
Interfaces and Free Boundaries 16 (2014), 489–508
DOI 10.4171/IFB/327

Derivation of a Hele-Shaw type system from a cell model with active motion
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We formulate a Hele-Shaw type free boundary problem for a tumor growing under the combined

effects of pressure forces, cell multiplication and active motion, the latter being the novelty of the

present paper. This new ingredient is considered here as a standard diffusion process. The free

boundary model is derived from a description at the cell level using the asymptotic of a stiff pressure

limit.

Compared to the case when active motion is neglected, the pressure satisfies the same

complementarity Hele-Shaw type formula. However, the cell density is smoother (Lipschitz

continuous), while there is a deep change in the free boundary velocity, which is no longer given

by the gradient of the pressure, because a region, with limited population but diffusing with long

range, can prepare the tumor invasion.
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Keywords: Tumor growth; Hele-Shaw equation; porous medium equation; free boundary problems.

1. Introduction

Among the several models now available to deal with cancer development, there is a class, initiated

in the 70’s by Greenspan [20], that considers that cancerous cells multiplication is limited by

nutrients (glucosis, oxygen) brought by blood vessels. Models of this class rely on two kinds of

descriptions; either they describe the dynamics of cell population density [5, 7, 11] or they consider

the ‘geometric’ motion of the tumor through a free boundary problem; see [15, 16, 18, 21] and the

c
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references therein. In the latter kind of models the stability or instability of the free boundary is an

important issue that has attracted attention, [11, 18].

The first stage, where growth is limited by nutrients, lasts until the tumor reaches the size of �
1mm; then, lack of food leads to cell necrosis which triggers neovasculatures development [10] that

supply the tumor with enough nourishment. This has motivated a new generation of models where

growth is limited by the competition for space [6], turning the modeling effort towards mechanical

concepts, considering tissues as multiphasic fluids (the phases could be intersticial water, healthy

and tumor cells, extra-cellular matrix . . . ) [2, 8, 9, 24, 26]. This point of view is now sustained by

experimental evidence [25]. The term ‘homeostatic pressure’, coined recently, denotes the lower

pressure that prevents cell multiplication by contact inhibition.

In a recent paper [22] the authors explain how asymptotic analysis can link the two main

approaches, cell density models and free boundary models (of Hele-Shaw type), in the context

of fluid mechanics for the simplest cell population density model, proposed in [8], in which the

cell population density evolves under pressure forces and cell multiplication. The principle of the

derivation is to use the stiff limit in the pressure law of state, as treated in several papers; see for

instance [3, 19] and the references therein. The stiff law of state limit can also be proved to hold

when the tissue is considered as a visco-elastic fluid [23]. The stiff law of state is usually accepted

in the biophysical literature and means that there is a maximal compaction level [11]. In [17], the

results of agent based models are compared to a Hele-Shaw flow.

Besides mechanical motion induced by pressure, for some types of cancer cells it is important

to take into account active motion; see [4, 17, 27]. In the present paper we extend the asymptotic

analysis of [22] to a model that includes such an ingredient. We examine the specific form of the

Hele-Shaw limit and draw qualitative conclusions on the behaviour of the solutions in terms of

regularity and free boundary velocity.

2. Notations and main result

Our model of tumor growth incorporates active motion of cells thanks to a diffusion term,

@tnk � div
�

nkrpk

�

� ��nk D nkG.pk/; .x; t/ 2 Q WD R
d � .0;1/: (2.1)

The variable nk represents the density of tumor cells, and the variable pk the pressure, which is

considered to be given by a homogeneous law (written with a specific coefficient so as to simplify

notations later on)

pk.n/ D k

k � 1n
k�1: (2.2)

Hence, we are dealing with a porous medium type equation; see [30] for a general reference on such

problems. We complement this system with a family of initial conditions that is supposed to satisfy

(uniformly in k)

(

nk.x; 0/ D nini
k
.x/ > 0; nini

k
2 L1.Rd / \ L1.Rd /;

pini
k

WD k
k�1

.nini
k
/k�1

6 PM :
(2.3)

In a purely mechanical view, the pressure-limited growth is described by the function G, which

satisfies

G0.�/ < 0 and G.PM / D 0; (2.4)
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for some PM > 0, usually called the homeostatic pressure; see [8, 25].

Many authors use another type of models, namely free boundary problems on the tumor region

˝.t/. Our purpose is to make a rigorous derivation of one of such models from (2.1), (2.2). As

is well known, for � D 0 this is possible in the asymptotics k large. This is connected, in fluid

mechanics, to the Hele-Shaw equations; a complete proof of the derivation is provided in [22].

Typically the limit of the cell density is an indicator function for each time t > 0, n1 D 1˝.t/, if

this is initially true, and the problem is reduced to describing the velocity of the boundary @˝.t/.

