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We consider the surface diffusion flow equation when the curve is given as the graph of a function
v(x,t) defined in a half line RT™ = {x > 0} under the boundary conditions vy = tan > 0 and
vxxx = 0 at x = 0. We construct a unique (spatially bounded) self-similar solution when the angle
B is sufficiently small. We further prove the stability of this self-similar solution. The problem stems
from an equation proposed by W. W. Mullins (1957) to model formation of surface grooves on the
grain boundaries, where the second boundary condition vxxx = 0 is replaced by zero slope condition
on the curvature of the graph.

For construction of a self-similar solution we solve the initial-boundary problem with
homogeneous initial data. However, since the problem is quasilinear and initial data is not compatible
with the boundary condition a simple application of an abstract theory for quasilinear parabolic
equation is not enough for our purpose. We use a semi-divergence structure to construct a solution.

2010 Mathematics Subject Classification: Primary 35C06; Secondary 35G31, 35K59, 74N20.

Keywords: Self-similar solution; surface diffusion flow; stability; analytic semigroup; mild solution.

1. Introduction

We consider the initial-boundary problem for the surface diffusion flow equation of the form

v 9 1 ad Vxx 5010
at  ox L1 +v)2ox \(1+0v2)32 )] ’ ’

with the boundary condition

vy =tanfB, x =0,t>0,
Uxxx =0, x=0,¢>0,

and the initial condition
v=a, x>0,t=0,

(1.1)

(1.2)
(1.3)

(1.4)

where B is a nonnegative number and vy = dv/0dx, Vyxxx = 0°v/dx>. We are interested in finding
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F1G. 1. Profile of thermal groove

a solution for small § > 0 and small bounded a. In particular, we shall find a bounded self-similar
solution and discuss its stability. We say that a solution of (1.1)—(1.3) is self-similar if the rescaled
function

1
vi(x,1) = Xv(kx,k40

satisfies vy (x,7) = v(x,t) for all A > 0. By definition, a self-similar solution v is of the form
v(x,1) = t'*Z(x/t'/*) with some function of one variable Z called a profile function. Evidently,
(tan B)x is a trivial self-similar solution but is unbounded. If Z is bounded, we say the self-similar
solution is (spatially) bounded. Note that a bounded self-similar solution corresponds to a solution
of (1.1)—(1.3) with zero initial data, i.e., the case a = 0. In this paper we prove that the system (1.1)—
(1.4) is solvable globally-in-time and it asymptotically converges to a bounded self-similar solution
for large time provided that ¢ and B are small. In particular, we prove the unique existence of a
bounded self-similar solution for small §.

This problem stems from a model describing the development of the surface groove proposed
by W. W. Mullins [22]. There the condition (1.3) is replaced by no-flux condition k; = 0 where «
is the upward curvature of the graph curve y = v(x, t) and s is the arc-length parameter. Moreover,
a is assumed to be zero so that the initial surface is flat.

The equation (1.1) is the surface diffusion law V = —k; for the graph curve y = v(x,1)
where V' is the upward normal velocity. The condition (1.2) says that the contact angle of the curve
y = v(x,t) at the wall equals 7 /2 — B.

Let us explain the derivation of Mullins’ system. Denote (k) by the increase in chemical
potential per atom. We consider the situation where p (k) is given by

p(k) = yS2k,

where y is the surface-free energy per unit area, §2 is the molecular volume. The gradient of
chemical potential along the surface is obtained via the gradient of the curvature with respect to
arc-length parameter s. Therefore, by the Nernst—Einstein relation, a drift of surface atoms R is

_ Dsy$2 0k
kT ¥’



SELF-SIMILAR SOLUTIONS TO THE SURFACE DIFFUSION 541

where Dy is the coefficient of surface diffusion, 7 is the temperature and k is the Boltzmann
constant. The surface flux j is the product R by the number N of atoms per unit area,
Dsy$2N ok
= - 1.5
/ KT o (1)
One can obtain the speed of movement V' of the surface element along its normal by multiplying £2
to the surface divergence of —j, that is,

. Dk 22N 0%k
T kT 952

The resultant of the grain boundary tension and two surface tensions is assumed to vanish along
the line of intersection. The equilibrium angle is 2y, sin 8 = y;, where y; and y; are the surface
and boundary-free energies per unit area. The absolute value of all slopes is assumed to be small
compared with unity. This asserts that 1 >> y,/(2ys) = sin 8 =~ tan 8, which is the first boundary
condition (1.2). In addition to this, we require a vanishing current of atoms out of the grain boundary,
that is, j = 0 at x = 0. Thus, we have the second boundary condition ks = 0 at x = 0. The small
slope approximation of k; = 0 is exactly our second boundary condition (1.3).

Mullins [22] linearized the equation (1.1) and the boundary condition (1.3) around v = 0 and
studied the linear problem of the form

Vv

0 04
8—);:—8—)4;, x>0,t>0, (1.6)
X
with the boundary condition
yy =tanB, x =0, >0, (1.7
Yxxx =0, x=0,1>0, (1.8)
and the initial condition
y=0, x>0,t=0. (1.9)

The solution is again expected to be self-similar. Mullins applied the Laplace transform and derived
the depth y(0,¢) which is proportional to /4. Then he studied a profile function Z solving the
ordinary differential equation of the form

n 1 / 1
Z 4zZ + 1 Z =0.
Mullins assumed Z to be a power series Z = Y -~ a,z". He showed that {a,} can be determined
by a recursion relation. However, its convergence was not discussed.

P. A. Martin [21] improves and extends the results of Mullins. He studies the same
problem (1.6)-(1.9). However, the technique developed by Martin is different. He uses the Fourier
cosine transform with respect to x. By this technique, he obtains the explicit integral representation
formula for the solution y. Based on this formula he proved that the solution decays exponentially
at space infinity. In the latter half of [21], he studies multi-groove systems such as periodic surface
profile case and two grooves case.

Note that for the original Mullins’ system (1.1)—(1.2) with kg = 0, it is not known whether or
not bounded self-similar solutions exist. In this paper we linearized the boundary condition k5 = 0
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to get (1.3) to prove the existence of a self-similar solution. Since (1.1) is quasilinear, such a result
was not known even for our simplified problem.

There are two approaches to construct a self-similar solution. One is to solve an ordinary
differential equation (ODE) for a profile function. For our problem this seem to be difficult since one
has to solve a nonlinear equation of order 4 globally for x > 0. Another way is a partial differential
equation (PDE) approach initiated by Giga and Miyakawa [15] and developed by Cazenave and
Weissler [7]. The main idea is to solve (1.1)—(1.3) by imposing a homogeneous initial data (in our
case we consider zero initial data). One advantage of PDE method over ODE is that it is easy to
show the stability of a constructed self-similar solution.

Although there is a large literature for solvability of the surface diffusion equation (e.g., [2, 3, 10,
11]), there are a few papers discussing the boundary value problem (e.g., [12—-14, 17, 18]). A further
difficult point is that in our setting we have to handle initial data like @ = 0 which is incompatible
with the boundary condition. We first transform the problem with homogeneous boundary condition
by subtracting a solution y = U’ of the linearized problem (1.6)—(1.9). To solve u = v — UL we
rearrange the equation

dou = —0%u — 0x (E(ux + UL, (u + U ux, (0 + UF)xxx)), x> 0,1 >0, (1.10)
with the boundary condition

u, =0, x=0,r>0, (1.11)
Uxxx =0, x=0,1>0. (1.12)

The highest order term in = is linear in (u+U ) ;. and its coefficient equals (14 (ux +UF)?)2—1
which is very small when u, and § are close to zero (so that UXL is also close to zero). We solve
this equation in BUC;_a(J. hawstd (R)) N L®(J, BUCJ  (R)) (see Section 2 for the definition)
by adjusting an abstract method of Da Prato—Grisvard [9] and Angenent [1]. We study an integral
equation corresponding to (1.10)—(1.12) for u and construct a solution by a fixed-point argument.
The smallness condition is invoked to justify that terms in dx & is small compared with other terms
in (1.10), so that the contraction mapping principle works. Since our data may be incompatible,
one cannot work in 44*7. This is a reason why a general theory on local existence for quasilinear
equation [8] does not apply to our setting. Note that L? type space is not suitable in handling this
problem since we seek homogeneous functions so we use little Holder spaces.

Recently, Hamamuki [16] studies the self-similar solutions to the evaporation-condensation
problem which is of the form

8,w
————=1-¢%  x>0,t >0, 1.13
1+ )72 (19
with the boundary condition
ad
Y tang, x=01>0. (1.14)
0x

This problem (1.13)—(1.14) was also proposed as an evaporation-condensation model by Mullins
[22]. The equation (1.13) is, of course, nonlinear. However, since the equation is of second order, he
is able to apply the viscosity solution theory to study the problem (1.13)—(1.14). He proves that the
solution becomes asymptotically self-similar as 1 — oo without assuming that the angle § > 0 is
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small. His method is based on constructing suitable barriers. The groove depth is also studied. His
approach is quite different from the approach we discuss in this paper. His technique seems not to
be applicable to our problem (1.1)—(1.3) since our problem is of fourth order.

