPOSITION 3.1 Let ˝ be a solution of the minimization problem (11) satisfying (R) and assume
that the homogeneity degree of g satisfies ˛ > 1. Then the origin O belongs to ˝ .

Proof. Let us begin by proving that O cannot be in R
N n ˝. Indeed in this case, there would exist

a ball B" D B.O; "/ of small radius " and center at the origin, such that B.O; "/ � R
N n ˝. Let

˝" D ˝ [ B". We have immediately

�.˝"/ D �.˝/ C "2˛CN �.B1/;

where B1 is the unit ball centered at O . In the same way,

J.˝"/ D J.˝/ C "N C2J.B1/:

Therefore, since ˛ > 1 we get the following expansion

�.˝"/
� 2CN

2˛CN J.˝"/ D �.˝/� 2CN
2˛CN J.˝/

�
1 C "N C2 J.B1/

J.˝/
C o."N C2/

�
;

which contradicts the optimality of ˝ since, as J.B1/ < 0, it implies J.˝"/ < J.˝/. Continuing to
argue by contradiction, let us now assume that O 2 @˝ . According to assumption (R) @˝ satisfies
an exterior cone condition at O : there exists a cone C" D "C1 of vertex O and size " such that
C" \ ˝ D ;. Thus we can do exactly the same construction as before considering ˝" D ˝ [ C"

and we conclude in the same way.

Next we prove the monotonicity of the solutions of (6) with respect to g.

THEOREM 3.2 Let g1; g2 satisfy (5) with ˛ > 1 and let ˝1; ˝2 be solutions to Problem (6) related
to g1 and g2, respectively, satisfying (R). Assume g1.x/ > g2.x/ for every x 2 R

N , then ˝1 � ˝2.

Proof. Assume by contradiction ˝1 6� ˝2 and consider t˝1 with

t D supfs > 0 W s˝1 � ˝2g:
Then 0 < t < 1 (notice that t > 0 comes from Proposition 3.1) and there exists Nx 2 @t˝1 [ @˝2,
with �t˝1

. Nx/ D �˝2
. Nx/ D �, where �˝.x/ denotes the outer unit normal to @˝ at x and � 2 SN �1.
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˝2

t˝1

O

�

Nx
˝1

FIG. 1. t˝1 � ˝2 with Nx 2 @.t˝1/ \ @˝2

We want to compare ut˝1
and u˝2

, the stress functions of t˝1 and ˝2, respectively. Notice
that ut˝1

.x/ D t2u˝1
. x

t
/. Define w D u˝2

� ut˝1
; it satisfies8̂<

:̂
�w D 0 in t˝1;

w > 0 on @t˝1;

w. Nx/ D 0:

Hence by Hopf Lemma, it holds @w
@�

. Nx/ > 0. Notice that

@w

@�
. Nx/ D jru˝2

. Nx/j � jrut˝1
. Nx/j D g2. Nx/ � tg1

� Nx
t

�
;

since � is parallel to ru˝2
. Nx/; rut˝1

. Nx/ and jrut˝1
. Nx/j D t jru˝1

. Nx
t
/j, with Nx

t
2 @˝1. Hence,

by the homogeneity of g1, and the fact that t < 1; ˛ > 1, we get

g2. Nx/ > tg1

� Nx
t

�
D t1�˛g1. Nx/ > g1. Nx/;

which contradicts the assumption g1 > g2.

