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A nonsmooth model for discontinuous shear thickening fluids:
Analysis and numerical solution
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We propose a nonsmooth continuum mechanical model for discontinuous shear thickening flow. The
model obeys a formulation as energy minimization problem and its solution satisfies a Stokes type
system with a nonsmooth constitute relation. Solutions have a free boundary at which the behavior of
the fluid changes. We present Sobolev as well as Hölder regularity results and study the limit of the
model as the viscosity in the shear thickened volume tends to infinity. A mixed problem formulation
is discretized using finite elements and a semismooth Newton method is proposed for the solution
of the resulting discrete system. Numerical problems for steady and unsteady shear thickening flows
are presented and used to study the solution algorithm, properties of the flow and the free boundary.
These numerical problems are motivated by recently reported experimental studies of dispersions
with high particle-to-fluid volume fractions, which often show a sudden increase of viscosity at
certain strain rates.
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1. Introduction

Shear thickening fluids are a model for colloidal dispersions composed of solid particles suspended
in a fluid. In dispersions with a high particle-to-fluid volume fraction, jamming between the particles
at high strain rates can occur. This results in an abrupt increase in viscosity that can give the fluid
a solid-like behavior. To distinguish this behavior from more smooth shear thickening processes,
experimental physicists have introduced the nomenclature discontinuous shear thickening.

An example for a colloidal dispersion is a cornstarch-water mixture, whose startling properties
are the subject of many popular science experiments. Other examples for shear thickening fluids are
cements and clays, and this non-Newtonian behavior can also be engineered into products such as
pastes and paints. It has, amongst others, applications for building vibration and shock absorbing
devices, and in the development of protective clothing. However, shear thickening can also be an
unwanted effect that can cause severe problems in production processes [39].

The behavior of a particle-fluid mixture can be modeled as non-Newtonian fluid with a shear
thickening constitutive relation. While such a rheological behavior cannot be derived from first
principles, experimental studies suggest that a shear thickening constitutive relation is a reasonable
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model across a range of different particle sizes, particle shapes, and volume fractions [2, 4, 5, 12,
29, 39]. Thus, we consider a Stokes fluid in a two- or three-dimensional domain ˝, which shear
thickens at high shear strain rates. We consider the equations for the conservation of momentum
and mass given by

�Div � D f in ˝; (1a)
r � u D 0 in ˝; (1b)

where u is the velocity, � the stress tensor and f an external forcing. To specify the constitutive
relation, we denote by E the mapping from velocity to the shear strain rate, and denote the square
root of the second invariant of the strain rate tensor by jE � j, i.e.,

Eu WD
1

2

�
ruCruT

�
; jEuj D .Eu W Eu/

1
2 ; (1c)

where “W” denotes the inner product between two second-order tensors. Of our particular interest
is the sudden increase of viscosity in colloidal fluids at a certain strain rate. Thus, we consider a
constitutive law that relates the shear strain rate tensor Eu to the stress tensor � as follows:

� D

(
2�Eu � p I if jEuj 6 g;

2
�
�C � � �g

jEuj

�
Eu � p I if jEuj > g:

(1d)

Here, � > 0; � > 0 are viscosities, g > 0 is the parameter at which the viscosity increases, and
p denotes the pressure. In the sketches in Figure 1, the constitutive relation (1d) is compared to
the constitutive relation for a linear Stokes flow model. The relation (1d) corresponds to a fluid,
in which a sudden viscosity increase occurs as the shear strain rate exceeds g. Note that the term
�g=jEuj in (1d) is necessary to ensure continuity of the strain rate-to-stress relation, as can be seen
from Figure 1.

Arguably, (1) is one of the simplest models for viscous flow with shear thickening. It involves
only the parameter g, the viscosity � for shear strain rates below g, and the viscosity increase � for
shear strain rates above g. As an alternative to (1), models with a smooth, for instance power-law
shear thickening constitutive relation can be considered. Such smoother constitutive relations often
involve more model parameters than our idealized model (1d). Moreover, the analysis of power-law
(and other) shear thickening models requires Banach space theory (see, e.g., [13, 24, 33, 35, 36]),
while (1) can be formulated and analyzed in a Hilbert space framework. Our model (1) naturally
lends itself to a free boundary value problem, where the boundary separates regions with different
viscosities.

Next, we summarize related work, our main contributions, and the limitations of this work.

Related Work. Understanding the phenomena responsible for shear thickening in suspensions
is currently the subject of lively debates [2, 4, 5, 12, 22, 29, 40]. Possible explanations include
the formation of particle hydroclusters, the expansion of particle collections when flowing past
each other and compression-related jamming. The non-Newtonian behavior of shear thickening
has severe implications for force transmissions and fluid-solid interactions. In [28], for instance,
the authors study the focused force transmission through a cornstarch solution onto a containing
wall. In [40], the fluid solidification under the impact of a solid rod is studied, and the results
suggest that compression plays a role in shear thickening. The authors of [38] experimentally study
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FIG. 1. Illustration of constitutive relations for Newtonian fluid with constant viscosity (dashed lines) and a shear thickening
fluid (solid lines) based on (1d) with g D 2, � D 2 and � D 20. Shown are the correspondence between shear strain
rate and shear stress (left), and the viscosity as a function of the shear strain rate in a log-log plot (right); compare with
experimental measurements, for instance [39, Figures 1 and 2], [29, Figure 2], [11, Figure 11], [12, Figure 2]. Note that the
shear thickening relation (1d) contains the linear Stokes model as a special case for � D 0 or g ! 1. In Section 3, we
study the behavior of the model in the perfect shear thickening case, i.e., as �!1.

the settling of a solid sphere in a cornstarch suspension, and find a stop-and-go behavior of the
sinker. A similar constitutive relation as (1d) occurs in Bingham flow. While Bingham fluids and
smooth shear thinning fluids have been studied extensively in the literature [7, 17, 19], much fewer
theoretical and numerical studies of continuum mechanical models for shear thickening flows are
available. From a theoretical perspective, the “perfect shear thickening” limit case as � ! 1 is
related to the elastic-plastic torsion problem [3, 17, 23]. A related limit problems is also studied in
the recent preprint [34], which appeared after the completion of this work.

Contributions. To the best of our knowledge, the proposed continuum-mechanical flow model for
so-called discontinuous shear thickening has not been studied in the mathematical literature before.
We derive and analyze the problem that arises from the proposed model when the viscosity for high
shear rates tends to infinity, which is a variational inequality. Techniques from regularity theory are
adopted to prove Sobolev as well as Hölder regularity results for the solutions. This requires the
extension of regularity results for smooth potentials to potentials that contain a C 1;1-regular term.
The proposed mixed discretization combined with the Newton-type solution algorithm provide an
efficient method to solve the problem numerically. Using numerical experiments designed after
recent experimental studies from the literature, the behavior of the free boundaries in steady and
unsteady shear thickening flow are studied.

Limitations. The constitutive relation in our idealized continuum mechanical model is empirical.
It may be used to model the behavior of densely packed suspensions of particles in a fluid, but it
does not model the microscale particle-fluid and particle-particle interactions that ultimately cause
thickening. In experiments, colloidal dispersions yield shear thinning at very low strain rates (e.g.,
[5, 39]) – our model does not include this behavior.
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Paper organization. We show existence and well-posedness for a steady and an unsteady version
of our shear thickening flow model in the next section. In Section 3, the model and its solution in
the limit for � ! 1 are investigated. Section 4 is devoted to a study of the Sobolev and Hölder
regularity of the solutions to our model. This rather technical section may be skipped by readers
who are mainly interested in the model formulation and its numerical behavior. Section 5 presents
a mixed finite element discretization and a generalized Newton method for the resulting discrete
nonlinear and nonsmooth systems. Numerical problems for steady and unsteady shear thickening
flow problems are presented in Section 6. Finally, in Section 7 we draw conclusions and discuss
open issues and extensions of this work.

