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On self-similar solutions to the surface diffusion flow equations
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We consider the surface diffusion flow equation when the curve is given as the graph of a function

v.x; t/ defined in a half line RC D fx > 0g under the boundary conditions vx D tanˇ > 0 and

vxxx D 0 at x D 0. We construct a unique (spatially bounded) self-similar solution when the angle

ˇ is sufficiently small. We further prove the stability of this self-similar solution. The problem stems

from an equation proposed by W. W. Mullins (1957) to model formation of surface grooves on the

grain boundaries, where the second boundary condition vxxx D 0 is replaced by zero slope condition

on the curvature of the graph.

For construction of a self-similar solution we solve the initial-boundary problem with

homogeneous initial data. However, since the problem is quasilinear and initial data is not compatible

with the boundary condition a simple application of an abstract theory for quasilinear parabolic

equation is not enough for our purpose. We use a semi-divergence structure to construct a solution.
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1. Introduction

We consider the initial-boundary problem for the surface diffusion flow equation of the form
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��
; x > 0; t > 0; (1.1)

with the boundary condition

vx D tanˇ; x D 0; t > 0; (1.2)

vxxx D 0; x D 0; t > 0; (1.3)

and the initial condition

v D a; x > 0; t D 0; (1.4)

where ˇ is a nonnegative number and vx D @v=@x; vxxx D @3v=@x3. We are interested in finding
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FIG. 1. Profile of thermal groove

a solution for small ˇ > 0 and small bounded a. In particular, we shall find a bounded self-similar

solution and discuss its stability. We say that a solution of (1.1)–(1.3) is self-similar if the rescaled

function

v�.x; t/ D 1

�
v.�x; �4t/

satisfies v�.x; t/ D v.x; t/ for all � > 0. By definition, a self-similar solution v is of the form

v.x; t/ D t1=4Z.x=t1=4/ with some function of one variable Z called a profile function. Evidently,

.tanˇ/x is a trivial self-similar solution but is unbounded. If Z is bounded, we say the self-similar

solution is (spatially) bounded. Note that a bounded self-similar solution corresponds to a solution

of (1.1)–(1.3) with zero initial data, i.e., the case a � 0. In this paper we prove that the system (1.1)–

(1.4) is solvable globally-in-time and it asymptotically converges to a bounded self-similar solution

for large time provided that a and ˇ are small. In particular, we prove the unique existence of a

bounded self-similar solution for small ˇ.

This problem stems from a model describing the development of the surface groove proposed

by W. W. Mullins [22]. There the condition (1.3) is replaced by no-flux condition �s D 0 where �

is the upward curvature of the graph curve y D v.x; t/ and s is the arc-length parameter. Moreover,

a is assumed to be zero so that the initial surface is flat.

The equation (1.1) is the surface diffusion law V D ��ss for the graph curve y D v.x; t/

where V is the upward normal velocity. The condition (1.2) says that the contact angle of the curve

y D v.x; t/ at the wall equals �=2� ˇ.

Let us explain the derivation of Mullins’ system. Denote �.�/ by the increase in chemical

potential per atom. We consider the situation where �.�/ is given by

�.�/ D 
˝�;

where 
 is the surface-free energy per unit area, ˝ is the molecular volume. The gradient of

chemical potential along the surface is obtained via the gradient of the curvature with respect to

arc-length parameter s. Therefore, by the Nernst–Einstein relation, a drift of surface atoms R is

R D �Ds
˝

kT

@�

@s
;
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where Ds is the coefficient of surface diffusion, T is the temperature and k is the Boltzmann

constant. The surface flux j is the productR by the numberN of atoms per unit area,

j D �Ds
˝N

kT

@�

@s
: (1.5)

One can obtain the speed of movement V of the surface element along its normal by multiplying˝

to the surface divergence of �j , that is,

V D Ds�˝
2N

kT

@2�

@s2
:

The resultant of the grain boundary tension and two surface tensions is assumed to vanish along

the line of intersection. The equilibrium angle is 2
s sinˇ D 
b , where 
s and 
b are the surface

and boundary-free energies per unit area. The absolute value of all slopes is assumed to be small

compared with unity. This asserts that 1 � 
b=.2
s/ D sinˇ ' tanˇ, which is the first boundary

condition (1.2). In addition to this, we require a vanishing current of atoms out of the grain boundary,

that is, j D 0 at x D 0. Thus, we have the second boundary condition �s D 0 at x D 0. The small

slope approximation of �s D 0 is exactly our second boundary condition (1.3).

Mullins [22] linearized the equation (1.1) and the boundary condition (1.3) around v D 0 and

studied the linear problem of the form

@y

@t
D �@

4y

@x4
; x > 0; t > 0; (1.6)

with the boundary condition

yx D tanˇ; x D 0; t > 0; (1.7)

yxxx D 0; x D 0; t > 0; (1.8)

and the initial condition

y D 0; x > 0; t D 0: (1.9)

The solution is again expected to be self-similar. Mullins applied the Laplace transform and derived

the depth y.0; t/ which is proportional to t1=4. Then he studied a profile function Z solving the

ordinary differential equation of the form

Z0000 � 1

4
zZ0 C 1

4
Z D 0:

Mullins assumed Z to be a power series Z D
P1

nD0 anz
n. He showed that fang can be determined

by a recursion relation. However, its convergence was not discussed.

P. A. Martin [21] improves and extends the results of Mullins. He studies the same

problem (1.6)–(1.9). However, the technique developed by Martin is different. He uses the Fourier

cosine transform with respect to x. By this technique, he obtains the explicit integral representation

formula for the solution y. Based on this formula he proved that the solution decays exponentially

at space infinity. In the latter half of [21], he studies multi-groove systems such as periodic surface

profile case and two grooves case.

Note that for the original Mullins’ system (1.1)–(1.2) with �s D 0, it is not known whether or

not bounded self-similar solutions exist. In this paper we linearized the boundary condition �s D 0
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to get (1.3) to prove the existence of a self-similar solution. Since (1.1) is quasilinear, such a result

was not known even for our simplified problem.

There are two approaches to construct a self-similar solution. One is to solve an ordinary

differential equation (ODE) for a profile function. For our problem this seem to be difficult since one

has to solve a nonlinear equation of order 4 globally for x > 0. Another way is a partial differential

equation (PDE) approach initiated by Giga and Miyakawa [15] and developed by Cazenave and

Weissler [7]. The main idea is to solve (1.1)–(1.3) by imposing a homogeneous initial data (in our

case we consider zero initial data). One advantage of PDE method over ODE is that it is easy to

show the stability of a constructed self-similar solution.

Although there is a large literature for solvability of the surface diffusion equation (e.g., [2, 3, 10,

11]), there are a few papers discussing the boundary value problem (e.g., [12–14, 17, 18]). A further

difficult point is that in our setting we have to handle initial data like a D 0 which is incompatible

with the boundary condition. We first transform the problem with homogeneous boundary condition

by subtracting a solution y D UL of the linearized problem (1.6)–(1.9). To solve u D v � UL we

rearrange the equation

@tu D �@4
xu � @x

�
�.ux C UL

x ; .uC UL/xx; .uC UL/xxx/
�
; x > 0; t > 0; (1.10)

with the boundary condition

ux D 0; x D 0; t > 0; (1.11)

uxxx D 0; x D 0; t > 0: (1.12)

The highest order term in� is linear in .uCUL/xxx and its coefficient equals .1C.uxCUL
x /

2/�2�1
which is very small when ux and ˇ are close to zero (so that UL

x is also close to zero). We solve

this equation in BUC1�˛.J; h
3C

even .R// \ L1.J; BUC 1

even.R// (see Section 2 for the definition)

by adjusting an abstract method of Da Prato–Grisvard [9] and Angenent [1]. We study an integral

equation corresponding to (1.10)–(1.12) for u and construct a solution by a fixed-point argument.

The smallness condition is invoked to justify that terms in @x� is small compared with other terms

in (1.10), so that the contraction mapping principle works. Since our data may be incompatible,

one cannot work in h4C
 . This is a reason why a general theory on local existence for quasilinear

equation [8] does not apply to our setting. Note that Lp type space is not suitable in handling this

problem since we seek homogeneous functions so we use little Hölder spaces.

Recently, Hamamuki [16] studies the self-similar solutions to the evaporation-condensation

problem which is of the form

@tw

.1C w2
x/

1=2
D 1 � e�� ; x > 0; t > 0; (1.13)

with the boundary condition
@w

@x
D tanˇ; x D 0; t > 0: (1.14)

This problem (1.13)–(1.14) was also proposed as an evaporation-condensation model by Mullins

[22]. The equation (1.13) is, of course, nonlinear. However, since the equation is of second order, he

is able to apply the viscosity solution theory to study the problem (1.13)–(1.14). He proves that the

solution becomes asymptotically self-similar as t ! 1 without assuming that the angle ˇ > 0 is
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small. His method is based on constructing suitable barriers. The groove depth is also studied. His

approach is quite different from the approach we discuss in this paper. His technique seems not to

be applicable to our problem (1.1)–(1.3) since our problem is of fourth order.

We next mention several works related to our study. Broadbridge and Tritscher [6] try to solve

the grain boundary problem using a nonlinear model equation of the type

@y

@t
D �B @

@x

�
f .yx/

@

@x

h
f .yx/yxxfŒf 0.yx/�

2 C Œyxf
0.yx/C f .yx/�

2g1=2
i�
; (1.15)

with the boundary conditions. Here, (1.15) corresponds to the linear model when f � 1 and

the nonlinear Mullins’ system when f .yx/ D f0.yx/ D .1 C y2
x/

�1=2. In [6] they search for a

linearizable form, which is in this case f .yx/ D ˛=.ˇ C yx/ (˛ and ˇ are constants). For this

purpose, they apply the linearizing transformation (which is called as Storm transformation) to

simplify the boundary conditions. By assuming a similarity solution of the form yx D g.�/ with

� D x.B1t/
�1=4 (B1 D B˛�1.1C ˇ2/1=2), they reduce the equation to the linear ODE. The linear

ODE is then solved by the Frobenius power series method. Finally they compare the linearizable

model with which they are treating in [6] and the Mullins’ system. In particular they compare the

groove depth y.0; t/ at the origin. They observe that the small-slope approximation is valid for most

metals in inert gases. However, in surface-active environments, grain boundary slopes taking large

values, the error differences in the grooves depth become large between the linear model and the

nonlinear model. Note that their results do not yield self-similar solution to (1.1)–(1.3).