REMARK 3.3 We can prove the above theorem under some weaker assumptions, precisely it is
sufficient that at least one between g1 and g2 satisfies (5), with ˛ > 1. In such a case we have
however to assume O belongs to the interior of both ˝1 and ˝2 and that they are bounded. In case
g1 is the function satisfying assumption (5), the proof is precisely the same as above. Notice that
in this case O 2 ˝1 and ˝1 bounded are pleonastic assumptions since they implied by Proposition
3.1 and he result os Section 2, respectively. If g2 satisfies (5) with ˛ > 1 instead of g1, then we
argue again by contradiction, very similarly as before (in this case O 2 ˝2 and ˝2 bounded are
pleonastic). Indeed if ˝1 6� ˝2, consider t˝2 with

t D inffs > 0 W ˝1 � s˝2g:
Then t > 1 and there exists Nx 2 @˝1 [ @.t˝2/, with �˝1

. Nx/jj�t˝2
. Nx/jj�, where �˝.x/ denotes the

outer unit normal to @˝ at x and � 2 SN �1. Then we can proceed in the same way as before.
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As a natural straightforward corollary of the previous theorem, the uniqueness of the solution
follows.

THEOREM 3.4 If g satisfies assumptions (5) for ˛ > 1, then there is a unique solution satisfying
(R).

4. Starshapedness and connectedness

We recall that a set ˝ is said starshaped with respect to a point x0 2 ˝ if

t.x � x0/ C x0 2 ˝ for every x 2 ˝ and every t 2 Œ0; 1
:

When x0 D O we simply say that ˝ is starshaped.

THEOREM 4.1 If ˝ satisfy (R) and g satisfies assumptions (5) for ˛ > 1, then ˝ is starshaped
(with respect to O).

Proof. The proof is similar to that one of Theorem 3.2.
By contradiction, assume ˝ is not starshaped and let

t D inffs 2 Œ0; 1
 W s˝ 6� ˝g:
There exists Nx 2 @.t˝/ \ @˝ (see Figure 2). Notice that 0 < t < 1 since the origin belongs to ˝ ,
and ˝ is bounded and not starshaped. In a similar way as before, consider the function

ut .x/ D t2u˝

�x

t

�
:

Then ut is the stress function of t˝ and whence8̂<
:̂

��w D 0 in t˝

w > 0 on @.t˝/

w. Nx/ D 0;

where w D u˝ � ut .
Then

@w

@�
. Nx/ 6 0 ; (30)

where � is the outer unit normal at Nx of ˝ and t˝ . On the other hand
@w

@�
. Nx/ D jrut . Nx/j � jru˝. Nx/j ;

then (30) reads as
jrut . Nx/j 6 jru. Nx/j D g. Nx/ : (31)

Moreover a straightforward calculation gives

rut .x/ D tru˝.
x

t
/ for x 2 t˝ ;

which entails
jrut . Nx/j D t jru˝. Nx=t/j D tg. Nx=t/ D t1�˛g. Nx/ > g. Nx/;

for 1 � ˛ < 0, t < 1 and Nx ¤ 0 (then g. Nx/ > 0).
The latter contradicts (31) and the proof of starshapedness is concluded.
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˝

t˝

Nx
�

O

FIG. 2. t D inffs 2 Œ0; 1� W s˝ ª ˝g.

Starshapedness obviously implies connectedness. Then when ˛ > 1 the solution is connected.
We are able to prove this property also when ˛ < 1.

PROPOSITION 4.2 Let ˛ ¤ 1and ˝ be a solution of the minimization problem (11) or (12). Then
˝ is connected.

Proof. For ˛ > 1 the thesis follows from Theorem 4.1 as already pointed out. It is then sufficient to
consider the case ˛ < 1. Let us assume, by contradiction, that the solution ˝ is not connected and
let us write it as

˝ D ˝1 [ ˝2; with ˝1 \ ˝2 D ;; j˝1j > 0; j˝2j > 0:

Since g is positive outside 0, we have �.˝i / > 0 for i D 1; 2. Let us denote by M the value of the
minimum

M D �.˝/� 2CN
2˛CN J.˝/ < 0: (32)

For each component, we have �.˝i/
� 2CN

2˛CN J.˝i / > M , i D 1; 2. Now, J.˝/ D J.˝1/ C J.˝2/

and �.˝/ D �.˝1/ C �.˝2/. Therefore

J.˝/ > M
�
�.˝1/

2CN
2˛CN C �.˝2/

2CN
2˛CN

�
> M .�.˝1/ C �.˝2//

N C2
2˛CN D M�.˝/

N C2
2˛CN ;

the strict inequality coming from the fact that ˛ < 1 (whence N C2
2˛CN

> 1), �.˝i / > 0 for i D 1; 2

and M < 0. This clearly leads to a contradiction with (32).