2. Basic solution properties

We start by establishing basic solution properties for (1) and for a time-dependent version of (1)
that models unsteady shear thickening flow. Our starting point for studying (1) is an optimization
formulation using the following viscous energy functional:

min
u2V

J.u/ D
�

2

Z
˝

Eu W Eu dx C
�

2

Z
˝

max.0; jEuj � g/2 dx �
Z
˝

f � u dx; (P)

where f 2 L2.˝/N and V is defined as the space of divergence-free velocity fields with zero
Dirichlet boundary conditions on ; 6D � � @˝, an open subset of the boundary of ˝ � RN ,
N 2 f2; 3g:

V WD fu 2 H 1.˝/N W r � u D 0 in ˝; u D 0 on � g: (2)

Note that, for simplicity of the presentation, we restrict our attention to homogeneous Dirichlet
boundary conditions and target (P) with V defined in (2) and � D @˝. More general boundary
conditions can be imposed in (1), for instance combinations of Dirichlet and Neumann conditions
as used for the numerical examples presented in Section 6. Computing the first variation of (P)
yields that the necessary (and sufficient) condition for u to be a minimizer for (P) is that u satisfies
the following variational equation:

�

Z
˝

Eu W Ev dx C �

Z
˝

max.0; jEuj � g/
Eu

jEuj
W Ev dx D

Z
˝

f � v dx for all v 2 V: (3)

Introducing a dual tensor, �, we obtain that the solution u is also characterized by the mixed (or
primal-dual) system

�

Z
˝

Eu W Ev dx C

Z
˝

� W Ev dx D

Z
˝

f � v dx for all v 2 V; (4a)

� � �max.0; 1 � gjEuj�1/Eu D 0 a.e. in ˝: (4b)

The introduction of the symmetric tensor � allows one to write the strong form (1) in mixed form
as

�Div .�EuC � � p I/ D f in ˝; (5a)
r � u D 0 in ˝; (5b)

where � satisfies (4b). Compared to .1/, this alternative form is advantageous for the discretization
and numerical simulation.
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In the remainder of this paper, we denote by .� ; �/ the L2.˝/-inner product, and denote the
corresponding norm by k � k. If the functions in this inner product are vector- or tensor-valued, .� ; �/
amounts to the sum of the component-wise inner products. This allows us to write (4) as

�.Eu;Ev/C .�;Ev/ D .f ; v/ for all v 2 V; (6a)

� � �max.0; 1 � gjEuj�1/Eu D 0 a.e. in ˝; (6b)

where � is a symmetric tensor with components in L2.˝/. To study (6), we introduce the function

M."/ WD max.0; 1 � gj"j�1/" (7)

for tensors " 2 RN�N . Note that max.0; 1�gj"j�1/ D 0 for j"j 6 g and thus we define M.0/ D 0.
We first prove Lipschitz continuity of M. Indeed, for "1; "2 2 RN�N one finds

M."1/�M."2/ D .max.0; j"1j � g/ �max.0; j"2j � g//
"1

j"1j
Cmax.0; j"2j � g/

� "1
j"1j
�
"2

j"2j

�
:

From the Lipschitz continuity of the max-function and due to max.0; j"2j � g/ 6 j"2j we obtain
that

jM."1/ �M."2/j 6 jj"1j � j"2jj C j"2j
ˇ̌̌̌
j"2j"1 � j"1j"2

j"1jj"2j

ˇ̌̌̌
6 j"1 � "2j C

ˇ̌̌̌
j"2j"1 � j"1j"1 C j"1j"1 � j"1j"2

j"1j

ˇ̌̌̌
6 3j"1 � "2j;

which shows the Lipschitz continuity of M.
Next, we discuss the dependence of the solution u of (P) on the viscosity increase �. To highlight

the dependence of solutions on �, we use the notation u D u� below.

THEOREM 2.1 There exists a unique solution u� 2 V to (6) and the mapping � 7! u� 2 V is
locally Lipschitz continuous. Moreover, for � > N� > 0, the mapping � 7! u� 2 V is globally
Lipschitz continuous.

Proof. The above pointwise estimate for M shows that u ! M.Eu/ is Lipschitz continuous.
Moreover, M is monotone since it is the derivative of a convex and differentiable term.
Consequently, the operator T W V 7! V 0 defined by

T .u/ D �.Eu;E�/C �.M.Eu/;E�/ (8)

is monotone and hemicontinuous and, therefore, pseudomonotone (see, for instance, [27, p. 171]).
Thus, there exists a solution u� to (6). Since T is strictly monotone, uniqueness of the solution
follows.

To prove the local Lipschitz dependence of u� on �, let u1 and u2 be the unique solutions of (6)
(or, equivalently (3)) for � D �1 and � D �2, respectively. Taking the difference between (3) for �1
and �2, and using the notation ıu WD u1 � u2 we obtain for all v 2 V that

�.Eıu;Ev/C �1.M.Eu1/;Ev/ � �2.M.Eu2/;Ev/ D 0:

By adding and subtracting the term �1.M.Eu2/;Ev/ and choosing v D ıu, it follows that

�.Eıu;Eıu/C
�
�1M.Eu1/ � �1M.Eu2/C �1M.Eu2/ � �2M.Eu2/;Eıu

�
D 0:



580 J. C. DE LOS REYES AND G. STADLER

Thanks to the monotonicity of Eu 7!M.Eu/, we obtain that

�kEıuk
2
L2

6 j�1 � �2j
ˇ̌�

M.Eu2/;Eıu

�ˇ̌
6 j�1 � �2jkmax.0; jEu2j � g/kL2kEıukL2 ;

which implies the desired

ku1 � u2kV 6
C

�
j�1 � �2jkmax.0; jEu2j � g/kL2 ; (9)

where C > 0 is the constant arising in Korn’s inequality.
For the global Lipschitz continuity, using the form of the functional J� , we obtain for arbitrary

� > 0 that

�

2
kEu�k

2 6 J�.u�/C .f ;u�/ 6 J�.0/C kf kku�k: (10)

Using Korn’s inequality, it follows that fu�g�>0 is bounded in V . Consequently, there exists some
c1 > 0, independent of �, such that

�

2

Z
˝

max.0; jEu� j � g/2 dx 6 J�.u�/C .f ;u�/ 6 c1 for all � > N� > 0 (11)

and, thus, kmax.0; jEu� j � g/k2L2 6 2c1
N�
: This together with (9) implies the result.

Next, we introduce a time-dependent version of the shear thickening model (P), which is given
by a partial differential equation of evolution type. The solution u D u.x; t/ for .x; t/ 2 ˝ � Œ0; T �
satisfies

.@tu; v/C �.Eu;Ev/C .�;Ev/ D .f ; v/ for all v 2 V; t 2 .0; T /; (12a)

� � �max.0; 1 � gjEuj�1/Eu D 0 a. e. in ˝; t 2 .0; T /; (12b)
u.0/ D u0 in ˝ � f0g: (12c)

The following existence and uniqueness result holds for this initial boundary value problem.

THEOREM 2.2 Let f 2 L2.0; T IV 0/ and u0 2 H WD fv 2 H.div; ˝/ W r � v D 0; v � nj� D 0g.
Then, there exists a unique solution u 2 L2.0; T IV / for (12).

Proof. The proof follows from the properties of the nonlinear term. Thanks to the monotonicity and
hemicontinuity of the operator T .u/ defined in (8), the result follows from [27, p. 158].

Before we study the regularity of solutions to the steady shear thickening problem (P) in
Section 4, we investigate the limit of the steady shear thickening problem as � ! 1 in (P) in
the next section.

3. The perfect shear thickening limit case

By “perfect shear thickening” we refer to the model in which the viscosity becomes infinite when the
flow reaches the critical shear rate g. The corresponding energy minimization problem is obtained
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by formally letting � ! 1 in (P). This results in the following constrained optimization problem
for perfect shear thickening:

min
u2V

jEuj6g a.e.

�

2

Z
˝

Eu W Eu dx � .f ;u/: (P1)

In this section, we characterize solutions of (P1). Since the feasible set in (P1) is convex and closed
and the cost functional is lower semicontinuous and strictly convex, (P1) admits a unique solution
u� 2 V .

The question arises if and in what sense solutions of (P) converge to the solution u� of (P1). To
emphasize the dependence of the solutions of (P) on �, in this section we denote solutions of (6) by
.u� ;��/, and the cost functional in (P) by J�.�/. Then we have the following lemma:

LEMMA 3.1 The solutions u� of (P) converge to the solution u� of (P1) strongly in V as � !1.