We next mention several works related to our study. Broadbridge and Tritscher [6] try to solve
the grain boundary problem using a nonlinear model equation of the type

ady il a
= B 00 [ SOyl O0F + D f 0 + fOPY AL 1)
ot ax ax

with the boundary conditions. Here, (1.15) corresponds to the linear model when f = 1 and

the nonlinear Mullins’ system when f(yx) = fo(yx) = (1 + y2)~Y/2. In [6] they search for a
linearizable form, which is in this case f(yx) = «/(8 4+ yx) (o and B are constants). For this
purpose, they apply the linearizing transformation (which is called as Storm transformation) to
simplify the boundary conditions. By assuming a similarity solution of the form y, = g(§) with
£ = x(B1t)~Y* (B; = Ba~'(1 + B?)!/?), they reduce the equation to the linear ODE. The linear
ODE is then solved by the Frobenius power series method. Finally they compare the linearizable
model with which they are treating in [6] and the Mullins’ system. In particular they compare the
groove depth y(0, ¢) at the origin. They observe that the small-slope approximation is valid for most
metals in inert gases. However, in surface-active environments, grain boundary slopes taking large
values, the error differences in the grooves depth become large between the linear model and the
nonlinear model. Note that their results do not yield self-similar solution to (1.1)—(1.3).

Kanel, Novick-Cohen and Vilenkin [19] find travelling wave solutions which describe grain
boundary motion in a bicrystal which has a triple junction. The triple junction separates the surface
in three phases, that is, grain 1, grain 2 and an outside. The boundary between grain 1 and grain
2 is called a grain boundary. The boundary between grains and outside is called an exterior
surface. In this situation, the grain boundary evolves according to motion by mean curvature.
Away from it, the evolution of the exterior surface is governed by the surface diffusion. Thus,
the motion is coupled with mean curvature and surface diffusion. This problem has already been
propounded by Mullins [23] in 1958. After expressing the problem via an angle formulation, they
show the existence of a solution based on the theory of stable and unstable manifolds and integral
formulations using the Green functions. It seems that their approach does not apply to our setting
since their initial data is compatible.

Zhu [26] studies the existence of the stationary solution to the equation (1.1) in the open interval
I = (a,b) C R with zero boundary conditions, i.e.,

Vx = Vxxx =0 ondl,

and the initial data B
Ylt=0o =y0 onl.

He shows the existence of a stationary solution. He also proves the stationary solution is
asymptotically stable in a suitable norm as time goes to infinity. He establishes the energy estimate
of Schauder type for the solution, then applies the Leray—Schauder fixed-point theorem. Since he
discusses compatible data, his approach does not apply to our study.

This paper is organized as follows. In Section 2, we study the linearized equation and recall a
result of P. A. Martin. We also give the definitions of some function spaces and show that the bi-
Laplacian operator —9% generates the non Co-bounded analytic semigroup on L. In Section 3, we
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construct the mild solution of the problem (1.1)—(1.4). Finally, we prove the stability of self-similar
solution.

A self-similar solution is constructed in a similar way in [4] but for the differential form of (1.1).
The spatial derivative of the self-similar solution we construct in this paper is actually the solution
of [4]. However, in [4] it is not clear the self-similar solution in [4] is bounded. Also, stability of the
self-similar solution is not discussed in [4].

2. Linear equation with boundary conditions
2.1  Explicit formula for the linear problem

Before turning to a closer examination of our nonlinear problem (1.1)—(1.4), we must draw attention
to the linear problem (1.6)—(1.9). As described in the Introduction, there are several available results
on the linear problem. In this paper, we recall the result of the paper by P. A. Martin [21].

LEMMA 2.1 There is a solution for the problem (1.6)—(1.9) of the form

2tan [ 4\ coskx
L _ k
U~(x,t) = — - /0 <l—e ’) 2 dk,

which decays exponentially as x — oo.

Proof. See [21, Section 2], where 8 is denoted by 0. O

2.2 Function spaces

Now we turn our attention to the nonlinear problem (1.1)—(1.4). In this paper, we consider our
problem on the half line RT = (0, o0). However, in the sequel, we extend the solution as an even
function on the whole line R. This extension as an even function is natural because our homogeneous
linear problem can be reduced to be a whole space problem by even extension. Thus, we shall use
the function spaces of even functions. We first recall the space of bounded functions and Holder
continuous functions defined on R. For a measurable function ¢ in R we denote the L°°-norm by
|00, 1-€.,
|@loo 1= ess.sup,eg|@(x)].

For v € (0, 1) we define its v-Holder quotient at x, y € R by

[@lv,x,y == Ws XF#y

For ¢ € L*°(R) we define its v-Holder seminorm by

[p]y := ess.sup {[@]v,x,y; X,y € R,X # y}.
We recall several basic Banach spaces. We use the same notation as in [20, Chapter 0].

DEFINITION 2.2 (i) Let L°°(R) be the space of all real valued essentially bounded measurable
functions on R. This space is a Banach space equipped with the norm |¢|s. Let BUC(R) be
the space of all bounded and uniformly continuous functions on R. This is a closed subspace
of L*°(R).
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Fork =1,2,...,let Wk’°°(R) be the Sobolev space such that
W5 (R) := {p € L*(R); k-th distributional derivative 3% ¢ is in L(R)}.

It is the Banach space equipped with the norm
k
lolkoo = 105000
=0
which is equivalent to ||| ¢ |||x,00 1= |¢]co + |8’;<p|oo. We often denote |8’;qo|oo by |¢|k,00-

Let BUCK(R) be the closed subspace of W**°(R) defined by

@ is k-times continuously differentiable

k o .
BUCT(R) := 19 € BUCR): 4 () ¢ BUCR) forl =0, 1,.... k

Forv € (0, 1) let C”(R) be the space of all bounded v-Hélder continuous functions on R, i.e.,
C'(R) :={p € CR): fl¢lly := [¢]oo + [¢]s < 00}

This is a Banach space equipped with the norm ||¢]||,.

Unfortunately, the space of bounded smooth function BUC*(R) = (5, BUC kR) c

C”(R) is not dense in C”(R). One defines the closure of BUC*(R) in C"(R) by A" (R)
which is characterized as

h'(R) = {(p € CV(R)§J}LTI}C[(P]v,x,y = O}'

This space is called a little Holder space.
Fork = 1,2,... and v € (0,1) let C¥*"(R) be the space of BUC¥ functions having v-
Holder continuous k-th derivatives, i.e.,
CH(R) = {p € BUCK(R); 9% € C*(R)}.
This space is a Banach space equipped with the norm

lollk+v = l@llk.co + [5]o-

To simplify the notation we often denote the seminorm [8’;(,0],, by [@]k+v-
The closure of BUC®(R) in CK*V(R) is denoted by h¥+V (R). It is characterized as

Y (R) = {p € CFM(R); Tim [0K¢], «,, = 0.
y—=>x

To develop the semigroup theory we often need to consider complexified space, which are spaces

of complex-valued functions. In this case the resulting Banach space is a complex Banach spaces.

We

do not distinguish real and complex Banach space to simplify the notation.
We shall give notation of the space of even functions.
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DEFINITION 2.3 Let X be a space of measurable functions defined on R. Let Xy, denote its
subspace of even functions in X, i.e.,

Xeven = {(P € X,QO(X) = (P(—X), a.e. x}.
For example,

LY,(R) = {p € L°(R):p(x) = ¢(—x). ae. x},

even

BUCeen(R) = {9 € BUC(R); p(x) = ¢(—x), forall x}.

Note that dx¢(0) = 0 for ¢ € BUC., (R). We also note that L%, (R) is a closed subspace of

even

L*®(R). Similar statements hold for BUCK _ (R), C2_. (R), Ck+V(R), Wk (R).

even even even even

We occasionally use a function space on a half line Rt = {x = 0}, for example 2¥ (R*), which
is defined as 1? (R) by replacing R by R¥.

In order to construct the solution of the problem (1.1)—(1.4) via the analytic semigroup theory,
we shall use the weighted continuous function spaces in time with values in a Banach space. Such
spaces are often used in the analytic semigroup theory especially to analyze the singularity as time
goes to zero. The reader is referred to [8, Section 2] and [20, Subsection 4.3.2] for more details.

DEFINITION 2.4 For T > 0set J = [0,T],J = J \ {0}.Let 0 < < 1 be fixed.

BUCi—,(J,E) :={u e C(J,E);[t = t'"™"u] € BUC(J,E), tlir(r)1+t1_“||u(t)||E = 0},

where E is a (real or complex) Banach space.