5. Convexity

Let us recall some definitions which will be useful later on. A lower semicontinuous function u W
R

N ! R [ f˙1g is said quasi-convex if it has convex sublevel sets, or, equivalently, if

u ..1 � 	/x0 C 	x1/ 6 max
˚
u.x0/; u.x1/

�
;

for every 	 2 Œ0; 1
, and every x0; x1 2 R
N . If u is defined only in a proper subset ˝ of Rn, we

extend u as C1 in R
n n ˝ and we say that u is quasi-convex in ˝ if such an extension is quasi-

convex in R
N . In an analogous way, u is quasi-concave if �u is quasi-convex, i.e., if it has convex
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superlevel sets. Obviously, if u (or any one of its powers) is convex (concave) then it is quasi-convex
(quasi-concave) but the reverse is not necessarily true.

REMARK 5.1 Notice that, due to the ˛-homogeneity, the quasi-convexity of g is equivalent (for
˛ > 0) to the following apparently stronger property:

g1=˛ is convex.

Indeed, notice that h.x/ D g
1
˛ .x/ is homogeneous of degree one and it is quasi-convex. Fix

x0; x1 2 R
N and consider 	 2 Œ0; 1
. We want to prove that

h
�
.1 � 	/x0 C 	x1

�
.1 � 	/h.x0/ C 	h.x1/

6 1:

Denote by

� D 	h.x1/

.1 � 	/h.x0/ C 	h.x1/
I

using the quasi-convexity and the homogeneity of h, we get

h
�
.1 � 	/x0 C 	x1

�
.1 � 	/h.x0/ C 	h.x1/

D h
�
.1 � �/

x0

h.x0/
C �

x1

h.x1/

�
6 max

n
h.

x0

h.x0/
/; h.

x1

h.x1/
/
o

D 1:

THEOREM 5.2 Let g be a quasi-convex and homogeneous function of degree ˛ > 2, with g.x/ > 0

for x ¤ 0. Assume that ˝ satisfies (R), then ˝ is convex.

Proof. The proof follows the same lines of that of starshapedness. By contradiction, assume ˝ is
not convex and let ˝� be its convex hull. Denote by u˝ the solution of (2) and by u˝� the stress
function of ˝�. Let

t D supfs 2 Œ0; 1
 W s˝� � ˝g
(see Figure 3) and let

Nx 2 @.t˝�/ \ @˝ :

Notice that t > 0 since 0 2 ˝ and ˝� is bounded (for ˝ is bounded) while t < 1 for ˝ is not
convex. It is easily seen that

ut .x/ D t2u˝�

�x

t

�
;

solves (2) with t˝� in place of ˝ , (that is ut is the stress function of t˝�) whence8̂<
:̂

��w D 0 in t˝�;

w > 0 on @.t˝�/;

w. Nx/ D 0;

where w D u˝ � ut .
Then

@w

@�
. Nx/ 6 0 ; (33)
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˝

t˝�

Nx
�

x0

�

x1

�

FIG. 3. t D supfs 2 Œ0; 1� W s˝� � ˝g

where � is the common outer unit normal at Nx of ˝ and t˝�. On the other hand

@w

@�
. Nx/ D jrut . Nx/j � jru˝. Nx/j ;

then (33) reads
jrut . Nx/j 6 jr˝u. Nx/j : (34)

We will contradict the latter by giving estimates of the gradient of ut which show that the reverse
must be true. To do this we need the following property, whose proof is given at the end of the
section.