Kanel, Novick-Cohen and Vilenkin [19] find travelling wave solutions which describe grain

boundary motion in a bicrystal which has a triple junction. The triple junction separates the surface

in three phases, that is, grain 1, grain 2 and an outside. The boundary between grain 1 and grain

2 is called a grain boundary. The boundary between grains and outside is called an exterior

surface. In this situation, the grain boundary evolves according to motion by mean curvature.

Away from it, the evolution of the exterior surface is governed by the surface diffusion. Thus,

the motion is coupled with mean curvature and surface diffusion. This problem has already been

propounded by Mullins [23] in 1958. After expressing the problem via an angle formulation, they

show the existence of a solution based on the theory of stable and unstable manifolds and integral

formulations using the Green functions. It seems that their approach does not apply to our setting

since their initial data is compatible.

Zhu [26] studies the existence of the stationary solution to the equation (1.1) in the open interval

I D .a; b/ � R with zero boundary conditions, i.e.,

yx D yxxx D 0 on @I ;

and the initial data

yjtD0 D y0 on I :

He shows the existence of a stationary solution. He also proves the stationary solution is

asymptotically stable in a suitable norm as time goes to infinity. He establishes the energy estimate

of Schauder type for the solution, then applies the Leray–Schauder fixed-point theorem. Since he

discusses compatible data, his approach does not apply to our study.

This paper is organized as follows. In Section 2, we study the linearized equation and recall a

result of P. A. Martin. We also give the definitions of some function spaces and show that the bi-

Laplacian operator �@4
x generates the non C0-bounded analytic semigroup on L1. In Section 3, we
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construct the mild solution of the problem (1.1)–(1.4). Finally, we prove the stability of self-similar

solution.

A self-similar solution is constructed in a similar way in [4] but for the differential form of (1.1).

The spatial derivative of the self-similar solution we construct in this paper is actually the solution

of [4]. However, in [4] it is not clear the self-similar solution in [4] is bounded. Also, stability of the

self-similar solution is not discussed in [4].

2. Linear equation with boundary conditions

2.1 Explicit formula for the linear problem

Before turning to a closer examination of our nonlinear problem (1.1)–(1.4), we must draw attention

to the linear problem (1.6)–(1.9). As described in the Introduction, there are several available results

on the linear problem. In this paper, we recall the result of the paper by P. A. Martin [21].

LEMMA 2.1 There is a solution for the problem (1.6)–(1.9) of the form

UL.x; t/ D �2 tanˇ

�

Z 1

0

�
1 � e�k4t

� cos kx

k2
dk;

which decays exponentially as x ! 1.

Proof. See [21, Section 2], where ˇ is denoted by �eq.

2.2 Function spaces

Now we turn our attention to the nonlinear problem (1.1)–(1.4). In this paper, we consider our

problem on the half line RC D .0;1/. However, in the sequel, we extend the solution as an even

function on the whole line R. This extension as an even function is natural because our homogeneous

linear problem can be reduced to be a whole space problem by even extension. Thus, we shall use

the function spaces of even functions. We first recall the space of bounded functions and Hölder

continuous functions defined on R. For a measurable function ' in R we denote the L1-norm by

j'j1, i.e.,

j'j1 WD ess.supx2Rj'.x/j:
For � 2 .0; 1/ we define its �-Hölder quotient at x; y 2 R by

Œ'��;x;y WD j'.x/ � '.y/j
jx � yj� ; x ¤ y:

For ' 2 L1.R/ we define its �-Hölder seminorm by

Œ'�� WD ess. sup
˚
Œ'��;x;yI x; y 2 R; x ¤ y

	
:

We recall several basic Banach spaces. We use the same notation as in [20, Chapter 0].

DEFINITION 2.2 (i) Let L1.R/ be the space of all real valued essentially bounded measurable

functions on R. This space is a Banach space equipped with the norm j'j1. Let BUC.R/ be

the space of all bounded and uniformly continuous functions on R. This is a closed subspace

of L1.R/.
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(ii) For k D 1; 2; : : : , let W k;1.R/ be the Sobolev space such that

W k;1.R/ WD
˚
' 2 L1.R/I k-th distributional derivative @k

x' is in L1.R/
	
:

It is the Banach space equipped with the norm

k'kk;1 D
kX

lD0

j@l
x'j1

which is equivalent to jk'kjk;1 WD j'j1 C j@k
x'j1. We often denote j@k

x'j1 by j'jk;1.

Let BUC k.R/ be the closed subspace of W k;1.R/ defined by

BUC k.R/ WD
�
' 2 BUC.R/I ' is k-times continuously differentiable

and '.l/ 2 BUC.R/ for l D 0; 1; : : : ; k

�
:

(iii) For � 2 .0; 1/ let C �.R/ be the space of all bounded �-Hölder continuous functions on R, i.e.,

C �.R/ WD f' 2 C.R/I k'k� WD j'j1 C Œ'�� < 1g:

This is a Banach space equipped with the norm k'k� .

Unfortunately, the space of bounded smooth function BUC1.R/ D
T

k>0 BUC
k.R/ �

C �.R/ is not dense in C �.R/. One defines the closure of BUC1.R/ in C �.R/ by h�.R/

which is characterized as

h�.R/ D
˚
' 2 C �.R/I lim

y!x
Œ'��;x;y D 0

	
:

This space is called a little Hölder space.

(iv) For k D 1; 2; : : : and � 2 .0; 1/ let C kC�.R/ be the space of BUC k functions having �-

Hölder continuous k-th derivatives, i.e.,

C kC�.R/ D
˚
' 2 BUC k.R/I @k

x' 2 C �.R/
	
:

This space is a Banach space equipped with the norm

k'kkC� D k'kk;1 C Œ@k
x'�� :

To simplify the notation we often denote the seminorm Œ@k
x'�� by Œ'�kC� .

The closure of BUC1.R/ in C kC�.R/ is denoted by hkC�.R/. It is characterized as

hkC�.R/ D
˚
' 2 C kC�.R/I lim

y!x
Œ@k

x'��;x;y D 0
	
:

To develop the semigroup theory we often need to consider complexified space, which are spaces

of complex-valued functions. In this case the resulting Banach space is a complex Banach spaces.

We do not distinguish real and complex Banach space to simplify the notation.

We shall give notation of the space of even functions.
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DEFINITION 2.3 Let X be a space of measurable functions defined on R. Let Xeven denote its

subspace of even functions in X , i.e.,

Xeven D
˚
' 2 X I'.x/ D '.�x/; a.e. x

	
:

For example,

L1
even.R/ D

˚
' 2 L1.R/I'.x/ D '.�x/; a.e. xg;

BUCeven.R/ D f' 2 BUC.R/I'.x/ D '.�x/; for all x
	
:

Note that @x'.0/ D 0 for ' 2 BUC 1
even.R/. We also note that L1

even.R/ is a closed subspace of

L1.R/. Similar statements hold for BUC k
even.R/; C

�
even.R/; C

kC�
even .R/;W

k;1
even .R/.

We occasionally use a function space on a half line RC D fx > 0g, for example h
 .RC/, which

is defined as h
 .R/ by replacing R by RC.

In order to construct the solution of the problem (1.1)–(1.4) via the analytic semigroup theory,

we shall use the weighted continuous function spaces in time with values in a Banach space. Such

spaces are often used in the analytic semigroup theory especially to analyze the singularity as time

goes to zero. The reader is referred to [8, Section 2] and [20, Subsection 4.3.2] for more details.

DEFINITION 2.4 For T > 0 set J D Œ0; T �; PJ D J n f0g. Let 0 < � < 1 be fixed.

BUC1��.J;E/ WD
˚
u 2 C. PJ ;E/I Œt 7! t1��u� 2 BUC. PJ ;E/; lim

t!0C
t1��ku.t/kE D 0

	
;

where E is a (real or complex) Banach space.

2.3 Analytic semigroup generated by the bi-Laplace operator

In this section we shall give a proof that the bi-Laplace operator �@4
x generates non C0-bounded

and bounded analytic semigroup in L1 type spaces. The analyticity result is essentially known;

see, e.g., [20, Theorem 3.2.4]. However, the bounded analyticity is not written in [20]. We give a

complete proof for the reader’s convenience.

Let us consider the resolvent equation

.�C @4
x/u D f , for � 2 C n f0g; j arg�j < �

in a formal way. We take the Fourier transform of the both sides to get

Ou.�/ D .�C j�j4/�1 Of .�/:

(This calculation is justified when u and f are Schwartz’ tempered distributions). Applying the

inverse Fourier transformation one obtains

u.x/ D K� � f .x/

with

K�.x/ WD 1p
2�

Z 1

�1

eix�

�C �4
d�; .i D

p
�1/: (2.1)
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LEMMA 2.5 For a given �0 2 .0; �/, there is a constant C�0
such that

kK� � f k1 6 C�0
j�j�1kf k1

for all f 2 L1.R/; � 2 ˙�0
WD f� 2 C n f0gI j arg�j 6 �0g.

Proof. To calculate (2.1), we first calculate

K�.x/ WD 1p
2�

Z 1

�1

eix�

ei� C �4
d�; for 0 < � 6 �0 < �: (2.2)

Thus, our concern is the roots of ei� C �4. We set

� D exp.i�=4/; ! D exp.i�=4/: (2.3)

Then the roots of ei� C �4 are �!; i�!; i2�! and i3�!. Hereafter, we denote the residue of f at

the point a by Res.f; a/. By residue theorem, we have

Z 1

�1

eix�

ei� C �4
d�

D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

2�i

"
Res

 
eix�

ei� C �4
; �!

!
C Res

 
eix�

ei� C �4
; i�!

!#
; if x > 0;

�2�i
"

Res

 
eix�

ei� C �4
; i2�!

!
C Res

 
eix�

ei� C �4
; i3�!

!#
; if x < 0:

(2.4)

We calculate the residues in (2.4) respectively.

Res

 
eix�

ei� C �4
; �!