2.3 Analytic semigroup generated by the bi-Laplace operator

In this section we shall give a proof that the bi-Laplace operator —81 generates non Co-bounded
and bounded analytic semigroup in L°° type spaces. The analyticity result is essentially known;
see, e.g., [20, Theorem 3.2.4]. However, the bounded analyticity is not written in [20]. We give a
complete proof for the reader’s convenience.

Let us consider the resolvent equation

(A +8i)u =f, forAeC\{0},|argh| <m
in a formal way. We take the Fourier transform of the both sides to get
a) = A+ 1N/ ®).

(This calculation is justified when u and f are Schwartz’ tempered distributions). Applying the
inverse Fourier transformation one obtains

u(x) = K* % f(x)

with
eixé—'

1 [e'e)
d
VZ]T /7ook+§4

KM (x) = £ (i =+-1). 2.1
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LEMMA 2.5 For a given 8y € (0, ), there is a constant Cy, such that

IK* % flloo < Cool A7 | f lloo

forall f € L*(R),A € Xy, :={A € C\ {0};|argA| < 6p}.

Proof. To calculate (2.1), we first calculate

1 0o pixk
Kg(x) := m/wei€+s4 dé, for0 <60 <6y <m. 2.2)
Thus, our concern is the roots of e!? + £4. We set
{ =exp(if/4), w =exp(in/4). (2.3)

Then the roots of ¢’ + £* are tw,ilw,i%¢w and i*Cw. Hereafter, we denote the residue of f at
the point a by Res( f, a). By residue theorem, we have

00 eixf
/;oo el@ + 54 E

eix&‘ eixé—'
2mi | Res m,{(l) + Res m,l{(l) s 1fx>0,

= ] ) 2.4)
. elx&‘ N etxé-’ " )
—27i | Res m,l é‘(l) + Res m,l é’a) s if x <O.
We calculate the residues in (2.4) respectively.
eixf eiéwx
Reslam 6% ) = Go—itw) o — o) Go — 17¢w)
_exp(—¢x/+/2) - exp(itx/V2) 2.5)
- 48303 ’ :
eixt exp(—{x/v/2) - exp(=i{x/N/2)
Res (m,lgw = — 41.;_30)3 s (26)
ix€ :
e 2 _exp(8x/2) - exp(=itx/V2)
Res (W,l é—(,() = — 4{35()3 B (27)
ext exp($x/+/2) - exp(ifx/+/2)
Res (W,l3§w = 41'{3(03 . 2.8)

Thus from (2.4)—(2.6), we have when x > 0

[e%e) ix€
/_ ei:TS“ dé = \/752“3 (sin % + cos %) exp (—%) . 2.9)




548 T. ASAI AND Y. GIGA

Similarly, from (2.4), (2.7) and (2.8), we have when x < 0

[ele) ix§
/_ eieengtdE: \/7_223 (—sin%+cos%)exp(%). (2.10)

From (2.9) and (2.10) we can conclude that

et n x| S S| §IXI)
——dé = ——. 2.11
[oarrett=gp (i reoi) e (-4 e
To show that Kg(x) is integrable for 0 < 8 < 8y < 7, we have to compute the terms
sin (M) exp (—M) and cos (M) exp (—M)
NG V2 V2 V2
in (2.11) respectively.
sin (M) exp (—M)
NG NG
(m |) exp(—zz|x|)
V2 exp( ¢lx

v2 ) gl
[ ( ﬁlLl)ZIXI) ox (( 1 :/)gl I)}
P (o ? 4 sin? ﬁM O n?
|: ( f(cos —|—sm4)) xp( 5 (cos sm4))
- exp( (cos — —sin —)) exp % ( cos Q + sin %)) :|, (2.12)

cos (%l) o (_%ll)' ~it]x|
( )+ex (f).exp(—w)

2

/2

[ ( 1+l)§|XI) exp((—l:/iz)CIXI)}
oo ) (2 o )

R O R [T

N———

Sl=

Ral

S
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Note that cos(8/4) — sin(6/4) > 0 because of 0 < 6 < . Thus, from (2.11)—(2.13)

/R|K9(x)|dx < %/R[exp( l/% (COS% + sin %))

+exp( A |(c0s§—sing)):|dx. (2.14)
V2\ 4 4

Since the right-hand side of (2.14) is bounded by a constant Cg, for 8 € (0, 6p] with 6y € (0, 7),
we observe that
I KollL1r) < Coy for 6 € (0, 6y]. (2.15)

Next, we calculate K*(x) based on the estimate for Kg(x). Take Yo, 2 A= re?), then by

changing the variable & = /45 and recalling the definition of K*(x) in (2.1), we have
N lxé
K
(v = = [ e
th
d
/ /OO rele + 54 E
eirl/4xn 1

11 [ 1
- /4
T Van 34 /,oo eif 4 pt dn = 7 Kelrx). (2.16)

Thus from (2.16), we have

o0 o0
1M = [ K ldx = [ K 0 dx

1 [ 1
L Keldy = CiKal: 1)

oo

From (2.15), (2.17) and Young’s inequality, we have

I(K* % f)llzes < Kz 11 llzoe
< Cool A1 fllLee.  for A € Zg,.

We set
(K*f)(x) = (K* % f)(x) for f € L®(R).
By Lemma 2.5 this operator K* is a bounded operator in L>°(R).

LEMMA 2.6 Let A € C\ {0} satisfy |argA| < 7.
(i) The range
RKY) = WH=(R),

where
WH®(R) = {p € L°(R): 93¢ € L(R)}.

%@ is the fourth order derivative of ¢ in the sense of distribution.
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(ii) The operator K* is injective.
Proof. (1) By definition we have
G+ IDE* ) = £,
for f € L°°(R) in the sense of distribution. This implies that
03K f) = f —AK* f € L®(R).

Thus R(K*) € W4®(R). If h € WH®(R), then take f = (A 4+ 3*)h € L®°(R) to geth = K* f.
This implies the converse inclusion. We conclude R(K*) = W*%(R).

(ii) We consider K* % f = 0 for f € L°°(R). Taking the Fourier transform we observe that
f = 0in the sense of distribution, since A + |§[* # 0 for all £ € R so that /(A + |¢|*) € § for

s € 8, where 8 is the space of all rapidly decreasing functions (see [24, Chapter VII, Section 3]).
This implies f = 0 (this calculation is justified for any Schwartz’ tempered distribution f). o

REMARK 2.7 We warn the reader that in higher dimensional problem it is difficult to characterize
the range.

We define the closed linear operator A by
A == —(KM 7 + AL

where I denotes the identity operator.

LEMMA 2.8 Let A be as in Lemma 2.6. Then A = A(X) is independent of A. Moreover
D(A) = W**°(R) and Au = —aiu (in the sense of distribution) for u € W*°°(R).

Proof. By definition D(A) = R(K*) = W*>(R). Formally, for u € W*>(R)

Au = —(A+ g0 + i = —0u.

This identity is justified in the sense of tempered distribution so that Au = —d%u and A is
independent of the choice of A. |

REMARK 2.9 (i) For higher dimension case, the domain of the corresponding operator to —A? is

D(-4%) = {u e (| Wia? R): —A%u € L¥(R)}.

p=1

see Lunardi [20, Theorem 3.2.4]. In one dimensional case this space is W*>(R).
(i) The independence of A with respect to A is usually proved by the resolvent identity

K* — K* = (u — VHKMKY = (u — M)KPKX.

Here we are able to use the explicit representation.
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THEOREM 2.10 (i) The operator A generates a non-Cy bounded and bounded analytic semigroup
e’ in L*°(R). In particular

i

with some constants C; and C, independent of # and f € L°°(R). Moreover, fork = 1,2, 3,

e flloo < Cill flloo forallz >0,

d C
d—e“‘fH < 22| flleo forallz > o0,
t o I

Cs
||8§etAf||oo < Wllflloo forallt >0

with C3 independent of ¢t and f € L>°(R).

(i) The closure D(A) of D(A) in L°°(R) equals BUC(R).

(iii) The operator A generates a Co-bounded, bounded analytic semigroup e’4 in BUC(R).

(iv) The assertions (i)—(iii) still hold if one replaces L*°(R) by L. (R), BUC(R) by BU Ceyen(R)
and W4 (R) by W4 (R).

even

Proof. (1) This is standard once we have the resolvent estimate in Lemma 2.5 (see, e.g., [20,
Proposition 2.1.1]) for the resolvent K* = (1 — 4)~!. We give the proof for the global boundedness
for the reader’s convenience.