Proof. Proceeding as in the proof of Theorem 2.1 we get, from the form of the energy functional
J� and for arbitrary � > 0, that

�

2
kEu�k

2 6 J�.u�/C .f ;u�/ 6 J�.0/C kf kku�k: (13)

Hence, the boundedness of fu�g�>0 in V follows. Thus, a subsequence, which we again denote by
u� converges weakly in V to an element Nu 2 V . Additionally, there is some c1 > 0 such that

�

2

Z
˝

max.0; jEu� j � g/2 dx 6 c1 for all � > 0: (14)

This implies that Z
˝

max.0; jEu� j � g/2 dx 6
2c1

�
! 0 as � !1;

and, using the weak lower semicontinuity of the norm,Z
˝

max.0; jE Nuj � g/2 dx 6 lim inf
�!1

Z
˝

max.0; jEu� j � g/2 dx 6 0;

which implies that jE Nuj 6 g almost everywhere, yielding that Nu is feasible for (P1).
Next we show that ku�kV ! kNukV , which, together with the weak convergence implies the

strong convergence of u� to Nu in V . This norm convergence follows from
�

2
kE Nuk2 6 lim inf

�!1

�

2
kEu�k

2 6 lim inf
�!1

fJ�.u�/C .f ;u�/g

6 lim inf
�!1

fJ�. Nu/C .f ;u�/g D J. Nu/C .f ; Nu/ D
�

2
kE Nuk2;

where we used the weakly lower semicontinuity of the norm as well as jE Nuj 6 g almost everywhere.
Thus, u� ! Nu strongly in V . It remains to show that Nu is the solution to (P1). As shown above,
jE Nuj 6 g almost everywhere in ˝, and thus Nu is feasible for (P1). Using the solution u� of (P1),
we obtain

J. Nu/ 6 lim inf
�!1

J.u�/ 6 lim inf
�!1

J�.u�/ 6 lim inf
�!1

J�.u
�/ D J.u�/;

and thus Nu D u�. This shows that u� is unique and every subsequence of fu�g�>0 converges to u�,
which completes the proof.
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Next, we derive an optimality system that characterizes the solution to (P1). To do that, we
consider the following space:

EV WD
˚
w 2 L2.˝;RN�N / W w D Ev for some v 2 V

	
;

endowed with the L2�Frobenius norm

kwkEV D

�Z
˝

tr.wTw/ dx
�1=2

:

The dual space is denoted by .EV /0: Since EV is a closed subspace of L2.˝;RN�N /, it constitutes
itself a Hilbert space.

THEOREM 3.2 A subsequence of f��g�>0 converges weakly in .EV /0 to a tensor ��, and .u�;��/
satisfies the following system:

�.Eu�;Ev/C h��;Evi.EV /0 D .f ; v/ for all v 2 V; (15a)
jEu�j 6 g a.e. in ˝; (15b)

h��;E.v � u�/i.EV /0 6 0 for all v 2 V with jEvj 6 g a.e. in ˝; (15c)
h��;Eu�i.EV /0 > 0: (15d)

Proof. From the boundedness of fu�g�>0 (see proof of Lemma 3.1), it follows from (6a) that
f��g�>0 is bounded in .EV /0. Therefore, there exists a subsequence f��g such that

�� * �� weakly in .EV /0:

Passing to the limit in (6a), we obtain

�.Eu�;Ev/C h��;Evi.EV /0 D .f ; v/ for all v 2 V: (16)

In Lemma 3.1 we have already shown that u� is feasible for (P1), which proves (15b). To prove
(15c), note that the optimality of u� for (P1) implies

�.Eu�;E.v � u�// > .f ; v � u�/ for all v 2 V with jEvj 6 g a.e. in ˝: (17)

Choosing v WD v � u� in (16), and subtracting (17) from this equation yields

h��;E.v � u�/i.EV /0 6 0 for all v 2 V with jEvj 6 g a.e. in ˝; (18)

and thus (15c). In particular, taking v D 0, the inequality (15d) follows.

Note that the optimality system (15) for the limit problem (P1) does, in general, not allow a
pointwise characterization of ��. This is in contrast to the nonlinear equation system (4), which
characterizes the solution to (P). In the next section, we study the regularity of solutions to the
steady shear thickening problem (P).

4. Solution regularity

Here, we investigate additional regularity for the solution of the stationary model (3). We first give
a local Sobolev regularity result, and then, in Section 4.2, prove a partial Hölder regularity result.
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4.1 Sobolev regularity

We start by extending a result for smooth dissipative potentials, due to Fuchs and Seregin [15,
Section 3], to the case of potentials constituted by the sum of a smooth coercive term and a convex
C 1;1-regular term.

THEOREM 4.1 Let u 2 V be a solution of the variational equation

�.Eu;Ev/C

Z
˝

G.Eu/ W Ev dx D .f ; v/ for all v 2 V; (19)

where G is a monotone and Lipschitz continuous operator. If f 2 L2.˝/N , then the solution has
the additional regularity u 2 H 2

loc
.˝/N .

Proof. Since we target local regularity, we can assume w.l.o.g. C 2-regularity of the boundary. If
@˝ is not that smooth, we can consider a regular subdomain Ő of ˝, extend test functions from
Ő to ˝ by zero and combine the weak forms on Ő . We first consider the weak formulation of the

linear Stokes equation: Find w 2 V such that

�.Ew;Ev/ D .f ; v/ for all v 2 V: (20)

Due to the regularity of @˝, the solution w of (20) has the additional regularity w 2 H 2.˝/N , and
the estimate [26, Ch. 3, Sec. 5]Z

˝

�
jrwj2 C jr2wj2

�
dx 6 c1kf k

2
L2.˝/

holds for a constant c1 > 0 that only depends on the domain ˝. The problem (19) can thus be
written as

�.Eu;Ev/C .G.Eu/;Ev/ � �.Ew;Ev/ D 0 for all v 2 V; (21)

or, equivalently, using a pressure function p 2 L2.˝/ (see [26, Ch. 1, Sec. 2]) as: Find u 2 V such
that

�.Eu;Ev/C .G.Eu/;Ev/ D �.Ew;Ev/C .p;r � v/ (22)

for all v 2 H 1
0 .˝/

N . Introducing, for h 2 RN such that x C h 2 ˝, the difference operator
Dhg.x/ WD g.x C h/ � g.x/ and the smooth cutoff function ' 2 C 20 .˝/, we obtain, choosing
v D D�1

h

�
'2Dhu

�
in (22), that

�
�
E.Dhu/;E.'

2Dhu/
�
C
�
ŒG.Eu.x C h// � G.Eu.x//� ;E.'2Dhu/

�
D �

�
E.Dhw/;E.'

2Dhu/
�
C
�
Dhp;r � .'

2Dhu/
�
:

Moving ' outside of E, this yields

�
�
'2E.Dhu/;E.Dhu/

�
C
�
'2 ŒG.Eu.x C h// � G.Eu.x//� ;E.Dhu/

�
D �2�

�
'E.Dhu/; .Dhuˇr'/

�
� 2

�
' ŒG.Eu.x C h// � G.Eu.x//� ; .Dhuˇr'/

�
�
�
'2E.Dhw/;E.Dhu/

�
C 2�

�
'E.Dhw/; .Dhuˇr'/

�
C
�
Dhp;r � .'

2Dhu/
�
;
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where .a ˇ b/ij D 1
2
.aibj C aj bi / for a;b 2 RN : Using the monotonicity of G on the left hand

side and its Lipschitz continuity on the right hand side, we get the estimate:

k'E.Dhu/k
2
L2

6 c2

n
k'E.Dhu/kL2

�Z
˝

jDhuj
2
jr'j2 dx

�1=2
C k'E.Dhu/kL2k'E.Dhw/kL2

C

Z
˝

'jE.Dhw/jjDhujjr'j dx C
�
Dhp;r � .'

2Dhu/
�o
; (23)

for some constant c2 > 0. Following [15, Thm. 3.1], for a constant c3 > 0 the estimate�
Dhp;r � .'

2Dhu/
�

6 c3jhjkpkL2kE.'Dhu/kL2

holds. Together with (23), this implies

k'E.Dhu/k
2
L2

6 c4

Z
˝

jE.Dhw/j
2
C jDhuj

2
C jhj2jpj2 dx

for a constant c4 > 0. Consequently, from standard pressure estimates and the properties of the
difference operator (see [10, pg. 277]) we obtain thatZ

˝

'2jrE.u/j2 dx 6 c5

Z
˝

jf j2 dx:

with c5 > 0, which implies the result.