!
D ei�!x

.�! � i�!/.�! � i2�!/.�! � i3�!/

D exp.��x=
p
2/ � exp.i�x=

p
2/

4�3!3
; (2.5)

Res

 
eix�

ei� C �4
; i�!

!
D �exp.��x=

p
2/ � exp.�i�x=

p
2/

4i�3!3
; (2.6)

Res

 
eix�

ei� C �4
; i2�!

!
D �exp.�x=

p
2/ � exp.�i�x=

p
2/

4�3!3
; (2.7)

Res

 
eix�

ei� C �4
; i3�!

!
D exp.�x=

p
2/ � exp.i�x=

p
2/

4i�3!3
: (2.8)

Thus from (2.4)–(2.6), we have when x > 0

Z 1

�1

eix�

ei� C �4
d� D �p

2 �3

�
sin

�xp
2

C cos
�xp
2

�
exp

�
� �xp

2

�
: (2.9)
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Similarly, from (2.4), (2.7) and (2.8), we have when x < 0

Z 1

�1

eix�

ei� C �4
d� D �p

2 �3

�
� sin

�xp
2

C cos
�xp
2

�
exp

�
�xp
2

�
: (2.10)

From (2.9) and (2.10) we can conclude that

Z 1

�1

eix�

ei� C �4
d� D �p

2 �3

�
sin

�jxjp
2

C cos
�jxjp
2

�
exp

�
��jxjp

2

�
: (2.11)

To show that K�.x/ is integrable for 0 < � 6 �0 < � , we have to compute the terms

sin

�
�jxjp
2

�
exp

�
��jxjp

2

�
and cos

�
�jxjp
2

�
exp

�
��jxjp

2

�

in (2.11) respectively.

sin

�
�jxjp
2

�
exp

�
��jxjp

2

�

D
exp

�
i�jxjp
2

�
� exp

��i�jxjp
2

�

2i
� exp

�
��jxjp

2

�

D 1

2i

�
exp

�
.�1C i/�jxjp

2

�
� exp

�
.�1 � i/�jxjp

2

��

D 1

2i

�
exp

�
� jxjp

2

�
cos

�

4
C sin

�

4

��
� exp

�
i jxjp
2

�
cos

�

4
� sin

�

4

��

� exp

�
� jxjp

2

�
cos

�

4
� sin

�

4

��
� exp

�
� i jxjp

2

�
cos

�

4
C sin

�

4

���
; (2.12)

cos

�
�jxjp
2

�
exp

�
��jxjp

2

�

D
exp

�
i�jxjp
2

�
C exp

��i�jxjp
2

�

2
� exp

�
��jxjp

2

�

D 1

2

�
exp

�
.�1C i/�jxjp

2

�
C exp

�
.�1 � i/�jxjp

2

��

D 1

2

�
exp

�
� jxjp

2

�
cos

�

4
C sin

�

4

��
� exp

�
i jxjp
2

�
cos

�

4
� sin

�

4

��

� exp

�
� jxjp

2

�
cos

�

4
� sin

�

4

��
� exp

�
� i jxjp

2

�
cos

�

4
C sin

�

4

���
: (2.13)
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Note that cos.�=4/ � sin.�=4/ > 0 because of 0 < � < � . Thus, from (2.11)–(2.13)

Z

R

jK�.x/j dx 6
�

2

Z

R

"
exp

�
� jxjp

2

�
cos

�

4
C sin

�

4

��

C exp

�
� jxjp

2

�
cos

�

4
� sin

�

4

��#
dx: (2.14)

Since the right-hand side of (2.14) is bounded by a constant C�0
for � 2 .0; �0� with �0 2 .0; �/,

we observe that

kK� kL1.R/ 6 C�0
for � 2 .0; �0�: (2.15)

Next, we calculate K�.x/ based on the estimate for K� .x/. Take ˙�0
3 �.D rei� /, then by

changing the variable � D r1=4� and recalling the definition of K�.x/ in (2.1), we have

K�.x/ D 1p
2�

Z 1

�1

eix�

�C �4
d�

D 1p
2�

Z 1

�1

eix�

rei� C �4
d�

D 1p
2�

1

r3=4

Z 1

�1

eir1=4x�

ei� C �4
d� D 1

r3=4
K�.r

1=4x/: (2.16)

Thus from (2.16), we have

kK�kL1 D
Z 1

�1

jK�.x/j dx D
Z 1

�1

1

r3=4
jK�.r

1=4x/j dx

D 1

r

Z 1

�1

jK�.y/j dy D 1

r
kK� kL1 : (2.17)

From (2.15), (2.17) and Young’s inequality, we have

k.K� � f /kL1 6 kK�kL1 � kf kL1

6 C�0
j�j�1kf kL1 ; for � 2 ˙�0

.

We set

.K�f /.x/ D .K� � f /.x/ for f 2 L1.R/:

By Lemma 2.5 this operator K� is a bounded operator in L1.R/.

LEMMA 2.6 Let � 2 C n f0g satisfy j arg�j < � .

(i) The range

R.K�/ D W 4;1.R/;

where

W 4;1.R/ D f' 2 L1.R/I @4
x' 2 L1.R/g;

@4
x' is the fourth order derivative of ' in the sense of distribution.
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(ii) The operator K� is injective.

Proof. (i) By definition we have

.�C @4
x/.K

�f / D f;

for f 2 L1.R/ in the sense of distribution. This implies that

@4
x.K

�f / D f � �K�f 2 L1.R/:

Thus R.K�/ � W 4;1.R/. If h 2 W 4;1.R/, then take f D .�C @4
x/h 2 L1.R/ to get h D K�f .

This implies the converse inclusion. We concludeR.K�/ D W 4;1.R/.

(ii) We consider K� � f D 0 for f 2 L1.R/. Taking the Fourier transform we observe that
Of D 0 in the sense of distribution, since �C j�j4 ¤ 0 for all � 2 R so that s=.�C j�j4/ 2 S for

s 2 S, where S is the space of all rapidly decreasing functions (see [24, Chapter VII, Section 3]).

This implies f D 0 (this calculation is justified for any Schwartz’ tempered distribution f ).

REMARK 2.7 We warn the reader that in higher dimensional problem it is difficult to characterize

the range.

We define the closed linear operator A by

A.�/ WD �.K�/�1 C �I;

where I denotes the identity operator.

LEMMA 2.8 Let � be as in Lemma 2.6. Then A D A.�/ is independent of �. Moreover

D.A/ D W 4;1.R/ and Au D �@4
xu (in the sense of distribution) for u 2 W 4;1.R/.

Proof. By definitionD.A/ D R.K�/ D W 4;1.R/. Formally, for u 2 W 4;1.R/

cAu D �.�C j�j4/ OuC � Ou D �b@4
xu:

This identity is justified in the sense of tempered distribution so that Au D �@4
xu and A is

independent of the choice of �.

REMARK 2.9 (i) For higher dimension case, the domain of the corresponding operator to ��2 is

D.��2/ D fu 2
\

p>1

W
4;p

loc .R/I ��2u 2 L1.R/g;

see Lunardi [20, Theorem 3.2.4]. In one dimensional case this space is W 4;1.R/.

(ii) The independence of A with respect to � is usually proved by the resolvent identity

K� � K� D .�� �/K�K� D .� � �/K�K�:

Here we are able to use the explicit representation.
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THEOREM 2.10 (i) The operatorA generates a non-C0 bounded and bounded analytic semigroup

etA in L1.R/. In particular

ketAf k1 6 C1kf k1 for all t > 0;




d

dt
etAf






1

6
C2

t
kf k1 for all t > 0;

with some constants C1 and C2 independent of t and f 2 L1.R/. Moreover, for k D 1; 2; 3,

k@k
xe

tAf k1 6
C3

tk=4
kf k1 for all t > 0

with C3 independent of t and f 2 L1.R/.

(ii) The closureD.A/ of D.A/ in L1.R/ equals BUC.R/.

(iii) The operator A generates a C0-bounded, bounded analytic semigroup etA in BUC.R/.

(iv) The assertions (i)–(iii) still hold if one replacesL1.R/ byL1
even.R/; BUC.R/ byBUCeven.R/

andW 4;1.R/ byW 4;1
even .R/.

Proof. (i) This is standard once we have the resolvent estimate in Lemma 2.5 (see, e.g., [20,

Proposition 2.1.1]) for the resolvent K� D .��A/�1. We give the proof for the global boundedness

for the reader’s convenience.

By definition

etA D 1

2�i

Z

L

et�.� � A/�1 d�:

One is allowed to take L as L D LC
t [ L�

t [ St with

L˙
t D f� 2 CI j�j > 1=t; j arg�j D ˙�g; St D f� 2 CI j�j D 1=t; j arg�j 6 �g;

where � 2 .�=2; �0/. On L˙
t , by changing the variable � D �e˙i� , the operator norm is estimated

as






1

2�i

Z

L˙
t

et�.� �A/�1 d�






 6
C�0

2�

Z 1

1=t

et� cos �

�
d�

D C�0

2�

Z 1

1

er cos �

r
dr DW M˙; (2.18)

On St , by changing the variable � D ei�=t .� 2 .��; �/), we observe that






1

2�i

Z

St

et�.� � A/�1 d�





 6
C�0

2�

Z �

��

ecos� d� DW M0: (2.19)

Since the rightest-hand sides of (2.18) and (2.19) are finite and independent of t we observe that

ketAk 6 M0 CMC CM� DW C1;

which is the boundedness of the semigroup. The bounded analyticity

t






d

dt
etA





 6 C2 (2.20)
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can be proved similarly. First we observe

d

dt
etA D 1

2�i

Z

L

�et�.� � A/�1 d�: (2.21)

For � on the path L˙
t , we have the estimate




�et�.� �A/�1



 6 C�0

j�j
j�je

t j�j cos � : (2.22)

We deduce from (2.21) and (2.22) that






d

dt
etA





 6
1

2�
� 2 �

Z 1

0

C�0
et� cos � d�

D C�0

�

�
� 1

t cos �

�
DW C2

t
:

For estimates of derivatives we may assume k D 1; 2; 3 since other cases are reduced to this case by

the boundedness of the operator tAetA D t@te
tA which is just proved. We first note that Lemma 2.5

is extended to

k@k
xK

� � f k 6 C�0
j�j�1Ck=4kf k1:

Since

@k
xe

tA D 1

2�i

Z

L

et�@k
xK� d�;

the above estimate for @k
xK� D @k

xK
�� yields the desired estimates.