By definition

1
e = —/ (L — A" dA.
2wi Jp
One is allowed to take L as L = L} U L7 U S, with

LE={LeC;|A| = 1/t,|argh| = £60), S, ={AeC;|A| = 1/t,|argA| <6},
where 6 € (77/2,6p). On LF, by changing the variable A = pe*'?
as

, the operator norm is estimated

C@ oo etpcos@
< —0/ dp
1

1
—/ et —A) " da
LE

2mi 2w Jipe P
C 00 ,rcosf
- ﬁ/ dr = My, (2.18)
2w Jq r

On S;, by changing the variable A = ¢'? /¢ (¢ € (—0, 9)), we observe that

Since the rightest-hand sides of (2.18) and (2.19) are finite and independent of ¢ we observe that

C 6
< =h / €959 4 =: M. (2.19)
2 J_¢

1
—/ A —A)da
Sy

2mi

le" | < Mo + My + M_ =: Cy,
which is the boundedness of the semigroup. The bounded analyticity

4 A

t
dt

<G (2.20)
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can be proved similarly. First we observe

d

1
tA tA 1
— = — A A—A dA. 2.21
dle 2mi /l ¢ ( ) ( )

For A on the path L?E, we have the estimate

A1

etlAlcost (2.22)
*1Al

erm(x — 4! H <G,
We deduce from (2.21) and (2.22) that

< LZ/OOCO etpcosedp
21 0 0

_ % 1 \_.&
T ox tcosf ) 1t

For estimates of derivatives we may assume k = 1, 2, 3 since other cases are reduced to this case by
the boundedness of the operator t Ae’4 = 13,e'4 which is just proved. We first note that Lemma 2.5
is extended to

d tA
H di€

[XK* % £ < CooATF¥/4) £l oo
Since |
8’;e“‘ = %/Lemaf‘cK,{ d,

the above estimate for 0XK; = 0K K*x yields the desired estimates.

(ii) For a given f € BUC(R) it is well-known that f; := p. x f — f in L*°(R) as ¢ — 0 where
pe 1s a mollifier, i.e.,

pe(x) = 871,0(5) with pe C*®[R),0<p < 1,suppp C (—=1,1) and /,o(x) dx = 1.
€ R

It is easy to see that p, * f € C®(R), fz € C®°(R) and ||07 fe|looc < coforallm =1,2,....In
particular f; € W*°°(R). Since 97 f; = 0™ pe * f,

193 felloo < 1105 pellt [1f Tloo-

Since W#°(R) is contained in BUC(R), this implies W4:°(R) = BUC(R).

(iii) Since ¢4 maps from BUC(R) to W**°(R) c BUC(R) for ¢t > 0, one may interpret ¢’ as a
semigroup in BUC (R) and its generator A has a dense domain. Thus ¢’ is a Cy-semigroup.

(iv) This is trivial since e’ 4 preserves evenness. O

REMARK 2.11 Since |[K*||;1 < Cg,|A|~" for A € Xy,, an argument similar to the proof of
Theorem 2.10 yields
le izt < Collfll1 forallz >0

with Cy independent of f € L®(R) N L(R).



SELF-SIMILAR SOLUTIONS TO THE SURFACE DIFFUSION 553

2.4 Holder seminorm represented by an analytic semigroup

In this subsection we shall prove the equivalence of the Holder seminorm [ /], and an interpolation
seminorm.

LEMMA 2.12 Letf = y/4and 0 < y < 1. Let

/17y = supr' =01 Ae™ [l
r>0
for f € L(R), where ¢’4 is the semigroup generated by the bi-Laplacian in L>°(R) as defined in
Theorem 2.10. Then there are constants M, and M» independent of f € L°(R) such that

[fly < Milf]F,. (2.23)
[f1Fy < M2[f]y. (2.24)

Proof. We set
Fo:= L®(R), F,:=W*®(R).

The real interpolation space
Fy = (Fo. F1)6,00 (2.25)

is characterized by a Besov space Bgo,oo; see [5, Theorem 6.2.4]. By a characterization of the Besov
space we know
Bl =C"(R)

for 0 < y < 1, see for instance [25, Section 2.5.7]. Thus
Fy = CY(R).

In the meanwhile there is a characterization of a real interpolation space by an analytic semigroup
such as D4(#,00) = (Fo, F1)g,00 Where F; = D(A) and ¢’ is an analytic semigroup in Fy, see
e.g., [20, Proposition 2.2.2]. It yields that

I f: (Fo. F1)o,00ll

is equivalent to
I/1l5 + sup r'=)4e™ f5,.

<r<

For choice of Fy, F; and A the second norm is equivalent to

[ floo + [f1F, (2.26)

since sup; -, —oo 7' | 4e™ f oo < C|f|oo. The characterization of a Holder space by semigroup
norm is of course well-known; see [20, Theorem 3.1.12] where Fy = C(R), the space of bounded
continuous function and A = 8)26. However, we have given here an outline for the reader’s
convenience since A = —3% and Fy = L°°(R).

The characterization of the Holder norm (2.25) implies that the norm (2.26) is equivalent to
[ floo + [f]y. We shall prove (2.23) since the other inequality (2.24) can be proved similarly. By
the above characterization there is a constant M such that

[fly < Mif|fleo + [f]Fe) (2.27)
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forall f € L>®(R). We plug f) into f of this inequality with

iy = 202
for A > 0. Note that [ /], seminorm and [ f]F, seminorm is invariant under this scaling. However,
foloo = 2
Thus (2.27) yields
1Ly < b {22 1115, .
Since A > 0 is arbitrary, we conclude (2.23). O

3. Quasilinear equation with linear boundary conditions

In this section, we study the nonlinear problem (1.1)—(1.4). In order to solve (1.1)-(1.4), we
decompose v intov = u + U L where UL is the solution of the linear equation (1.6)—(1.9) given
in Lemma 2.1. We rewrite the equation (1.1) of u into

o Ut ! 9 um UL .
o ot ax L(1+ (ux + UD2)20x \ (1 + (ux + UL)2)32 ) | :

Recalling that dU L /9t = —0*UL /dx*, we observe that (3.1) becomes

a_u _ _i 1 Uxxx T le;cx _ 3(uxx + U;{Jx)z(ux + UxL)
a  9x L(14 (ux + UL2)V2 \ (1 + (uy + UE)2)3/2 (1+ (ux + UL)?)5/2
*ut
x4
L L2 477L
S 1 (e + ULy — 22x £ U)o + U 07U
ax \ (1 + (ux + UE)?)2 rxx (14 (ux + UL)?)3 ox4

1
4 L
B 8x[ ((1 ¥y + UD2)2 1) (e + Urix)

—_ 3(Mx + UxL)(uXx + UxL;c)z (3 2)
(1 + (ux + UE)?)3 '
We define 5
3pq
h = T oy 17 ’ = T o3
(p) 22 g(p.q) T+ p2)p
and

E(p.q.r) =h(p)r —g(p.q).
Then (3.2) becomes

ou
o = i — b (E(ux + UE thr + Uyt + UK.
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3.1  Holder estimate for the perturbed term

We shall estimate the term Z(vy, Uxx, Uxxx). We estimate the Holder norm of products and
composite functions.

LEMMA 3.1 (i) Lety € (0,1) andlet F € C!'(R), i.e., F is a function of C !-class defined on
R. Then

[e¥]y < l¢loolV]y + [@ly[V]co.

[F(@)ly < sup{|F'(p)l: 1] < |¢loo}lely
for all ¢, ¥ € C?(R).

(i) Ife,¥ € hY(R), then pyy € hY(R) and F(p) € Y (R).

Proof. We observe that

o)W (x) =¥ () + v () (p(x) —o(y))|
[@W]y,x,y = |x_y|y

< leO[Wlyx,y + ¥ O)I@ly,x,y-

This yields the first inequality of Lemma 3.1 by taking the supremum over x, y € R, x # y. By the
characterization of little Holder space in Definition 2.2 (iii) the above estimate for [p ], x,, implies
oy € Y (R) if o, ¥ € h”(R).