Our aim is to understand what is the effect of including active motion, that is, � > 0. We will

show that both the densities and the pressures have limits, n1 and p1, as k ! 1 that satisfy

@tn1 � div
�

n1rp1

�

� ��n1 D n1G
�

p1

�

: (2.5)

Compared with the case � D 0 considered in [22], a first major difference is that now the cell density

nk is smooth and positive, since equation (2.1) is non-degenerate when � > 0. Is that translated into

more regularity for the limit density? We will show that this is indeed the case. Though the limit

density satisfies

0 6 n1 6 1;

it is not an indicator function any more, and its time derivate @tn1 is a function, while it is only a

measure when � D 0. As for the pressure, we will establish that we still have

n1 D 1 in ˝.t/ D fp1.t/ > 0g;

or in other words p1 2 P1.n1/, with P1 the limiting monotone graph

P1.n/ D
(

0; 0 6 n < 1;

Œ0;1/; n D 1:
(2.6)

Furthermore, multiplying equation (2.1) by p0
k
.nk/ leads to

@tpk � nkp
0
k.nk/�pk � jrpkj2 � ��pk D nkp

0
k.nk/G.pk/ � �p00

k.nk/jrnk j2;

and for the special case pk D k
k�1

nk�1
k

at hand we find

@tpk � .k � 1/pk�pk � jrpkj2 � ��pk D .k � 1/pkG.pk/ � � .k � 2/rpk � rnk

nk

: (2.7)

Therefore, the ‘complementarity relation’

�p1�p1 D p1G.p1/ � �rp1 � rn1

n1

; (2.8)

is expected in the limit. However, rp1 vanishes unless p1 > 0, in which case n1 D 1, therefore

rn1 D 0. Thus, the equation on p1 ignores the additional term coming from active motion and

reduces to the same Hele-Shaw equation (also called complementarity relation) for the pressure that

holds when � D 0, namely

p1

�

�p1 CG.p1/
�

D 0: (2.9)

Let us remark that this similar complementary relation does not mean that active motion has no

effect in the limit. Though the pressure equation is the same one as for the case � D 0, the free
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boundary @˝.t/ is not expected to move with the usual Hele-Shaw rule V D �rp1, but with a

faster one; see Section 7 for a discussion on the speed of the free boundary.

Notice that ˝.t/ coincides almost everywhere with the set where n1.t/ D 1. Indeed, on the

one hand, by the definition of the graph P1 we have˝.t/ � fxI n1.x; t/ D 1g; on the other hand,

if we had p1 D 0 and n1 D 1 in some set with positive measure, then n1 would continue to

grow (exponentially) there, which is a contradiction. Therefore,˝.t/may be regarded as the tumor,

while the regions where 0 < n1 < 1 (mushy regions, in the literature of phase-changes) correspond

to precancer cells.

The above heuristic discussion can be made rigorous.

THEOREM 2.1 Let T > 0 andQT D R
d � .0; T /. Assume (2.3), (2.4), and that the initial data are

subsolutions to the stationary equation, that is �div
�

nini
k

rpini
k

�

� ��nini
k

6 nini
k
G
�

pini
k

�

. Consider

a weak solution .nk ; pk/ of (2.1)–(2.2). Up to extraction of a subsequence, .nk/k , .pk/k converge

strongly in Lp.QT /, 1 6 p < 1, to limits

n1 2 C
�

Œ0;1/IL1.Rd /
�

\ L1..0; T /IH 1.Rd //; p1 2 L1..0; T /IH 1.Rd //;

such that 0 6 n1 6 1, n1.0/ D nini, 0 6 p1 6 PM , p1 2 P1.n1/, where P1 is the Hele-Shaw

monotone graph given in (2.6). Moreover, the pair .n1; p1/ satisfies both (2.5) and the Hele-Shaw

type equation

@tn1 ��p1 � ��n1 D n1G
�

p1

�

; (2.10)

and also the complementarity relation (2.9) for almost every t > 0. All three equations hold in the

weak sense. The time derivatives of the limit functions satisfy

@tn1; @tp1 2 M
1.QT /; @tn1; @tp1 > 0:

Here M
1 denotes the Banach space of bounded measures, endowed with its weak topology.

To illustrate this behaviour, we present numerical results obtained thanks to a discretization with

finite volumes of system (2.1)–(2.2) in the case k D 100, � D 0:5 and with G.p/ D 1 � p. We

display in Figure 1 the first steps of the formation of a tumor which is initially given by a small

bump. The shape of the pressure p at the place where n D 1 is similar to the one observed for

the classical Hele-Shaw system (see, e.g., [22]). But a major difference is that, as expected, the

population density n is smooth. A biological consequence of this smoothness is that tumor contours

are not easily detectable. This is in accordance with the observation that, during medical treatment,

different imaging procedures can determine different tumor contours [12, 28].

The hypothesis that the initial data are subsolutions to the stationary problem, which is rather

strong, can be removed. However, it has the advantage of allowing a simple presentation of the

limiting process. Therefore, we have chosen to keep it in a first stage, postponing the long and

technical argument for regularizing effects and time compactness allowing to drop it to Section 8.

Regarding regularity, we prove that the limit solution for the present problem is more smooth

than in the case without active motion, as expected.

THEOREM 2.2 Under the assumptions of Theorem 2.1, n1 2 H 1.QT / \ C.QT /, p1.�; t/ 2
C.Rd / for almost every t > 0.

The rest of the paper is organized as follows. We begin in Section 3 with some uniform (in

k) a priori estimates which are necessary for strong compactness. Then, in Section 4 we prove

the main statements in Theorem 2.1. The most delicate part, establishing (2.9), is postponed to
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FIG. 1. First steps of the initiation of the free boundary. Results obtained thanks to a discretization of the system (2.1)–(2.2)

with k D 100 and � D 0:5. The density n is plotted in solid line whereas the pressure p is represented in dashed line. The

pressure p has the same shape as in the classical Hele-Shaw system with growth. However the density n is smoother.

Section 5. After proving uniqueness for the limit problem in Section 6, we devote Section 7 to

discuss further regularity issues, including the results in Theorem 2.2, and the speed of the boundary

of the tumor zone. We end with Section 8, whose aim is to weaken the assumptions on the initial

data, as explained above.

