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Given an open and bounded set £2 C RY, we consider the problem of minimizing the ratio between
the s-perimeter and the N-dimensional Lebesgue measure among subsets of §2. This is the non-
local version of the well-known Cheeger problem. We prove various properties of optimal sets
for this problem, as well as some equivalent formulations. In addition, the limiting behaviour of

some nonlinear and non-local eigenvalue problems is investigated, in relation with this optimization
problem. The presentation is as self-contained as possible.
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1. Introduction
1.1 Aim and results of the paper

In this paper we introduce and study the non-local/fractional Cheeger problem in an open and
bounded set £2 C R¥ . This amounts to finding a set E C §2 such that

Ps(B) _ . o Ps(A)

1.1
|E| 4ce |A] (4.1

Here | - | stands for the N -dimensional Lebesgue measure, P for the non-local s-perimeter,

[14(x) = 14()|
PS(A)_ANAN Xy |N+s dx dy, s €(0,1),

and 14 is the characteristic function of a set A. An s-Cheeger set of §2 is a set E satisfying (1.1).
Accordingly the quantity
Ps(E)

h(2) =
(£2) E|
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is called the s-Cheeger constant of §2. We point out that recently the study of non-local geometric
quantities like Py has received a great impulse, as they arise in the modelization of phase-transitions
in presence of non-local interaction terms. We refer to the survey [17] for an updated account on
these studies.

Problem (1.1) turns out to have many interesting features and appears to be less obvious to
understand than its local counterpart, the (usual) Cheeger problem, where a Cheeger set is a set £
achieving the infimum
P(A4)

2 (4]’

with P(A) being the distributional perimeter of A, i.e. the total variation of the measure V1.
Problem (1.2) was first introduced by Jeff Cheeger in [10] in the context of Riemannian Geometry,
see also [30] for an overview of the problem.

It is well-known that /1 (§2) is indeed an optimal Poincaré constant, namely

/ |Vu| dx
hi1(2) = inf

ueWy ' (2)\(0} / |u|dx

h1(2) = 1nf (1.2)

and that /1(£2) is the limit of the first eigenvalue of the p—Laplacian as p goes to 1, see [18,
Corollary 6]. In the same spirit, in this paper we prove that the s-Cheeger constant can be
equivalently characterized as the following W*>! —eigenvalue (see Theorem 5.8)

[ ] e,
2= np Levdev oyl

ueWw 1 (2)\(0} / |u| dx 7
Q

and that /14(£2) coincides with the limit as p goes to 1 of the nonlinear and non-local eigenvalues
A p (see Theorem 7.1), coming from the eigenvalue problem

2/ ) ZuCN WD) =1 4 s (@) )P Pu) =0, xe Q. (1)
RN

|x — y|N+s P

which has been first introduced and studied by Lindqvist and the second author in [25].

We remark that both in (1.3) and in the definition of the s-perimeter, the integrals are taken over
the whole RY and not only over £2 itself. The reason is twofold: if one only integrates over §2 then
all sets would have s-Cheeger constant equal to zero; on the other hand, the problem (1.3) would
not have the appropriate scaling properties.

For the problem (1.3) we also provide a global L* estimate for the solutions (Theorem 3.3)
and a Faber-Krahn inequality with identification of equality cases (Theorem 3.5), which were both
missing in [25].

Using a scaling argument, it is easy to see that s-Cheeger sets must touch the boundary of 2.
We are able to prove that, as in the local case, this happens in a C! fashion at the points where 92
is regular. Moreover we show that in the interior of §2 any s-Cheeger set is, up to a singular set of
dimension N — 2, a C1* surface having constant non-local mean curvature equal to —hs($2), in
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the sense that
. 1g(x) — Ignv\g (x)
lim N+s
80+ JRN\Bs(x) X — Xo

dx = —hy(2), (1.4)

for xo € JE N £2.
Finally, we provide another alternative characterization of the s-Cheeger constant, i.e.,

7 (2) min{[|@||z.co®N xrN) 51(9) in 2} (1.5)

where R | is the adjoint of the following linear and continuous operator

) —u(y)

|x _y|N+s :

This is a non-local version of the Max Flow Min Cut Theorem, which can be useful to obtain lower
bounds on /5(£2). We recall that for the local case this was investigated in [32], where the following
characterization

1
= min Voo c—divV =1in 2},
h1(82)  veLoo(2;RN) {” ) }

was obtained (see also [21]).

1.2 Open problems

We are left with many open questions and problems. Since the non-local mean curvature is a quantity
that takes into account the global behavior, the property (1.4) can not in general imply a local
characterization of the boundary of a Cheeger set. Even for dimension N = 2 we are not able to
provide any finer information about the interior behaviour of s-Cheeger sets, apart from the C'
regularity. However, we should mention that even for the usual Cheeger constant /11 (£2), explicitly
determining or inferring fine properties of the Cheeger sets are difficult tasks. These usually become
affordable for N = 2, when some severe geometric restrictions are imposed on £2 (see for example
[22, 23]).

A deep difference between the non-local case and the usual one is enlightened by the following
behaviour: as it is shown in Remark 4.5, for a sequence of sets { E }xeny C R¥ such that

P(Ex) <C and lim |Eg| =0,
k—o00

the s-perimeter as well converges to 0. This implies for example that in general filling a hole does
not decrease the s-perimeter, at least if the hole is “large enough”, while of course this is always the
case for the usual distributional perimeter. This behaviour is due to the fact that Ps(E) is a sort of
interpolation quantity between P(E) and |E| (see Corollary 4.4).

Related is the question of uniqueness of s-Cheeger sets which also remains open. While Cheeger
sets are known to be unique when £2 is convex, as proved in [3, 9], this is no longer clear in the
non-local setting.
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1.3 Plan of the paper

We start with Section 2, where we precise the functional analytic setting of our problem and
we recall some facts about fractional Sobolev spaces that will be needed throughout the whole
paper. Then in Section 3 we recall the definition of first eigenvalue A7 p(§2) from [25] and prove
that the associated first eigenfunctions are bounded, together with the Faber-Krahn inequality.
Section 4 introduces the s-perimeter of a set, there we recall some connections between the naturally
associated Sobolev space W*! and the space of BV functions. With Section 5 we enter the core of
the paper: We introduce problem (1.1) and prove some first properties. The remaining sections are
then devoted to study regularity issues for s-Cheeger sets (Section 6), the relation between the first
eigenvalues A7 »(§2) and the s-Cheeger constant (Section 7) and the alternative characterization
(1.5) (Section 8). Three appendices containing some technical results complement the paper.

2. A glimpse on fractional Sobolev spaces

Here and throughout the whole paper we will use the notation B, (xo) to denote the open ball of
R¥ centered at x¢ and with radius » > 0. Moreover, we will denote by wx the measure of the
k—dimensional ball with unit radius.

Given p € [1,00) and s € (0, 1), let us denote by

1

— p P
Wlws.p@n) = (/RN /RN 'T)Ex_) |Z(+ys)1|z dxdy) : @.1)

the (s, p) Gagliardo semi-norm in R" of a measurable function u. Given an open and bounded set
2 C RY, we first observe that we have

[ulws.r@yy < +00, for every u € C5°(£2).
We then precise the Sobolev space we want to work with.
DEFINITION 2.1 The space Wf)’p (£2) is defined as the closure of C5°(§2) with respect to the norm
u > [ulys.r@yy + ullLr(@)-
This is a Banach space, which is reflexive for 1 < p < oco.

In this paper we will deal with variational problems in the limit case p = 1, where Wf)’l (£2) is
not reflexive. In this case, we will need the following larger Sobolev space.

DEFINITION 2.2 The space W3 (£2) is defined by
Wl (2) = {u e L'(2) : [ulysi@n)y < +ooandu = 0ae.in RV \ 2}.
Of course, we have W' (2) ¢ W' ().

The following approximation result in Wg’l({?) is valid under smoothness assumptions on §2
and will be quite useful in Section 5 and 7.

LEMMA 2.3 Let 2 C RY be an open and bounded Lipschitz set and s € (0, 1). For every u €
W(S)’l(.Q) there exists a sequence {¢, }nen C C§°(£2) such that

nll)n;o ”q{)n - M”Ll(g) =0 and nli)n;o[@n]ws,l(RN) = [M]Ws,l(RN). (22)
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Proof. The proof is based on the construction of [26, Lemma 3.2]. Indeed, by this result we know
that under the standing assumptions on §2 there exists a family of diffeomorphisms @, : RN — R¥
with inverses ¥, such that:

e We have

lim D@, —1d||zco + |®s —Id|zee =0 and  lim ||DW, —1d||zco + [[Ws — Id|lzee = O;
e—0t e—0t

o 2.:=P,(2) € Nforalle < 1.

We then define the sequence ¢, = (1 o ¥i/,) * 0n, Where g, is a standard convolution kernel such
that ||o,| .1 = 1. By construction ¢, € Cg°(§2) and the first property in (2.2) is easily verified.
Observe that by Fatou Lemma, this also implies that

lzlgggf[(pn]wsl (RN) = [M]Wx,l ®RN)>

then in order to conclude we just need to prove the upper semi-continuity of the semi-norm. We first
observe that

[nlws.ai@ny = [(U 0 Wriyn) * Onlwsa@ny < [U o Winlwsi@wny, (2.3)

then the latter can be written as

- () — u(w)|
[ 0 Wl vy = /R ) /R B =y M @I @ua)] dz

by a simple change of variables (z, w) = (¥1,,(x),¥1/,(y)), where J @y, denotes the Jacobian
determinant. We now observe that by construction

|1/ (2) = Pyyn(w)| = My |z —w| and  |JPy/p(2)| < M2,

for some M; > 0 and M, = 1 independent of n. By applying Lebesgue Dominated Convergence
Theorem and keeping into account (2.3), we can conclude. O

We now prove a Poincaré-type inequality for Gagliardo semi-norms.