Similarly, we have

_ |Fle(x)) — Fle())l
[F(GD)]y,x,y - |)C _ yly

[(fo (6o (x) + (1= 0)0()) d6) (9(x) — 0(2))
lx — y[”
1
< /0 |F'(0¢(x) + (1 — 0)g(2)| dOlglyx

< sup{|[F'(p)]: 12| < |¢loo}@lyx.y-

This yields the second inequality of Lemma 3.1 by taking the supremum over x,y € R, x # y.
This estimate implies that F(p) € Y (R) for ¢ € h? (R). O

PROPOSITION 3.2 There are constants 51 and 61 such that
[h(vx)vxxx]y < gl{lvxloo[vxxx]y + [Ux]ylvxxx|oo},
[g(vx, Uxx)]y < /C\l{lvxloo[vix]y + [Ux]y|v)2cx|oo}-
holds for all v € C3T7(R). If v € h3T7(R), then h(vy)vxxx € A7 (R) and g(vy, Vxx) € hY (R).
Proof. By Lemma 3.1 (i) we have
h(vx)|oo[vxxx]y + [h(vx)]y|vxxx|oo

[h(vx)vxxx]y <
< sup |h/| “Uxloo * [Uxxx]y + sup |h/| [vxly - [Vxxxloo
<

~

C1{|Ux|oo[vxxx]y + [Ux]y [Vxxx|oo}
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Similarly by setting g1 (vy) := 3vx/(1 + v2)3, we have

[g(Wx. vxx)ly = [g1(v)02 ]y
< 1810 |oo[VZ]y + [81(0)]y [07 4]0
< sup ] - [vxloo - [VExly + sup 1] - [y - [V3xloo
< Cilloxloo[v3yly + [oxly [v34100)-

The statement for 7 (vy)vxxx € A (R) and g(vy, vxx) € hY(R) for v € h3T7(R) follows from
Lemma 3.1 (ii). O

3.2 Existence of a mild solution

We shall construct a solution of an integral equation corresponding to (1.10)—(1.12). Let A be a
closed operator corresponding to —3% in BUCeyen(R) so that e’ is a Co-analytic semigroup in
BUCeyen(R) (Theorem 2.10). Let = be as in the beginning of Section 3. Unfortunately, the term
Z(Vx, Vxx, Uxxx) for v = u 4+ UL may not attain zero at x = 0 because of the second order
derivative of vy, even for an even smooth function v. We introduce a modified odd extension
operator ® as

@(x) — ¢(0), ifx =0,

1Y mF y .
R R) = hoaa®R)ig = 00, ifx <0,

so that 0, (® &) is an even function. This enables us to define e’4 (3, (® Z)) as an even function. We
are in position to state our main result.

THEOREM 3.3 Let UL be the solution of the linear equation given in Lemma 2.1 depending on .
Let y be in (0, 1). Then there exist §o > 0 and B¢ > 0 independent of 7 > 0 such thatif 8 € (0, Bo)
there exists a unique

u € BUC1—o(J,h3LY(R)) N L™®(J, BUCL,,(R)),

even

withae = 1/2 — y/4 and J = [0, T] which solves
t
u(r) = ea —/ =94y, ((PE(ux +UE upe + UE upnr + UxLxx))(s) ds, tel
0
for any a € BUC!(R) with ||a||1,c0 < 8o. The solution u exists for all time interval. Moreover,
there exists a constant C = C(y, &9, Bo) such that
"7 ]34y () + |Uux|oo(t) < C  forallt > 0.

If @ = 0, then u is self-similar in the sense that u)y = u for all A > 0, where uy(x,7) =
A Tu(Ax, A%t).

Proof. We first recall a characterization of the little Holder space by a real interpolation space. We

set
Fy ;= BUC(R), F;:= BUC*(R).
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As discussed in the proof of Lemma 2.12 we observe that

C”(R) = (Fo. Fi)yjaeo.  C>T7(R) = (Fo. F1)(34y)/4,00

for y € (0, 1), see [20, Proposition 2.2.2, Theorem 3.1.12]. A little Holder space is characterized as
a continuous interpolation space as

WY (R) = (Fo. F1)) /4 000 B2 (R) = (Fo, FI){34y)/4,00

for the definition of continuous interpolation spaces, see [8, Section 2] and [20, Definition
1.2.2, Definition 1.2.8]. This can be proved by a semigroup characterization of (Fy, Fl)g,oo’ [20,
Proposition 2.2.2].

We shall use the space of even functions, i.e., functions invariant under the transformation
f(z) > f(—=z). Since interpolation commutes with this transformation, we observe that

(Fo,evens F1,even)0,00 = (F0, F1)6,00,cven-
In particular
hYen(R) = (Foeven: Fieven)y/a,00 = (Fo, F1)y/4,00,even-
We next prepare a family of space-time functions. For positive constants M, My, > 0 we set

Zmm, (J) :i={u € BUC1—(J,hZtY (R)) N L>®°(J, BUC]  (R));

even even

even

u(0) =0, ”u”BUCl_a(J,th;V(R)) M, ”u”LOO(J,BUC' ®) S Moo}, (3.3)

equipped with the norm |[ul|z,, »/. ;) = max(”u”BUCI_O,(J,hS’ViG,V(R))’ lull Loo (s, BUCL (RY))- We

then define a mapping I" for u € Zar,p..(J) as '

t
Tu:= —/ 949 (PE (vx, Vxx. Vxxx))(s)ds, v=u+UEL. (3.4
0
Note that 3, (® &) is even because @ Z is odd. Apparently, e =949, (® 5) is not well-defined for
v € h37(R). We have to extend e’49, to the operator in BUC(R). This can be done as follows.
We first note that e?49, f = 0.’ f holds for f € BUC!(R). Since

C
|8x€[Af|oo < m|f|oo

by Theorem 2.10 (i), this commutation formula can be extended for f € BUC(R) and e*40, f is
well-defined for f € BUC(R) and ¢ > 0.

We first prove Theorem 3.3 by assuming that the initial data a equals zero. We shall show that
if M and M, is chosen small, I" maps Zps,m., (J) into itself and has a fixed point in Z s, a1, (J)
which implies the existence of a unique solution of (1.10)—(1.12).

Step I (I' maps Zyr,m,, (J) into itself). For a fixed T > 0 we introduce the equivalent norms for
the little Holder spaces h¥, h3*Y and BUC! by

Ve 11y, (339)

_ fle |/ oo | 1/ oo | 1f"loo
I/ | p3+r ) := T3/4+6 + T1/246 + T1/4+6 + T

|f1
I/ lBuciwy = ﬁ + |/ oo (3.7

I 1y @y =

+ 1"y (3.6)
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where | - | is the L°°-norm and [-] is the Holder seminorm in Subsection 2.2. Our motivation to
introduce the equivalent norms (3.5)—(3.7) (for the little Holder space) is that we construct a global-
in-time solution. In particular, we intend to have estimates with constant independent of 7" for
solution in (0, 7). To do so, we would like to arrange so that the power of the time ¢ (which shall
appear in estimating the norm of the solution) is cancelled out. Thus, the definition of the equivalent
norms (3.5)—(3.7) are quite reasonable. In fact, if one defines

m:= |UF m

. L _
Isve, _gwntr@my Moo = IV oo puct @)y
by using norms defined in (3.5)—(3.7) (with R replaced by F), by self-similarity of U L the
constants m and my, are independent of the choice of T. Moreover, from the explicit formula
of UL in Lemma 2.1, one can choose m and mq, sufficiently small by taking the contact angle 8
sufficiently small. We begin with

=sup?' | Tl p3+v )

Il gy, g m3t7 ®) :
teJ

sup 117%| Moo +
eJ

1 1
= supt *[0x I u]oo
0 .
T34+ t eJ

1
T1/2+6 )

1 _ 1 B
+ T1/4+6 Sup[l a|8)2€1—’u|oo+ﬁsup[1 alaipuloo
reJ red
+supt T3 T uly . (3.8)
ted

To estimate (3.8) we use a seminorm

[w]F, = supr'=?||de™w|F,, 6 =y/4,
r>0
which is equivalent to the seminorm [w], as proved in Lemma 2.12. First we shall calculate the
last term of (3.8). The idea to estimate I"u is that we split the time integral into the two parts near
the origin and ¢, i.e., integral over (0,7/2) and (¢/2, t). After splitting the integral, we estimate the
former part and the latter part respectively. The way to estimate these terms is similar to Da Prato—
Grisvard and Angenent construction. A key step is to estimate ftt/z Ae =94 f ds (which is a kind
of a singular integral) by using interpolation spaces. (Da Prato—Grisvard and Angenent have proven
the maximal regularity result based on this technique in [9] and [1]).