3. Estimates

To begin with, we gather in the following statement all the a priori estimates that we need later on.

LEMMA 3.1 With the assumptions and notations in Theorem 2.1, the weak solution .nk ; pk/ of

(2.1)–(2.2) satisfies

0 6 nk 6

�k � 1

k
PM

�1=.k�1/

�!
k!1

1; 0 6 pk 6 PM ;

Z

Rd

nk.t/ 6 eG.0/t

Z

Rd

nini;

Z

Rd

pk.t/ 6 CeG.0/t

Z

Rd

nini;

with C a constant independent of k. Furthermore, there exists a uniform (with respect to k)

nonnegative constant C D C
�

T; kninikL1.Rd /\L1.Rd /

�

such that
Z

Rd

�

�jrnkj2 C knk�1
k jrnk j2 C jrpkj2

�

.t/ 6 C for all t 2 .0; T /: (3.1)

Finally,

@tnk ; @tpk > 0; @tnk is bounded in L1
�

.0; T /IL1.Rd /
�

; @tpk is bounded in L1.QT /:
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Proof. Estimates on nk and pk . The L1.Q/ bounds are a consequence of standard comparison

arguments for (2.1) and (2.7). TheL1..0; T /IL1.Rd // bound for nk can be obtained by integrating

(2.1) over Rd and then using (2.4). The L1..0; T /IL1.Rd // bound for pk now follows from the

relation between pk and nk .

Estimates on the time derivatives. We introduce the quantity

˙.nk/ D nk
k C �nk; ˙ 0.nk/ D knk�1

k C �: (3.2)

The density equation (2.1) is rewritten in terms of this new variable as

@tnk ��˙.nk/ D nkG.pk/: (3.3)

Using the notation˙k D ˙.nk/ and multiplying the above equation by ˙ 0.nk/, we get

@t˙k �˙ 0
k�˙k D nk˙

0
kG.pk/: (3.4)

Let wk D @t˙.nk/. Notice that sign .@tnk/ D sign .wk/. A straightforward computation yields

@twk �˙ 0
k�wk D @tnk˙

00
k

�

�˙k C nkG.pk/
�

C @tnk˙
0
kG.pk/C @tnk˙

0
kkn

k�1
k G0.pk/:

By using that wk D ˙ 0
k
@tnk and ˙ 0.nk/ > � > 0, the right hand side of the above equation can be

written in a more handful way as

@twk �˙ 0
k�wk D wk

 

˙ 00
k

˙ 0
k

�

�˙k C nkG.pk/
�

CG.pk/C knk�1
k G0.pk/

!

:

Since this equation preserves positivity and sign .wk.0// D sign .@tn
ini
k
/ > 0, we conclude that

wk > 0, that is, @tnk > 0. The relation between pk and nk then immediately yields @tpk > 0.

Now that we know that the time derivatives have a sign, bounds for them follow easily. Indeed,

using (2.1), we get

k@tnk.t/kL1.Rd / D d

dt

Z

Rd

nk.t/ 6 G.0/knk.t/kL1.Rd /:

This gives the bound on @tnk in L1.Œ0; T �IL1.Rd //. For @tpk we write

k@tpkkL1.QT / D
Z T

0

d

dt

�Z

Rd

pk.t/

�

dt 6

Z

Rd

pk.T /:

This last expression is uniformly bounded in k.

Estimates on the gradients. We multiply equation (2.1) by nk , integrate over R
d and use

integration by parts for the diffusion terms,

Z

Rd

.nk@tnk/.t/C
Z

Rd

�

knk�1
k jrnk j2 C �jrnkj2

�

.t/ D
Z

Rd

�

n2
kG.pk/

�

.t/ 6 G.0/

Z

Rd

n2
k.t/:
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Since both nk and @tnk are nonnegative, we immediately obtain the estimate on the first two terms

in (3.1). On the other hand, integrating equation (2.7), we deduce
Z

Rd

@tpk.t/C .k � 2/

Z

Rd

�

jrpkj2 C �knk�3
k jrnk j2

�

.t/ D .k � 1/
Z

Rd

�

pkG.pk/
�

.t/

6 .k � 1/G.0/
Z

Rd

pk.t/:

Since @tpk > 0, we easily obtain the L2 bound on rpk in (3.1).

4. Proof of Theorem 2.1

In this section we prove all the statements in Theorem 2.1 except the one concerning the

complementarity relation for the pressure, equation (2.9), whose proof is postponed to the next

section.

Strong convergence and bounds. Since the families nk and pk are bounded in W
1;1

loc .Q/, we have

strong convergence in L1
loc both for nk and pk . To pass from local convergence to convergence in

L1.QT /, we need to prove that the mass in an initial strip t 2 Œ0; 1=R� and in the tails jxj > R is

uniformly (in k) small if R is large enough. The control on the initial strip is immediate using our

uniform, in k and t , bounds for knk.t/kL1.Rd / and kpk.t/kL1.Rd /. The tails for the densities nk are

controlled using the equation, pretty in the same way as it was done for the case � D 0; see [22]

for the details. The control on the tails of the pressures pk then follows from the relation between

pk and nk . Strong convergence in Lp.QT / for 1 < p < 1 is now a consequence of the uniform

bounds for nk and pk .