LEMMA 2.4 Let 1 < p < ooand s € (0,1), 2 € RY be an open and bounded set. There holds
14175y < INusp(82) U]y s p . forevery @ € Cgo(£2), (2.4)
where the geometric quantity Zy s, ,(§2) is defined by

diam(2 U B)N+s»

T §2) = mi
N,s,p(£2) = min ]

: BCRN\ Qisaball ;. (2.5)

Proof. Letu € Cg°(£2) and Bg C RN \ £, i.e. a ball of radius R contained in the complement of
§2. For every x € §2 and y € Bgr we then have

) U v,

yZ—
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from which we can infer

u(x) — u(y)|?
Bl u@)” < sup |x—y|N+“’/ Jux) — )V
x€f2,yeBR R |x_y|N+S1J

Integrating on 2 with respect to x we obtain

: N+sp _ D
/ u|? dx < diam(§2 U BR) / / |u(x) —u(y)| dx dy.
2 Bpr

| Br| x—yNEse

which concludes the proof. |

REMARK 2.5 The previous result shows that for an open and bounded set £2 C RY the space
W7 (£2) can be equivalently defined as the closure of C$°(£2) with respect to the semi-norm

[- ]WS’P(]RN)'

In view of the previous remark, in what follows we will always consider the space Wf;p (£2) as
equipped with the equivalent norm

lullgs.r ) = Wlws.p@ny. U € WP (£2). (2.6)

We will also define the space WOS "P(RY) as the closure of Cy° (RY) with respect to the norm
[- lws.p Ny Then it is immediate to see that the application

Wer (@) — W ®Y),

which associates to each u € Wf)’p (£2) its extension by 0 to the whole RY is well-defined and
continuous.
Next, we investigate the behaviour of fractional Sobolev spaces under varying p.

LEMMA 2.6 Let 2 C RY be an open and bounded set. Let 1 < ¢ < p < oo and s € (0, 1), then
for every 0 < ¢ < s we have

C

[M]%sts,q(RN) < m [M %VS.P(]RN)’ for every u c C(;X)(Q),

where C = C(N, $2,s, p,q) > 0.

Proof. Letu € C§°(£2), by a simple change of variables and using the invariance by translations
of L? norms, we have

q _ [u(x + h) —u(x)[?
[U]Ws—e.q(RN) - Ah:h>1} /I‘QN |h|N+(s—s)q dxdh
lu(x +h) —u(x)?
+/ / dxdh
theln<y Jrv o (RN F=)a

297N wy / lu(x +h) —u(x)|? dh
< —F ul? dx +/ (/ dx) .
G=og v " aeny v TP Hv—ea

We then observe that

/ |u|‘1dx=/ ul?dx < |22|'"7 (/ |u|1’dx) :
RN 2 2

Sl
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and for every |h| < 1, since the function u(x + &) — u(x) has compact support', we get

q
lu(x + h) —u(x)|? [u(x + h) —u(x)|? ?
/RN i dx < Cg pgq /RN 7 dx) <c’ [u]‘iw,,,(RN),

where in the last inequality we used Lemma A. 1. Putting everything together, we have obtained

24—1 N oy q p C’'N wn
q 1-7 ¥4 q
[u]fos.q(RN) < (S — 8)(] |Q| » (/[‘1 |u| dX) + eq [M Ws.p(RN)

By using Poincaré inequality (2.4) in the previous, we get the conclusion. O

THEOREM 2.7 Let 1 < p < ooands € (0,1), let 2 C RY be an open and bounded set. Let
{un}nen C Wy?(£2) be a bounded sequence, i.e.,

sup ||un||’1,;g,p(9) < +o00. 2.7
neN

Then there exists a sub-sequence {u,, }xen converging in L?(£2) to a function u. Moreover, if
p > 1thenu € WP (82), while for p = 1 we haveu € W3 ().

Proof. We first observe that the sequence {u;, },en is bounded in L? as well, thanks to (2.7) and the
Poincaré inequality (2.4). We then extend by zero the functions u, to the whole RY and observe
that in order to get the desired conclusion, by the classical Riesz-Fréchet-Kolmogorov compactness
theorem we only have to check that

lim (sup/ [un(x + h) —u(x)|? a’x) =0. (2.8)
|hl=0 \neN JRV

By (2.7) and Lemma A.1 we get

[un(x +h) —un(x)|?
|h|*P
<CIn’?,

dx

/ |un(x+h)—un(x)|l’dx=|h|“’/
RN RN

S C |h|sp [u]l;ys.p(RN)

for every || < 1. The previous estimate implies (2.8) and this gives the desired conclusion. Finally,
the last statement is a consequence of the reflexivity of Wy?(£2) for p > 1. O
More generally we get the compactness of the embedding in L4 spaces for suitable g.

COROLLARY 2.8 For1 < p <ooands € (0, 1), let £2 C RY be an open and bounded set. Every
bounded sequence {uy}nen C Wf)’p (£2) admits a sub-sequence converging in L9(£2) to a function
u, for every g = 1 such that

Np
g<p* =3 N-—sp
400, ifsp>=N.

, ifsp <N,

! More precisely, observe that the support of this function is contained in the open and bounded set |J (£ + h).
lhI<1
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Proof. For 1 < g < p, we can use Theorem 2.7 in conjunction with

1_1
lullLe2) < 182177 |lullLr(2)-

For p < g it is sufficient to combine the standard interpolation inequality (suppose for simplicity
thats p < N)

- , P a-r
lllzo@) < Bl e g) IlLolgy: Wit = Z- -,
and the Sobolev inequality in WOS "P(RN) (see [15]) with Theorem 2.7. O

For completeness, we conclude this section by considering the case s p > N. The proof is the
same as in [12, Theorem 8.2], the only difference is that here we work with the narrower space
W7 (£2), so boundary issues can be disregarded.

PROPOSITION 2.9 Let 2 C RY be an open and bounded set. Let 1 < p < oo and s € (0,1)
be such that s p > N. Then for every u € WP (£2) there holds u € C%* witha = 5 — N/p.
Moreover there exists a constant Yy s , > 0 such that we have the estimates

() =4 < (Ynsop llgpgn ey Ix = I* x.y € RY, 2.9)

and
ullLoe < yNs.p ”””W‘(‘)’P(Q) diam(£2)“. (2.10)

Proof. By extending u by 0 to the whole RY , we can consider it as an element of WOS P(RY), then
we take xo € RY, § > 0 and estimate

1
/ [u(x) — Uy, s dx < —— / / [u(x) —u(y)|? dx dy,
BS(XO) |B§ (.X())l B(g(xo) B(g(xo)

where Uy, s denotes the average of u on Bs(xo). By observing that |x — y| < 2§ forevery x,y €
Bs(xo) and using that Bs(xo) = wy 6V, we get

.y p < sp p
Ls(xo) |M(X) uXQ,5| dx ~ CS [u]WS,p(RN)a

that is
B~
Bs(x0)
possibly with a different constant C > 0. The estimate (2.11) implies that u belongs to the
Campanato space L£P>*7 which is isomorphic to C 0.0 witha = 5 — p/N (see [20, Theorem 2.9]).
This gives (2.9), while (2.10) can be obtained from the previous by simply taking y outside the
support of u. O

u(x) = 617 dx < C [ulfs pgm): 2.11)

3. The first fractional eigenvalue

DEFINITION 3.1 Let 1 < p < oo and s € (0, 1). Given an open and bounded set 2 C RV we
define

K _ : p
M, = min |z

ullLr@) =1, u = 0g, (3.1)
ueWwy?(2)

57 (@)

where the norm || - ||ﬁ;.(s‘),p(9) is defined in (2.6).
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Observe that the constraint ¥ > 0 in (3.1) has no bearing: by dropping it, the minimal value
A1, ,(82) is unchanged, as for every u € L?(2) we have
)| = I < Ju@) —uI? and  Jul] (o) = lllLr2)-

The minimum in (3.1) is well-defined thanks to Theorem 2.7 (see also [25, Theorem 5]) and every
minimizer ug € Wy? (£2) satisfies the following non-local and nonlinear equation

— p—2 —
[, [ = O =0 o) gy axay =2 [ pirugas, @2

for every ¢ € WP (£2), with A = Al p(£2).

REMARK 3.2 Observe that A7 ,(£2) equals the inverse of the best constant in the Poincaré
inequality (2.4), thus H, » (£2) > 0 thanks to Lemma 2.4, indeed we have the lower bound

1

A (2) = ——,
1.7 () IN,s,p(£2)

with Zy s p as in (2.5).

We show that solutions to (3.2) are globally bounded. The same result can be found in the recent
paper [16]: there a suitable modification of the De Giorgi iteration method is employed. Here on the
contrary we use a variant of the Moser iteration technique. We can limit ourselves to prove the result
for s p < N, since for s p > N functions in Wf,’p (£2) are Holder continuous and thus bounded,
thanks to Proposition 2.9.