LEMMA 5.3 If Nx 2 @˝� n @˝ , m > 2 and x1; : : : ; xm 2 @˝ \ @˝� are such that Nx D Pm
iD1 	ixi ,

for some 	1; : : : ; 	m 2 Œ0; 1
 with
Pm

iD1 	i D 1, then

jru˝�. Nx/j >
� NX

iD1

	i

p
jru˝.xi /j

�2

: (35)

With Lemma 5.3 at hands, it is easy to prove that (34) can not hold true. Indeed a straightforward
calculation gives

rut .x/ D tru˝� .
x

t
/ for x 2 t˝�: (36)

Notice that, as Nx 2 @.t˝�/, there exist x1; : : : ; xN 2 @.t˝/ (some of which possibly coinciding)
and 	1; : : : ; 	N 2 Œ0; 1
 such that

PN
iD1 	i D 1 and Nx D PN

iD1 	ixi and �. Nx/ D �.x1/ D � � � D
�.xN /, where �.x/ indicates the outer unit normal vector to t˝� or t˝ at the involved point x (see
Proposition 3.1 of [17] for instance). Moreover, since Nx 2 @.t˝�/ n @.t˝/, we have by Lemma 5.3

jrut . Nx/j D t jru˝�. Nx=t/j > t
� NX

iD1

	i

p
jru˝.xi =t/j

�2

D t
�
	i

r
g.

xi

t
/
�2

D t1�˛
� NX

iD1

	i

p
g.xi /

�2

:
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On the other hand, Remark 5.1 yields

g. Nx/ 6
� NX

iD1

	i g.xi /
1
˛

�˛

;

and then

g. Nx/ 6
� NX

iD1

	i g.xi /
1
2

�2

;

since ˛ > 2. We finally get

jrut . Nx/j > t1�˛g. Nx/ > g. Nx/ D jru. Nx/j ;

where the strict inequality holds because t < 1, ˛ > 1 and g. Nx/ > 0, since Nx ¤ 0 for 0 2 ˝ . The
latter contradicts (34) and the proof is concluded.

Now we give the proof of Lemma 5.3.

Proof of Lemma 5.3. We use the same notations and a similar construction as in the proof of
Theorem 5.2. So, let ˝� be the convex hull of ˝ and let u˝� ; u˝ be their stress functions,
respectively. By Comparison Principle we have

u˝ 6 u˝� in ˝: (37)

Since
u˝ D u˝� on @˝� \ @˝;

equation (37) entails

jru˝� .x/j > jru˝.x/j for every x 2 @˝� \ @˝:

In particular we have
jru˝�.xi /j > jru˝.xi /j for i D 1; : : : ; m: (38)

Next we prove that

jru˝�. Nx/j >
� mX

iD1

p
jru˝� .xi /j

�2

: (39)

Notice that @˝� inherits C 1 regularity from @˝ and the outer normal directions �.x1/; : : : , �.xm/

to @˝� at the points x1; : : : ; xm are all coinciding with the outer normal direction � to @˝� at the
point Nx and then ru˝� . Nx/, ru˝�.x1/,. . . ,ru˝�.xm/ are all parallel to ��. By the convexity of
˝� it is well known that u˝� is 1

2
-concave (see [13, 26, 27]), that is

v D p
u˝� is concave in ˝

�
: (40)

Moreover, since
mX

iD1

	i .xi � t�/ D Nx � t�;
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for every small enough t > 0 we have

u˝� . Nx � t�/ D v. Nx � t�/2 >
� mX

iD1

	iv.xi � t�/
�2

:

By the definition of v the latter reads as

u˝� . Nx � t�/

t
>

� mX
iD1

	i

r
u˝�.xi � t�/

t

�2

:

Passing to the limit as t ! 0C and taking into account that

u˝� . Nx/ D u˝�.xi / D 0 ; i D 1; : : : ; m;

we get (39).
Coupling (39) and (38) gives (35) and the proof is concluded.