Thanks to the a priori estimates proved above, we also have that .rnk/k and .rpk/k converge

weakly in L2.QT /, and

0 6 n1 6 1; n1; p1 2 L1
�

.0; T /IH 1.Rd /
�

; @tn1; @tp1 2 M
1.QT /;

@tn1; @tp1 > 0:

Identification of the limit. To establish equation (2.5) in the distributional sense, we just pass to

the limit, by weak-strong convergence, in equation (2.1) . On the other hand, using the definition of

pk in (2.2), we have

nkpk D k

k � 1
nk

k D
�

1 � 1

k

�1=.k�1/

p
k=.k�1/

k
�!

k!1
p1:

Taking the limit k ! 1, we deduce the monotone graph property

p1.1 � n1/ D 0: (4.1)

In order to show the equivalence of (2.10) and (2.5), we need to prove that rp1 D n1rp1. This

is seen to be equivalent to p1rn1 D 0 by applying Leibniz’s rule in H 1.Rd / to (4.1). To prove

the latter identity, we first write

pkrnk D k

k � 1
nk

krnk D
p
k

k � 1
n

.kC1/=2

k

�p
k n

.k�1/=2

k
rnk

�

:
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From estimate (3.1), the term between parentheses is uniformly bounded in L2.QT / and since

.nk/k is uniformly (in k) bounded in L1.QT /, we conclude that

lim
k!1

kpkrnkkL2.QT / D 0:

We deduce then from the strong convergence of .pk/k and the weak convergence of .rnk/k that

p1rn1 D 0; (4.2)

as desired.

Time continuity and initial trace. Time continuity for the limit density n1 follows from the

monotonicity and the equation, as in the case � D 0. Once we have continuity, the identification of

the initial trace will follow from the equation for nk , letting first k ! 1 and then t ! 0; see [22]

for the details.

Remark. Since p1 > 0 and p1 2 L1..0; T /IH 1.Rd //, (4.2) implies that

rp1 � rn1 D 0: (4.3)

5. The equation on p1

In this section we give a rigorous derivation of equation (2.9), which is the most delicate point in

the proof of Theorem 2.1.

(i) Our first goal is to establish that, in the weak sense,

p1�p1 C p1G.p1/ 6 0: (5.1)

Thanks to (4.2) and (4.3), this is equivalent to proving that

p1�
�

p1 C �n1

�

C p1G.p1/ 6 0: (5.2)

In order to prove the latter inequality, we follow an idea of [22] and use a time regularization method

à la Steklov. To this aim, we introduce a regularizing kernel !".t/ > 0 with compact support of

length ".

Let nk;" D nk � !". From equation (2.1), we deduce

@tnk;" ��!" � .nk
k C �nk/ D .nkG.pk// � !": (5.3)

Then, for fixed " > 0, �!" � .nk
k

C �nk/ is bounded in Lq.QT / for all q > 1. Thus, we can

extract a subsequence such that .r!" � .nk
k

C �nk//k converges strongly in L2.QT /. Since we

have strong convergence of .nk
k

C �nk/k towards p1 C �n1, we deduce that the strong limit of

.r!" � .nk
k

C �nk//k is equal to r!" � .p1 C �n1/.

Multiplying equation (5.3) by pk , we have

pk@tnk;" D pk�
�

nk
k � !" C �nk;"

�

C pk

�

.nkG.pk// � !"

�

:
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We can pass to the limit k ! 1 to get

lim
k!1

pk@tnk;" D p1�
�

!" � .p1 C �n1/
�

C p1

�

.n1G.p1// � !"

�

:

To determine the sign, we decompose the left hand side term, divided by the harmless factor

k=.k � 1/, as

Z

R

nk�1
k .t/@tnk.s/!".t � s/ ds D

Z

R

nk�1
k .s/@tnk.s/!".t � s/ ds

„ ƒ‚ …

Ak

C
Z

R

.nk�1
k .t/ � nk�1

k .s//@tnk.s/!".t � s/ ds
„ ƒ‚ …

Bk

:

On the one hand we have

Ak D 1

k

Z

R

@tn
k.s/!".t � s/ ds ! 0 when k ! 1:

As for Bk , we recall that @tnk > 0 provided @tn
ini

> 0; see Lemma 3.1. Thus, for s > t we have

nk�1
k

.t/�nk�1
k

.s/ 6 0. Then, choosing !" such that supp !" � R�, we deduce that Bk 6 0, which

yields

p1�
�

!" � .p1 C �n1/
�

C p1

�

n1G.p1/ � !"

�

6 0:

It remains to pass to the limit " ! 0 in the regularization process. We can pass to the limit in

the weak formulation since we already know that rp1 2 L2.QT /. Then, using (4.1), we get the

inequality (5.2) and thus (5.1).

(ii) Our second purpose is to establish the other inequality, namely

p1�p1 C p1G.p1/ > 0: (5.4)

To prove it, we multiply equation (2.7) by a nonnegative test function �.x; t/ and integrate, and

obtain

“

QT

�

�

pk�pk C pkG.pk/ � � k � 2

k � 1

rpk � rnk

nk

�

D 1

k � 1

“

QT

�

�
�

@tpk � jrpkj2
�

C �r� � rpk

�

:

From the proved bounds, the right hand side of the above equation converges to 0 as k ! 1. We

can use integration by parts and rewrite the left hand side as

“

QT

�

�pkG.pk/ � pkr� � rpk � �jrpkj2 � �� k.k � 2/

k � 1
nk�3

k jrnkj2
�

:

Since the last term is nonpositive, we obtain that

lim inf
k!1

“

QT

�

�pkG.pk/ � pkr� � rpk � �jrpkj2
�

> 0:
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From weak-strong convergence in products, or convexity inequalities in the weak limit, we finally

conclude
“

QT

�

�p1G.p1/ � p1r� � rp1 � �jrp1j2
�

> 0:

This is the weak formulation of (5.4).