Taking G.Eu/ WD M.Eu/ D �max.0; 1 � gjEuj�1/Eu we obtain the desired regularity for
solutions to (P) (or, equivalently, (3)) as direct consequence of Theorem 4.1.

COROLLARY 4.2 Let f 2 L2.˝/N . Then the unique solution u 2 V to (3) has the additional
regularity u 2 H 2

loc
.˝/N :

4.2 Hölder regularity

Next we prove a partial Hölder regularity result for the solution of (P). For that purpose, we consider
an auxiliary regularized version of (P), for which regularity is obtained from results for minimizers
of variational problems with C 2-potentials. Then, an asymptotic analysis is performed in order to
prove the claim. The regularized minimization problem is

min
u2V

Jı.u/ WD
�

2

Z
˝

Eu W Eu dx C
�

2

Z
˝

maxı.0; jEuj � g/2 dx �
Z
˝

f � u dx; (Pı )

where

maxı.0; x/ D

8̂<̂
:
x if x > ı;

�
1

16ı3
x4 C 3

8ı
x2 C 1

2
x C 3ı

16
if jxj 6 ı;

0 if x 6 �ı
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is a twice continuously differentiable approximation of the max-function. The necessary and
sufficient optimality condition for the minimizer uı of (Pı ) is given by the following variational
equation:

�

Z
˝

Euı W Ev dx C �

Z
˝

maxı.0; jEuı j � g/ 1ı.jEuı j � g/
Euı
jEuı j

W Ev dx

D

Z
˝

f � v dx for all v 2 V; (24)

where 1ı.x/ is the derivative of maxı.0; x/. To apply the regularity result in [14, Thm. 2.1] to (Pı ),
the following growth condition for the second derivative of

mı."/ WD
1

2
maxı.0; j"j � g/2 for " 2 RN�N

is used; for the simple proof we refer to Appendix A.

LEMMA 4.3 There exists a constant C > 0 independent of ı and " such thatˇ̌̌̌
@2mı."/

@"2

ˇ̌̌̌
6 C: (25)

Therefore (see [16, Thm. 3.1.5]), we obtain that the solution uı of (Pı ) is in C 1;˛.˝�/, 0 <
˛ < 1, where

˝� WD
˚
x 2 ˝ W x is a Lebesgue point of Eu and lim

r!C0
V.u; Br .x// D 0

	
;

and ˝� is open. Above, Br .x/ is the ball with radius r centered at x, and

V
�
u; Br .x/

�
WD �

Z
Br .x/

jEu � .Eu/x;r j
2 dz and .Eu/x;r WD �

Z
Br .x/

Eu dz:

If n D 2, then uı belongs to the space C 1;˛.˝/; 0 < ˛ < 1 (see [14, Thm. 4.1]).
Next, we study the regularity in the limit as ı ! 0. In the following lemma, we establish a

pointwise convergence result for the regularization of the max-function; for the proof we refer to
Appendix A.

LEMMA 4.4 For ı !1,

jmax.0; x/ �maxı.0; x/ 1ı.x/j ! 0 uniformly in x 2 R:

In order to prove partial regularity, the key ingredient is a blow-up estimate, which is verified in
the next lemma. Along the proof, which can be found in Appendix A, we make use of results which
can be traced back to [14]. In fact, we only give a detailed justification of the main steps, where the
proof differs from the one in [14].

LEMMA 4.5 (Blow-up) Let � > 0 and let uı be the minimizer for Jı in V . Then there exists a
constant c0 such that for every t 2 .0; 1/ there exists �, depending on t and � , such that

j.Euı/x0;r j 6 � and V
�
uı ; Br .x0/

�
< �2;

for some ball Br .x0/ � ˝, imply the estimate

V
�
uı ; Btr .x0/

�
6 c0t

2V
�
uı ; Br .x0/

�
:
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The blow-up lemma is the main tool to prove the Hölder regularity stated in the next theorem.

THEOREM 4.6 Let u 2 V be the minimizer of (P) . Then˝� is open and Eu 2 C 0;˛.˝�/ for every
0 < ˛ < 1.

Proof. Step 1. We start by proving strong convergence of the minimizers of (Pı ) towards the
minimizer of (P) in V as ı ! 0. Taking the difference between the variational equations (3) and
(24) and testing with v D u � uı we obtain that

�

Z
˝

jEu � Euı j
2 dx C �

Z
˝

h
max.0; jEuj � g/

Eu

jEuj

�maxı.0; jEuı j � g/ 1ı.jEuı j � g/
Euı
jEuı j

i
W .Eu � Euı/ dx D 0: (26)

Introducing for v 2 V the notation emax.v/ WD max.0; jEvj�g/ and Amaxı.v/ WD maxı.0; jEvj�g/,
we get that

�

Z
˝

jEu � Euı j
2 dx C �

Z
˝

h
emax.u/

Eu

jEuj
�emax.u/

Euı
jEuı j

Cemax.u/
Euı
jEuı j

�Amaxı.uı/ 1ı.jEuı j � g/
Euı
jEuı j

i
W .Eu � Euı/ dx D 0; (27)

which, thanks to the monotonicity of the operator M, implies that

�

Z
˝

jEu � Euı j
2 dx 6 �

Z
˝

ˇ̌emax.u/ �emax.uı/ 1ı.jEuı j � g/
ˇ̌
jEu � Euı j dx: (28)

From the approximation properties of the maxı function (see Lemma 4.4) we finally get that

emax.u/ �Amaxı.uı/ 1ı.jEuı j � g/



L2
! 0 as ı ! 0

and, by Korn’s inequality, uı ! u in V as ı ! 0.

Step 2. Let x0 2 ˝�. Choosing a radius r such that j.Eu/x0;r j < �=2 and V.u; Br .x0// < Q�.t/
with Q�.t/ D �2.t/, as well as t such that c0t2 6 1

2
, it follows, for ı small enough, that

j.Euı/x0;r j <
�

2
; V.uı ; Br .x0// < Q�.t/;

and, by [14, Lem. 2.5],

V
�
uı ; Btr .x0/

�
6
1

2
V
�
uı ; Br .x0/

�
:

Thanks to Lemma 4.5, a blow up estimate holds for the whole sequence fuıg with constants
independent of ı. Arguing as in [14, p. 1011] we thus obtain that

V
�
uı ; Btkr .x0/

�
6 2�kV

�
uı ; Br .x0/

�
;

for all k and ı small enough. Hence, Euı 2 C
0;˛.Br=2.x0//; 0 < ˛ < 1 and, by passing to the

limit, it follows that Eu 2 C 0;˛.Br=2.x0//; 0 < ˛ < 1.

After these regularity results, in the next section we discuss the numerical discretization of the
shear thickening flow problem (P) and present an efficient solution method to solve the resulting
nonlinear (and nonsmooth) finite-dimensional problem.
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5. Discretization and Newton-type solution algorithm

Next, in Section 5.1, we present a mixed finite element discretization for our model for steady
and unsteady discontinuous thickening flows. For the application of the finite element method to
free boundary problems we refer for instance to [8, 25]. In Section 5.2, we propose a generalized
Newton algorithm that enables an efficient solution of the arising discrete nonlinear systems.

5.1 Finite element discretization

We use finite elements to discretize the mixed system (6). For that purpose, we introduce the finite
element spaces Wh � H 1.˝/N for the velocity, Ph � L2.˝/ for the pressure and Qh � L2.˝/s

for the dual tensor, and we assume that Wh and Ph satisfy the inf-sup condition for stability of
numerical methods for saddle point problems [9]. Using the symmetry of the dual tensor, it is
sufficient to approximate s D 3 (rather than all four) components of � in two dimensions, and
s D 6 (rather than nine) stress components in three dimension. We first target the discretization of
the steady shear thickening flow problem and then consider the time-dependent problem.