6. Symmetries

In this section we prove that some symmetry properties of g are inherited by the solution ˝ .
In particular in Theorem 6.1 we consider the radial case, while Theorem 6.6 treats the Steiner
symmetric case. In both cases the presented technique is based on rearrangements of sets and
functions.

THEOREM 6.1 If g is radial and satisfies assumptions (5), then the solution ˝ to the minimization
problem (11) is a ball.

Notice that a radial solution can always be explicitly computed. The above result states that
in fact not radial solutions cannot exist. Let us remark that for ˛ > 1 this can also be seen as a
straightforward corollary of Theorem 3.4.

Proof. Let us denote by ˝# the ball of the same volume as ˝ and center at O . Assume ˝ n ˝# to
be a set of positive measure. We are going to reach a contradiction proving that the value J.˝#/ is
strictly better than the minimum value J.˝/.

Notice that, since g is radial and increasing in each direction, we have

˝# D ˚
x 2 R

N W g.x/ 6 Nt�;

for some Nt > 0:

Hence

inf
x2˝n˝#

g2.x/ > Nt D sup
x2˝#n˝

g2.x/;
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O

˝

˝
# D fg.x/ 6 Ntg

FIG. 4. The level lines of g are monotone increasing concentric balls

which implies �.˝#/ < �.˝/, since

�.˝#/ 6
Z

˝#\˝

g2.x/ dx C j˝# n ˝j sup
x2˝#n˝

g2.x/

<

Z
˝#\˝

g2.x/ dx C j˝# n ˝j inf
x2˝n˝#

g2.x/

6
Z

˝#\˝

g2.x/ dx C
Z

˝n˝#
g2.x/ dx

D �.˝/:

In order to compare the stress function of ˝ with that of ˝#, we compare both of them with a
rearrangement of u˝ . More precisely, let u# be the Schwarz symmetric of the stress function u˝ ,
that is the radial function whose sublevel sets are concentric balls of the same measure than the
corresponding sublevel sets of u (that is jfu# < tgj D jfu˝ < tgj). We compare u# with the
stress functions of ˝#, u˝# (notice that it is a radial function too) and that of ˝ . Recalling the
characterization of stress functions in (4), we have

J.˝#/ 6 1

2

Z
˝#

kDu#k2 dx �
Z

˝#
u#2

dxI

moreover, by classical results (see for instance [25]), it holdsZ
˝#

u#2
dx D

Z
˝

u˝
2dx;Z

˝#
kDu#k2 dx <

Z
˝

kDu˝ k2dx;

where the strict inequality holds since u˝ is not radial (otherwise ˝ would be a ball) and hence
it does not coincides with u# (see [25] Corollary 2.33). These entail J.˝#/ < J.˝/, which is a
contradiction. This shows that ˝ is a ball, up to a zero measure set.

Notice that, under stronger assumptions a similar result on the symmetry of the solution to the
torsion problem has been proved by A. Greco in [20]. More precisely he considered Problem (6)
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with g.x/ D cjxj, and he proved that if a solution exists and the set ˝ contains the origin, then the
set must be a ball.

We want to use Theorem 7.1 to estimate the stability of the radial setting. Roughly speaking we
deal with the following questions: If, in some sense, g is close to be a radial function, is ˝ close (in
a suitable sense) to be a ball? And how does the distance of ˝ from the ball shape depend on the
distance of g from the radial shape?

It is then necessary to specify which kind of distance is convenient to use to measure the
closeness of g to be radial.

We present two stability results which are in fact corollaries of Theorem 3.2. More precisely,
we consider two different kinds of distances of functions: in Proposition 6.2 we ask g to be quasi
radial in the L1 norm, while in Proposition 6.3 the distance between the function g and a radial
function is controlled in terms of the ˛-homogeneous sublinear function jxj˛. Notice that this latter
is in fact quite natural since the space of ˛-homogeneous functions is considered.