(ii) For a given f 2 BUC.R/ it is well-known that f" WD �" � f ! f in L1.R/ as " ! 0 where

�" is a mollifier, i.e.,

�".x/ D "�1�.
x

"
/ with � 2 C1.R/; 0 6 � 6 1; supp� � .�1; 1/ and

Z

R

�.x/ dx D 1:

It is easy to see that �" � f 2 C1.R/; f" 2 C1.R/ and k@m
x f"k1 < 1 for all m D 1; 2; : : : . In

particular f" 2 W 4;1.R/. Since @m
x f" D @m

x �" � f ,

k@m
x f"k1 6 k@m

x �"kL1kf k1:

Since W 4;1.R/ is contained in BUC.R/, this impliesW 4;1.R/ D BUC.R/.

(iii) Since etA maps from BUC.R/ to W 4;1.R/ � BUC.R/ for t > 0, one may interpret etA as a

semigroup in BUC.R/ and its generator A has a dense domain. Thus etA is a C0-semigroup.

(iv) This is trivial since etA preserves evenness.

REMARK 2.11 Since kK�kL1 6 C�0
j�j�1 for � 2 ˙�0

, an argument similar to the proof of

Theorem 2.10 yields

ketAf kL1 6 C0kf kL1 for all t > 0

with C0 independent of f 2 L1.R/ \ L1.R/.
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2.4 Hölder seminorm represented by an analytic semigroup

In this subsection we shall prove the equivalence of the Hölder seminorm Œf �
 and an interpolation

seminorm.

LEMMA 2.12 Let � D 
=4 and 0 < 
 < 1. Let

Œf �F�
WD sup

r>0

r1�� jAerAf j1

for f 2 L1.R/, where etA is the semigroup generated by the bi-Laplacian in L1.R/ as defined in

Theorem 2.10. Then there are constantsM1 and M2 independent of f 2 L1.R/ such that

Œf �
 6 M1Œf �F�
; (2.23)

Œf �F�
6 M2Œf �
 : (2.24)

Proof. We set

F0 WD L1.R/; F1 WD W 4;1.R/:

The real interpolation space

F� D .F0; F1/�;1 (2.25)

is characterized by a Besov spaceB


1;1; see [5, Theorem 6.2.4]. By a characterization of the Besov

space we know

B

1;1 D C 
 .R/

for 0 < 
 < 1, see for instance [25, Section 2.5.7]. Thus

F� D C 
 .R/:

In the meanwhile there is a characterization of a real interpolation space by an analytic semigroup

such as DA.�;1/ D .F0; F1/�;1 where F1 D D.A/ and etA is an analytic semigroup in F0, see

e.g., [20, Proposition 2.2.2]. It yields that

kf W .F0; F1/�;1k

is equivalent to

kf kF0
C sup

0<r<1

r1�� kAerAf kF0
:

For choice of F0; F1 and A the second norm is equivalent to

jf j1 C Œf �F�
(2.26)

since sup1<r<1 r1�� kAerAf k1 6 C jf j1. The characterization of a Hölder space by semigroup

norm is of course well-known; see [20, Theorem 3.1.12] where F0 D C.R/, the space of bounded

continuous function and A D @2
x . However, we have given here an outline for the reader’s

convenience since A D �@4
x and F0 D L1.R/.

The characterization of the Hölder norm (2.25) implies that the norm (2.26) is equivalent to

jf j1 C Œf �
 . We shall prove (2.23) since the other inequality (2.24) can be proved similarly. By

the above characterization there is a constant M1 such that

Œf �
 6 M1fjf j1 C Œf �F�
g (2.27)
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for all f 2 L1.R/. We plug f� into f of this inequality with

f�.x/ D f .�x/

�


for � > 0. Note that Œf �
 seminorm and Œf �F�
seminorm is invariant under this scaling. However,

jf�j1 D jf j1
�


:

Thus (2.27) yields

Œf �
 6 M1

� jf j1
�


C Œf �F�

�
:

Since � > 0 is arbitrary, we conclude (2.23).

3. Quasilinear equation with linear boundary conditions

In this section, we study the nonlinear problem (1.1)–(1.4). In order to solve (1.1)–(1.4), we

decompose v into v D u C UL, where UL is the solution of the linear equation (1.6)–(1.9) given

in Lemma 2.1. We rewrite the equation (1.1) of u into

@u

@t
C @UL

@t
D � @

@x

�
1

.1C .ux C UL
x /

2/1=2

@

@x

�
uxx C UL

xx

.1C .ux C UL
x /

2/3=2

��
: (3.1)

Recalling that @UL=@t D �@4UL=@x4, we observe that (3.1) becomes

@u

@t
D � @

@x

�
1

.1C .ux C UL
x /

2/1=2

�
uxxx C UL

xxx

.1C .ux C UL
x /

2/3=2
� 3.uxx C UL

xx/
2.ux C UL

x /

.1C .ux C UL
x /

2/5=2

��

C @4UL

@x4

D � @

@x

�
1

.1C .ux C UL
x /

2/2
.uxxx C UL

xxx/ � 3.ux C UL
x /.uxx C UL

xx/
2

.1C .ux C UL
x /

2/3

�
C @4UL

@x4

D �@4
xu� @x

"�
1

.1C .ux C UL
x /

2/2
� 1

�
.uxxx C UL

xxx/

� 3.ux C UL
x /.uxx C UL

xx/
2

.1C .ux C UL
x /

2/3

#
: (3.2)

We define

h.p/ D 1

.1C p2/2
� 1; g.p; q/ D 3pq2

.1C p2/3
;

and

�.p; q; r/ D h.p/r � g.p; q/:

Then (3.2) becomes

@u

@t
D �@4

xu � @x

�
�.ux C UL

x ; uxx C UL
xx; uxxx C UL

xxx/
�
:
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3.1 Hölder estimate for the perturbed term

We shall estimate the term �.vx ; vxx; vxxx/. We estimate the Hölder norm of products and

composite functions.

LEMMA 3.1 (i) Let 
 2 .0; 1/ and let F 2 C 1.R/, i.e., F is a function of C 1-class defined on

R. Then

Œ' �
 6 j'j1Œ �
 C Œ'�
 j j1;
ŒF .'/�
 6 supfjF 0.p/jI jpj 6 j'j1gŒ'�
 ;

for all '; 2 C 
 .R/.

(ii) If '; 2 h
 .R/, then ' 2 h
 .R/ and F.'/ 2 h
 .R/.

Proof. We observe that

Œ' �
;x;y D j'.x/. .x/ �  .y//C  .y/.'.x/ � '.y//j
jx � yj


6 j'.x/jŒ �
;x;y C j .y/jŒ'�
;x;y :

This yields the first inequality of Lemma 3.1 by taking the supremum over x; y 2 R; x ¤ y. By the

characterization of little Hölder space in Definition 2.2 (iii) the above estimate for Œ' �
;x;y implies

' 2 h
 .R/ if '; 2 h
 .R/.

Similarly, we have

ŒF .'/�
;x;y D jF.'.x// � F.'.y//j
jx � yj


D

ˇ̌
ˇ
�R 1

0
F 0.�'.x/C .1 � �/'.y// d�

�
.'.x/ � '.y//

ˇ̌
ˇ

jx � yj


6

Z 1

0

jF 0.�'.x/C .1 � �/'.y//j d�Œ'�
;x;y

6 supfjF 0.p/jI jpj 6 j'j1gŒ'�
;x;y:

This yields the second inequality of Lemma 3.1 by taking the supremum over x; y 2 R; x ¤ y.

This estimate implies that F.'/ 2 h
 .R/ for ' 2 h
 .R/.

PROPOSITION 3.2 There are constants eC 1 and bC 1 such that

Œh.vx/vxxx�
 6 eC 1fjvxj1Œvxxx �
 C Œvx�
 jvxxxj1g;
Œg.vx ; vxx/�
 6 bC 1fjvxj1Œv2

xx �
 C Œvx�
 jv2
xxj1g:

holds for all v 2 C 3C
 .R/. If v 2 h3C
 .R/, then h.vx/vxxx 2 h
 .R/ and g.vx; vxx/ 2 h
 .R/.

Proof. By Lemma 3.1 (i) we have

Œh.vx/vxxx�
 6 jh.vx/j1Œvxxx �
 C Œh.vx/�
 jvxxxj1
6 sup jh0j � jvxj1 � Œvxxx �
 C sup jh0j � Œvx �
 � jvxxxj1
6 eC 1fjvxj1Œvxxx�
 C Œvx �
 jvxxxj1g:
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Similarly by setting g1.vx/ WD 3vx=.1C v2
x/

3, we have

Œg.vx ; vxx/�
 D Œg1.vx/v
2
xx�


6 jg1.vx/j1Œv2
xx�
 C Œg1.vx/�
 jv2

xxj1
6 sup jg0

1j � jvxj1 � Œv2
xx �
 C sup jg0

1j � Œvx �
 � jv2
xxj1

6 bC 1.jvxj1Œv2
xx�
 C Œvx �
 jv2

xxj1/:

The statement for h.vx/vxxx 2 h
 .R/ and g.vx; vxx/ 2 h
 .R/ for v 2 h3C
.R/ follows from

Lemma 3.1 (ii).

3.2 Existence of a mild solution

We shall construct a solution of an integral equation corresponding to (1.10)–(1.12). Let A be a

closed operator corresponding to �@4
x in BUCeven.R/ so that etA is a C0-analytic semigroup in

BUCeven.R/ (Theorem 2.10). Let � be as in the beginning of Section 3. Unfortunately, the term

�.vx ; vxx; vxxx/ for v D u C UL may not attain zero at x D 0 because of the second order

derivative of vxx even for an even smooth function v. We introduce a modified odd extension

operator P as

P W h
 .RC/ ! h


odd.R/I' 7!

(
'.x/ � '.0/; if x > 0;

�.'.�x/ � '.0//; if x < 0;

so that @x.P�/ is an even function. This enables us to define etA.@x.P�// as an even function. We

are in position to state our main result.

THEOREM 3.3 Let UL be the solution of the linear equation given in Lemma 2.1 depending on ˇ.