THEOREM 3.3 (Global L estimate) Let 1 < p < coand0 < s < I suchthatsp < N.If
ueWw o7 (£2) achieves the minimum (3.1), then u € L®(RN) and for s p < N we have the
estimate

~ N_
lulloo @) < Cwopos [A],,(2)]57% llullLr (@) (3.3)
where C N,p,s > 01is a constant depending only on N, p and s (see Remark 3.4 below).
Proof. We set for simplicity A = A7 p»(§2) and we first consider the case s p < N. For every M, we

define ups = min{u, M } and observe that uy is still in Wf,’p (£2), since this is just the composition
of u with a Lipschitz function. Given 8 > 1, we insert the test function ¢ = ”11?/1 in (3.2), then we

/ / u(x) — u()|P772 (u(x) — u(p)) (b, (x) — b, ()
RN JRN

| LY dxdy < A uPtr=1 gy,
X =Yy

RN

where we used that ups < u. We now observe that the left-hand side can be estimated from below
by a Gagliardo semi-norm of some power of u. Indeed, by using inequality (C.2) in the Appendix
we get

// Ju(x) —u(y)1P72 (u(x) —u(y))
RN JRN

|)C _y|N+sP

(b, (x) - u,‘i,(y» dxdy

B+p—1 B+p=1  |p
T —uy " ()

> ,Bpl’ / / dxdy.
B+p—107 Jan Jan |x — y|N+sp
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We can now use the Sobolev inequality for WOS P(RN), so to get

Bt+p—1 B+p—1 P N g
i 7 0=y 7 ) prpo\ W\
/RN /RN [ — p|NFso dxdy = Cn.ps /RN (”M ) dx

By keeping everything together and passing to the limit as M goes to oo, we then obtain the
following iterative scheme of reverse Holder inequalities

N—sp
Nop N —1
Btp—1\ N=sp A B+ p—1\* Bhp—1\P
(/(u Gz ) dx) sCN’M( . ) /(u Z ) dx,  (3.4)

where we used that 8 = 1, so that

Prp=11_
p B

Let us now set ¢ = % , then the previous inequalities can be written as

(/uﬁ_zv/\xp dx) o < ( A )U (19$) ? (/uﬂl’dx) ”,
CN,p,s

1
A o\?7 o5
||M||L19NA15P < (CN ) (19”) llullo o
Iy 20

We want to iterate the previous inequality, by taking the following sequence of exponents

N N n+1
Yo=1, Dyy1 =0 = :
0 n+1 nN—Sp (N—Sp)

1.

N

that is

Observe that N/(N — s p) > 1, then 3, diverges at infinity and in addition

and

By starting from n = 0, at the step n we have

L\ Yi=o 57 2
A > 1=V v; n 7% P
ll g1 < LA l[ullze,
Cy,
R :

i=0
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then by taking the limit as n goes to co we finally obtain

N(N—=s p) p—1

Jull <( A )L( N ) 7l
U||Loe X ujiLe,
CN,p’S N—sp

which concludes the proof. "

We now pay attention to the borderline case s p = N. In this case Wq?(2) < L4(82) for
every g < oo. Then we can proceed as before, by replacing Sobolev inequality with the following
one

Btp—1  p
‘”Mp (x) —up ” (y)‘ fep=1\2P 2

> A
/RN/RN oy dxdy = a,(£2) /]RN (uM ) dx | ,

where

ap (@) = _min v, ¢ lulizne) = 1

Then as before we arrive at

(6o 0 < iy (P27 [ an s

which is analogous to (3.4). By setting again ¥ = (8 + p — 1)/ p, we obtain

1

59 A po p=1 5
(/u”pdx) §( (,Q)) (ﬂ%) : (/M’”’dx)
as
p

By iterating the previous with the sequence of exponents

19():1, 7}"4_1 2219" =2n+1’
we can conclude the proof as before. O

REMARK 3.4 A closer inspection of the proof informs us that for s p < N the constant in (3.3) is
given by

N
N—sp )
N sp

N2
AN |u| V=57 dx N N(S/\zf;gp) pT—l
N_so» .

_Sp

gij,s = sup [ ]p
ueWs? (RN)\{0} Ul s.p (mN)

The first term is the best constant in the Sobolev inequality for WOS P(RN), see [15]..

Observe that the quantity A ,(£2) enjoys the following scaling law
M pt2) =177 1 ,(£2), t>0,

then the shape functional 2 — |2|¢P)/N A{,,(82) is scaling invariant. We have the following.
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THEOREM 3.5 (Faber-Krahn inequality) Let 1 < p < oo and s € (0, 1). For every £2 C R" open
and bounded, we have
21PN 35 (@) = |BICPIN A (B (3.6)

where B is any N -dimensional ball. Moreover, if equality holds in (3.6) then 2 is a ball. In other
words, balls uniquely minimize the first eigenvalue ASI’ p among sets with given N-dimensional
Lebesgue measure.

Proof. Without loss of generality, we can suppose that |£2| = |B|. Then it is sufficient to use the
following Polya—Szegd principle

[u]l;ys.p(RN) Z [u#]l;ys,p(RN)’ (37)

which is proved in [2, Theorem 9.2], see also [ 15, Theogm A.1].In (3.7) u* stands for the symmetric
decreasing rearrangement of the function u, i.e. u* € Wf)’p (B) is the radially symmetric decreasing
function such that

|{x s u(x) > t}| = |{x uf(x) >, t>0.

By using (3.7), we immediately get (3.6). For the cases of equality, we observe that if 4] ,(£2) =
A1,,(B) and |§2| = |B|, then equality must hold in (3.7). Again by [15, Theorem A.1], we obtain

that any first eigenfunction of §2 has to coincide with (a translate of) a radially symmetric decreasing
function. This implies that §2 has to be a ball. O

4. The s-perimeter of a set

DEFINITION 4.1 For every Borel set E, we define its s-perimeter as

l1g(x) = 1g(y)]
Py(E) = [1E]lwsa@ny = /RN /RN ﬁdx dy,

where it is understood that Pg(E) = 400 if the above integral is not finite.
Observe that the s-perimeter has the following scaling property
Ps(t E) =tN7S Py(E), >0,

and we have the isoperimetric inequality

Ps(E) = Ps(B) (%) ; “.1)

where B is any N-dimensional ball. Moreover, equality holds in (4.1) if and only if E is a ball,
see [15, 19]. It is straightforward to see from the definition that

1
P(E):Z// ———dxdy,
* E JEe [x — y|N TS

where we set E€ = RV \ E. In what follows we denote by BV (R") the space
BVRY) = {ue L'®Y) : |[Vu|R") < +o0},

where |Vu|(RY) is the total variation of the distributional gradient of u. The following interpolation
inequality will be useful.
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PROPOSITION 4.2 Let s € (0, 1). For every u € BV(RY) we have
21 SN w WpN B
T TPyl LA I®™)] Tty 42)
Proof. Letu € BV(RY), at first we will prove that
1 2
/ / M) =4O gy < Naow (—— / \Vuldx + = / ldx).  43)
'V Jev |x— y|N+s 1—s Jp~ s Jrn
We recall that there exists a sequence {1, }neny C C®(RY) N BV(RY) such that
nan;o |un —ullprgvy =0 and nll)n;o . |Vuy|dx = |Vu|(R™),

see for example [5]. Then in order to prove (4.3) it will be sufficient to prove it for u,. We have

|un (x) —up (Y)| / / |un(x + h) —Un (x)|
= h
Lo [ avar = [ [ v
[un(x + h) — up(x)]
= dxdh
/{h:hzl} /RN || N+s

|un (x 4+ ) — up (x)]
+/ / dx dh
(h: k<1 JrN |h|N+s

1
[un(x + h) —up(x)] < (/ |V, (x +th)|dt) ||, heRVN.
0

then we observe that we have

By using this and the invariance of L” norms by translations, we get

/ |Vu,(x +th)|dt

/{h:hq}/ﬂw [un(x T;ll}lzx)ersun(X)' dx dh < /h |h|<1}/]RN e dx dh
/N |Vuy| dx
N /h Ihl<1} thlN“ o dh
N oy

= / |Vuy| dx.
1—ys RN

For the other integral, by using the triangle inequality and again the invariance of L? norms by
translations, we get

|un(x+h)_un(x)| / 1 (/ )
dxdh < —_— Uy(x + h)|dx | dh
/{h:lhl;l} /]RN || N+s thtnz1y [RINTS \Jrw | |

N / dh / il d
(h:lh=1y [V ES v

N
=2 “’N/ || dx.
S RN
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In conclusion we obtained (4.3) for the sequence {u, }nen and thus for u, by passing to the limit.

In order to arrive at (4.2), it is now sufficient to use a standard homogeneity argument. Let
u € BV(RV) \ {0} and set u; (x) = u(x/A), where A > 0. Then by (4.3) we get

AN-1 2N
/ / ) = / |W|dx+_/ juldx ) .
gN Jry  |x — y|NFS I=s Jav SRy

A N
/ / ju(x) — M(y)ldxdy—ZNwN—/ | dx < wN/ Vuldx.  (44)
&N Jrn |x_y|N+s S JrN 1—s5 Jrwn

The left-hand side is maximal for

1
= (1 —=9) s [ulysi@ny )’
2N(1)N ||u||Ll(RN)

that is

By replacing this value in (4.4), we obtain the desired result. O
REMARK 4.3 We point out that in dimension N = 1 inequality (4.2) is sharp for every s € (0, 1),
since equality is attained for characteristic functions of bounded intervals. Let u = 1; be the
characteristic function of the interval / having length £, a direct computation gives

401

[”]WS~1(RN) = Ps(I) = m,

while
w1 =2, Jullpig =£ IR =2,
then it is easily seen that equality holds in (4.2).
We now highlight a couple of consequences of inequality (4.2). The first one gives a relation

between the s-perimeter and the standard distributional perimeter. For the proof it is sufficient to
take u = 1g in (4.2). A related estimate for N = 2 can be found in [28, Lemma 2.2].
COROLLARY 4.4 Lets € (0, 1), for every finite perimeter set £ C RY we have
21 No
Py(E) < =% P(E)' |E|'™".
(I—s9)s

REMARK 4.5 The previous result implies that if {E;} C RY is such that P(E;) < C and | Ex|
converges to 0 as k goes to 0o, then Pg(Ey) as well converges to 0. For example, by taking the
annular set C, = {x : 1—1/k < |x| < 1}, we get that Ps(Cy) is going to 0 as k goes to oo.
Then in general for the s-perimeter it is not true that filling a hole decreases the perimeter, like in
the standard case.

By simply using Poincaré inequality in (4.2), we can also infer the following.