Remark. A careful inspection of the proof of (5.4) shows that (2.8) holds if and only if rpk

converges strongly in L2.QT / and knk�3
k

jrnk j2 converges weakly to 0 locally in L1.Q/. Since

we have proved (2.8), we conclude that we have the two mentioned convergence results.

6. Uniqueness for the limit model

In this section we prove that the limit problem (2.10) admits at most one solution. We will adapt

Hilbert’s duality method in the spirit of [14, 22].

THEOREM 6.1 Let T > 0, � > 0. There is a unique pair .n; p/ of functions inL1.Œ0; T �IL1.Rd /\
L1.Rd //, n 2 C.Œ0; T �IL1.Rd //, n.0/ D nini, p 2 P1.n/, satisfying (2.10) in the sense of

distributions and such that rn; rp 2 L2.QT /, @tn; @tp 2 M
1.QT /.

Proof. Let us consider two solutions .n1; p1/ and .n2; p2/. Then for any test function � with � 2
W 2;2.QT / and @t� 2 L2.QT /, we have

“

QT

�

.n1 � n2/@t� C .p1 � p2 C �.n1 � n2//�� C
�

n1G.p1/ � n2G.p2/
�

�
�

D 0; (6.1)

which can be rewritten as

“

QT

�

�.n1 � n2/C p1 � p2

��

A@t� C�� C AG.p1/� � B�
�

D 0; (6.2)

where

0 6 A D n1 � n2

�.n1 � n2/C p1 � p2

6
1

�
;

0 6 B D �n2

G.p1/ �G.p2/

�.n1 � n2/C p1 � p2

6 �;

for some nonnegative constant �. To arrive to these bounds on A we set A D 0 when n1 D n2,

even if p1 D p2. Since A can vanish, we use a smoothing argument by introducing regularizing

sequences .An/n, .Bn/n and .G1;n/n such that

kA �AnkL2.QT / < ˛=n; 1=n < An 6 1;

kB � BnkL2.QT / < ˇ=n; 0 6 Bn 6 ˇ2; k@tBnkL1.QT / 6 ˇ3;

kG1;n �G.p1/kL2.QT / 6 ı=n; jG1;nj < ı2; krG1;nkL2.QT / 6 ı3;

for some nonnegative constants ˛, ˇ, ˇ2, ˇ3, ı, ı2, ı3.
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Given any arbitrary smooth function compactly supported, we consider the solution �n of the

backward heat equation

8

<

:

@t�n C 1

An

��n CG1;n�n � Bn

An

�n D  in QT ;

�n.T / D 0:

(6.3)

The coefficient 1=An is continuous, positive and bounded below away from zero. Then the equation

satisfied by �n is parabolic. Hence �n is smooth and since  is compactly supported, we have that

�n, ��n and therefore @t�n are L2-integrable. Therefore, we can use �n as a test function in (6.2).

Then, by the definition of A, we have

“

QT

.n1 � n2/ D
“

QT

�

�.n1 � n2/C p1 � p2

�

A :

Inserting (6.3) and subtracting (6.2), we obtain

“

QT

.n1 � n2/ D I1n C I2n C I3n;

where

I1n D
“

QT

�

�.n1 � n2/C p1 � p2

��� A

An

� 1
��

��n � Cn�n

��

;

I2n D
“

QT

�

�.n1 � n2/C p1 � p2

�

.B � Bn/�n;

I3n D
“

QT

.n1 � n2/
�

G1;n �G.p1/
�

�n:

The convergence towards 0 of the terms Iin, i D 1; 2; 3 is now a consequence on some estimates

on the test functions �n which are gathered in Lemma 6.2 below. Indeed, applying the mentioned

estimates and Cauchy–Schwarz inequality we have

I1n 6 Kk.A�An/=
p
AnkL2.QT / 6 K

p
nkA �AnkL2.QT / 6 K˛=

p
n;

I2n 6 KkB � BnkL2.QT / 6 K
=n;

I3n 6 Kı=n;

(in all the computations, K denotes various nonnegative constants). Then letting n ! 1, we

conclude that “

QT

.n1 � n2/ D 0;

for any smooth function  compactly supported, hence n1 D n2. It is then obvious, thanks to (6.1),

that p1 D p2.

LEMMA 6.2 Under the assumptions of Theorem 6.1, we have the uniform bounds, only depending

on T and  ,

k�nkL1.QT / 6 �1; sup
06t6T

kr�n.t/kL2.Rd / 6 �2; k1=
p

An.��n � Bn�n/kL2.QT / 6 �3:
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Proof. The first bound is a consequence of the maximum principle for (6.3). Then, multiplying (6.3)

by ��n � Bn�n and integrating on R
d , we get

� 1

2

d

dt

Z

Rd

jr�n.t/j2 � 1

2

d

dt

Z

Rd

Bn�
2
n.t/C

Z

Rd

1

An

j��n �Bn�nj2.t/C 1

2

Z

Rd

.@tBn�
2
n/.t/;

D
Z

Rd

�

G1;njr�nj2 C �nr�n � rG1;n CBnG1;n�
2
n C .� � Bn /�n

�

.t/:

After an integration in time on Œt; T �, we deduce

1

2
kr�n.t/kL2.Rd / C

Z T

t

Z

Rd

1

An

j��n � Bn�nj2 6 K
�

1 � t C
Z T

t

kr�n.s/kL2.Rd / ds
�

;

where we use the bounds on rG1;n and @tBn by construction of the regularization. We conclude by

applying Gronwall’s Lemma.