The finite element approximation of (6) is given by: Find .uh; ph;�h/ 2 Wh � Ph �Qh such
that for all .vh; qh;'h/ 2 Wh � Ph �Qh:

�.Euh;Evh/C .�h;Evh/C .ph;r � vh/C .qh;r � uh/ � .f ; vh/ D 0; (29a)

�
�
max

�
0; 1 � gjEuhj

�1
�

Euh;'h
�
� .�h;'h/ D 0: (29b)

We use numerical quadrature to approximate the integrals in (29) and denote by .u;p;�/ 2 Rm �
Rn�Rl the finite element coefficient vectors for .uh; ph;�h/. This results in the following nonlinear
system: 24 A BT GT

B 0 0
QG.u/ 0 �N

3524up
�

35 D 24f0
0

35 : (30)

Here, A 2 Rm�m and Bn�m correspond to the discretization of the viscous and the divergence
operators, respectively. Moreover, N 2 Rl�l is a mass matrix in Qh, and

G D FT diag.!/E and QG.u/ D FT diag.!/diag.%.u//E; (31)

where F 2 Rsq�l denotes the evaluation of the basis functions of Qh at quadrature points xi , i D
1; : : : ; q, and E 2 Rsq�m the evaluation of the strain components for the basis functions inWh at the
same quadrature points. Note that each quadrature point appears s times, once for each component
of the stress tensor. The components in ! D .!1; : : : ; !1; !2; : : : ; !2; : : : ; !q; : : : ; !q/T 2 Rsq are
products of quadrature weights with the Jacobi determinants. Note that each value !j occurs s times
in !. The entries in the vector %.u/ D .%1.u/; : : : ; %1.u/; %2.u/ : : : %q.u//T 2 Rsq are given by

%j .u/ D �max
�
0; 1 � gkEjuk�1

�
for j D 1; : : : ; q: (32)

Here, Ej are the rows of E corresponding to the j th quadrature point, and kEjuk D .uTETj Eju/1=2.
Note that in the discretized form, the nonlinearity comes into play at the quadrature points.

Next, we study the nonlinear system (30). First, note that using the notation introduced above,
the mass matrix N is given by N D FT diag.!/F. Since N is invertible, � can be eliminated from
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(30), which results in the reduced system�
AC L.u/ BT

B 0

� �
u

p

�
D

�
f

0

�
with L.u/ D ET diag.!/Pdiag.%.u//E: (33)

Here, P D F
�
FT diag.!/F

��1 FT diag.!/ is the projection onto the space spanned by columns of F.
Note that, in general (33) does not represent the first-order necessary conditions of an optimization
problem. However, if P D diag.p1; : : : ; p1; p2; : : : ; pq/ 2 Rsq�sq is diagonal, the matrix L.u/ is
symmetric and positive definite for all u 2 Rm and thus the solution of (33) is also characterized as
minimizer of a strictly convex optimization problem with equality constraints, namely

min
BuD0

1

2
uTAuC

qX
jD1

�!jpj max.0; kEjuk � g/2:

As a consequence, the system (33) has a unique solution. To summarize:

LEMMA 5.1 If the velocity-pressure finite element discretization satisfies the discrete inf-sup
condition and P is diagonal, the nonlinear system (30) has a unique solution .u?;p?;�?/.

An example for a discretization of Qh that results in a diagonal matrix P are piecewise
discontinuous constants – this discretization is used for the numerical results presented in Section 6.
Also, quadrature rules that use the same points for interpolation and quadrature (often, Legendre-
Gauss-Lobatto points are used in this context) result in diagonal N and thus a diagonal matrix P.

We now turn to the discretization for the time-dependent shear thickening model (12). While
a variety of methods for the time discretization of (12) can be used, we choose the implicit Euler
method, for simplicity. Finite elements as described above are used for the space discretization. For
the time discretization, we split Œ0; T � into K equal-size intervals of length �t D T=K and denote,
for k D 0; : : : ; K, the discrete solution at time tk WD k�t by .uk

h
; pk
h
;�k
h
/. Then, the discretized

problem amounts to solving, for each k D 1; : : : ; K the system

1

�t
.ukh � u

k�1
h ; vh/C �.Eu

k
h;Evh/C .�

k
h;Evh/

C.pkh ;r � vh/C .q
k
h ;r � u

k
h/ � .f

k ; vh/ D 0 for all .vh; qh/ 2 Wh � Ph; (34a)

�
�

max
�
0; 1 � gjEukhj

�1
�

Eukh;'h

�
� .�kh;'h/ D 0 for all 'h 2 Qh: (34b)

Above, f k D f .tk/ and u0
h
D u0 is the initial condition. Note that no initial condition for the

pressure and the dual tensor are needed. Using quadrature to approximate the integrals in (34),
and denoting by .uk ;pk ;�k/ the finite element coefficients corresponding to .uk

h
; pk
h
;�k
h
/ for k D

0; : : : ; K, the nonlinear algebraic system corresponding to (34) is:24AC 1
�t

M BT GT

B 0 0
QG.u/ 0 �N

3524ukpk
�k

35 D 24f k C 1
�t

Muk�1

0
0

35 : (35)

This system is similar to the nonlinear system for steady shear thickening flow (30). Due to
the max-function involved in these systems, they are not differentiable and we cannot apply the
classical Newton’s method for their solution. However, we can employ a Newton method that uses
a generalized differentiability concept to solve (30), as shown in the next section.
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5.2 Generalized Newton algorithm

We first compute derivatives of the nonlinear term QG.u/ in (30). Generalized (or semismooth)
derivatives in finite dimensions are well studied in the literature [21, 31, 32]. It can be shown that the
max-function is differentiable in this generalized sense. A particular choice of generalized derivative
of the max-function to compute the derivative of %j .u/ (see (32)) in a direction Qu 2 Rm results in

%0j .u/. Qu/ D ��jgkEjuk
�3uTETj Ej Qu with �j D

(
1 if kEjuk > g;

0 else.

Thus, we obtain the generalized derivative of QG.u/

QG0.u/. Qu/ D FT diag.!/Diag.Rj .u//E Qu;

where Diag.Rj .u// 2 Rqs�qs is a block diagonal matrix, with blocks

Rj .u/ D ��j
�
.1 � gkEjuk�1/Is C gkEjuk�3EjuuTETj

�
2 Rs�s;

for j D 1; : : : ; q, where Is 2 Rs�s denotes the identity matrix. Above, the identity�
uTETj Ej Qu

�
Eju D

�
EjuuTETj

�
Ej Qu

is used. We can now give the generalized Newton step for (30). Given the kth iterate .uk ;pk ;�k/,
the Newton update . Ou; Op; O�/ is computed by solving24 A BT GT

B 0 0
QG0.uk/ 0 �N

3524 OuOp
O�

35 D 24f � Auk � BTpk �GT �k

�Buk

� QG.uk/C N�k

35 (36a)

and the next Newton iteration obtained from

.ukC1;pkC1;�kC1/ WD .uk ;pk ;�k/C . Ou; Op; O�/: (36b)

Due to the generalized differentiability of (30), we obtain the following convergence result for the
Newton method based on the iteration rule (36), where we again restrict ourselves to discretizations
leading to a diagonal matrix P.

LEMMA 5.2 If the velocity-pressure finite element discretization satisfies the discrete inf-sup
condition and P is diagonal, the (generalized) Newton matrix in (36a) is invertible for every
uk 2 Rm, and the inverse matrices are bounded independently of uk .

Proof. As in Section 5, we eliminate the variable O� from (36a) and obtain�
AC L0.uk/ BT

B 0

� �
Ou

Op

�
D

�
f � Auk � BTpk �GTN�1 QG.uk/

0

�
(37)

with L0.u/ D ET diag.!/PDiag.Rj .u//E. If P is diagonal, then L0.uk/ is symmetric and positive
semidefinite and thus the system (37) has a unique solution. Moreover, as A is positive definite, the
inf-sup constant can be chosen independently of uk and, hence, the inverse matrices are bounded.
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Convergence results for generalized Newton methods in finite-dimensional spaces [21, 32] can
be applied, and thus the following convergence result is obtained.

THEOREM 5.3 Let the initialization .u0;p0;�0/ be sufficiently close to .u?;p?;�?/. Then the
Newton iterates .uk ;pk ;�k/, k D 1; 2; : : : computed from (36) converge to .u?;p?;�?/ at a
superlinear rate.