COROLLARY 4.6 Let s € (0, 1). For every u € BV(RY) with compact support there holds

21—SN
/ / [u(x) —u(y)| dxdy < 7G)Ndiam(sptu)l_s |Vu|(RY),
rv oy x— NS (I=s)s

where spt(u) denotes the support of u.
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In what follows, we will need the following Coarea Formula for non-local integrals. This has
been first proved by Visintin in [33]. The proof is omitted, we just recall that it is based on Fubini’s
Theorem and on the so-called Layer Cake Representation for functions.

LEMMA 4.7 Letu € L'(RY), then there holds the following Coarea-type formula

o0
[ulws.1@ny =/ Ps({x : |Ju(x)| > t}) dt. 4.5)
0
In particular, if [u]ys.1gny < +oo then for almost every ¢ € R the set {x : [u(x)| > 7} has finite
s-perimeter.

By Proposition 4.2 and Lemma 4.7, we can infer the following limiting behaviour for the (s, 1)
Gagliardo semi-norm, whose proof is essentially the same as [27, Theorem 8]. We give it for ease
of completeness.

PROPOSITION 4.8 Letu € BV(RY) have compact support. Then there holds
li/n}(l — ) [Ulysa@yy = 20n-1 | Vu|RY). (4.6)
s

Proof. First of all, we remark that [u]ys.1(gyvy < +oo for every s < 1, thanks to Proposition 4.2.
By the coarea formula (4.5)

+o00
(I—S) [M]WS.I(RN) :(1—S)/O Ps(gt)dl,

where we set §2; := {|u| > }. Since by definition Ps(£2;) = [lg,]ws.1(gn), by Corollary 4.6 we
have that’
(1—5) Ps(£2:) < C P(£2;), t>0,

where P denotes the usual distributional perimeter. By using the usual coarea formula for BV
functions (see [5]), we get

+oo
/ P(£2:)dt = |Vu|RY) < 4o0.
0

On the other hand, by [27, Theorem 4] we have’
lim(1 —s) Ps(£2;) = 2wn—1 P($2;).
s/1

We point out that the constant wy—_; can be deduced from formula (4) in [27]. Therefore it is
possible to apply Lebesgue’s Dominated Convergence Theorem in order to obtain

+o00 +oo
lim(1 —s) [u]Wx,l(RN) = lim(1 — s)/ Ps(£2,)dt =2wn—1 / P($2,)dt
s /1 s/"1 0 0

=2wn_1 |Vu|RY),
thus concluding the proof. O

2 The constant C only depends on the dimension N and the diameter of sptu, for s close to 1.
3 The reader should pay attention to the fact that our definition of Pg($2) differs from that of [27] by a multiplicative
factor 2.
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REMARK 4.9 We point out that for the semi-norm [-]ys.1(gy With 2 C RN open bounded
Lipschitz set, we have a result analogous to that of Proposition 4.8 (see [11, Theorem 1]). The
case of a general open set £2 is slightly more complicated and can be found in [24, Theorem 1.9].

We also recall the sharp Sobolev inequality in W, ’I(RN ), which is nothing but a functional
version of the isoperimetric inequality (4.1).

THEOREM 4.10 (Sobolev inequality in W’ 1(IRN)) Let N = 2ands € (0, 1), then

[u(x) —u(y)|
N JrN  |x — |N+S dx dy s=N
min RY JR ‘ = Py(B) |B|' ™, .7

N—s

ueWs ' RV )\{0} N N
|u|¥=s dx
RN

where B is any N -dimensional ball. The minimum in (4.7) is attained by any characteristic function
of an N -dimensional ball.

Proof. We at first observe that it is sufficient to prove the result for positive functions. Let u €
Wy o1 (R™) be positive and let us indicate with y its distribution function

p(r) = [{x = u(x) > rj].

By using the Cavalieri principle we get the following estimate (see [29, Section 1.3.3])

N

NE e
(/ |u|zvN—sdx) s/ () '~ dr.
RN 0

Using the latter, (4.5) and the isoperimetric inequality (4.1), we get the estimate

|u(x) — u(y)| o0
/I\QN AN |x_y|N+s dXdy >/0 Ps({u>l})dt

N/\TS - [E9) N—s
(/ |u|zv’\is) / p(t) N di
RN 0

forallu € W, ’I(RN ). On the other hand, by taking ¥ = 1p with B any N-dimensional ball, we
get equality in the previous. O

= Py

5. The non-local Cheeger constant

DEFINITION 5.1 Let s € (0, 1). For every open and bounded set 2 C RY we define its s-Cheeger

constant by
Py (E)

|E|
A set E C §2 achieving the infimum in the previous problem is said to be an s-Cheeger set of £2.
Also, we say that §2 is s—calibrable if it is an s-Cheeger set of itself, i.e. if

Ps(£2)
1221

hs(82) = (5.1)

hs(§2) =
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REMARK 5.2 As in the local case, any ball B C R is s—calibrable. This is a direct consequence
of the isoperimetric inequality (4.1), which gives for every E C B

Py(E) _ Py(B) (@)fv _ P(B)
gl = 181 \IEl) = 1Bl

PROPOSITION 5.3 Let s € (0,1), every 2 C RY open and bounded admits an s-Cheeger set.
Moreover, if Eg is an s-Cheeger set of £2, then 0E N 92 # @.

Proof. First of all, we observe that hs(£2) < +00, i.e. there exists at least an admissible set such
that the ratio defining /4(£2) is finite. Indeed, since £2 is open, it contains a ball B, and for this
Ps(B;) < +00. We then take a minimizing sequence { £, },en C §2 and we can obviously suppose
that
Ps(Ep)
|Enl

As | E,| < |£2], the previous immediately gives a uniform bound on the s-perimeter of the sequence
{E, }nen. Moreover, by combining the previous and (4.1), we get

< hg(£2)+1, foreveryn € N.

|Ea | (;ff;) < (h(2) + 1) |Enl,

which in turn implies
|En| = cn,2,s > 0. 5.2)

Then we get
Mg, lwsi@wnyy + [1E, Ly < C,  foreveryn € N.

By appealing to Theorem 2.7, this in turn implies that the sequence {1£, }»en is strongly converging
(up to a sub-sequence, not relabeled) in L! to a function @, which has the form ¢ = 1g, for some
measurable set E¢ C §2. Thanks to (5.2), we can also assure that | E¢| > 0. By using the latter and
the lower semi-continuity of the Gagliardo semi-norms, we get

1 S, 1 n s,
NEg]ws1@n)y < liminf[ En]wsa ®N)

= h,(£2).
Ex] g 2

This concludes the proof of the existence.
Let us now prove the second statement. Assume by contradiction that Eq; € £2. Then, for ¢ > 1
sufficiently close to 1, the scaled set ¢ E, is still contained in §2. We have

Ps(t Eq) tN 7 Py(Eg) B
= =1 Shs .Q <hs Q )
|t Eq| tN|Eg| 2 2)

contradicting the minimality of E. Hence we obtain the claim. O

REMARK 5.4 We have seen that an s-Cheeger E¢ of §2 has to touch the boundary 0£2. Actually,
the previous proof shows that E o has the following slightly stronger property: ¢ E ¢ is not contained
in £2 forany ¢ > 1.

It is not difficult to see that balls (uniquely) minimize the s-Cheeger constant among sets having
given N -dimensional measure. This can be seen as a limit case of the Faber-Krahn inequality (3.6).
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PROPOSITION 5.5 Let s € (0, 1), for every open and bounded set 2 C RY we have
121 hy(2) = |BI¥ hy(B), (5.3)

where B is any N -dimensional ball. Equality in (5.3) holds if and only if 2 itself is a ball.

Proof. Let B be a ball such that |£2| = |B| and let E; be an s-Cheeger set for £2. By using (4.1)
we have

Py(E Py(B) [ |B| \¥ _ Py(B
hs(2) = DoE2) - S()(' ') > BB m),
|Eg| Bl \|Egq| | B
where we used that | Eg| < |$2| = | B|. The characterization of equality cases directly follows from
the equality cases in (4.1). o

Thanks to Corollary 4.4, the non-local quantity /(§2) can be estimated in terms of the usual
(local) Cheeger constant i1 (£2).

PROPOSITION 5.6 Lets € (0,1) and 2 C RY be an open bounded set. Then we have

1—s
he(2) < 2N ON 42y,
(1—s)s

Proof. Let E C £2 be a Cheeger set, then by using Corollary 4.4 we get

P(E)\'_ (1=5)s Pi(E)
i) Z e e

h(2)* = (

which gives the conclusion. O

We now provide an equivalent definition of /45(£2). Let us define

Ma(@2) = _inf {dwsa@yy @ lullpi@) =1, u=04.
uEWf)’ (£2)

This variational problem in general has a “relaxed” solution, i.e. this infimum is attained in the larger
space )/V(S)’1 (£2), at least for £2 smooth enough. This is the content of the next result.

LEMMA 5.7 Lets € (0, 1) and £2 C R" be an open and bounded Lipschitz set. Then

AMa@) = min Aulysagyy @ fullpig) =1 u =0}, (5.4)
uewy ' (2)

and the minimum on the right is attained.

Proof. Of course, since W' (22) € W' (82), we have

inf {ulwsa@ny @ lulpig) =1, u =0} < Af(£2), (5.5)
uewy ' (2)

then we just have to show the reverse inequality. At first, we observe that the infimum in the left-
hand side of (5.5) is attained by some function ug € Wg’l (£2), again thanks to Theorem 2.7. Then
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we observe that since §2 is Lipschitz, by Lemma 2.3 there exists a sequence {¢n}nen C Cg°(82)
such that

Him lgn —uollLiy =0 and i [n]ysr@yy = [Uolws1@n)-

As C§°(£2) C Wf,’l(.Q), by appealing to the definition of A7 | (£2) we get

Ai,l(g)s lim [@n]W&l(RN)

= [uolws1 @n)-
n=>00 ||l 1(2) &5

By using the minimality of 1 and (5.5), we get (5.4). O

Then the main result of this section is the following characterization of h5(2).