7. Further regularity and velocity of the free boundary

Remember that both p1 and n1 belong to H 1.Rd / for almost every t > 0. This regularity cannot

be improved, because there are jumps in the gradients of both p1 and n1 at the free boundary. As

a consequence, their laplacians are not functions, but measures. However, these singularities cancel

in the combination˙1 D p1 C �n1, as we will see now.

LEMMA 7.1 With the assumptions of Theorem 2.1, the quantity ˙1 belongs to

L2..0; T /IH 2.Rd // for all T > 0 and we have the estimate

“

QT

.�˙1/
2

6 C.T /:

Proof. We recall the definition of˙k in (3.2). Since r˙k D nkrpk C �rnk , estimate (3.1) yields

that for all 0 < t 6 T , Z

Rd

jr˙k.t/j2 6 C.T /:

We now multiply the equation (3.4) by �˙k , and integrate in QT , 0 < T < 1, to obtain, using

that ˙ 0
k
> � and the fact that both nk and G.pk/ are nonnegative,

“

QT

.�˙k/
2

6
1

2

Z

Rd

jr˙kj2.0/C C.T /:

The result follows directly.

This implies in particular that in the limit ˙1.t/ 2 H 2.Rd / for almost every t > 0. Hence,

˙1.t/ is a continuous function for almost every t > 0. Let t > 0 be such that˙1.t/ is continuous.

Since n1.t/ D 1, and hence continuous, in the interior of ˝.t/, we have that p1.t/ is also

continuous in that set. On the other hand, p1.t/ D 0, in the exterior of ˝.t/, and we conclude

that n1.t/ is continuous there. Therefore, the only possible points of discontinuity in space for both

n1.t/ and p1.t/ are the ones lying at the boundary of ˝.t/.
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Let Nx 2 @˝.t/. Let .xn/n � Int.˝.t// and .x0
n/n � R

d n˝.t/ be sequences converging to Nx.

The continuity of ˙1 implies then that

� 6 lim
n!1

.p1.xn; t/C �n1.xn; t// D p1. Nx; t/C �n1. Nx; t/

D lim
n!1

�

p1.x
0
n; t/C �n1.x

0
n; t/

�

6 �:

We conclude that

p1. Nx; t/C �n1. Nx; t/ D �;

and hence that

p1. Nx; t/ D 0; n1. Nx; t/ D 1;

which implies in particular that both n1.t/ and p1.t/ are continuous in space for almost every

t > 0.

When d D 1, a further consequence of the spatial regularity of ˙1 is that the size of the jump

of @xp1 at the free boundary coincides with the size of the jump of �@xn1 there.

Concerning the time regularity, the limit equation for the density (3.3), now tells us that @tn1 2
L2.QT /. Hence n1 2 H 1.QT /. We do not have a similar property for the pressure (think of the

situation when two tumors meet).

Our last goal is to derive formally an asymptotic value for the free boundary speed in a particular

example. Let ˝.t/ denote, as before, the space filled by the tumor at time t . We notice that n1

solves

@tn1 D ��n1 CG.0/n1; x 2 R
d n˝.t/; t > 0;

with boundary conditions

n1 D 1; �@nn1 D @np1; x 2 @˝.t/; t > 0:

If ˝.t/ were known, the problem would be overdetermined. This is precisely what fixes the

dynamics of the free boundary. Let us assume that the tumor is a ball centered at the origin,

˝.t/ D fx W p1.x; t/ > 0g D fx W n1.x; t/ D 1g D BR.t/.0/:

We look for a solution which is spherically symmetric n1.r; t/, p1.r; t/. We set � D R0.t/. In

opposition to other models of tumor growth (see [29] for instance), here there are no radial solutions

with constant speed. However, following [22] Appendix A, we expect our solution to behave for

large times as a one dimensional traveling wave (with constant speed).

In order to analyze the expected asymptotic constant speed, we set nR.r � �t/ D n1.r; t/ and

pR.r � �t/ D p1.r; t/. Introducing this ansatz in equation (2.10), we obtain

��n0
R D p00

R C d � 1
r

p0
R C �n00

R C �
d � 1
r

n0
R C nRG.pR/: (7.1)

On R
d n˝.t/, we have p1 D 0. Then, integrating (7.1) in .R.0/;1/, we get

�nR

�

R.0/
�

D ��n0
R

�

R.0/C
�

C �.d � 1/

Z 1

R.0/

n0
R

r
dr CG.0/

Z 1

R.0/

nRdr:
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FIG. 2. Shape of the traveling waves obtained thanks to a numerical discretization of the system (2.1)–(2.2) with k D 100
and � D 0:5 (left) or � D 0 (right) for the same initial data and the same final time. The density n is plotted in line whereas

the pressure is represented in dashed line. We notice the regularity of n in the case � D 0:5, whereas it has a jump at the

interface when � D 0. Also the free boundary moves faster when active motion is present.

In a one dimensional setting (d D 1) and using the boundary relation at the interface of ˝.0/, we

deduce

� D �p0
R

�

R.0/�
�

CG.0/

Z 1

R.0/

nR.r/dr: (7.2)

We recall that for the Hele-Shaw model without active motion (i.e., � D 0), the traveling velocity

is �0 D �p0
R.R.0/

�/. Since nR.R.0// D 1 and nR is continuous and nonnegative, we have
R1

R.0/
nR.r/dr > 0. Then we conclude from equation (7.2) that � > �0.