A generalized Newton method as described above also applies for the solution of (35), and a fast
local convergence result analogously to Theorem 5.3 holds for the application of the generalized
Newton method to solve the nonlinear system in each time step. Since the Newton iteration for a
time step can be initialized with the solution from the previous step, only few iterations are required
in each time step thanks to the fast local convergence of the method. In the next section, we apply
the above algorithms for the solution of steady and unsteady flow problems with shear thickening
rheology.

6. Numerical results

The purpose of this section is, first, to study the discretization and the solution methods proposed
in Section 5, and, second, to examine the flow behavior and the free boundary resulting from our
shear thickening flow model, and to study how this behavior compares with experiments from the
literature. We use dimensional variables in SI units, i.e., m/s for the velocity, 1/s for the strain rate, Pa
for the stress, and Pa�s for the viscosity. The linear Stokes systems arising in each step of the Newton
method are solved with a direct solver. Note, however, that the linearized problems are Stokes
problems with varying viscosity, for which efficient iterative solvers are available [6, 9, 20, 30]. We
use the lowest-order Taylor-Hood pair to discretize velocity and pressure, i.e., continuous quadratic
elements for each velocity component and continuous linear elements for the pressure. Each
component of � is discretized using element-wise constants. For steady-state problems, the Newton
iteration is initialized with the solution of the linear Stokes equation without shear thickening. For
time-dependent problems, the solution from the previous time step is used as initialization. The
Newton iteration is terminated when theL2-norm of the nonlinear residual is decreased by 10 orders
of magnitude.

6.1 Problem I: Steady channel flow around an obstacle

We consider the steady flow through a channel, which contains an obstacle. The channel has a length
of 0:4 m and a height of 0:2 m. It is assumed to either be of large depth, or axially symmetric – in
both cases, the flow can be modeled in two dimensions. The flow is driven by a parabolic inflow
boundary condition with maximal velocity u0, i.e., u D .u0.100y2 � 1/; 0/T for the left boundary.
On the right side, a traction-free outflow boundary condition is used. All other boundaries, including
the obstacle, satisfy no-flow (i.e., homogeneous Dirichlet) conditions. The obstacles we consider
are centered at the origin of the coordinate system. Since they are symmetric with respect to the
channel’s centerline, it suffices to compute the two-dimensional flow in half of the channel. Thus,
our computational domain is˝ D Œ�0:2; 0:2�� Œ0; 0:1�, and we use symmetry boundary conditions
(u � n D 0 and free slip in tangential direction) for the bottom boundary Œ�0:2; 0:2� � f0g.

6.1.1 Two-dimensional flow around circular and square-shaped obstacles. Here, the obstacle is
either a sphere with radius 0:025, or a square with edge length 0:04; both are centered at the origin.
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We first study convergence properties of our algorithm, and then focus on the qualitative behavior
of shear thickening flow, and on the free boundary.

Convergence rate. We first study the convergence of the proposed generalized Newton method.
For that purpose, we use the channel with circular obstacle and a maximal inflow rate of u0 D 0:03.
In Figure 2 (left), the nonlinear residual in each Newton step is plotted. Note the fast convergence
close to the solution, as is typical for Newton-type methods (compare with Theorem 5.3). The
residual as a function of the iteration number behaves similar for all other tested values of u0.

Dependence of the number of iterations on the mesh and �. On the right hand side in Figure 2,
we report on the number of Newton iterations needed for convergence for different discretizations
and values of �. Note that we observe a mesh-independent behavior for fixed �, i.e., the number of
iterations is stable with respect to mesh refinement. However, increasing � leads to a larger number
of Newton iteration. This suggest that the simulation of shear thickening fluids with very different
viscosities could be accelerated using continuation with respect to �. However, note that the limit
case of diverging viscosity � ! 1 might be more of theoretical than of practical interest, since
most experiments with colloidal dispersions report a finite increase in viscosity ranging from one to
several orders of magnitude [5, 12, 29].

Comparison with linear Stokes flow. In Figure 3, we compare the streamlines obtained with a
linear Stokes model with those for a shear thickening fluid. As can be observed, the flow lines
concentrate further away from the boundary layers for shear thickening flow. Note that due to the
inflow boundary condition, in both cases the overall flow rate through the channel is the same, while
the qualitative behavior of the flow differs.

2 4 6 8
10�12

10�8

10�4

100

104

Iteration k

k
re

sk
k
L
2

#elem 400 1,104 4,114 16,164
#dofs 4933 10,956 39,148 151,409
10 6 6 7 7
102 8 8 9 10

� 103 11 11 11 13
104 17 15 16 18
105 23 21 24 29

FIG. 2. Problem I: Convergence of generalized Newton method for shear thickening constitutive law for a simulation with
g D 1 and u0 D 0:03. On the left, we plot theL2-norm of the nonlinear residual in the k-th iteration, kreskk, for � D 100
on a 4,114 element mesh. The table on the right displays the number of Newton iterations required to decrease the residual
by 10 orders of magnitude. Shown are the iteration numbers for meshes with different numbers of finite elements (#elem)
and unknowns in the Stokes system (#dofs) for various values of �.
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x

y

FIG. 3. Problem I: Streamlines in upper half of channel with a spherical obstacle (gray) for parabolic inflow with maximal
velocity u0 D 0:035. Shown are the streamlines for Stokes flow without shear thickening (dashed lines) and with
discontinuous shear thickening using g D 1 and � D 100 (solid lines). Indicated is also the coordinate system.

a) b) c) d)

e) f) g) h)

obstacle
thickenend volume

FIG. 4. Problem I: Comparison of free boundaries arising in the discontinuous shear thickening flow model for the circular
obstacle (a to d) and square-shaped obstacle (e to h). The columns correspond to the different inflow velocities u0 D 0:02 (a
and e), u0 D 0:025 (b and f ), u0 D 0:03 (c and g) and u0 D 0:035 (d and h). Shown is the part Œ�0:06; 0:06��Œ0; 0:1�
of the channel; both, the obstacle and the shear thickened volume are shown.

Free boundaries. We define the thickened volume as all points where jEuj is at or above the
threshold g, i.e., as fx 2 ˝ W jEu.x/j > gg. We call the boundary of this set, i.e., fx 2 ˝ W
jEu.x/j D gg the free boundary. In Figure 4, we show this free boundary for different inflow
velocities u0 for the circular and the square-shaped obstacles. As to be expected, the amount of
shear thickened volume grows with the flow rate, and thus the shear strain rate increases. In our
example problems, we observe a monotone growth of the thickened volume. The shear thickening
regions are close-to-symmetric with respect to the y-axis–potential asymmetry can only be caused
by the different inflow and outflow boundary conditions. For the square-shaped obstacle and low
flow rates, the thickened volume is concentrated around the corners since these re-entrant corners
are areas with high strain rates.



A NONSMOOTH MODEL FOR DISCONTINUOUS SHEAR THICKENING FLUIDS 593

a) b) c) d)

obstacle
thickenend volume

FIG. 5. Problem I, axially symmetric flow: Shown is the part Œ�0:06; 0:06� � Œ0; 0:1� of the channel; both, the obstacle
and the shear thickened volume are shown.

6.1.2 Axially symmetric flow around a sphere. Cylindrical coordinates for the Stokes equation
are used to model axially symmetric flow. The free boundaries of the shear hardened regions that
occur for different inflow velocities are shown in Figure 5. Comparing with the upper row in
Figure 4, less thickening occurs for the same inflow velocity in the axially symmetric problem,
since the strain rates caused by a spherical obstacle are smaller than those caused by a circular rod.
Observe the lens-shaped thickened volume at the front and top of the spherical obstacle.

6.2 Problem II: Flow driven by a moving obstacle

The geometry in this problem coincides with the axially symmetric case in Problem I (Section 6.1.2),
but we assume no-flow boundary conditions on the whole boundary. The flow is initially at rest (i.e.,
u0 D 0) and is driven only by the motion of the sphere, whose center c D .c1; c2/ follows the
time-dependent trajectory

c1.t/ D u0.min.t; 0:5/2 Cmax.0; t � 0:5//; c2.t/ D 0 for t 2 Œ0; T �: (38)

As before, the sphere has the radius r D 0:025 and the rotational component of its motion is zero.
Note that the sphere’s velocity grows linearly until it reaches the velocity u0 > 0 at t D 0:5. We
stop the simulation at T WD .0:2� r/=u0C 0:25 when the sphere touches the right boundary of the
domain. The setup of this problem is motivated by the experimental study in [28], in which a solid
body is pushed through a concentrated cornstarch suspension towards a wall made of molding clay.
In this experiment, the thickened volume at the leading side of the sphere causes an imprint in the
clay.