Let 
 be in .0; 1/. Then there exist ı0 > 0 and ˇ0 > 0 independent of T > 0 such that if ˇ 2 .0; ˇ0/

there exists a unique

u 2 BUC1�˛.J; h
3C

even .R// \ L1.J; BUC 1

even.R//;

with ˛ D 1=2� 
=4 and J D Œ0; T � which solves

u.t/ D etAa �
Z t

0

e.t�s/A@x

�
P�.ux C UL

x ; uxx C UL
xx; uxxx C UL

xxx/
�
.s/ ds; t 2 J

for any a 2 BUC 1.R/ with kak1;1 < ı0. The solution u exists for all time interval. Moreover,

there exists a constant C D C.
; ı0; ˇ0/ such that

t1�˛ Œu�3C
 .t/C jux j1.t/ 6 C for all t > 0:

If a � 0, then u is self-similar in the sense that u� D u for all � > 0, where u�.x; t/ D
��1u.�x; �4t/.

Proof. We first recall a characterization of the little Hölder space by a real interpolation space. We

set

F0 WD BUC.R/; F1 WD BUC 4.R/:
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As discussed in the proof of Lemma 2.12 we observe that

C 
 .R/ D .F0; F1/
=4;1; C 3C
 .R/ D .F0; F1/.3C
/=4;1

for 
 2 .0; 1/, see [20, Proposition 2.2.2, Theorem 3.1.12]. A little Hölder space is characterized as

a continuous interpolation space as

h
 .R/ D .F0; F1/
0

=4;1; h3C
 .R/ D .F0; F1/

0
.3C
/=4;1

for the definition of continuous interpolation spaces, see [8, Section 2] and [20, Definition

1.2.2, Definition 1.2.8]. This can be proved by a semigroup characterization of .F0; F1/
0
�;1

, [20,

Proposition 2.2.2].

We shall use the space of even functions, i.e., functions invariant under the transformation

f .z/ 7! f .�z/. Since interpolation commutes with this transformation, we observe that

.F0;even; F1;even/�;1 D .F0; F1/�;1;even:

In particular

h

even.R/ D .F0;even; F1;even/
=4;1 D .F0; F1/
=4;1;even:

We next prepare a family of space-time functions. For positive constantsM;M1 > 0 we set

ZM;M1.J / WD fu 2 BUC1�˛.J; h
3C

even .R// \ L1.J; BUC 1

even.R//I
u.0/ D 0; kuk

BUC1�˛.J;h
3C

even .R//

6 M; kukL1.J;BUC 1
even.R// 6 M1g; (3.3)

equipped with the norm kukZM;M1.J /
WD max.kuk

BUC1�˛.J;h
3C

even .R//

; kukL1.J;BUC 1
even.R///. We

then define a mapping � for u 2 ZM;M1.J / as

� u WD �
Z t

0

e.t�s/A@x.P�.vx ; vxx; vxxx//.s/ ds; v D uC UL: (3.4)

Note that @x.P�/ is even because P� is odd. Apparently, e.t�s/A@x.P�/ is not well-defined for

v 2 h3C
 .R/. We have to extend etA@x to the operator in BUC.R/. This can be done as follows.

We first note that etA@xf D @xe
tAf holds for f 2 BUC 1.R/. Since

j@xe
tAf j1 6

C

t1=4
jf j1

by Theorem 2.10 (i), this commutation formula can be extended for f 2 BUC.R/ and etA@xf is

well-defined for f 2 BUC.R/ and t > 0.

We first prove Theorem 3.3 by assuming that the initial data a equals zero. We shall show that

if M and M1 is chosen small, � maps ZM;M1.J / into itself and has a fixed point in ZM;M1.J /

which implies the existence of a unique solution of (1.10)–(1.12).

Step 1 (� maps ZM;M1.J / into itself). For a fixed T > 0 we introduce the equivalent norms for

the little Hölder spaces h
 ; h3C
 and BUC 1 by

kf kh
 .R/ WD jf j1
T �

C Œf �
 ; (3.5)

kf kh3C
 .R/ WD jf j1
T 3=4C�

C jf 0j1
T 1=2C�

C jf 00j1
T 1=4C�

C jf 000j1
T �

C Œf 000�
 ; (3.6)

kf kBUC 1.R/ WD jf j1
T 1=4

C jf 0j1; (3.7)
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where j � j is the L1-norm and Œ � � is the Hölder seminorm in Subsection 2.2. Our motivation to

introduce the equivalent norms (3.5)–(3.7) (for the little Hölder space) is that we construct a global-

in-time solution. In particular, we intend to have estimates with constant independent of T for

solution in .0; T /. To do so, we would like to arrange so that the power of the time t (which shall

appear in estimating the norm of the solution) is cancelled out. Thus, the definition of the equivalent

norms (3.5)–(3.7) are quite reasonable. In fact, if one defines

m WD kULk
BUC1�˛.J;h3C
 .RC//

; m1 WD kULk
L1.J;BUC 1.RC//

;

by using norms defined in (3.5)–(3.7) (with R replaced by RC), by self-similarity of UL, the

constants m and m1 are independent of the choice of T . Moreover, from the explicit formula

of UL in Lemma 2.1, one can choose m and m1 sufficiently small by taking the contact angle ˇ

sufficiently small. We begin with

k� uk
BUC1�˛.J;h

3C

even .R//

D sup
t2 PJ

t1�˛k� ukh3C
 .R/

D 1

T 3=4C�
sup
t2 PJ

t1�˛ j� uj1 C 1

T 1=2C�
sup
t2 PJ

t1�˛ j@x� uj1

C 1

T 1=4C�
sup
t2 PJ

t1�˛ j@2
x� uj1 C 1

T �
sup
t2 PJ

t1�˛ j@3
x� uj1

C sup
t2 PJ

t1�˛ Œ@3
x� u�
 : (3.8)

To estimate (3.8) we use a seminorm

Œw�F�
WD sup

r>0

r1�� kAerAwkF0
; � D 
=4;

which is equivalent to the seminorm Œw�
 as proved in Lemma 2.12. First we shall calculate the

last term of (3.8). The idea to estimate � u is that we split the time integral into the two parts near

the origin and t , i.e., integral over .0; t=2/ and .t=2; t/. After splitting the integral, we estimate the

former part and the latter part respectively. The way to estimate these terms is similar to Da Prato–

Grisvard and Angenent construction. A key step is to estimate
R t

t=2
Ae.t�s/Af ds (which is a kind

of a singular integral) by using interpolation spaces. (Da Prato–Grisvard and Angenent have proven

the maximal regularity result based on this technique in [9] and [1]).

t1�˛ Œ@3
x� u�


D t1�˛

�Z t

0

@3
xe

.t�s/A@x.P�.vx; vxx ; vxxx//.s/ ds

�




D t1�˛

�Z t

0

@4
xe

.t�s/A
P�.vx ; vxx; vxxx/.s/ ds

�




. t1�˛

�Z t

0

Ae.t�s/A
P�.vx ; vxx; vxxx/.s/ ds

�

F�

6 t1�˛

��Z t=2

0

Ae.t�s/A
P�.s/ ds

�

F�

C
�Z t

t=2

Ae.t�s/A
P�.s/ ds

�

F�

�
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. t1�˛

�Z t=2

0

kAe.t�s/AkL.F� ;F� / � ŒP�.s/�F�
ds C sup

r>0

r1��

Z t

t=2

kA2e.rCt�s/A
P�.s/kF�

ds

�

. t1�˛

�Z t=2

0

.t � s/�1ŒP�.s/�F�
ds

C sup
r>0

r1��

Z t

t=2

kA2e.rCt�s/AkL.F� ;F0/ � ŒP�.s/�F�
ds

�

. t1�˛

�Z t=2

0

.t � s/�1ŒP�.s/�
 ds C sup
r>0

r1��

Z t

t=2

.r C t � s/�2C� ŒP�.s/�
 ds

�
: (3.9)

Here we use the symbol . when we suppress a numerical constantC depending only on exponents.

In other words, we simply write a . b instead of a 6 Cb.

To estimate ŒP�.s/�
 D Œh.vx/@
3
xv � g.vx ; vxx; vxxx/�h
 .RC/

we shall use Proposition 3.2 in

RC and the interpolation inequality between BUC 1-norm and h3C
 -seminorm as

Œ' 0�
 . Œ'�1C
 . j'j2=.2C
/
1;1 Œ'�


=.2C
/
3C
 ;

Œ.' 00/2�h
 6 2j' 00j1Œ' 00�
 . j'j2;1 � Œ'�2C


. j'j.1C
/=.2C
/
1;1 Œ'�

1=.2C
/
3C
 � j'j1=.2C
/

1;1 Œ'�
.1C
/=.2C
/
3C


D cj'j1;1Œ'�3C
 :

Thus, we have

Œh.vx/vxxx�
 6 eC 1.jvxj1Œvxxx �
 C Œvx �
 jvxxxj1/
. eC 1.jvj1;1Œv�3C
 C jvj2=.2C
/

1;1 Œv�

=.2C
/
3C
 � jvj
=.2C
/

1;1 Œv�
2=.2C
/
3C
 /

6 eC 1

�
.M1 Cm1/.s

1�˛ Œv�3C
 /s
˛�1 C jvj1;1.s

1�˛Œv�3C
 /s
˛�1

�

6 eC 1

�
.M1 Cm1/.M Cm/s˛�1 C .M1 Cm1/.M Cm/s˛�1

�

D 2eC 1.M1 Cm1/.M Cm/s˛�1; (3.10)

Œg.vx ; vxx/�
 6 bC 1fjvxj1Œv2
xx �
 C Œvx �
 jvxxj2g

. bC 1fjvj1;1 � jvj1;1Œv�3C
 C jvj2=.2C
/
1;1 Œv�


=.2C
/
3C
 � jvj2.1C
/=.2C
/

1;1 Œv�
2=.2C
/
3C
 g

D bC 1fjvj21;1Œv�3C
 C jvj21;1Œv�3C
 g
D 2bC 1

�
jvj21;1.s

1�˛ Œv�3C
 /s
˛�1

�

D 2bC 1.M1 Cm1/
2.M Cm/s˛�1: (3.11)

In (3.10) and (3.11) all norms should be interpreted as a norm over RC not R since UL is defined

in RC.