PROPOSITION 6.2 Let g; h satisfy (5) with ˛ > 1 and assume h to be radial withˇ̌
g.x/ � h.x/

ˇ̌
6 ";

for every x 2 R
N and some " > 0. Let ˝ be the solution of (6) related to g, then there exist

R" > r" > 0 such that B.O; r"/ � ˝ � B.O; R"/ with jR" � r"j D O."/.

Proof. Since the function h is ˛-homogeneous and radial, there exists a positive constant k such
that h.x/ D kjxj˛, where in fact k D hjSN �1 . Define

h�.x/ D h.x/

1 � "
; hC.x/ D h.x/

1 C "
I

it holds hC 6 g 6 h� since˚
x 2 R

N W hC.x/ 6 1
� � ˚

x 2 R
N W g.x/ 6 1

� � ˚
x 2 R

N W h�.x/ 6 1
�
:

Moreover h�; hC satisfy the hypothesis of Theorem 3.2 and hence

˝� � ˝ � ˝C;

where ˝�; ˝C are the solutions to (6) related to h�; hC, respectively.
By Theorem 6.1 there exist R" > r" > 0 such that ˝� D B.O; r"/ and ˝C D B.O; R"/. In

particular, solving explicitly Problem 6 in the radial homogeneous case, we get

R" D �1 C "

kN

� 1
˛�1 ; r" D �1 � "

kN

� 1
˛�1 ;

since the stress function of a ball B.O; �/ is u.x/ D �2�jxj2
2N

, with jDujj@B.O;�/ D �
N

. Comparing
R" and r" we have

jR" � r"j D 2

.˛ � 1/.N k/
1

˛�1

�
" C o."/

�
;

which entails the thesis.
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PROPOSITION 6.3 Let g; h satisfy (5) with ˛ > 1 and assume h to be radial with

jg.x/ � h.x/j 6 "jxj˛;

for every x 2 R
N and some " > 0. Let ˝ be the solution of (6) related to g. There exist R0

" > r 0
" > 0

such that B.O; r 0
"/ � ˝ � B.O; R0

"/ with jR0
" � r 0

"j D O."/.

Proof. As before we notice that the assumptions on h implies that there exists a positive constant k

such that h.x/ D kjxj˛.
Since the stress function of a ball B.O; �/ is of the form u.x/ D 1

2N
.� � jxj2/, the solutions to

(6) related to h C "jxj˛; h � "jxj˛ are

uC.x/ D r 0
"

2 � jxj2
2N

; u�.x/ D R0
"

2 � jxj2
2N

;

with r 0
" D �

N.k C "/
�� 1

˛�1 , R0
" D �

N.k � "/
�� 1

˛�1 , respectively.
Then, for every ˛ > 1, it holds lim"!0C r 0

" D lim"!0C R0
" D .kN /� 1

˛�1 , which entails the
thesis. Notice that the value r D .kN /� 1

˛�1 , corresponds to the value of the radius of the ball
solution to Problem (6) related to the function h.x/.

REMARK 6.4 Notice that, by the homogeneity of g and h, the condition jg.x/ � h.x/j 6 " in
Proposition 6.2 guarantees the validity of the condition jg.x/ � h.x/j 6 "jxj˛ in Proposition 6.3.
Indeed

h.x/ C "jxj˛ D jxj˛
�
h
� x

jxj
� C "

�
> jxj˛

�
g

� x

jxj
�� D g.x/;

and, analogously, h.x/ � "jxj˛ 6 g.x/.
However Proposition 6.2 is stronger than Proposition 6.3, depending on the value of k > 0.

In particular if k < 1 � ", then the balls B.O; r"/; B.O; R"/ give a better approximation to the
set ˝ , while for k > 1 C ", it is more convenient to compare ˝ with B.O; r 0

"/; B.O; R0
"/. For

1 � " < k < 1 C " we have R" < R0
" and r" > r 0

".