1[92 rul,

r pt
— 1o / aie(t_S)Aax(@E(vavav Vxxx))($) ds:|
LJo Y

!
=l / Bie(’S)A(}’E(vx,vxx,vxxx)(s)ds}
0

v

t
< e / Ae(tis)A(PE(UXv Vs Vacxx ) (8) ds:|
0 Fo

t/2 t
|:/ Ae(tfs)A(PE(s) dsj| + |:/ Ae(tfs)A(PE(s) ds:| }
0 Fy 1/2 Fg

/A
T
R
——
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t/2 t
< zla{ /0 [ 4e“=94 oy ) - [PE ()] F, ds + supr!™® / /2 A2 TR E(s) | £, ds}
t

r>0

t/2
< zl“{ / (t — ) (CE()]r, ds
0

t
+ supr'~? / I gy (PO, ds}
t/2

r>0

, (r+1t—952CE )], a’s}. (3.9)

t/2
< z“’{/ (t =) [PE(s)], ds + supr'™®
0 r>0 t/2

Here we use the symbol < when we suppress a numerical constant C depending only on exponents.
In other words, we simply write a < b instead of a < Cb.
To estimate [ & (s)], = [h(vx)fii g(Vx, Uy, vxxx)]hy(R—Jr) we shall use Proposition 3.2 in

R+ and the interpolation inequality between BUC '-norm and /3% -seminorm as

[0y < [ty < loloo

[(¢") 1y < 219" |ool@"ly < 1@l2.00 * [@]24y

1+ 2+ 1/(2+ 1/(2+ 1+ 2+
S|¢|§,OOY)/( Y)[(p]3{k(y v) |(P| /( J’)[ ]( v)/(2+y)

2/(2+y) [(p]gi(zﬂ')
y b

= ¢l¢|1,00[¢]34y-

Thus, we have

() vxexly < C1(|veloo[vrxxly + [Wxly [Vrxxloo)
< Cr(vlioolvlsy + WETV .
Cl ((M + Moo) (s’ vl )5 '+ [v]1, oo(s’ a[v]3+y)5a 1)
C1 (Moo + moo)(M + m)s®™! + (Moo + moo)(M + m)s®1)
=2C 1 (Moo + moo)(M + m)s® !, (3.10)

2+ 2/+
|v|1//( Y)[v] /( 1’))

/A

//\

[g(vx, vxx)ly < Cillvxloo[v2,]y + [Wxly |vxxl?}

2/Q+y)y, v/ (2+y) 2(1+y)/2+y), 12/ 2+y)
A ESPSRREaEN LV P ]34, )

61{|U|1 oo |v|1 oo[v]3+y + |v|
= Ci{lvl} wo[0l34y + V17 oo[v]3+y}
2C1 (|03 oo (s ™ [V]34)s* )
=2C 1 (Moo + moo)>(M + m)s®~". (3.11)
In (3.10) and (3.11) all norms should be interpreted as a norm over R+ not R since UL is defined
in RT.
Now we are in position to estimate (3.9). We need to estimate the integral

t
rl_etl_"‘/ (r+1—s)"2H0se 1 gs.
1/2
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Since s*~1 < (¢/2)*"! fors € [t/2,t] we have

t ¢ a—1 .t
pl=0p1—e / (r+1t—s) 205 gs < pl-0712 (5) / (r+1t—s)"204ds
t /2

/2
217(1’,.170 s=t

T 1-6 [(r T S)71+0:|s=t/2

21741 ¢ —146
SR (9 _ ( N 5)

2170{

2170{
< (3.12)

From (3.10)—(3.12), we have

(3.9)
t/2 - .

< tl_"‘%/ (t =) C 1 (Moo + moo)(M 4+ m)s® ' 4+ C1 (Moo + moo)*(M + m)s® ' ds
0

t
+ sup pl-0 (r+t— s)f”e[Cl(Moo + Moo) (M + m)s* !
r>0 t/2
+ C1 (Moo + moo)?(M + m)s® ' ds]

<

~

1/2 _ R

(/ (1- o)_lo"‘_1 a’o) [C1(Moo +moo)(M +m) + C1 (Mo + moo)z(M + m)]
0

(3.13)

1—a

18
Estimating for the other terms of (3.8) proceeds similarly. The L°°-norm estimate for the integrand
-« fé 8];6(”3)‘48)5 (®E)ds(k =0,1,2,3) is different. For example, we estimate the fourth terms

[C1(Moo + moo)(M + m) + C1 (Mo + moo)*(M + m)].

of (3.8) as
tlfa

t
/ eI E ds
p
0

tlfa
00

t
/ 32e=949 (PE) ds
0

o

t
< 11*"‘/ |44 E || g, ds
0
t
<07 [ 1A oz, 0 Er, ds

t
<Ctl™ (/ (t —s) TR EF, ds). (3.14)
0

The term [® Z]F, is estimated by constants (depending on M and M) times 5%~ Thus, taking
supremum of (3.14) in (0, T') yields T?, which cancels out the term l/Te in (3.8). We also recall

that from (3.7)
1
[T ullLoo (7, BUC®R)) = T1/a Sup | Iit| oo + sup |0x It oo (3.15)
teJ ted
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Estimating (3.15) proceeds similarly as above. If m and m, are taken sufficiently small, then, with
a suitable choices of M and M., we can show that

max(| Full e, rn3tr @y 1 ¥llLee s, BuC, ) < max(M, Meo).

The evenness of I'u is easy since e’4dy f for odd f is even. Thus, we have shown that
I'(Zy,mo (J)) C Ly, o, (J). In particular I'u is well-defined. The smallness of M, Moo, m, Moo
are independent of 7" > 0 since all constants appearing in our estimate is independent of 7 > 0.

Step 2 (I" is a contraction on Zpyrpm..(J)). We take u; € Zym. . (J) (i = 1,2). Let v; :=
u; + UL (i =1,2) and

Ej ((vi)xv (Vi)xxs (Ui)xxx) = h((vi)x)(vi)xxx - g((vi)Xs (Ui)xx) (i =12).
Then we have ,
Tuy — Ty = —/ U945, (P (8 — 52))(s) ds,
0

where

6]

1 — &2 = h((vl)x)(vl)xxx - g((vl)xa (Ul)xx)
- h((v2)x)(v2)xxx + g((UZ)Xv (UZ)xx)
= h((vl)x)(ul —U2)xxx + [h ((Ul)x) - h((vz)x)](vz)xxx

- [g((vl))ﬁ (Ul)xx) - g((v2)x7 (U2)xx)]
=11+ 1, + Is. (3.16)

Now we estimate the right-hand side of (3.16) with respect to Holder seminorm respectively. The
argument, however, proceeds similarly as in Step 1, therefore we leave the detailed computations to
the reader.

[11])/ = [h((vl)x)(ul - uz)xxx]y
< 52{|(Ul)x|oo[(ul —u2)xxxly + [(V1)x]y|(u1 — u2)xxx|oo}- (3.17)

Next, by the fundamental theorem of calculus, we observe that
I = (h(@1)x) = h((v2)x) ) (v2) s
1
- (/ R (O@u1)x + (1 —0)(uz)x + UL) de) (U1 — 12)x(V2) xxxs (3.18)
0

where 7'(v) = 6v/(1 + v?)*.
To estimate (3.18) with respect to Holder seminorm, we use Lemma 3.1 to get

[P10203]y < [@1]y]@2]00l@3]00 + |91 ]00[@2]y 10300 + [@1]00l@2]00[@3]y - (3.19)
From (3.18) and (3.19) we have

[12]y = [(h((v1)x) = h((v2)x)) (V2)xxx]y
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~

o
o
(

+
= L
< C3{([M1]1+y + 2li+y + U 14y) w1 — uzl1,00[02]3,00

[/ (6 @u1)x + (1 = 0)(u2)x + ULy d9)|(u1 — U2)x]oo| (V2)xxx |00
0

1
/0 |h/(9(ul)x + (1 - 9)(”2)x + UxL)|OO d@) [(ul - u2)x]y|(vz)xxx|oo

1
1

/ B @)z + (1= 0)u2)x + Uf)loo d9)|(u1 — U2)x|oo[(V2)xxxly
0

+ (lu1]1,00 + [2]1,00 + (UL 1,00) 1 — 2]i4y [02]3,00
+

(Iu1l1,00 + [U2l1,00 + U |1,00) 1 — u2|1,oo[v2]3+y}- (3.20)

The term [/3], is similarly estimated. In fact, by the fundamental theorem of calculus, we observe
that

1
g(p1.q1) — g(p2.q2) = (/0 Di1g(Op1 + (1 —0)p2,0q1 + (1 —0)q2) dQ)(pl — p2)

1
+ (/0 D>g(0p1 + (1 = 0)p2,0q1 + (1 —0)q2) d9)(q1 —q2), (3.21)

where
3(1 —5p)q? 6pq
Dg=>2 "M = po__2P
T (1 p2) 2T 0+ 23
pi = (ui + UD)y, g = i +UB) e, (= 1,2).

We estimate the right-hand side of (3.21) with respect to Holder seminorm.