THEOREM 5.8 Let s € (0,1) and let 2 C RY be an open and bounded set. For every u €
Wil(£2) \ {0}, we have
u s,
M > hy(82). (5.6)
lulli (@)

Moreover, if equality holds in (5.6), then u has the following property: almost every level set of u
with positive N -dimensional Lebesgue measure is an s-Cheeger set of £2.
Finally, if §2 has Lipschitz boundary then

23,(2) = hy(92). (5.7)

Proof. The proof of the first part is based on the Coarea Formula of Lemma 4.7. Without loss of
generality, we can suppose that u is positive. Then by (4.5), Cavalieri formula and the definition of
hs(£2) we get

[M]WS-I(RN) _ /0 Ps({x : M(x) > t})dl‘
el can / [{x : u(x) > 13| dt
0

which proves (5.6). The property of the level sets of an optimal function u is a consequence of the
previous estimate, since if equality holds then we must have

= hs(82),

Ps({x : u(x) > t}) = he(82) |{x : u(x) > 1},

for almost every level 7.
In order to prove (5.7), we at first observe that the previous estimate easily implies

M1(2) = hy(Q).

On the other hand, by Lemma 5.7 we have that the variational problem giving A{ ; (£2) is the same
as h5(£2), but in the latter we restricted the competitors to a narrower class. This implies

251(2) < hy(92),

so that equality (5.7) holds. O
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6. Regularity of s-Cheeger sets

Following [6], given two sets A, B C RN and 0 < s < 1, we introduce the following notation

1
L(A,B) = —— dxdy.
(4. B) /A/B|x—y|N+s Y

Moreover, if 2 C RV is an open set, we define
Jo(E)=L(ENKX,E°)+ L(E\R2,E°N ).

Observe that if E C §2, then
1
Jo(E)=L(E,E°) = > Ps(E).

Using this perimeter-type functional we introduce the notion of non-local minimal surfaces and
almost non-local minimal surfaces, in the spirit of [6, 7].

DEFINITION 6.1 We say that E is a non-local minimal surface in §2 if for any F such that F'\ 2 =
E \ £2 there holds
Jo(E) < Jo(F).

DEFINITION 6.2 Let § > 0 and w : (0,8) — R™ be a modulus of continuity. Then we say that
E Cc RN is (Jg,w,8)—minimal in $2 if for any xo € JE and any set F such that E \ B,(xq) =
F \ B;(x¢) and r < min(§, dist(xg, 0§2)) we have

Jo(E) < Jo(F) + () r¥ ™.
We will also simply say that E is almost minimal in §2.

We need to recall the following regularity result.

THEOREM 6.3 Assume that E C RY is (Jg,C r®, 1)—minimal in B; for some o € (0, s] and
some C > 0. Then:
(1) there exists §o = So(N, s, @, C) > 0 such that if

0E N By C{x : |{x,e)| <80}, forsome unit vector e,

then 9E is C' in By 2;
(2) outside a singular set having at most Hausdorff dimension N — 2, 0F is C 1 regular;
(3) in the case N = 2, the singular set is empty, i.e., dE is C! regular everywhere.

Proof. The first two parts are proved in [7]. For the last part we observe that in [31, Theorem 1] it
is proved that actually there are no singular cones for N = 2. By using [7, Theorem 7.4, part 3] this
implies that non-local almost minimal surfaces are C! for N = 2 as well. O

By appealing to the previous result, we can prove our first interior regularity result for an s-
Cheeger set.

PROPOSITION 6.4 (Interior regularity) Let s € (0,1) and £2 C R" be an open and bounded set.
Let E be an s-Cheeger set of £2. Then dE N £2 is C!, up to a singular set of Hausdorff dimension
atmost N —2.Inthecase N = 2,9E N 2 is CL.
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Proof. We prove at first that E is (Je, C r®, 1)—minimal in £2, with C = C(N, £2) > 0. Since E
is an s-Cheeger set, it is a minimizer of

1
2 — — —dxdy — hy(2)|E|, 6.1
/EfE v dxdy — h(@)IE] ©.1)

among all subsets of §2. Hence, for any xog € dE N 2, r < dist(xg, d§2) and F such that F \
B, (x0) = E \ Br(x0), we have F C £2 and thus

1
2// 1 ay
£ JEe |x — y|NFs

1
Fc¢ -

1
[
FJre |x —y|NFs

Now, we observe that £ \ 2 = 0 = F \ 2, thus the previous estimate is the same as
Jo(E) < Jo(F)+CrV, (6.2)

which proves that E is (Jg, C r®, 1)—minimal in £2.
We are now going to use Theorem 6.3. Let xo € dE N £2, then there exists a ball B, (xp) C 2.
By defining
~ E- - -
E = o and £2 = o0 ,
ro ro

and using the scaling properties of L, we get

J.rz(E)

—S

J5(E) =

By using this and (6.2) we get
~ ~ C
JG(E) < J5(F) + rN
0

forevery y € 8E every F _such that E \ B:(y) = F \ B;(y) and every r such that r < dist(y, 8!2)
This gives that E is (J5» Crs , 1)—minimal in 2, where C = C ”0 . Observe that B; C £ by
construction, thus E has the same almost minimality property in B; and Theorem 6.3 applies. By
scaling and translating back, we get the desired result for E. O

By the same idea, we can obtain regularity of an s-Cheeger set at points touching 0£2.

PROPOSITION 6.5 (Boundary regularity) Let xo € dE N 052 and assume that 952 is locally of class
C1* around xo. Then there exists 7o > 0 such that 9E N By, (xo) is the graph of a C! function.

Proof. Let ro > 0 and set for simplicity B = By,(xo). Up to translating and scaling the sets as in
the proof Proposition 6.4, we can suppose for simplicity that xo = 0 and ro = 1. As before, we
start by proving that E is (Jp, C r®, 1)—minimal in B, where we set

o = min{a, 5}.



440 L. BRASCO, E. LINDGREN AND E. PARINI

We take again F to be a set coinciding with E outside B,(y) for y € dE N B and r < dist(y, dB).
Then F N §2 is admissible for the minimization of (6.1), thus as before

1 1
7dxdy§/ / s dxdy + hs(2) (|E[ - |F N £2])
/;~/E" |X - y|N+s FNR J(FNR)¢ |_x — y|N+S s | | | |

1
<  _dxdy+CV,
/Frm /(Fm?)c |x — p|N+s

where in the second inequality we used that £ and F only differ in B, (y). For the same reason we
have F\ B = E\ Band F°¢\ B = E€\ B, so that

Jp(E) = L(ENB,E)+ L(E\ B,E° N B)

=L(ENB,E°)+L(E\B,E°)+ L(E\ B,E°NB)— L(E \ B,E)

= L(E,E)—L(E\ B,E°\ B)

SLFNR,(FNR))—L(F\B,FS\B)+Cr"

= Jg(F) + [L(F N2, (FNR))— L(FNB,F)—L(F\ B, Fc)]

+crV

which gives

JB(E) < Jp(F) + [L(F N 2,(FNY)°)— L(F,F)]+Cr". (6.3)
We have to estimate the second term in the right-hand side of (6.3). For this, we note that

FCU(FNR°) =F UQR=(FNR),

then for every positive measurable function g we have

/ / g(x. y) dxdy
Fne J(Fne)e
- / / g(r.y) dxdy + / / g(x.y) dxdy
FNR JFc¢ FNR JFNS¢
=// g(x,y)dxdy—/ /g(x,y)dxdw/ / g(x.y) dxdy
F JFc¢ FNne JFC FNR JFN¢
S// g(x,y)dxder// g(x,y)dxdy,
FJFe 2 JB,()nge

thanks to the fact that F' N £2¢ C B,(y) N £2¢, since F C B, (y) U £2 by construction. Thus we can
infer
/ / L dxdy < / / L dxd
T NS 4YaY < TS 4xay
Fne J(rnaye |x — y|N+s FJre [x — y|NFs

1
+// —————dxdy
2 JB.o)nge |x — y|N+s

1
< —— dxdy + Cr*rN=s,
ooy
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where the second inequality follows from [7, Example 2] since we have assumed that £2 has a C 1%
boundary. By inserting the previous estimate in (6.3), we finally get

JB(E) < Jp(F)+CrV +CrorV=s,
which proves that E is (Jp, C r*, 1)—minimal in B, possibly with a different constant C.

The C! regularity now follows from part 3 in [7, Theorem 7.4]. Indeed, if we perform a blow-
up of E, we will as usual obtain a non-local minimal cone K. Moreover, the complement K€ is
minimal as well and K€ contains a tangential ball, due to the fact that £2 is assumed to be C La
which means that 0§2 becomes a half-space after a blow-up. By [6, Corollary 6.2] we get that 0K is
a C! surface, and since K is a cone, this means that K is a half-space. From [7, Theorem 7.4, part
3], we can now conclude that E is C1. O

Finally we prove that at any point of dE N §2 having a tangent ball from both sides, an s-Cheeger
set E has constant non-local mean curvature equal to —/(§2). At this aim, we first need a technical
result, whose proof closely follows that of [6, Theorem 5.1].