REMARK 6.5 Since g is homogeneous, it is completely described by its degree of homogeneity ˛

and one of its level set, say
G1 D fx 2 R

N W g.x/ < 1g :

Indeed the sublevel set Gt can be written in terms of G1, see (42).
Hence the distance of g to be radial can be conveniently expressed in terms of the distance of

G1 from a ball.
Propositions 6.2 and 6.3 can in fact be rewritten in terms of sublevel sets. More precisely the

condition jg � hj 6 " becomes

B
�
O;

�1 � "

k

� 1
˛

�
� G1 � B

�
O;

�1 C "

k

� 1
˛

�
;

where k D hjSN �1 , while jg � hj 6 "jxj˛ entails

B
�
O;

1

.k C "/
1
˛

�
� G1 � B

�
O;

1

.k � "/
1
˛

�
:
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We now present another symmetry result concerning the Steiner symmetric case. More precisely,
let us assume g to be Steiner symmetric in the following sense:(

g is symmetric with respect to fxN D 0g, and
the sublevel sets of g are convex in the xN direction.

(41)

Notice that this can be rephrased as

g.x0; xN / > g.x0; yN /; whenever jxN j > jyN j:
THEOREM 6.6 Consider a function g satisfying assumptions (5) and assume g to be Steiner
symmetric in the sense of (41). Then the solution ˝ to Problem (11) is symmetric with respect
to the hyperplane fxN D 0g.

Proof. The proof makes use of Steiner symmetrization. Let us recall some notations; for more
details, we refer to [30].

We denote by ˝ 0 the projection of ˝ onto R
N �1:

˝ 0 D fx0 2 R
N �1 such that there exists xN with .x0; xN / 2 ˝g:

For x0 2 R
N �1, we denote by ˝.x0/ the intersection of ˝ with the line fx0g � R; that is

˝.x0/ WD ˚
xN 2 R such that .x0; xN / 2 ˝

�
:

Obviously ˝.x0/ is the empty set for every x0 2 R
N �1 n ˝ 0 while[

x02˝0

�
x0 � ˝.x0/

� D ˝:

We introduce the one-dimensional set

˝?.x0/ WD
�

� 1

2
j˝.x0/j; 1

2
j˝.x0/j

�
I

which is a symmetric interval with the same measure as ˝.x0/.
The Steiner symmetrized of ˝ with respect to the hyperplane fxN D 0g is the set ˝? defined

by

˝? WD
n
x D .x0; xN / such that � 1

2
j˝.x0/j < xN <

1

2
j˝.x0/j; x0 2 ˝ 0

o
:

Now, since g is increasing in the xN direction from xN D 0 and symmetric, we have for any
x0 2 ˝ 0Z

˝.x0/

g2.x0; xN /dxN D
Z

˝.x0/\˝?.x0/

g2.x0; xN /dxN C
Z

˝.x0/n˝?.x0/

g2.x0; xN /dxN

>
Z

˝?.x0/\˝.x0/

g2.x0; xN /dxN C
Z

˝?.x0/n˝.x0/

g2.x0; xN /dxN

D
Z

˝?.x0/

g2.x0; xN /dxN :
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Therefore, integrating over ˝ 0, we getZ
˝

g2dx D
Z

˝0

dx0
Z

˝.x0/

g2.x0; xN /dxN >
Z

˝?

g2dxI

this shows that ˝? is also admissible for the minimization problem (11). Denote by u? the Steiner
symmetrand of u˝ , that is the function whose level sets are the Steiner symmetrand of level sets of
u˝ . By Fubini Theorem and classical results on rearrangement, it is well known thatZ

˝

u˝ dx D
Z

˝?

u? dx;Z
˝

jru˝ j2 dx >
Z

˝?

jru?j2 dx:

Thus, since u? belongs to the Sobolev space H 1
0 .˝?/, using the variational characterization (4) we

get
J.˝?/ D G˝?.u˝? / 6 G˝?.u?/ 6 G˝.u˝/ D J.˝/;

and the proof is complete.