Now we are in position to estimate (3.9). We need to estimate the integral

r1�� t1�˛

Z t

t=2

.r C t � s/�2C� s˛�1 ds:
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Since s˛�1 6 .t=2/˛�1 for s 2 Œt=2; t � we have

r1�� t1�˛

Z t

t=2

.r C t � s/�2C� s˛�1 ds 6 r1�� t1�˛

�
t

2

�˛�1 Z t

t=2

.r C t � s/�2C� ds

D 21�˛r1��

1 � �
h
.r C t � s/�1C�

isDt

sDt=2

D 21�˛

1 � �
r1��

 
r�1C� �

�
r C t

2

��1C�
!

6
21�˛

1 � �
r1�� � r�1C� D 21�˛

1 � �
: (3.12)

From (3.10)–(3.12), we have

.3:9/

. t1�˛

�Z t=2

0

.t � s/�1ŒeC 1.M1 Cm1/.M Cm/s˛�1 C bC 1.M1 Cm1/
2.M Cm/s˛�1� ds

C sup
r>0

r1��

Z t

t=2

.r C t � s/�2C� ŒeC 1.M1 Cm1/.M Cm/s˛�1

C bC 1.M1 Cm1/
2.M Cm/s˛�1 ds�

�

.

�Z 1=2

0

.1 � �/�1�˛�1 d�

�
ŒeC 1.M1 Cm1/.M Cm/C bC 1.M1 Cm1/

2.M Cm/�

C 21�˛

1 � �
ŒeC 1.M1 Cm1/.M Cm/C bC 1.M1 Cm1/

2.M Cm/�: (3.13)

Estimating for the other terms of (3.8) proceeds similarly. The L1-norm estimate for the integrand

t1�˛
R t

0
@k

xe
.t�s/A@x.P�/ ds .k D 0; 1; 2; 3/ is different. For example, we estimate the fourth terms

of (3.8) as

t1�˛

ˇ̌
ˇ̌
Z t

0

@3
xe

.t�s/A@x.P�/ ds

ˇ̌
ˇ̌
1

D t1�˛

ˇ̌
ˇ̌
Z t

0

@4
xe

.t�s/A
P� ds

ˇ̌
ˇ̌
1

6 t1�˛

Z t

0

kAe.t�s/A
P�kF0

ds

6 t1�˛

Z t

0

kAe.t�s/AkL.F� ;F0/ŒP��F�
ds

6 C t1�˛

�Z t

0

.t � s/�1C� ŒP��F�
ds

�
: (3.14)

The term ŒP��F�
is estimated by constants (depending on M and M1) times s˛�1. Thus, taking

supremum of (3.14) in .0; T / yields T � , which cancels out the term 1=T � in (3.8). We also recall

that from (3.7)

k� ukL1.J;BUC 1.R// D 1

T 1=4
sup
t2 PJ

j� uj1 C sup
t2 PJ

j@x� uj1: (3.15)
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Estimating (3.15) proceeds similarly as above. If m andm1 are taken sufficiently small, then, with

a suitable choices of M and M1, we can show that

max.k� uk
BUC1�˛.J;h

3C

even .R//

; k� ukL1.J;BUC 1
even.R/// 6 max.M;M1/:

The evenness of � u is easy since etA@xf for odd f is even. Thus, we have shown that

� .ZM;M1.J // � ZM;M1.J /. In particular � u is well-defined. The smallness ofM;M1; m;m1

are independent of T > 0 since all constants appearing in our estimate is independent of T > 0.

Step 2 (� is a contraction on ZM;M1.J /). We take ui 2 ZM;M1.J / .i D 1; 2/. Let vi WD
ui C UL .i D 1; 2/ and

�i

�
.vi /x; .vi /xx; .vi /xxx

�
WD h

�
.vi /x

�
.vi /xxx � g

�
.vi /x; .vi /xx

�
.i D 1; 2/:

Then we have

� u1 � � u2 D �
Z t

0

e.t�s/A@x

�
P .�1 ��2/

�
.s/ ds;

where

�1 ��2 D h
�
.v1/x

�
.v1/xxx � g

�
.v1/x; .v1/xx

�

� h
�
.v2/x

�
.v2/xxx C g

�
.v2/x; .v2/xx

�

D h
�
.v1/x

�
.u1 � u2/xxx C

�
h
�
.v1/x

�
� h

�
.v2/x

��
.v2/xxx

�
�
g
�
.v1/x; .v1/xx

�
� g

�
.v2/x; .v2/xx

��

DW I1 C I2 C I3: (3.16)

Now we estimate the right-hand side of (3.16) with respect to Hölder seminorm respectively. The

argument, however, proceeds similarly as in Step 1, therefore we leave the detailed computations to

the reader.

ŒI1�
 D
�
h
�
.v1/x

�
.u1 � u2/xxx

�



6 eC 2

˚
j.v1/xj1Œ.u1 � u2/xxx�
 C Œ.v1/x�
 j.u1 � u2/xxxj1

	
: (3.17)

Next, by the fundamental theorem of calculus, we observe that

I2 D
�
h
�
.v1/x

�
� h

�
.v2/x

��
.v2/xxx

D
�Z 1

0

h0.�.u1/x C .1 � �/.u2/x C UL
x / d�

�
.u1 � u2/x.v2/xxx; (3.18)

where h0.v/ D 6v=.1C v2/4.

To estimate (3.18) with respect to Hölder seminorm, we use Lemma 3.1 to get

Œ'1'2'3�
 6 Œ'1�
 j'2j1j'3j1 C j'1j1Œ'2�
 j'3j1 C j'1j1j'2j1Œ'3�
 : (3.19)

From (3.18) and (3.19) we have

ŒI2�
 D Œ.h..v1/x/ � h..v2/x//.v2/xxx�
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6 eC 3

��Z 1

0

Œh0.�.u1/x C .1 � �/.u2/x C UL
x /�
 d�

�
j.u1 � u2/xj1j.v2/xxxj1

C
�Z 1

0

jh0.�.u1/x C .1 � �/.u2/x C UL
x /j1 d�

�
Œ.u1 � u2/x�
 j.v2/xxxj1

C
�Z 1

0

jh0.�.u1/x C .1 � �/.u2/x C UL
x /j1 d�

�
j.u1 � u2/xj1Œ.v2/xxx�


�

6 eC 3

n�
Œu1�1C
 C Œu2�1C
 C ŒUL�1C


�
ju1 � u2j1;1jv2j3;1

C
�
ju1j1;1 C ju2j1;1 C jULj1;1

�
Œu1 � u2�1C
 jv2j3;1

C
�
ju1j1;1 C ju2j1;1 C jULj1;1

�
ju1 � u2j1;1Œv2�3C


o
: (3.20)

The term ŒI3�
 is similarly estimated. In fact, by the fundamental theorem of calculus, we observe

that

g.p1; q1/ � g.p2; q2/ D
�Z 1

0

D1g.�p1 C .1 � �/p2; �q1 C .1 � �/q2/ d�

�
.p1 � p2/

C
�Z 1

0

D2g.�p1 C .1� �/p2; �q1 C .1 � �/q2/ d�

�
.q1 � q2/; (3.21)

where

D1g D 3.1 � 5p2/q2

.1C p2/4
; D2g D 6pq

.1C p2/3
;

pi D .ui C UL/x; qi D .ui C UL/xx; .i D 1; 2/:

We estimate the right-hand side of (3.21) with respect to Hölder seminorm.

�
.D1g/.p1 � p2/

�



6 ŒD1g�
 jp1 � p2j1 C jD1gj1Œp1 � p2�


6

ˇ̌
ˇ̌3.1� 5p2/

.1C p2/4

ˇ̌
ˇ̌
1

Œq2�
 jp1 � p2j1 C
�
3.1� 5p2/

.1C p2/4

�




jq2j1jp1 � p2j1

C
ˇ̌
ˇ̌3.1� 5p2/

.1C p2/4

ˇ̌
ˇ̌
1

jq2j1Œp1 � p2�


6 bC 2

˚
jqj1Œq�
 jp1 � p2j1 C Œp�
 jqj21jp1 � p2j1

C jqj21Œp1 � p2�

	
; (3.22)

Œ.D2g/.q1 � q2/�
 6 ŒD2g�
 jq1 � q2j1 C jD2gj1Œq1 � q2�


6

ˇ̌
ˇ̌ 6p

.1C p2/3

ˇ̌
ˇ̌
1

Œq�
 jq1 � q2j1 C
�

6p

.1C p2/3

�




jqj1Œq1 � q2�


C
ˇ̌
ˇ̌ 6p

.1C p2/3

ˇ̌
ˇ̌
1

jqj1Œq1 � q2�


6 bC 3

˚
Œq�
 jq1 � q2j1 C Œp�
 jqj1Œq1 � q2�
 C jqj1Œq1 � q2�


	
: (3.23)
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The estimates (3.22) and (3.23) yield that

ŒI3�
 6 bC 2

n�
j.u1/xxj1 C j.u2/xxj1 C jUL

xxj1
�

�
�
Œ.u1/xx�
 C Œ.u2/xx�
 C ŒUL

xx�

�

ju1 � u2j1
C
�
Œ.u1/x�
 C Œ.u2/x�
 C ŒUL

x �

�

�
�
j.u1/xxj21 C j.u2/xxj21 C jUL

xxj21
�

ju1 � u2j1
�
j.u1/xxj21 C j.u2/xxj21 C jUL

xxj21
�
Œu1 � u2�


o

C bC 3

n�
Œ.u1/xx�
 C Œ.u2/xx�
 C ŒUL

xx�

�

j.u1/xx � .u2/xxj1
C
�
Œ.u1/x�
 C Œ.u2/x�
 C ŒUL

x �

� �

j.u1/xxj1 C j.u2/xxj1 C jUL
xxj1

�

� Œ.u1/xx � .u2/xx�


C
�
j.u1/xxj1 C j.u2/xxj1 C jUL

xxj1
�
Œ.u1/xx � .u2/xx�


o
: (3.24)