LEMMA 6.6 Let 2 C R be an open bounded set and £ C R a set satisfying
L(A,E) — L(A,(E U 4)°) < Gy |4], (6.4)

for every A C £2 \ E and for some constant Cy. Let us suppose that there exists a ball B, (y¢) C E
which is tangent at xo € dE N §2. Then we have

1 —1ge
lim sup/ Lj\;—(x) dx < Cy. (6.5)
§—0+ JRV\Bs(xo) [|* —Xo|VTFS

Proof. We briefly recall the construction of the proof in [6, Theorem 5.1] for the reader’s
convenience. Let us set ey = (0, ...,0, 1), without loss of generality we can assume that xo = 0
and that B, (yo) = Ba2(—2ey), since we can always reduce to this case by rescaling and translating.
Take 0 < § < 1 such that Bs(0) C £2 and 0 < & < § such that* By;.(—en) \ E C Bs(0). We
denote by 7 the radial reflection in the sphere dB.(—en) (see Figure 1), then we define the sets

A” = Biye(—en)\E, AT =TA)\E and A=ATUA",
see Figure 2. Observe that by construction A C Bg(0) C £2. Finally, we define
F :=T(Bs(0) N (E U A)) C E N Bs(0).
Since by construction A C §2 \ E, by (6.4) we get

L(A,E) — L(A, (E U A)) < Co |A|. (6.6)

4 This is possible by taking for example & < £¢(8), where

/ 52 82
g0(8) := 1+7_1_T'
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FIG. 1. The vector 7 (x) + e is parallel to x + e and 7 (x) and x have the same distance from the boundary of the ball.

7 \

/" Bs(0)

FIG.2. The construction of Lemma 6.6. In this particular case we have T7(A7™) N E = @, so that we simply have AT =
T(A7).

We remark that we have the following set relations

E = (E\ Bs(0)) U[(E N Bs(0)) \ FIU[(E N Bs(0)) N F]
= (E\ Bs(0)) U[(E N Bs(0)) \ FIJU F,
where we used that F C E N Bs(0). Also, since A C Bs(0) there holds
(EUA)* = E°NA° =[(E°N A°) N Bs(0)] U [(E€ N A°) \ Bs(0)]
=T(F)U[E®\ Bs(0)].
By putting these two relations together we can realize that
L(A,E) — L(A, (E U A)°)
= [L(A. E \ B5(0)) — L(A, E°\ B5(0))] = [L(A, T(F)) — L(A, F)]
n L(A, (E N Bs(0)) \ F)
> [L(A, E \ B5(0)) — L(A, E°\ B5(0))] — [L(A, T(F)) — L(A, F)] =: I — L.
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Due to (6.6) we can thus conclude that
I — I, < CylA|. 6.7)
In the proof of [6, Theorem 5.1] it is proved that (see Formula (5.1))

lg(y) — 1ge(y)

1 _1_
e 4y sCetd 4

I — | A

RN\ B5(0)
and’ (see formula (5.3) and Lemma 5.2 in [6])

I <CS S |A|+Ce"|AT| < CIA| (875 + &™),
for some sequence ¢ — 0 and for some 7 € (0, 1 — ). Plugging the two above estimates into (6.7)

and dividing by |A| yields

1E(y) — 1ge
/ 1eQ) — 1ecy) — W) gy < ot Ceb 51 4 C8 1 Cen.
RN \B (0) |y s

We then pass to the limit as € goes to 0 and then to the limit as § goes to 0, this implies
1 —1ge
limsup/ w dy < Co,
§—>0+ JRN\Bs(0) |yl
which concludes the proof. |
THEOREM 6.7 Let E be an s-Cheeger set of §2 such that £ admits a tangent ball from both sides
at xo € 0E N £2. Then

15 (x) — 1 e
im Lﬁf’c) dx = —hy(2).
§—0F JRN\Bs(x0) |x — xo|N+s

Proof. We first observe that since E is a minimizer of (6.1), we get that E satisfies (6.4) with
Co = —hs(£2). For this, it sufficient to test the minimality of £ against a set of the form A U E, for
every A C §2 \ E. Therefore (6.5) implies

1 —1ge
lim sup/ LII\Z_(X) dx < —hg(82).
50+ JRN\Bs(xg) |X —Xo|VT*
On the other hand, we also get

L(A,E\ A) — L(A,E®) = —hs(£2) | A, (6.8)

where this time we tested the minimality of E against £ \ A, with A being any subset of E. It is
immediate to see that (6.8) means that £ as well satisfies (6.4), this time with Cy = h;(£2) and by
hypothesis E€ contains a tangent ball at xo. Then again we can apply Lemma 6.6 and thus

lge(x) — 1(geye (x
—hs(£2) < —limsup/ £e(x) (54_) ( )dx
§—o0+ RN\BS(X()) |X - X()| $
1 —1ge
— liminf / 1e(x) — lpc(x) z +(x) dx,
§—0% JRN\Bs(x0) |x — x0| s

which gives the desired result. O
3> We should note that in order to prove the estimate on I the authors strongly use the positive density property for non-

local minimal surfaces (see [0, Section 4]), which also holds true for non-local almost minimal boundaries, see [7, Proposition
4.1].
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7. The first eigenvalues and the Cheeger constant

In this section we show that for a Lipschitz set §2, the non-local Cheeger constant /4 (£2) is the limit
of the first eigenvalues A{, p(.Q), as in the case of the p—Laplacian. The main result is the following.

THEOREM 7.1 (Convergence of the minima) Let £2 C R¥ be an open and bounded Lipschitz set.
For every 0 < s < 1 we have
lim A (22) = hs(2). (7.1)
p—>1t P

Proof. We are going to prove the two inequalities

llrisllipkijp(ﬂ) < hs(2) and Ergir}rfkip(!?) = hs(£2).

Limsup inequality. We have for any ¢ € C5°(£2)

Al p(82) < ([w]W“’”(RN) )p
e lgllzrc2)

Thus,
([ﬂf’]wsw(w))p _ lelws1@m) (7.2)

limsup A7 ,(£2) < limsup
’ lellzr @)

p—1+ p—1+ ||§0||L1(9) .

Thanks to equation (5.7) and by density of C3°(§2) in Wf)’l(Q), for every § > 0 we can take
@s € C5°(82) so that
he(2) 45 > [%]W&I(RN)‘
leslizte)
Then by appealing to (7.2) we get

limsup A7 ,(£2) < hs(£2) + 6.
p—>1+

Since § is arbitrary, this proves the limsup inequality.

Liminf inequality. Let {p;};en C (1, +00) be a sequence converging to 1 and such that

lim A5 , (2) = liminf A (2
fm A p, (2) = liminf A5 ,($2).

and let up, € Wf,’pj (£2) achieve the minimum in (3.1). Thanks to Lemma 2.6 we have the
continuous embedding
WP (2) > WPN(@).

More precisely, for j large enough we can infer

1
[”pj]WS/Zl(RN) sC [”pj]WSJ’./' RN) = ¢ /\i,p_,- (£2)77 < C (1 + hs(£2)),

for a constant C > 0 which does not depends on p;. By Corollary 2.8, up to extracting a sub-

sequence, we can then suppose that the eigenfunctions {u; }jen are converging to a function u in

L49(£2) and almost everywhere, for an exponent 1 < g < 2N/(2N — s). In particular we have

Jim flhep, llrs = uller] < lp; = ullprs + Nim flullpr; = Jalpr| =0,

lim
j—oo
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where we used that p; < g for j sufficiently large. The previous implies that ||u||,1 = 1. From
Fatou’s Lemma we can then infer

1112 }I}rfkijp(ﬂ) = jli)n;o 2, () = jl_i)n;o p, 10750, @y = Dlwsi @y = he(R),

where we used (5.6) in the last inequality. O

THEOREM 7.2 (Convergence of the minimizers) Let £2 C R be an open and bounded Lipschitz
set and for every p > 1 let u, achieve the minimum (3.1). Then there exists a sequence {p;};en
converging to 1 such that {u,, }jen converges strongly in L4 (§2) for every ¢ < oo to a solution u;
of
A11(2) = mnll {[u]Ws,l(RN) Sl =1 u= 0} = hs(£2).
uews ' (2)

Moreover u; € L°°(§2) and we have

[=

LTI R
luillzeo(2y < P.(B) hs($2) s, (7.3)

where B is any N-dimensional ball.

Proof. Observe that we have
[Mp]gys.p(RN) = Aki,p(‘fz)v

then by Theorem 7.1

lim [up] = hy(£2).

D
o P @)

As in the proof of Theorem 7.1, by Lemma 2.6 {u,},>1 is equi-bounded in W(S)/z’l(.Q) for p
sufficiently small. Again thanks to Theorem 2.7 we can extract a sub-sequence {u; }jen converging

in L! to a function u; such that |Ju1||,1 = 1. Thus we obtain
. D
hs(£2) = jli)lgo[up_,-]wﬁs,p,« @vy = Mlwsa@yy = hs(£2),

thus 1 achieves 4] ; (§2) = hs(£2). Observe that the sequence {up, }en is equi-bounded in L>°(£2)
thanks to Proposition 3.3, then u; as well is in L°°(£§2) since

N
~ 2
[urllLee < liminf||up, [|Lee < lim Cy,p; s Ay, (£2)°77 < 400, (7.4)
J—>00 ‘ Jj—>00 - ]

By a simple interpolation argument we then get that {u,; };en actually converges to u; in every
L9(82), with 1 < g < oo.
In order to prove (7.3), we use (7.4) and keep into account Remark 3.4, which permits to infer

[z

lim sup GN, pj.s = limsup sup 5
j—oo j—oo uEWg’pj (RN)\{O} [u]WS,Pj (RN)

N
Npj N_/‘\jpj ?
( || =57 dx) ‘ Nos 2
RN _ [|B| v }
< .