A fictitious domain method with distributed Lagrange multipliers [18, 19] is used to simulate
the interaction between the fluid and the rigid sphere. In this method, the rigid sphere is thought of
being filled with the surrounding fluid, and distributed Lagrange multipliers are used to impose the
prescribed rigid motion of the sphere. This computation can be performed on a fixed mesh, which is
a major advantage of the fictitious domain method compared to methods that are based on mapped
meshes or require re-meshing. Note that our problem is one-way coupled, i.e., only the force acting
on the fluid due to the prescribed trajectory of the rigid sphere must be considered. The fictitious
domain method also applies to problems with fully coupled fluid-solid interaction, as, for instance,
the settling of a rigid body in a shear thickening fluid, [38].

To sketch the application of the fictitious domain method to our problem, we denote the region
covered by the rigid sphere at time t by N̋ .t/ � ˝ and introduce a finite element space Rh.tk/ �
H 1. N̋ .tk//s , which is defined over N̋ .t/. In each time step, the finite element discretized system
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(34) for the flow at time tk is augmented by the fictitious domain constraint

.uk � c0.tk/; rh/ N̋ .tk/ D 0 for all rh 2 Rh.tk/; (39)

where .�; �/ N̋ .tk/ denotes a scalar product over N̋ .tk/ and the velocity of the sphere at time t is c0.t/,
with c as defined in (38). From the continuous standpoint, the H 1.˝.tk// scalar product should be
used for .�; �/ N̋ .tk/. However, for the discretized problem it is a valid choice (and common practice)
to use a discrete inner product that approximates the weaker L2.˝.tk// inner product for (39). We
use the sum of the pointwise nodal values corresponding to the velocity degrees of freedom inside
N̋ .t/, as well as points on the surface @ N̋ .t/ for the discrete inner product, which amounts to a

collocation method for the fictitious domain constraints, [18, 19]. Figure 6 shows an example mesh
together with the points at which the fictitious domain constraints are enforced.

To compute the flow solution at a time step tk , both the incompressibility constraint and the
fictitious domain constraint (39) must be taken into account, which can be tricky. As a remedy, we
use an operator splitting method, in which the incompressibility condition and the fictitious domain
condition are neglected alternately in fractional time steps. Given iterates .uk�1

h
; pk�1
h

;�k�1
h

/, this
amounts to first solving the fictitious domain problem

1

ıt
.u
k�1=2

h
� uk�1h ; vh/C ˛�.Eu

k�1=2

h
;Evh/

C.�
k�1=2

h
;uk�1=2/ N̋ .tk/ C .p

k�1
h ;r � u

k�1=2

h
/ D 0 for all vh 2 Wh; (40a)

.uk�1=2 � c0.tk/; rh/ N̋ .tk/ D 0 for all rh 2 Rh.tk/;

for .uk�1=2;�k�1=2/ 2 Wh � Rh.tk/, where �k�1=2 is the Lagrange multiplier for the fictitious
domain constraint, and 0 6 ˛ 6 1 (below, ˛ D 0:5 is used). Then, a shear thickening flow problem

FIG. 6. Problem II: Computational mesh and points covering the fictitious domain N̋ .0/ at t D 0. Shown is the region
Œ�0:05; 0:05� � Œ0; 0:05� � ˝. The mesh used in our computations is finer than this mesh, and thus also uses a larger
number of points to cover the fictitious domain. To avoid an over-constrained problem, the fictitious domain constraint is not
imposed at mesh points close to @ N̋ .0/, [19].
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similar to (34) is solved for .uk
h
; pk
h
;�k
h
/:

1

ıt
.ukh � u

k�1=2

h
; vh/C .1 � ˛/�.Eu

k
h;Evh/C .�

k
h;Evh/C .�

k�1=2;uk/ N̋ .tk/

C.pkh ;r � vh/C .q
k
h ;r � u

k
h/ D 0 for all .vh; qh/ 2 Wh � Ph; (40b)

�
�

max
�
0; 1 � gjEukhj

�1
�

Eukh;'h

�
�.�kh;'h/ D 0 for all 'h 2 Qh:

The error due to the operator splitting is mitigated by using the pressure pk�1
h

from the previous
time step in (40a) and the fictitious domain Lagrange multiplier �k�1=2 in (40b). Additionally, the
splitting error can be controlled by choosing a small time step.

We use 250 time steps and a mesh with 26,609 triangular elements for our computations. The
mesh is refined around the trajectory of the rigid sphere to ensure that the fictitious domain and the
free boundary of the thickened volume are sufficiently well resolved. Figure 7 shows snapshots of
the solution for u0 D 0:03 in (38), i.e., after the start-up phase (for t < 0:5), the sphere moves
with a constant velocity of 0:03 to the right. First, note that in Figure 7 (a), where the sphere is still
far away from the right boundary, the thickened volume resembles the steady state solution for an
axially symmetric channel with u0 D 0:03 (left image in Figure 5). Figures 7 (b), (c), (d) and (e)
show that additional solidification occurs at the leading side of the sphere caused by the increased
strain rate due to the redirection of the flow at the right boundary of ˝. This thickened volume
transmits force from the sphere to the right boundary as shown in the right column of Figure 7,
where the outward normal traction acting on the right boundary is shown. Such a force transmission
is also found in an experimental study with a cornstarch-water dispersion [28], and it is a particular
property of fluids that yield thickening at high shear rates.

6.3 Problem III: A solid rod impacting the fluid surface

Next, we study the time evolution of the flow due to an applied surface force. Our problem setup is
motivated by a recent experiment reported in [40], in which a circular rod plunges into a container
filled with cornstarch. The authors find impact-activated solidification below and around the rod’s
impact zone. They argue that the main source of energy dissipation is that this jammed zone causes
a large blob of material to move down with it.

To numerically model a similar experiment, we consider half of a slice through an axially
symmetric setup similar to the one described above. We use the computational domain ˝ D

Œ�0:1; 0:1� � Œ0; 0:25�, the symmetry axis x D 0, final time T D 0:005 and the initial condition
u0 D 0. Dirichlet boundary conditions for the bottom and right, and a symmetry condition for
the left boundary are imposed. The upper boundary is traction-free in tangential direction, and the
forcing in the normal direction is given by

�n � n D

(
�50 for x 6 0:01 and t 6 0:6T;

0 else,
(41)

where n denotes the outward normal unit vector. Moreover, we use � D 103 and g D 1.
Our simulation uses a triangular mesh with 4,262 elements, which is refined around the area

where the boundary force is applied. Moreover, 200 time steps are used for the time discretization.
The number of Newton iterations needed to solve the nonlinear system in each time step is shown
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�n � n
a)

0 2 4 6

b)

0 2 4 6

c)

0 2 4 6

d)

0 2 4 6

e)

0 2 4 6

FIG. 7. Problem II: Snapshots of axially symmetric simulation of a sphere pushed through shear thickening fluid at times
t D 2:21 (a), t D 4:40 (b), t D 4:90 (c), t D 5:62 (d) and t D 5:86 (e). Shown in the left column are the rigid
sphere, the thickened volume and the flow field (arrows). The right column shows the normal traction acting on the right
domain boundary. As can be seen, force from the motion of the sphere is transmitted through the thickened volume to the
right boundary.

in Figure 8. Note that when the system is close to steady state, only a small number of Newton
iterations is required per time step.

Figure 9 shows snapshots from the time evolution of the flow field. The solidification front
grows when forcing is applied, i.e., for t 2 Œ0; 0:6T �, and disappears afterwards. The growing blob
of thickened fluid and the material that moves down with it transmits the applied boundary force
deeply into the fluid volume. This is a possible explanation why high particle-to-fluid volume ratio
dispersion can withhold strong boundary forces for short times, which, for instance, allows running
over pools filled with mixtures of water and cornstarch [37, 40].