By (3.17), (3.20) and (3.24) the term supt2 PJ t
1�˛ Œ@3

x.� u1 � � u2/�
 is estimated by

sup
t2 PJ

t1�˛ Œ@3
x.� u1 � � u2/�h
 6

�Z 1=2

0

.1� �/�1�˛�1 d� C 21�˛

1 � �

�

�
n
eC 2

h
.M1 Cm1/C .M1 Cm1/

2=.2C
/.M Cm/
=.2C
/
i

C eC 3

�
.2M 2=.2C
/

1 M 
=.2C
/ Cm2=.2C
/
1 m
=.2C
//.M1 Cm1/


=.2C
/.M Cm/2=.2C
/

C .2M1 Cm1/.M1 Cm1/

=.2C
/.M Cm/2=.2C
/ C .2M1 Cm1/.M Cm/

�

C bC 2

�
.2M .1C
/=.2C
/

1 M 1=.2C
/ Cm.1C
/=.2C
/
1 m1=.2C
//

� .2M 1=.2C
/
1 M .1C
/=.2C
/ Cm1=.2C
/

1 m.1C
/=.2C
//

C .2M 2=.2C
/
1 M 
=.2C
/ Cm2=.2C
/

1 m
=.2C
//

� .2M 2.1C
/=.2C
/
1 M 2=.2C
/ Cm2.1C
/=.2C
/

1 m2=.2C
//

C .2M 2.1C
/=.2C
/
1 M 2=.2C
/ Cm2.1C
/=.2C
/

1 m1=.2C
//
�

C bC 3

�
.2M 1=.2C
/

1 M .1C
/=.2C
/ Cm1=.2C
/
1 m.1C
/=.2C
//

C .2M 2=.2C
/
1 M 
=.2C
/ Cm2=.2C
/

1 m
=.2C
//

� .2M .1C
/=.2C
/
1 M 1=.2C
/ Cm.1C
/=.2C
/

1 m1=.2C
//

C .2M .1C
/=.2C
/
1 M 1=.2C
/ Cm.1C
/=.2C
/

1 m1=.2C
//
�o
: (3.25)

The estimates for the other terms

1

T �
sup
t2 PJ

t1�˛ j@3
x.� u1 � � u2/j1;

1

T 1=4C�
sup
t2 PJ

t1�˛ j@2
x.� u1 � � u2/j1;

1

T 1=2C�
sup
t2 PJ

t1�˛ j@x.� u1 � � u2/j1;
1

T 3=4C�
sup
t2 PJ

t1�˛ j� .u1 � u2/j1
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proceed similarly. Thus, we have actually estimated k� u1 �� u2k
BUC1�˛.J;h

3C

even .R//

. The estimate

of k� u1 � � u2kL1.J;BUC 1
even.R// also proceed similarly as above.

The smallness of the constantsm;m1 and our suitable choices of the constants M;M1 shows

that k� u1 � � u2kZM;M1 .J / is less than or equal to .1=2/ku1 � u2kZM;M1 .J /, which concludes

that � is a contraction on ZM;M1.J /. By invoking the Banach contraction mapping principle, there

exists a unique solution u of u D � u in ZM;M1.J /. The rescaled function u� also satisfies (1.10)–

(1.12). By uniqueness, we conclude that u D u� which implies u is self-similar.

The proof proceeds similarly in the case of a 6� 0. What we have to do for example is to estimate

t1�˛ Œ@3
xe

tAa�
 .

t1�˛ Œ@3
xe

tAa�
 D t1�˛ ŒA1=2etA@xa�


6 t1�˛kA1=2etAkL.F0;F� / � ka0kF0

6 t1�˛ � t�1=2�� ka0kF0

D ka0kF0
: (3.26)

In the last line of (3.26), we use the relation ˛ D 1=2� 
=4. Thus, if ka0kF0
D ja0j1 is sufficiently

small, we can arrange the quantity t1�˛ Œ@3
xe

tAa�
 is small. In fact, we can prove that

ketAak
BUC1�˛.J;h

3C

even .R//

C ketAakL1.J;BUC 1.R// 6 Ckak1;1:

Hence, we can show the unique existence of the solution of u D etAaC� u as before when kak1;1

is small. The desired estimate follows by construction.

It must be noted that u is not differentiable with respect to the time t with values in F0. For this

reason we shall define the term weak solution to prove that u solves formally (3.2) at least RC � J
(so that v D uC UL is the desired solution).

DEFINITION 3.4 (Weak solution) We say that v 2 BUC1�˛.J; h
3C
 .RC//\L1.J; BUC 1.RC//

is a weak solution of the problem (1.1)–(1.3) if

Z T

0

hv; 'ti dt D �h'.x; 0/; ai �
Z T

0

�
@x';

1

.1C v2
x/

1=2

@

@x

�
vxx

.1C v2
x/

3=2

��
dt (3.27)

for all ' 2 C1
c .RC � Œ0; T // and satisfies (1.2) and (1.3). Here we denote h�; �i by the canonical

pair. If f; g 2 L2.RC/, then hf; gi D
R1

0 fg dx.

LEMMA 3.5 Let u be the solution which we constructed in Theorem 3.3. Then v D u C UL is a

weak solution.

Proof. Recall that

u D etAa �
Z t

0

e.t�s/A@xP�.s/ ds: (3.28)

Multiplying 't to the both sides of (3.28) and integrating over RC � Œ0; T � we have

Z T

0

hu; 'ti dt D
Z T

0

hetA; 't i dt �
Z T

0

�
't ;

Z t

0

e.t�s/A@xP�.s/ ds

�
dt: (3.29)



SELF-SIMILAR SOLUTIONS TO THE SURFACE DIFFUSION 565

We calculate the right-hand side of (3.29) respectively. The first term can be calculated as follows.

Z T

0

hetAa; 't i dt D
Z T

0

Z 1

0

etAa't dx dt

D
Z 1

0

Z T

0

etAa't dt dx

D
Z 1

0

�
�
Z T

0

@t .e
tAa/' dt C

h
etAa'

itDT

tD0

�
dx

D �
Z 1

0

Z T

0

AetAa' dt dx �
Z 1

0

'.x; 0/a dx

D �
Z T

0

hA'; etAai dt � h'.x; 0/; ai: (3.30)

To calculate the second term note that A is self-adjoint, i.e., A� D A. We shall transfer the

semigroup erA in the coupling h�; �i. Thanks to the self-adjointness we can actually transfer the

semigroup erA.

�
Z T

0

�
't ;

Z t

0

e.t�s/A@xP�.s/ ds

�
dt

D �
Z T

0

Z t

0

h't ; e
.t�s/A@xP�.s/i ds dt

D �
Z T

0

Z t

0

he.t�s/A�
't ; @xP�.s/i ds dt

D �
Z T

0

Z t

0

he.t�s/A't ; @xP�.s/i ds dt

D �
Z T

0

Z T

s

he.t�s/A't ; @xP�.s/i dt ds

D �
Z T

0

�
�
Z T

s

h@t .e
.t�s/A/'; @xP�.s/i dt C

h
he.t�s/A'; @xP�.s/i

itDT

tDs

�
ds

D
Z T

0

Z T

s

hAe.t�s/A'; @xP�.s/i dt ds C
Z T

0

h'.s; x/; @xP�.s/i ds

D
Z T

0

Z t

0

hA'; e.t�s/A@xP�.s/i ds dt �
Z T

0

h@x';P�i dt

D
Z T

0

hA';�uC etAai dt �
Z T

0

h@x';P�i dt: (3.31)

From (3.30) and (3.31) we get

Z T

0

hu; 't i dt D �
Z T

0

hA'; etAai dt � h'.x; 0/; ai C
Z T

0

hA';�uC etAai dt

�
Z T

0

h@x';P�i dt
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D �
Z T

0

hA'; ui dt � h'.x; 0/; ai C
Z T

0

h@x';P�i dt

D �
Z T

0

h@x'; @
3
xui dt �

Z T

0

h@x';P�i dt � h'.x; 0/; ai: (3.32)

On the other hand we calculate
R T

0
hUL; 't i dt as

Z T

0

hUL; 't i dt D �
Z T

0

h@tU
L; 'i dt

D
Z T

0

h@4
xU

L; 'i dt D �
Z T

0

h@x'; @
3
xU

Li dt: (3.33)

Summing up (3.32) and (3.33), we have

Z T

0

hv; 't i dt D �h'.x; 0/; ai �
Z T

0

h@x'; @
3
x.uC UL/i dt �

Z T

0

h@x';P�i dt

D �h'.x; 0/; ai

�
Z T

0

�
@x';

1

.1C .uC UL/2x/
2
@3

x.uC UL/ � 3.uC UL/x.uC UL/2xx

.1C .uC UL/2x/
3

�
dt

D �h'.x; 0/; ai �
Z T

0

�
@x';

1

.1C v2
x/

1=2

@

@x

�
vxx

.1C v2
x/

3=2

��
dt:

Here the operator P disappears since
R T

0
h@x'; ci dt D 0 for any constant c.

REMARK 3.6 (i) It is likely that the constructed solution u is smooth by using linear parabolic

theory for higher order equation. The fuller study of the regularity of a general solution lies

outside the scope of this paper. If a � 0, then u is self-similar so that v D u C UL is

self-similar. The self-similar solution v is a solution of ODE so it must be smooth.

(ii) The estimate (3.12) is similar to that in [1, Theorem 2.14] by Angenent. We have given a

simple proof.

3.3 Stability of a self-similar solution

In this subsection we discuss the stability of a self-similar solution. Let u be the mild solution which

we constructed in Theorem 3.3. For � > 0, we set

v�.x; t/ WD 1

�
v.�x; �4t/; a�.x/ WD 1

�
a.�x/

Since v is the solution of the problem (1.1)–(1.3), v� is also the solution of the problem (1.1)–(1.3)

with the initial data a�.

THEOREM 3.7 The rescaled u� uniformly converges to Qu as � ! 1 on any compact sets in

.0; T � � R, that is, v� D u� C UL uniformly converges to the self-similar solution Qv WD QuC UL.

In particular, t�1=4v.t1=4x; t/ ! Z.x/ as t ! 1 locally uniformly in Œ0;1/ whenZ is the profile

function of Qv.
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To show Theorem 3.7, we need a preliminary lemma. For the definition of the weighted Hölder

space C ˛
ˇ
..0; T �; E/, see [20, Chapter 4].