[(D18)(p1 — p2)], < [D1glyIp1 = P2los + | D18los[p1 — P2y

3(1-5p2)| 5 [3(1 —5p2)j| 5
Sy - + | -
T+ p2) oo[q lylp1 — P2l 17 2 qu lool P1 = P2loo
3= oo - pa]
(1 +p2)4 ~ 0 Y
< Co{lqloolgly | p1 — P2loo + [Ply 19125 P1 — P2loo
+1q13.[p1 — paly ). (3.22)
[(D28)(q1 — q2)ly < [D2glylgr — q2loo + |D28loclq1 — 2]y
6p 6p :|
<|—r - + | — -
‘(1+p2)3 oo[q]ylch 92]00 [(1+p2)3 y|q|oo[‘11 q2ly

6p
+ ‘7 |9]00lq1 — 2]y
1+ p?3 |

< Csilglyla1 — @2l + [Plyldloolgr — g2y + lgloclgr — 2]y ). (3.23)
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The estimates (3.22) and (3.23) yield that

[£3)y < Ca{(10)xxloo + 1(42)xx oo + U |oo)

X ([(ul)xX]y + [(u2)xxly + [UxLx]y) [u1 —u2|eo
+ ([(ul)x]y + [(u2)x]y + [UL]y)

X (1) o + 1002020 + UL o) iy = 21
(100312 + 1@02)nx 2 + U 1) iy = w2l
+ 34 (10 xxly + [022)eely + [UAL) 1001 ex = (42) clos
+ ([)xly + [@2)xly + [UfTy) (1000 exloo + [W2)xxloo + U |oo)

[(u 1 )xx - (u2)xx]y

+ (Ja)wxloo + 1002)xx o0 + U loo) [001)xx = (2)asly . (3:24)

By (3.17), (3.20) and (3.24) the term sup, . ; t17%[03(I"'uy — T'uy)]y is estimated by

1/2 Hl-a
supt' Y03 (MTuy — Tuz)]py < (/ (1-0)to* Vdo + 1 9)
ted 0 -

X {EZ [(Mm + Moo) + (Moo + moo)z/(ZJr)/)(M + m))//(2+1/):|

+ 63[(2M£(2+V)My/(2+7) + mié(2+y)m}’/(2+y))(Moo + moo)y/(z-i-y)(M + m)Z/(2+y)

+ (2Moo + Moo) (Moo + moo)/ @ (M + m)> @) + 2Moo + moo)(M + m)]
+ 62[(2M£+y)/(2+y)M1/(2+y) + m&+y)/(2+y)m1/(2+y))

% (2M010/(2+)/)M(1+y)/(2+y) + mcl)é(2+y)m(1+y)/(2+y))
+ (2M§c>/(2+y)My/(2+y) + mgé(2+y)my/(2+y))
% (2M§c>(1+y)/(2+y)M2/(2+y) + mc2x(>1+y)/(2+y)m2/(2+y))
+ (ZM;(HV)/(Z"’V)MZ/@"’V) + m§<(31+y)/(2+y)m1/(2+y))]
+ 63[(2M010/(2+)/)M(1+1/)/(2+1’) + méé(2+y)m(1+y)/(2+y))
+ (2M§c>/(2+y)My/(2+y) + mgé(2+y)my/(2+y))
x (2M£+y)/(2+y)M1/(2+y) + mg+y)/(2+y)ml/(2+y))
+ (2M°(<1)+y)/(2+y)M1/(2+y) + mg+”)/(2+7)m1/(2+”))]}. (3.25)

The estimates for the other terms

1
Fsupt““mi(l“ul —T'us)|oo, Sllpf1 T2 (Muy — T'uz)oos

1
; 9
red T340

Supl1 T3y (Mg — TMit2)] oo,

1
T1/2+0

T3/4+6 S“ptl T — u2) oo
teJ
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proceed similarly. Thus, we have actually estimated || "y — I"up ”BUcl_a(J,hS\iﬁly ®))" The estimate
of [|[IMuy — I'uz|| oo (,BUC),, (R)) 2SO proceed similarly as above.

The smallness of the constants 1, m o, and our suitable choices of the constants M, Mo, shows
that | "uy — IMuz |z, 4. () 18 less than or equal to (1/2)[lur — u2|z,, 4, (1), Which concludes
that I" is a contraction on Z p, ar (J ). By invoking the Banach contraction mapping principle, there
exists a unique solution v of v = I"u in Z s pr. (J). The rescaled function u also satisfies (1.10)—
(1.12). By uniqueness, we conclude that ¥ = u which implies u is self-similar.

The proof proceeds similarly in the case of @ # 0. What we have to do for example is to estimate

11703 al, .
tl—a[aietAa]y — tl—a[Al/ZetAaxa]y
— A
<1742 o(ro.Fa) - Nld | Ry
< ll_a . Z—1/2—9||a/||F0
= |d'|l . (3.26)

In the last line of (3.26), we use the relation « = 1/2 — y/4. Thus, if ||a| r, = |a|c is sufficiently
small, we can arrange the quantity #17% [8)366”441],, is small. In fact, we can prove that

4 4
le"*all gye, . rnitray T 1€ @l Buci@y < Cllallioo.

Hence, we can show the unique existence of the solution of u = e’4a + I'u as before when ||a/|1 00
is small. The desired estimate follows by construction. o

It must be noted that u is not differentiable with respect to the time ¢ with values in Fy. For this
reason we shall define the term weak solution to prove that u solves formally (3.2) at least Rt x J
(so that v = u 4+ UL is the desired solution).

DEFINITION 3.4 (Weak solution) We say that v € BUC;_q(J, h3TY (RT)) N L®(J, BUC(RT))
is a weak solution of the problem (1.1)—(1.3)if

r r 1 d Uxx
,r)dt = — ,0),a) — 0x 0, — dt 3.27
/0 {v. 1) (p(x,0).a) /0 < 0 D2 9y ((1+v§)3/2)> (327
forall ¢ € C®(R* x [0,7T)) and satisfies (1.2) and (1.3). Here we denote (-, -) by the canonical
pair. If f, g € L2(R™), then (f.g) = [;° fg dx.

LEMMA 3.5 Let u be the solution which we constructed in Theorem 3.3. Thenv = u + UL is a
weak solution.

Proof. Recall that
t
u=ea —/ 149, P E(s) ds. (3.28)
0

Multiplying ¢; to the both sides of (3.28) and integrating over R+ x [0, T] we have

T T T t
/ (u,got)dt:/ (etA,(pt)dt—/ <<pt,/ e<”>Aax<PE(s)ds>dz. (3.29)
0 0 0 0
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We calculate the right-hand side of (3.29) respectively. The first term can be calculated as follows.

T T poo
/ (e’Aa,fpt)dtzf / eag, dx dt
0
/ / eag, dt dx
:/ <—/ 3 (ea)pdt + [e afp] >dx
0
/ / Ae'tag dt dx—/ o(x,0)a dx
0

=—/ (Ap,e"a) dt — (p(x,0),a). (3.30)
0

To calculate the second term note that A is self-adjoint, i.e., A¥ = A. We shall transfer the
semigroup e™ in the coupling (-,-). Thanks to the self-adjointness we can actually transfer the
semigroup e’

T t
—/ <<p,/ =94y, (PS(s)ds>dt
0

T

(p =Dy PE(s)) ds dt
0 0

T
/ / (W94, 0, RE(s)) ds dt
0 0

T
/ / (et 949, 3. R E(s))ds dt
0 0

ey

T T T
/ (e 3. P E(s)) dt ds—i—/ (9(s,x), 0P E(s)) ds
0

=S

/OT/T =940, 3.PE(s)) dt ds
-/

(01 (), 0.0 (5)) di + [( g, 0,05(5)) | _ T) &

T T
/ (Ap, et 949, R E(s)) ds dt — / (0c0, PE) dt
0 0

T T
:/ (Aqo,—u+e"4a)dt—/ (0c, PE) dt. (3.31)
0 0

From (3.30) and (3.31) we get
T T T
/ (u,@;) dt =—/ (A(p,etAa)dt—((p(x,O),a)+/ (Ap, —u + e'a) dt
0 0 0

T
—/ (0c0,PE) dt
0
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T

T
=—/ (A(p,u)dt—(fp(x,O),a)+/ (0xp, PE) dt
0 0

T T
= —/ (0x0, 8)36u) dt —/ (0xp, ®E)dt — (p(x,0),a). (3.32)
0 0

On the other hand we calculate fOT (UL, ¢;) dt as

T T
| wheyar=- [ ot
0 0
T T
=/ (aj‘cUL,q))dt:—/ (0xp,3ULY dt. (3.33)
0 0
Summing up (3.32) and (3.33), we have

T T T
/ (v.ge) di = —(p(x.0).a) — / (00, 9 + UL)) di — / (D0, Z) di
0 0

0
= —(QO(X, O)v a)

T 1 3 L
_/o <8x“” A+ @+ ubpp 2@t

T 1 d Uxx
= —({p(x,0),q) —/0 <ax90’ (1+v2)172 ox ((1 + v§)3/2)> ar

Here the operator  disappears since fOT (dx@, c) dt = 0 for any constant c. O

3u+Ub)(u+ UL, "
1+ u+UL)2)3 >

REMARK 3.6 (i) It is likely that the constructed solution u is smooth by using linear parabolic
theory for higher order equation. The fuller study of the regularity of a general solution lies
outside the scope of this paper. If ¢ = 0, then u is self-similar so that v = u + U”L is
self-similar. The self-similar solution v is a solution of ODE so it must be smooth.

(ii)) The estimate (3.12) is similar to that in [I, Theorem 2.14] by Angenent. We have given a
simple proof.