7. Conclusions and perspectives

We proposed a nonsmooth continuum mechanical Stokes flow model that incorporates so-called
discontinuous shear thickening at high strain rates, a behavior that can be observed in dispersions
with high particle-to-fluid volume fractions. Due to the nonsmooth constitutive relation, the flow
changes its viscosity at a free boundary. Despite the nonsmooth strain-rate-to-stress relation,
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FIG. 8. Problem III: Number of Newton iterations in each time step for g D 1 and � D 103. The increase in the number
of iterations at the 120th time step, which corresponds to time t D 0:03 is due to the surface forcing, which is turned off at
that time (see 41).

FIG. 9. Problem III: Time evolution of solidified volume and the flow field (arrows) at time steps 1; 21; 111; 121 and 151
out of 200 steps (from left to right). Shown is the region Œ0; 0:08�� Œ0; 0:1� � ˝.

additional solution regularity is proved and, after proper discretization, the problem can be solved
efficiently by a locally fast converging second-order method. Numerical simulations show that the
flow and the free boundary behave qualitatively similar to what has recently been observed in
experiments with fluid-particle suspensions such as cornstarch-water mixtures.

Several questions and possibilities for future research arise from this work. An interesting
theoretical question is whether it is possible to show regularity of the free boundary, which occurs
in the proposed model. Moreover, finding optimal discretizations for (P) is a possibility for future
research. Since we use piecewise constant finite elements for the discretization of the components
of the dual tensor �, we cannot expect optimal convergence of the numerical discretization.
Three-dimensional simulations, which require iterative solvers and preconditioners for the varying
viscosity Stokes systems that arise in each semismooth Newton step are another natural extension of
this work. Finally, the interaction of solids with a discontinuously shear thickening fluid such as the
settling of a sphere [38] could be an interesting problem. A possibility to realize such fully coupled
fluid-solid problems are fictitious domain methods, which have proven successful in simulations of
viscoplastic fluids interacting with solid structures [19].
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Appendix

A. Proofs

Proof of Lemma 4.3

The first and second derivatives of mı are given by

@mı."/

@"
Œ'� D maxı.0; j"j � g/ 1ı.j"j � g/

"

j"j
W ';

@2mı."/

@"2
Œ�;'� D

�
12ı .j"j � g/

"

j"j
W �

�
"

j"j
W 'Cmaxı.0; j"j � g/

1ı.j"j � g/
j"j

� W '

Cmaxı.0; j"j � g/ �Sı

�
�3

4ı3
.j"j � g/2

"

j"j
W � C

3

4ı

"

j"j2
W �

�
" W '

�maxı.0; j"j � g/
�

1ı.j"j � g/
"

j"j3
W �

�
" W ';

where �Sı D 1 if jj"j � gj 6 ı and �Sı D 0 otherwise. From the explicit form of the second
derivative, (25) follows.

Proof of Lemma 4.4

Note that the derivative of maxı is given by

1ı.x/ D

8̂<̂
:
1 if x > ı;

�
1
4ı3
x3 C 3

4ı
x C 1

2
if jxj 6 ı;

0 if x 6 �ı:
(42)

For jxj > ı, maxı.0; x/ �max.0; x/ 1ı.x/ D 0. For 0 6 x < ı, one obtains the estimate

jmaxı.0; x/ �max.0; x/ 1ı.x/j D
ˇ̌̌̌
x �

�
x4

16ı3
�
3x2

8ı
�
x

2
�
3ı

16

��
x3

4ı3
�
3x

4ı
�
1

2

�ˇ̌̌̌
6 ı C

3

2

�
ı

16
C
3ı

8
C
ı

2
C
3ı

16

�
ı!0
���! 0:

Finally, for �ı < x < 0, one finds

jmaxı.0; x/ �max.0; x/ 1ı.x/j 6
ˇ̌̌̌
�
x4

16ı3
C
3x2

8ı
C
x

2
C
3ı

16

ˇ̌̌̌ ˇ̌̌̌
�
x3

4ı3
C
3x

4ı
C
1

2

ˇ̌̌̌
6
27

16
ı
ı!0
���! 0;

which proves the claim for all x 2 R.
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Proof of Lemma 4.5

We argue by contradiction, i.e., we suppose that the claim is false. Then, for any c0 > 0 and
t 2 .0; 1/ we can find a sequence fıkg, with ık ! 0; and corresponding minimizers of Jı , denoted
by fvkg, and balls fBrk .xk/g � ˝ such that

j.Evk/xk ;rk j 6 �;

�2k WD V.vk ; Brk .xk//& 0 as k !1;

V.vk ; Btrk .xk// > c0 t
2�2k : (43)

Defining #k WD .Evk/xk ;rk and proceeding as in [14, Lem. 2.2], we may define rescaled functions
fukg, for which we obtain

�

Z
B1

jEukj
2 dx 6 1; (44a)

uk * v in H 1.B1/
N ; (44b)

#k ! #0; (44c)

where B1 WD B1.x0/, v 2 H 1.B1/
N and #0 2 Rn�n. From (25), we have that there exists a

constant C > 0, which is independent of ı such thatˇ̌̌̌
@2mı.Euı/

@"2

ˇ̌̌̌
6 C: (45)

Therefore, proceeding as in [14, pp. 1008–1009], the convergence result for Euk is improved and
we obtain that

Euk ! Ev strongly in L2loc.B1/
N : (46)

To obtain a contradiction, we will make use of Campanato-type estimates, which follow directly
once a blow-up equation is verified at the limit (see [14, Lem. 1.5]). In our case this equation takes
the following form:

2�

Z
B1

Ev W E' dx D ��
Z
B1

�A

�
#0

j#0j
W Ev

�
#0

j#0j
W E'

Cmax.0; j#0j � g/
�

Ev

j#0j
�

�
#0

j#0j3
W Ev

�
#0

�
W E' dx; (47)

where ' 2 V and A WD fx 2 ˝ W j#0j > gg.
To prove (47), we proceed along the lines of [14, Lem. 2.5]. The main difference is due to

the form of the regularized functional. In this respect, the proof is finished once we verify the
convergence of

IIk WD ��1k

Z
B1

�
@mı.�kEuk C #k/

@"
�
@mı.#k/

@"

�
W E' dx;
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as k !1. The integral IIk may be decomposed as IIk D II1k C II2k , where

II1k WD
Z
B1

Z 1

0

�
@2mı.#k C s�kEuk/

@"2
�
@2mı.#k/

@"2

�
Euk W E' ds dx

II2k WD
Z
B1

@2mı.#k/

@"2
Euk W E' dx:

Thanks to (44c), (45), the pointwise convergence of @2mı."/=@"2 for ı ! 0, and Lebesgue’s
dominated convergence theorem, it follows that

II2k !
Z
B1

�A

�
#0

j#0j
W Ev

�
#0

j#0j
W E'Cmax.0; j#0j � g/

�
Ev

j#0j
�

�
#0

j#0j3
W Ev

�
#0

�
W E' dx;

(48)
where A WD fx 2 ˝ W j#0j > gg. To finish the proof it remains to show that II1k ! 0 as k ! 1.
Since �kEuk ! 0 in L2.B1/N with pointwise almost everywhere convergence in B1 (see [14,
eq. (2.24)]) we may apply Egorov’s theorem to II˛k (see [14, p. 1002]) to obtain this result.

From Campanato estimates [1, Lem. 5.1], there exists a constant c� such that

�

Z
Bt

jEv � .Ev/t j
2 dx 6 c�t2�

Z
B1

jEv � .Ev/1j
2 dx; (49)

where c� depends only on the ellipticity constant for the blow-up equation (47) and .Ev/1 WD
1
B1

R
B1

Ev dx. In particular, we may choose c0 WD 2c�.
From (43) and the definition of uk (see [14, Lem. 2.2]) it follows that V.uk ; Bt / > c0t

2. The
strong convergence Euk ! Ev (see (46)) implies that

�

Z
Bt

jEv � .Ev/t j
2 dx > c0t

2: (50)

From (44a) and (44b), we get that

�

Z
B1

jEvj2 dx 6 lim inf
k!1

�

Z
B1

jEukj
2 dx 6 1;

which, combined with (50), implies that

�

Z
Bt

jEv � .Ev/t j
2 dx > c0t

2�

Z
B1

jEv � .Ev/1j
2 dx: (51)

Comparing the last result with (49), the desired contradiction is obtained.
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