We can do a more precise computation confirming the above statement for the one-dimensional

case. From the complementarity relation (2.9), we have �p00
R D G.pR/ on ˝.0/. Multiplying this

latter equation by p0
R and integrating on .0;R.0//, we deduce

.p0
R

�

R.0/�/
�2 D 2

Z R.0/

0

p0
RG.pR/dr:

In the center of the tumor, we expect a maximal packing of the cells. Therefore, we have the

boundary conditions

lim
r!0

pR.r/ D PM ; lim
r!0

p0
R.r/ D 0:

Since p00
R D �G.pR/ 6 0, we deduce that p0

R < 0 and we can make the change of variable

.p0
R.R.0/

�//2 D 2

Z R.0/

0

p0
RG.pR/ dr D 2

Z PM

0

G.q/ dq:

The quantity �0 D
q

2
R PM

0
G.q/ dq is the traveling velocity for a tumor spheroid in the case

� D 0; see Appendix A.1 of [22]. Combining this with (7.2), we deduce that the growth of the

tumor is faster with active motion than in the case � D 0.
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In Figure 2, we display numerical simulations obtained from a discretization with a finite volume

scheme of system (2.1)–(2.2) for k D 100. The left picture presents the result for � D 0:5, and the

right for � D 0 (i.e. without active motion). We use the growth function G.p/ D 1 � p and the

results in both cases with the same initial data and at final time t D 10. We notice that in the case

� D 0:5 the density function is smooth and the domain occupied by the tumor is larger than in the

case without active motion, which suggests, as explained above, a faster invasion speed.

8. Generalization: Regularizing effects and time compactness

As mentioned earlier, we can remove the assumption in Theorem 2.1 that the initial data are

subsolutions to the stationary equation. This relies, as in [1, 13, 22], on a regularizing effect which,

in turn, gives an estimate on time derivatives.

PROPOSITION 8.1 (Regularizing effects) Under the assumptions (2.3)–(2.4), and with the notations

in Theorem 2.1, the weak solution .nk ; pk/ of (2.1)–(2.2) satisfies

@t˙.nk/ > �K˙.nk/

t
; @tnk > �Knk

t

� C k�1
k
pk

� C .k � 1/pk

; t > 0; (8.1)

for a sufficiently large nonnegative constantK .

In particular from the second inequality, in the limit k ! 1 we recover that n1 does not

decrease (in fact, it retains the value 1) when p1 > 0, and it holds in the distribution sense,

@tn1 > �Kn1

t
1Ifp1D0g:

This statement seems difficult to improve since, in the domain where p1 D 0, n1 satisfies the heat

equation and this is the standard regularity inequality. Notice however, that, since n1.t/ D 1 in

˝.t/, this is enough to show that the pressure has the so called retention property: if it is positive at a

certain point at some time, it stays positive at that point at any later time, which means that the tumor

does not decrease. This in turn gives, using comparison for the elliptic equation ��p1 D G.p1/,

that @tp1 > 0 in the sense of distributions.

Proof of Proposition 8.1. To simplify notations, we omit the index k of all quantities in this proof.

In order to avoid difficulties with the initial data in the comparison arguments that follow, we do

all the computations for the approximate solution .n"; p"/ which corresponds to a lifted initial data

nini
k;"

D nini
k

C ", " > 0, and then recover the result for the original function by letting " ! 0. No

problem will arise with the logarithm, since n > 0 for all t > 0.

We introduce the quantity v defined by

v D  .n/;  .n/ D � lognC k

k � 1n
k�1:

Since for n > 0 the function  is invertible, we have n D  �1.v/. Multiplying equation (3.3) by

 0.n/, an easy computation shows that

@tv D g.v/
�

�v C QG.v/
�

C jrvj2; (8.2)

where QG.v/ D G
�

p. �1.v//
�

, with p.n/ D k
k�1

nk�1, and

g.v/ D ˙ 0
�

 �1.v/
�

D  �1.v/ 0
�

 �1.v/
�

; (8.3)
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We can write equation (8.2) as

@tv D g.v/w C jrvj2; with w D �v C QG.v/: (8.4)

Since G is nonincreasing, we have QG0
6 0. Then, on the one hand, we have by multiplying (8.4) by

QG0.v/,

@t

� QG.v/
�

D QG0.v/@tv D QG0.v/
�

g.v/w C jrvj2
�

> g.v/ QG0.v/w C 2r
� QG.v/

�

� rv:

On the other hand, we deduce from (8.4)

@t .�v/ D g.v/�w C 2r
�

g.v/
�

� rw C�
�

g.v/
�

w C 2rv � r.�v/C 2
X

i;j

.@xi xj
v/2;

> g.v/�w C 2r
�

g.v/
�

� rw C .g00.v/jrvj2 C g0.v/�v/w C 2rv � r.�v/C 2

d
.�v/2:

Combining the above inequalities we get

@tw > g.v/�w C 2r.g.v/C v/ � rw C g00.v/jrvj2w C
�

g0.v/�v C g.v/ QG0.v/
�

w C 2

d
.�v/2;

which can be rewritten as

@tw > F .w/; (8.5)

where we define the nonlinear operator

F .w/ D g.v/�w C 2r.g.v/C v/ � rw C g00.v/jrvj2w C
�

g0.v/C 2

d

�

w2

�
�

g0.v/ QG.v/ � g.v/ QG0.v/C 4

d
QG.v/

�

w:

At this stage, we would like to observe that a major difference occurs with respect to [22]. For the

coefficient of the linear term we get the lower bound g0.v/ QG.v/�g.v/ QG0.v/C 4
d

QG.v/ > Cst > 0,

but nothing better, while in [22], the much larger lower bound kCst was used.