Ps(B)
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In the last inequality we have used that the limsup of the best constant of the Sobolev inequality in
WOS P(RN) for p > 1 is certainly less than the best constant for the limit case® p = 1, the latter
being given by (4.7). Combining this and the convergence of A} 2 (£2) to hs(82) concludes the
proof. O

REMARK 7.3 Actually, estimate (7.3) holds true for every functionu € W(S)’I(Q) attaining ASI’I (£2).
Indeed, let 2, = {x € 2 : u(x) >t} and set M = esssup{t = 0 : |£2;| > 0}. By Theorem 5.8,
we know that £2; is a s-Cheeger set of §2, for almost every ¢ € [0, M). We then get

(12T o x (h@N\T O (@) (1B
= (iar) =e (7)< (5m) (an)

where we used the isoperimetric inequality (4.1). Thus the previous gives

Bl 17
N
1 < |82 |: P.(B) :| hs(£2)s, forae.t €[0,M).

By integrating the previous in ¢t € [0, M) and using Cavalieri principle, we get (7.3) for u.

Observe that equality holds in (7.3) when §£2 = B is a ball and u = 1. Thus the L°° estimate
(3.3) becomes sharp in the limit as p goes to 1. In the local case, we recall that an L estimate for
functions attaining the Cheeger constant /11 (§2) can be found in [8, Theorem 4].

We have already seen in Proposition 5.6 that &4(£2) can be estimated in terms of /1(£2). By
using the recent I'—convergence result by Ambrosio, De Philippis and Martinazzi in [4], one can
show that h5(§2) converges to h1(£2), as s goes to 1.

PROPOSITION 7.4 Let 2 C RY be an open and bounded set. Then we have

lim (1= 5) hs (2) = 205-1 1 (2). (1.5)

Proof. Forevery ¢ > 0,let u, € Cg°(§2) be such that

Vue|(RY
hl(g) +e= w
el ()
By using (4.6) we obtain
Vu|(RY T
2oon o (1(2) + 8) = 20m 1 LB - felws i@y lim (1 — 5) hs (£2),
luelliey s/ luellLr ) s/

where we used again (5.6) to get the last estimate. By the arbitrariness of ¢, we get

2wn-1h1(£2) = limsup(1 — 5) hs(£2).
s/'1

On the other hand, let {s;},en C (0, 1) be a sequence increasingly converging to 1 such that

Jim (1= 5;) h, (2) = limnf(1 = 5) hy(2).
Jj—o0o K]

6 This is a consequence of [15, Corollary 4.2] with 7 = p* and equation (4.2) there.
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For every j € Nlet us take E; C §2 such that

PsA,-(Ej)
|Ejl

(1—5))he, (2) = (1—s)) (7.6)
so that
(1—s;) Ps; (Ej) < C.

Up to a sub-sequence (not relabeled), the sequence { E; } ;e is then converging in L! to a Borel set
Eo C $£2, thanks to [4, Theorem 1]. This implies in particular that | E;| converges to | Ew|, but we
have to exclude that | Es| = 0. At this aim we observe that by (7.6), proceeding as in the proof of
Proposition 5.3, we get

1 N\ 5
Sji— Sy
|E,-|>(CN—Q(1—sJ-)Ps,.(B)|B| v ) ,

s

where B is any N-dimensional ball. By passing to the limit as j goes to oo in the previous and
using (4.6)

2 B _ N
Bl = (22X p(B)|B|'F ) >0,
Cn.o

as desired. We can now use the I"—liminf inequality of [4, Theorem 2] to infer’

Py (Ey) _ P(Eco)

= 2wN-1 = 2wn-1 h1(£2).
|Es; | | Ecol

liminf(1 — s) h5($2) = liminf(1 — s5)
s—1 j—oo
This concludes the proof. O

8. A non-local Max Flow Min Cut Theorem

It is well-known (see [21]) that for the Cheeger constant h;, we have the following dual
characterization in terms of vector fields with prescribed divergence

1 .
= min
h1(82)  veLo(QRN)

{”V”Loo(g) T —divlV = 1},
where the divergence constraint has to be attained in distributional sense, i.e.

/ (Vo,V)dx = / pdx, forevery ¢ € C5°(£2).
Q Q
The previous in turn can be rewritten as
h(2) =sup{h eR : 3V e L®(2;RY) suchthat |[V|gee <1 and —divV =h},

and the latter is usually referred to as a continuous version of the Min Cut Max Flow Theorem
(see [21] for a detailed discussion). In this section we show that similar characterizations hold for
hs(§2) as well.

7 Again, our definition of Pg(§2) differs by a multiplicative factor 2 from that in [4].
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Let 2 C RY be as always an open and bounded set. Let p € [1,00) and s € (0, 1), we set
q=p/(p—1ifp>1lorqg=o0is p=1and

W=S4(2) = {F : Wy?(2) - R : F linear and continuous} .
We also define the linear and continuous operator Ry, , : Wf)’p (2) = LP(RY x RY) by

u(x) —u(y)

Ny forevery u € W(S)’p(ﬂ).

Rs,p(”)(xv y) =
lx — yl

LEMMA 8.1 The operator R}, : L4(RY x RV) — W=54(£2) defined by
(RS, (@), u) / / o(x, u(x) M(y) dxdy, foreveryu e WP (), (8.1
Nots
lx —yl7
is linear and continuous. Moreover, R;"’ » is the adjoint of Ry .

Proof. We start by observing that for every ¢ € LI(RY x RV), RS ,(¢) defines a distribution on
2,i.e. R] ,(p) € D'(£2). Then by Holder inequality, we get

(RS (@) 10)] < Nl Lm0 g, 8.2)
By density this implies that R{ ,(¢) can be (uniquely) extended to an element of WS4 (£2) and
IRy (@) 57—y < 10l xamy.
Then R;“, p 1s well-defined and is of course a linear operator. The previous estimate implies that it is

continuous as well.
To prove the second statement, by the very definition of R{ , we get®

(R:,p((p)’ ”)(Wﬂ,q(g),'ﬁg"(g)) = (@, Rs,p(U)) (La®N x&N),LP ®N xRN ))-

This concludes the proof. O

REMARK 8.2 The operator Ry , has to be thought of as a sort of non-local divergence. Observe that
by performing a discrete “integration by parts”, Ry (@) can be formally written as

* X, - , X
R}, (@)(x) =/ PN 7000 4 RN, (8.3)
RN |x _ y|7+s

so that

(R} (@), u) = /9 (/RN el y) —oly.¥) dy) u(x)dx, ueWyP().

N
|x —y| 7+

8 Given a topological vector space X and its dual space X *, we denote by (-, -, )(x*.x) the relevant duality pairing.
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Indeed, by using this formula

|10 B (o)) dx

/ / u(x) ———— vlx y) dydx / / u(x) @()&N) a’ydx,
RV JRV |x—y| RV JRV lx—y|7*

and exchanging the role of x and y in the second integral, we obtain that this is formally equivalent
to (8.1).

We record the following result for completeness.

PROPOSITION 8.3 Let 1 < p < coands € (0, 1). Given an open and bounded set §2 C R¥, for
every f € W54(£2) we have

u(x) —u(y)|”
_max Nt p dxdy
uewg’”(m RV Jrv |x =y
= min {—/ / lp|?dxdy : Ry ,(p) = finf2;, (84)
peLd®RN xBN) ¢ Jryv JrN ;

where as before ¢ = p/(p — 1) and the constraint R »(®) = [ has to be attained in the sense

u(X) M(y) o0
(fiu) = / / o(x, x_y| N, dxdy, foreveryu € C5°(82).

Proof. Observe that the maximization problem in the left-hand side of (8.4) can be written in the
form

max(x*, x) — G(A(x)), x* e X*,

xeX

with X reflexive Banach space having dual X*, G : ¥ — R a lower semi-continuous convex
functional and A : X — Y a linear continuous operator. Specifically, we have

X =WiP(2), X*=W™9R), A=Rs, Y =LPRYxRY),
and
G() = ||$||L,,(RN ey E€LP®RY xRY).
Then general duality results of Convex Analysis (see [ 14, Proposition 5, page 89]) guarantees that
Iglea;(x*sx) —G(A(x)) = min{G"(§¥) : A™(E") = x7},
where A* : Y* — X* is the adjoint operator of A. In our case, we have Y* = L4(RY x RV) and
of course A* coincides with the operator defined by (8.1), thanks to Lemma 8.1. o

By a simple homogeneity argument, the concave maximization problem in (8.4) is equivalent to

[(fou)]”

max s

ueW“’(m\{o}/ / [u(x) —u(y)? dx dy
RN

Jx—y[VEe
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more precisely we have

_ p
max {fu ——/ / ul) z(f)l dxdy}
ueWs () RN Jry [x — y[VFeP

(P - 1) max |(.f,u)|?
p ueWs "(9)\{0}/ / |”(x) —u(y)|? dx dy
RN

|X _ |N+sp
- 1.
I oy

by recalling that ¢ = p/(p — 1). As a straightforward consequence, we have the following.
COROLLARY 8.4 Letl < g < oo and s € (0, 1), then for every f € W‘s’q(ﬂ)

1A N5 =s.a2) = weLqI(fléiAl}xRN) {l@llLa@yxeny : RS ,(@) = fin 2},

REMARK 8.5 By looking at the formal expression (8.3) for R}
symmetric function ¢ € L4(RY x RV), i.e. if we have

s,ps We may notice that for a
p(x,y) = o(y,x),

then of course R;k, »(¢) = 0. Roughly speaking, this means that functions symmetric in the two
variables play in this context the same role as free divergence vector fields in the usual local case.

Then the main result of this section is the following alternative characterization of the s-Cheeger
constant of a set, which can be used to deduce lower bounds on /5(£2).

THEOREM 8.6 Let 2 C RY be an open and bounded Lipschitz set and s € (0, 1). Then we have

1 : . p* —
iy = Ml ayay R 0) =1},

Proof. We start by observing that

| / |u| dx

= sup

RN JRV |X—J’|N+S

= sup {lu / / o) - L;,(i})|dxdy$l
ueW%’l(Q) RN JRN |x_ | g

thanks to Lemma 5.7 and Theorem 5.8. Again, the latter is a problem of the form

sup (x*,x) —G(A(x)), x*e X",

xeX
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where G : Y — R is convex lower semi-continuous and A : X — Y is linear and continuous. In
this case we have

X =Ws'(Q), X*=W%R), A=R;;, Y=L'RYxRY),

and .
0, if 5l @y <y < 1,

g =

00, otherwise.