LEMMA 3.8 Let u be the mild solution which we constructed in Theorem 3.3. Then

u 2 C
1C


4
1C


2

�
.0; T �; h2C


even .R/
�

and there exists C D C.
; ı0; ˇ0/ such that

kuk
C

1C

4

1C

2

..0;T �;h
2C

even .R//

6 C:

Proof. We consider the difference

u.t/ � u.s/ D .etA � esA/a �
Z t

s

e.t��/A@xP�.�/ d� �
Z s

0

.e.t��/A � e.s��/A/@xP�.�/ d�

D �
Z t

s

AerAa dr �
Z t

s

e.t��/A@xP�.�/ d� C
Z s

0

Z t��

s��

AerA@xP�.�/ dr d�;

where �.�/ D �.vx ; vxx; vxxx/.�; �/ as before. Recalling the definition of the weighted Hölder

space (cf. [20, Chapter 4]), we have

Œu�
C

1C

4

1C

2

.J;h
2C

even .R//

D sup
0<"<T

"
1C


2 Œu�
C

1C

4 .Œ";T �;h

2C

even .R//

:

Thus, for " 6 s < t 6 T we calculate

"
1C


2 Œ@2
xu.t/ � @2

xu.s/�
 6 "
1C


2

�
�@2

x

�Z t

s

AerAa dr

��




C "
1C


2

�
@2

x

Z t

s

e.t��/A@xP�.�/ d�

�




C "
1C


2

�
@2

x

Z s

0

Z t��

s��

AerA@xP�.�/ dr d�

�




DW J1 C J2 C J3:

The term J1 is estimated by

J1 6 "
1C


2

�Z t

s

@xAe
rA@xa dr

�




6 "
1C


2

Z t

s

k@xAe
rAkL.L1.R/;h
.R// � j@xaj1 dr

. "
1C


2

Z t

s

r�1� 1
4

� 

4 dr � kakBUC 1.R/

.
4

1C 

"

1C

2
.t � s/

1C

4

s
1C


4 t
1C


4

kakBUC 1.R/ 6
4

1C 

.t � s/ 1C


4 kakBUC 1.R/: (3.34)
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Now we estimate J2 by

J2 6

Z t

s

k@3
xe

.t��/AkL.h
 .R/;h
 .R// � Œ�.�/�
 d� . c1.
; ı0; ˇ0/

Z t

s

.t � �/�3=4�˛�1 d�: (3.35)

If s < t=2, then we have

"
1C


2

Z t

s

.t � �/�3=4�˛�1 d� D "
1C


2

�Z t=2

s

C
Z t

t=2

�
.t � �/�3=4�˛�1 d�:

For � 2 Œs; t=2�, note that " 6 � and � 6 t � � . Thus, we observe

"
1C


2

Z t=2

s

.t � �/�3=4�˛�1 d� 6 "
1C


2

Z t=2

s

.t � �/�3=4C
=4.t � �/�
=4�
1C


2 �˛�1 d�

D
Z t=2

s

.t � �/�3=4C
=4
� �

t � �
�
=4

d�

6

Z t=2

s

.t � �/�3=4C
=4 d� 6
4

1C 

.t � s/

1C

4 : (3.36)

For � 2 Œt=2; t �, we observe

"
1C


2

Z t

t=2

.t � �/�3=4�˛�1 d� 6 "
1C


2

�
t

2

�˛�1 Z t

t=2

.t � �/�3=4 d�

D 4"
1C


2

�
t

2

�˛�1 �
t

2

�1=4

6 4 � 2
1C


2

�
t

2

� 1C

2
�
t

2

�˛�3=4

6 2
5C


2 .t � s/
1C


4 : (3.37)

If s > t=2, then we calculate in the same way as (3.37) to get

"
1C


2

Z t

s

.t � �/�3=4�˛�1 d� 6 "
1C


2

Z t

t=2

.t � �/�3=4�˛�1 d�

6 2
5C


2 .t � s/
1C


4 : (3.38)

From (3.35)–(3.38) we have

J2 . c1.t � s/
1C


4 : (3.39)
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The term J3 is estimated by

J3 6 "
1C


2

Z s

0

Z t��

s��

k@3
xAe

rAkL.h
 .R/;h
.R//Œ�.�/�
 d�

. c1"
1C


2

Z s

0

Z t��

s��

r�1�3=4�˛�1 dr d�

D c1"
1C


2

Z s

0

Z t��

s��

r�3=4C
=4 � r�1�
=4�˛�1 dr d�

6 c1"
1C


2

Z s

0

.s � �/�1�
=4�˛�1 d�

Z t��

s��

r�3=4C
=4 dr

6
4

1C 

c1"

1C

2

�Z s

0

.s � �/�1�
=4�˛�1 d�

�
.t � s/

1C

4

6
4

1C 

c1

�Z 1

0

.1 � �/�1�
=4�˛�1 d�

�
.t � s/

1C

4 : (3.40)

From (3.34), (3.39) and (3.40) we conclude that u 2 C
1C


4
1C


2

.J; h
2C

even .R// and there exists a constant

C WD C.
; ı0; ˇ0/ such that

Œu�
C

1C

4

1C

2

.J;h
2C

even .R//

6 C:

To show Theorem 3.7 we give a simple sufficient condition so that the product converges in

L1�-weak sense.

LEMMA 3.9 Assume that the sequence fgj g converges to g in L1�-weak sense and the sequence

ffj g is uniformly bounded and converges to f almost everywhere. Then the product sequence fjgj

converges to fg in L1�-weak sense.

Proof. Let h 2 L1. We denote h�; �i by the canonical pair as before. Let us consider the difference

hfjgj ; hi � hfg; hi.

hfjgj ; hi � hfg; hi D hgj .fj � f /; hi C hf .gj � g/; hi
D hfj � f; gjhi C hgj � g; f hi (3.41)

The second term converges to zero since f h 2 L1.R/ and gj converges to g in L1�-weak sense.

Since j.fj � f /gjhj is estimated from above as

j.fj � f /.x/gj .x/h.x/j 6 .sup
j

jfj j1 C jf j1/ sup
j

jgj j1jh.x/j;

the Lebesgue dominated convergence theorem implies that the first term converges to zero as

j ! 1.
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Proof of Theorem 3.7. We first note that

ka�kBUC 1.R/ D ja�j1 C j@xa�j1

D 1

�
sup

x
ja.�x/j C sup

x
ja0.�x/j

6
jaj1
�

C ja0j1
6 kakBUC 1.R/;

if � > 1. Then Theorem 3.3 yields

t1�˛ Œu��3C
 .t/C j@xu�j1 6 C1; t > 0:

By interpolation we observe that

j@3
xu�j1.t/ 6

C2

t1=2
; j@2

xu�j1.t/ 6
C3

t1=4
; t > 0; (3.42)

with Cj .j D 1; 2; 3/ independent of � > 1. Since

�� WD
�

1

.1C .u� C UL/2x/
2

� 1
�
@3

xu� � 3.u� C UL/x.u� C UL/2xx

.1C .u� C UL/2x/
3

;

applying (3.42) we get

j��j1.t/ 6
2C2

t1=2
C 3C 2

3

t1=2
D C4

t1=2
; t > 0: (3.43)

By Lemma 3.8

kuk
C

1C

4

1C

2

..0;T �;h
2C

even .R//

6 C;

with C independent of � > 1. By this bound we see that u� together with its spatially up to second

order derivatives is uniformly bounded and equi-continuous in RC � .ı; T / for any ı > 0. By the

Ascoli-Arzelà theorem and a diagonal argument, there exists a subsequence fu�j
g1
j D1 such that u�j

converges to a some continuous function Qu as �j ! 1 uniformly on any compact set in RC �.0; T �
up to the spatial second order derivatives. By (3.42) we may assume that t1=2@3

xu� ! t1=2@3
x Qu in

� weak sense of L1.RC � .0;1//. Thus t1=2��j
.t/ converges to � D �.. Qu C UL/x; . Qu C

UL/xx; . QuC UL/xxx/ � weakly in L1.RC � .0;1// by Lemma 3.9 and (3.43).

Since u�j
solves

u�j
D etAa�j

�
Z t

0

e.t�s/A@x��j
.s/ ds;

letting j ! 1 yields

Qu D 0 � lim
j !1

Z t

0

e.t�s/A@x��j
.s/ ds D �

Z t

0

e.t�s/A@x�.s/ ds:
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This is at least true if one interprets the convergence in the sense of distribution in RC for a fixed t .

Indeed, for f 2 C1
c .RC/

�Z t

0

e.t�s/A@xP��j
.s/ ds; f

�
D �

Z t

0

hP��j
.s/; @xe

.t�s/Af i ds

D �
Z t

0

h��j
.s/; @xe

.t�s/Af i ds:

Since @xe
.t�s/Af D e.t�s/A@xf we see that k@xe

.t�s/Af kL1.R/ 6 C0k@xf kL1.R/; see

Remark 2.11. This is in particular implies that s1=2k@xe
.t�s/Af kL1 2 L1.0; t/ as a function of

s. Since s1=2�� ! s1=2� in � weak sense in L1.RC � .0; t//, we observe that for any t > 0

Z t

0

e.t�s/A@x��j
.s/ ds !

Z t

0

e.t�s/A@x�.s/ ds as j ! 1

in the sense of distribution. (Since

ˇ̌
ˇ̌
Z t

0

e.t�s/A@x��j
.s/ ds

ˇ̌
ˇ̌
1

6 C5

Z t

0

1

.t � s/1=4s1=2
ds D C t1=4;

the convergence can be actually interpreted in L1�-weak sense.) We have thus proved that

Qu D �
Z t

0

e.t�s/A@x�.s/ ds:

By the uniqueness of solution of integral equations implies that Qu is self-similar so that Qv D QuCUL

is a self-similar solution. We finally remark that the limit of the sequence is independent of choice

of subsequences because the solution of integral equations is unique. We thus conclude that (local

uniform) convergence v� ! Qv is a full convergence.

REMARK 3.10 It is important to estimate the depth of the thermal groove, that is, the absolute

value of the profile function Z.�/ at x D 0 with respect to ˇ. However, to discuss the depth of

the thermal groove requires further study. We may leave this problem open. As for the second

order problem, Hamamuki [16] investigates the depth of thermal groove based on the comparison

principle technique.
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