Following an idea of Crandall and Pierre [13], which generalizes the classical paper by Aronson

and Bénilan [1], we use for (8.5) the subsolutionW D �h.v/=t , where

h.r/ D K
˙. �1.r//

˙ 0. �1.r// �1.r/
; (8.6)

with K a nonnegative constant which we will chose large enough. In the particular case we have at

hand, we obtain (denoting v D  .n/ as above)

g.v/ D � C knk�1; g0.v/ D k.k � 1/nk�1

� C knk�1
; h.v/ D K

� C nk�1

� C knk�1
; (8.7)

where we use the relation

. �1/0.v/ D 1

 0.n/
D n

� C knk�1
:
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With this definition forW , we have

@tW D �h
0.v/

t
@tv C W 2

h.v/
; rW D �h

0.v/

t
rv; �W D �h

0.v/

t
�v � h00.v/

t
jrvj2:

Then, multiplying equation (8.4) by � h0.v/
t

, we get

@tW D g.v/�W C
�h00.v/

t
g.v/ � h0.v/

t

�

jrvj2 � h0.v/

t
g.v/ QG.v/C W 2

h.v/
:

Using the definition of the operator F we obtain

@tW D F .W /C
� 1

h.v/
�
�

g0.v/C 2

d

��

W 2 C jrvj2
t

�

.gh/00.v/C h0.v/
�

C
�

g0.v/ QG.v/ � g.v/ QG0.v/C 4

d
QG.v/

�

W � h0.v/

t
g.v/ QG.v/:

Recalling the expressionW D �h.v/=t , we can rewrite this latter identity as

@tW D F .W /C
� 1

h.v/
�
�

g0.v/C 2

d

��

W 2 C jrvj2
t

�

.gh/00.v/C h0.v/
�

� 1

t

�

.gh/0.v/ QG.v/ � gh.v/ QG0.v/C 4

d
h.v/ QG.v/

�

: (8.8)

We deduce from (8.7) after straightforward computations that

.gh/0.v/ D K � h.v/:

Then we have for any K ,

.gh/00.v/C h0.v/ D 0:

Actually, the function h defined in (8.6) has been chosen such that it satisfies this ODE. Moreover,

since we have trivially from (8.7) that h.v/ 6 K for k > 1, we deduce that .gh/0 > 0. Then the

term .gh/0.v/ QG.v/ � gh.v/ QG0.v/C 4
d
h.v/ QG.v/ is positive.

Furthermore, we deduce from (8.7) that we can findK large enough independent of k such that

1

h.v/
6 g0.v/C 2

d
: (8.9)

From these inequalities and the fact that QG0 < 0, we deduce from (8.8) that for all t > 0, @tW 6

F .W /. Applying the maximum principle, we finally obtain that w > W . This implies in particular,

together with (8.4), that

@tv D  0.n/@tn > g.v/W D �K
t

˙. �1.v//

 �1.v/
D �K

t

˙.n/

n
:

Therefore, using that  0.n/ D ˙ 0.n/
n

, see (8.3), we find

@t .˙.n// > �K˙.n/
t

˙ 0.n/

 0.n/n
D �K˙.n/

t
:
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This concludes the proof of the first inequality in (8.1). The inequality for n follows from the explicit

formula for n˙ 0.n/=˙.n/ with pk D k
k�1

nk�1.

The lower bound for @tnk in (8.1) is enough to establish the complementarity relation (2.9),

reasoning as in [22] to obtain one of the inequalities, and as in Section 5, paragraph (ii), to get the

other one.

This result allows to recover time regularity for the quantities nk and ˙k . As it is standard, we

use the identity j@tnk j D @tnk C 2.@tnk/�, where we recall that f� D � minff; 0g. Integrating on

R
d , we obtain then the estimate

k@tnk.t/kL1.Rd / D d

dt

Z

Rd

nk.t/C 2

Z

Rd

�

@tnk.t/
�

�
6

�

G.0/C 2K

t

� Z

Rd

nk.t/:

This gives a uniform bound in k on @tnk in L1.Œ�; T �IL1.Rd // for any �; T > 0. Using the same

decomposition for @t˙k , we get

k@t˙k.t/kL1.Rd / 6
d

dt

Z

Rd

˙k.t/C 2K

t

Z

Rd

˙k.t/:

Moreover, we recall that by definition we have ˙k D �nk C k�1
k
nkpk . Since nk and pk are

uniformly bounded in L1.Œ0; T �; L1.Rd // \ L1.QT /, we deduce that ˙k is uniformly (in k)

bounded in the same space. Then @t˙k is bounded uniformly in k in L1.Œ�; T � � R
d / for any

�; T > 0.
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22. PERTHAME, B., QUIRÓS, F. & VÁZQUEZ, J. L., The Hele-Shaw asymptotics for mechanical models of

tumor growth. Arch. Ration. Mech. Anal. 212 (2014), 93–127. Zbl1293.35347 MR3162474

23. PERTHAME, B. & VAUCHELET, N., Incompressible limit of mechanical model of tumor growth with

viscosity. Preprint. arXiv:1409.6007 [math.AP].

24. PREZIOSI, L. & TOSIN, A., Multiphase modelling of tumour growth and extracellular matrix interaction:

mathematical tools and applications. J. Math. Biol. 58 (2009), 625–656. MR2471305

25. RANFT, J., BASANA, M., ELGETI, J., JOANNY, J.-F., PROST, J. & JÜLICHER, F., Fluidization of tissues
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