3.3 Stability of a self-similar solution

In this subsection we discuss the stability of a self-similar solution. Let u be the mild solution which
we constructed in Theorem 3.3. For A > 0, we set

va(x,t) = %v()kx,/\“t), a(x) = %a()kx)

Since v is the solution of the problem (1.1)—(1.3), v, is also the solution of the problem (1.1)—(1.3)
with the initial data a .

THEOREM 3.7 The rescaled u) uniformly converges to # as A — oo on any compact sets in
(0, T] x R, that is, vj, = u; + UL uniformly converges to the self-similar solution ¥ := 7 + UL.
In particular, t~/4v(t1/4x,1) — Z(x) as t — oo locally uniformly in [0, c0) when Z is the profile
function of v.
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To show Theorem 3.7, we need a preliminary lemma. For the definition of the weighted Holder
space C"‘((O, T1, E), see [20, Chapter 4].

LEMMA 3.8 Let u be the mild solution which we constructed in Theorem 3.3. Then

“" ;F—

((0 T h3E (R))

u e even

and there exists C = C(y, 6o, Bo) such that

ull 14 s <C.
€ f, (O.TLAEE ®)

Proof. We consider the difference
u(t) —u(s) = (e“‘—e“‘)a—/ t—0dy. @u(t)dr—/ (U4 _ =9 g PE(r)dT
t
= _/ Ae™adr — / =04y (P’"(r)dr+/ / Ae™9,PE(t)drdr,

where Z (1) = E(vx, Uxx, Vxxx)(:, T) as before. Recalling the definition of the weighted Holder
space (cf. [20, Chapter 4]), we have

(] 1gv = sup & 2 [u] 1+ .
€y VIR ®)  osesr € (e TR )

Thus, fore < s <t < T we calculate
t
1JrTy[‘())zcu(t) Pu(s)], < e |:—3)2€ / Ae™a dr)i|
S Y

te 3 [82/ 04y oz (t)a’rj|
Y

K t—
=N [ai/ / A3, P 5 (f)drdf}
0 S—T Y

=:J1+ J2 + Js.

The term J; is estimated by

neet¥| / D Ac™ adr] <o [ 1A eamwmmy  salo dr
Y

lallzuct@w) < (l—S) Ea lallzuc ®)- (3.34)

pi
S1 1ty 14y 1
+vy s 4t 4 +y
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Now we estimate J, by

t t
Iy < / 1334 e Ry ) - [E(D)]y dT < €1 (v, 80, Bo) / (t -0 T dr. (3.35)
5 5

If s < t/2, then we have

t t/2 t
81+Ty/ (t—1) 4 g = e (/ +/ )(Z—r)_3/4t°‘_ldt.
s s t/2

For 7 € [s,1/2], note that ¢ < 7 and © < t — 7. Thus, we observe

t/2 t/2
8% (r—1)** N dr < SIJFTV / (t — 1)/ Fr/4 ¢ — t)_7/4t]+Tyr°‘_l dt
S S
t/2
_ / (1 — 1) ~3/4+v/4 (L)”4 dt
s t—1
t/2 4 +
< / (t—7) 344 e < (t—s) 5. (3.36)
s I+y

For t € [t/2,t], we observe

ES —3/4_a—1 y (\ [ —3/4
£ 2 t—7) """ dr<e? (= t—1) dt
/2 2 2

Ly a—3/4
<40t (5) ’ (5) <2Fo_oF 33

If s = t/2, then we calculate in the same way as (3.37) to get

EE —3/4_a—1 EEA —3/4_a—1
g2 (t—1) " dr<¢e 2 (t—1) ™ dt
K /2

S5+y

<27 (-5 (3.38)

From (3.35)—(3.38) we have

JoScei(t—s) 4. (3.39)
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The term J3 is estimated by

S t—t
Jy< e / [ 1 s a2 @), dr
0 s—T
Scie / / r13 4 g d e
S—T
2618 / / R L R S s R
1y —1—-y/4_a—1 o —3/4+y/4
<c1e2 (s—r) Vit dzt r it dr
S—T

s 4 c1€ 2 (/ (S .L.)—l 7/4 o— ldf)(t_s)

1+vy
4
1 (/ (1—o) 177/4get do)(t _ 5 (3.40)
+y 0
1+y
From (3.34), (3.39) and (3.40) we conclude thatu € C, !, (J, h §thy (R)) and there exists a constant
5
C := C(y, b0, Bo) such that
[u] <C.

+ (J had ®)

O

To show Theorem 3.7 we give a simple sufficient condition so that the product converges in
L x-weak sense.

LEMMA 3.9 Assume that the sequence {g; } converges to g in L°°*-weak sense and the sequence
{ f; } is uniformly bounded and converges to f almost everywhere. Then the product sequence f; g;
converges to fg in L°°*-weak sense.

Proof. Let h € L'. We denote (-, -) by the canonical pair as before. Let us consider the difference

(figi-h) —{feg h).

(figi-h) —(fg.h) = (gi(fi — f).h) + (f(g; — &) h)
=(fj — figih) +(gi — & fh) (3.41)

The second term converges to zero since fh € L'(R) and g; converges to g in L™x-weak sense.
Since |(f; — f)g;h| is estimated from above as

|(fj = ))& () (x)| < (sup | filoo + [f o) sUP (&) loolA(x)],
J J

the Lebesgue dominated convergence theorem implies that the first term converges to zero as
j — oo. O
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Proof of Theorem 3.7. We first note that

laxlluci®) = larloo + 10x@xl0o

1
= —sup|a(Ax)| + sup|a’(Ax)]|

- A’ X pe
a
< llallpuct wys

if A = 1. Then Theorem 3.3 yields
tlia[u,x]yry(l) + |0xUploo £ C1, t>0.

By interpolation we observe that

C2 C3
Bualoe(0) < 5 1Bloe0) < g 10, (3.42)
with C; (j = 1,2,3) independent of A > 1. Since
. ( 1 _1) Py C3(ua + UB)<(up + UD),
RN RN S H Y A (A PN

applying (3.42) we get

. 20, 3C2 Gy
|d,\|oo(l)§m+ﬂ7=m, t>0. (3.43)

By Lemma 3.8

ull 14y R <C,
C, 1L, (0, TLRAE ®)

o Iz

with C independent of A = 1. By this bound we see that u, together with its spatially up to second
order derivatives is uniformly bounded and equi-continuous in Rt x (§, T') for any § > 0. By the
Ascoli-Arzela theorem and a diagonal argument, there exists a subsequence {u };’il such that u ;
converges to a some continuous function # as A; — oo uniformly on any compact set in R+ x 0,T]
up to the spatial second order derivatives. By (3.42) we may assume that 1'/293u; — ¢'/203i in
% weak sense of L¥(R*+ x (0, 00)). Thus r'/2 Z), (t) converges to & = E((u + ULy, (@ +
UL)sx, (i + UL)xx) * weakly in L2(RT x (0, 00)) by Lemma 3.9 and (3.43).
Since u,; solves

t
1A 1-)An =
uy, =e'ay,; —/0 =9 dx &y, (s) ds,

letting j — oo yields

t t
ii=0— lim | “94.5; (s)ds= —/ U949 B (s) ds.

J—=o0 Jo 0



SELF-SIMILAR SOLUTIONS TO THE SURFACE DIFFUSION 571

This is at least true if one interprets the convergence in the sense of distribution in R™ for a fixed .
Indeed, for f € C2(RY)

¢ t
</ e(zfs)Aax(PEAj (S) ds, f> = —/ ((PE,{]. (S), 8xe(lfs)Af> ds
0 0
t
- _/ (&2, (), axe(t_s)Af> ds.
0

Since eI f = =49, f we see that 0" |1y < ColldxfllL1w): see

Remark 2.11. This is in particular implies that s'/2[|dxe“4 f||;1 € L'(0,1) as a function of

s. Since s'/25; — s1/25 in * weak sense in L= (R x (0, 1)), we observe that for any # > 0

t t
/ e(tfs)AaxEA/. (s)ds —>/ U949 E(s)ds asj — oo
0 ' 0

in the sense of distribution. (Since

t
/ =94y, E),(s)ds
0

t
1
<C —  _ds=CtY*,
- 5/0 (t — 5)1/451/2

the convergence can be actually interpreted in L°°x-weak sense.) We have thus proved that
t
i = _/ U949, E(s) ds.
0

By the uniqueness of solution of integral equations implies that i is self-similar so that & = 7 + UL
is a self-similar solution. We finally remark that the limit of the sequence is independent of choice
of subsequences because the solution of integral equations is unique. We thus conclude that (local
uniform) convergence v; — v is a full convergence. o

REMARK 3.10 It is important to estimate the depth of the thermal groove, that is, the absolute
value of the profile function Z(-) at x = 0 with respect to 8. However, to discuss the depth of
the thermal groove requires further study. We may leave this problem open. As for the second
order problem, Hamamuki [16] investigates the depth of thermal groove based on the comparison
principle technique.
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