Then again by [14, Proposition 5] we have

sup (", x) = G(A(x) = min {G*(E") 1 A*(E") = x*},

xeX §*e
where
x*=1lg, GE*)= ”%‘*”LOO(RNX]RN), Y* = LOO(RN X RN),
and the adjoint operator is T* = R;"l. This concludes the proof. o

As a corollary of the previous result, we obtain the following characterization.

COROLLARY 8.7 Let £2 C R" be an open and bounded Lipschitz set and s € (0, 1). Then we have
hs(£2) = max {h eR:3pe L®RY xRY)s.t. [[pllo <1 and R} (p) =hin 9} (8.5)
Proof. We have

max {h : Jp € L°(RY xRY) s.t. |lplloo < 1and R}, (¢) = h}

= max {h :3p e L°®RY xRV s.t. > hand R} () = 1}

e lloo

DRy (p) =1in 2,

max { —_—
peL>®®@NxrN) ([|¢]loo
and the latter quantity coincides with

1
mil’l{”(p”Loo(RNxRN) . R:,1(¢) =1lin .Q}

By using Theorem 8.6 we can conclude. O

REMARK 8.8 (Interpretation) The characterization (8.5) can be seen as a kind of non-local version
of the Max Flow Min Cut Theorem. A possible interpretation of (8.5) is the following: we have
a continuous network represented by RY, with sources (producing a given commodity) uniformly
distributed in £2 and the complement of §2 being the sink. Transportation activities are described by
@, in such a way that at each point x € §2 we have an incoming quantity of flow ¢(x, y) |x—y|~N~*
from y € RY and an outcoming flow ¢(y, x) |x — y|~¥~* to the same y € R". Then the total flow
at x is given by (see Remark 8.2)

Ry (p)(x) = A PEACTRIESZNES

|x_y|N+s
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The sources in £2 continuously in time produce at a rate which is (at least) &, that is R;"l((p) = h.
The L°° bound on ¢ is clearly related to a capacity constraint for our network. A cutis any E C §2
and observe that for every admissible flow ¢ and every cut E C 2, we (formally) have

h|E|</ R;il(w)dx=/ / ¢ Ror(1g) dx dy < Py(E).
E RN JRN

Thus (8.5) states that trying to find the maximal (non-local) flow is the same as trying to find the
best (non-local) cut of £2.

Appendix
A. Gagliardo semi-norms and differential quotients

For the sake of completeness, we record the proof of a technical result we needed for the compact
embedding W(S)’p (£2) — L4(£2). The proof below is an adaptation of that of [4, Proposition 4].

LEMMA Al Letl < p<ooand0 < s < 1, foreveryu € Wos’p(RN) there holds

su/ u(x + ) — u(x)|?
B Jen TG

dx < C (1 —y)[u] (A.1)

p
Wws.p(RN)
[h]>0 ®")

for a constant C = C(N, p) > 0.

Proof. Let p € Cg° (R™) be a positive function with support given by the annular region B;(0) \
Bijx(0) ={x € RN :1/2 < |x| < 1}and such that [x pdx = 1. Wefix h € RN \ {0}, then for
every 0 < & < |h| we set

pe) = 0 (%).

and we may write
x4+ h) — u(x)| = ‘/ u(y) polx + h— y) dy + /[u(x F ) —u(x +h— )] pe(y) dy

—(/u(y)ps<x—y>dy+/[u(x)—u(x—ynpg(y)dy)'

<

/u(y) [oe(x +h —y) — pe(x — y)] dy'

+ / G+ h) —uCx + h— )] pe(y) dy + / () — u(x — )] pe () dy.
(A.2)

We then observe that
) /u(y) [e(x +h —y) — pe(x — y)] dy dS‘

1
- ‘/ [ 40 Toutx = v+t ay as
0
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1
= ‘/0 /[u(y) —u(x +sh))(Vpe(x —y +sh),h)dyds

IVplloo 1] !
< 71\,:_01 / / lu(y) —u(x +sh)|dy
2 0 Bg(x+sh)\B%(x+sh)

Volloo |2 [
_ I PI\Uiol| | / / [u(x +z+sh)—u(x+sh)|dzds,
3 0 JB:(0)\Bs (0)

where in the second identity we used that [ Vp,dx = 0. Finally by Jensen inequality and
translation invariance of the L? norm, from (A.2) we can infer
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Since ¢ < |h|, the previous implies in particular
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possibly with a different constant C, independent of / and . If we now divide both sides by |#|*?,
we get

C |h|p(—%)
dx < N / / lu(x +z) —u(x)|?dxdz. (A.3)
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If one is only interested in estimate (A.l) with a constant independent of s, then at this point one
can take & > |h|/2, so that by construction
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which inserted in (A.3) would give
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with C independent of s.

On the contrary, in order to get estimate (A.1) displaying the sharp dependence on s, we proceed
more carefully: we multiply both sides of (A.3) by e? 1=9)~1 and integrate in & between 0 and |/|.
By further simplifying the common factor |/|? 1= this gives
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If we set for simplicity
G(s):/ / [u(x +z) —u(x)|? dxdz, 0<e<|h,
B¢ (0) JRN

by one-dimensional Hardy inequality we have’
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since G(0) = 0 and G is increasing. Then we observe that
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which concludes the proof. O

REMARK A.2 The previous result can be rephrased by saying that WOS P(RY) is continuously
embedded in the relevant Nikolskii space. See for example [ 1] for further details on this topic.

B. A remark on two different Sobolev spaces

In order to avoid confusion, we point out that usually (see for example [12]) the symbol W7 (£2)
denotes the closure of C§*°(£2) with respect to the norm

u = [ulws.re) + ullLr @)
In principle W7 (£2) is larger than our W ?(£2) introduced in Section 2. Indeed

|u(x)|?
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and there could exist 2 C RN andu e WOS *7(£2) such that the second integral on the right-hand side
is infinite. Though we did not need this result in the paper, for completeness we record a sufficient
condition for the two spaces to coincide.

 For 0 < t < 1, integrating by parts we have
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then we pass to the limit as T goes to 0.
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PROPOSITION B.1 Lets € (0,1)and 1 < p < oo be such that s p # 1. Let 2 C RY be an open
bounded Lipschitz set. Then there exists a constant C = C(N, s, p, £2) > 0 such that

ulws.r@ny + lullLr@) < C ([u]Wx,p(g) + ||u||Lp(g)), for every u € Cg°(£2).

In particular W57 (2) = W7 (£2) as Banach spaces.
Proof. Letu € C§°(£2), for every x € §2 we set

$p(x) = inf |x—y|
yeRN\Q

i.e., this is the distance of x from the complement of £2. Then we observe that
R¥\ 2 C RV \ Bs,n)(x), x €2,

which implies
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We now have to distinguish between s p > 1 and s p < 1: in the first case, by using in (B.2) the
fractional Hardy inequality of [13, Theorem 1.1]

|u(x)]?
/9 5007 XS Clleray

wtih C = C(N, s, p, £2) > 0, we can conclude.
In the case s p < 1 the previous Hardy inequality can not hold true (see [13, Section 2]), but we

have
[u(x)|?
2 8a(x)sr

with C' = C'(N, s, p, $2), see [13]. O

dx < C' (Wlyeng) + 120 g)) . 1 € CE(R),

C. Point-wise inequalities
We collect some inequalities needed for the proof of the L°° estimate for eigenfunctions.

LEMMA C.1 Let1 < p <ooand 8 = 1. For every a, b = 0 there holds

B p? Bip=l Bp=1|P

_H|P2(, _ B _pB N _
la —b| (a—">b)(a b)z(ﬂ—i—p—l)l’ a b7 | . (C.1)



456 L. BRASCO, E. LINDGREN AND E. PARINI

Proof. We first observe that if a = b, then (C.1) is trivially true. Let us then suppose that a # b
and of course we can suppose that @ > b, without loss of generality. Then by collecting a#+7~1 on
both sides of (C.1) and setting t = b/a < 1, we get that (C.1) is equivalent to

Al By PP BN
(=07 A=)z G (1 7 ) 0<t<l.

This inequality is just an easy consequence of Jensen inequality. Indeed, we have

B 1 1, p
(1—1)P! 1Tt =(1—1)P! / sPlds = (/ s% ds)
t t

which gives the desired inequality. O
Actually, we used the following version of the previous result.

LEMMA C.2 Let1 < p < oo and § = 1. Forevery a, b, M = 0 there holds

p—2 8 8 IBPP B+‘571 B+‘571 p
where we set
ay =min{a, M} and by = min{b, M}.
Proof. By using inequality (C.1) we get
B 8 P B p? B+p—1 B+p—1|P
|aM—bM|1’ z(aM—bM)(aM—bM)Zm aM” —bMp
To conclude, we just need to prove that
— bar|P72 (apr — bar) (@2, —b8)) < |la — 0|72 (a — b) (&, — b2 C3
lam M| (am M) (aM M) <la | (a )(aM M)‘ (C.3)

Let us suppose at first that a = b. Of course, if a = b inequality (C.3) is trivially satisfied, so we
can consider @ > b. In this case we have two possibilities:

b=M o b<M.
In the first case, then ayr = byy = M and (C.3) is satisfied. In the second case (C.3) reduces to
(am — )"~ (ahy — bP) < (a = b)P~" (aly — bP),

which is equivalent to
apy —b <a-—b.

As the latter is trivially verified, the validity of (C.3) is checked for a = b. It is only left to observe
that the discussion for the case a < b is exactly the same, so the proof is concluded. o
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