7. A relation with the level sets of g

As largely proved in the previous sections, clearly the geometry of g influences the geometry of the
solution ˝ . Following the radial case, one could expect the shape of ˝ to be strongly related to
the shape of the level sets of g. Indeed in the radial case, ˝ is an homothetic copy of the level sets
of g; unfortunately this happens only in this particular case, as can be easily inferred from Serrin
result [32]. On the other hand, some estimate of the solution ˝ in terms of g is always possible
and this is precisely the aim of this final section. Roughly speaking, we will show that ˝ must be
incapsulated between two a priori known level sets of g. To give a precise statement, it is convenient
to introduce first some notations.

As before, assume g to be homogeneous of degree ˛ > 0 and g.x/ > 0 if x ¤ 0. Let t 2 .0; 1/

and denote by Gt the (open) t-sublevel set of g, that is

Gt D ˚
x 2 R

n W g.x/ < t
�

:

By homogeneity, it is easily seen that all the level sets are dilatation of G1, precisely

Gt D t
1
˛ G1 : (42)

Now let ut be the stress function of Gt and assume that g is regular enough to get ut 2 C 2.Gt / \
C 1.G t / (for instance g 2 C 1;ˇ .RN / for some ˇ > 0).

In particular u1 is the solution of(
��u1 D 1 in G1

u1 D 0 on @G1;
(43)

and it holds
ut .x/ D t2=˛ u1

� x

t1=˛

�
: (44)
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Gs

Gr

˝

�s

Nxs

�rNxr

FIG. 5. Gr � ˝ � Gs

Set
A D min

@G1

jru1j ; B D max
@G1

jru1j : (45)

Notice that A and B depends only on g and they are, in principle, a priori known. Moreover, A 6 B

and A < B unless G1 is a ball (see [32]), that is g is radial; the radial case is discussed in detail in
the previous section.

THEOREM 7.1 If ˛ > 1 and ˝ satisfies (R) then

A1=.˛�1/G1 � ˝ � B1=.˛�1/G1 :

Proof. Since the origin O is in the interior of both ˝ and G1, and they are both bounded, there exist
r and s such that 0 < r 6 s and

r D supft W Gt � ˝g and s D infft W ˝ � Gt g :

Then Gr � ˝ � Gs and there exist

xr 2 @Gr \ @˝ and xs 2 @˝ \ @Gs :

We want to estimate r and s in terms of g. Then let wr D u˝ � ur , where u˝ is as usual the stress
function of ˝ , and notice that wr satisfies8̂<

:̂
��wr D 0 in Gr

wr > 0 on @Gr

wr .xr / D 0:

By maximum principle wr > 0 in Gr and then xr is a minimum point. Whence

@wr

@�r

.xr / D @u˝

@�r

.xr / � @ur

@�r

.xr / D jrur .xr /j � jru˝.xr /j 6 0 ;

where �r is the outer normal of Gr (and ˝) at xr . Since ˝ solves Problem (2) and xr 2 @Gr , the
latter reads ˇ̌rur .xr /

ˇ̌
6 g.xr / D r: (46)
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On the other hand, (44) gives

jrur .xr /j D r1=˛
ˇ̌̌
ru1

� xr

r1=˛

�ˇ̌̌

and thanks to (42) it holds
xr

r1=˛
2 @G1 :

Then from (45) we get

r > r1=˛A;

which implies, for ˛ > 1,

r > A˛=.˛�1/I (47)

and this proves the first inclusion of the statement, using (42).

To obtain the second inclusion we argue in a similar way. Let ws D us � u˝ and notice that it
solves 8̂<

:̂
��ws D 0 in ˝

ws > 0 on @˝

ws.xs/ D 0

Arguing as before we get

jrus.xs/j > g.xs/ D s : (48)

Coupling the latter with (44) and taking again into account (42) and (45), we get

s 6 s1=˛B;

whence, if ˛ > 1, we obtain

s 6 B˛=.˛�1/; (49)

which proves the second inclusion of the statement, using again (42).
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