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We consider existence and uniqueness for several examples of linear parabolic equations formulated

on moving hypersurfaces. Specifically, we study in turn a surface heat equation, an equation posed

on a bulk domain, a novel coupled bulk-surface system and an equation with a dynamic boundary

condition. In order to prove the well-posedness, we make use of an abstract framework presented in

a recent work by the authors which dealt with the formulation and well-posedness of linear parabolic

equations on arbitrary evolving Hilbert spaces. Here, after recalling all of the necessary concepts

and theorems, we show that the abstract framework can applied to the case of evolving (or moving)

hypersurfaces, and then we demonstrate the utility of the framework to the aforementioned problems.
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1. Introduction

The analysis and numerical simulation of solutions of partial differential equations on moving

hypersurfaces is a prominent area of research [4, 8, 11, 12, 23, 24] with many varied applications.

Models of certain biological or physical phenomena can be more relevant if formulated on evolving

domains (including hypersurfaces); for example, see [3, 15, 17] for studies of biological pattern

formation and cell motility on evolving surfaces, [18] for the modelling of surfactants in two-phase

flows using a diffuse interface, [13] for the modelling and numerical simulation of dealloying by

surface dissolution of a binary alloy (involving a forced mean curvature flow coupled to a Cahn–

Hilliard equation. In these examples, the evolving surface is an unknown, giving rise to a free

boundary problem. The well-posedness of certain surface parabolic PDEs has been considered

in work such as [11, 23, 27]. In [11], a Galerkin method was utilized with the pushedforward

eigenfunctions of a Laplace–Beltrami operator forming part of the Galerkin ansatz. In [23], the

authors make use of the Banach–Nečas–Babuška theorem with similar function spaces and results
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to those that we use, and in [27], a weak form of a surface PDE is pulled back onto a reference

domain to which a standard existence theorem is applied.

The purpose of this paper is twofold: first, to give an account of how an abstract framework that

we developed in [1] to handle linear parabolic equations on abstract evolving Hilbert spaces can be

applied to the case of Lebesgue–Sobolev–Bochner spaces on moving hypersurfaces (and domains),

and second, to use the power of this framework to study four different parabolic equations posed on

moving hypersurfaces. The first two problems we consider are fairly standard and help to familiarize

the concepts, and the last two are novel and are of interest in their own right.

In [1], under certain assumptions on families of Hilbert spaces parametrized by time, we defined

Bochner-type functions spaces (which are generalizations of spaces defined in [27]) and an analogue

of the usual abstract weak time derivative which we called the weak material derivative, and then

we proved well-posedness for a class of parabolic PDEs under some assumptions on the operators

involved. A regularity in time result was also given. All of this was done in an abstract Hilbert space

setting. We believe that using this approach for problems on moving hypersurfaces is natural and

elegant. The concepts and results presented here can also be used as a foundation to study nonlinear

equations on evolving surfaces, which can arise from free boundary problems.

Outline. We start in ÷2 by discussing (evolving) hypersurfaces and some functions spaces, and we

formulate the four problems of interest. In ÷3, we recall the essential definitions (of function spaces

and of the weak material derivative) and results from [1] without proofs, all in the abstract setting;

this section is self-contained in the sense that only the proofs are omitted. In ÷4, we discuss in detail

realizations of the abstraction to the concrete case of moving domains (which are a special case of

evolving flat hypersurfaces) and evolving curved hypersurfaces, i.e., we show that the framework in

÷3 is applicable for moving hypersurfaces. Then, we finish in ÷5 by proving the well-posedness of

the four problems introduced in ÷2.

Notation and conventions. We fix T 2 .0;1/. When we write expressions such as �.�/u.�/, our

intention usually is that both of the dots .�/ denote the same argument; for example, �.�/u.�/ will

come to mean the map t 7! �tu.t/: The notation X� will denote the dual space of a Hilbert space

X and X� will be equipped with the usual induced norm kf kX� D supx2Xnf0ghf; xiX�;X= kxkX .

We may reuse the same constants in calculations multiple times. Integrals will usually be written

as
R

S
f .s/ instead of

R

S
f .s/ ds unless to avoid ambiguity. Finally, we shall make use of standard

notation for Bochner spaces.

2. Formulation of the equations

As mentioned, we want to showcase four problems that demonstrate the applicability of our theory

in different situations, starting with a surface heat equation on an evolving compact hypersurface

without boundary, and the following on an evolving domain: a bulk equation, a coupled bulk-

surface system and a problem with a dynamic boundary condition. To formulate these problems,

we obviously first need to discuss hypersurfaces and Sobolev spaces defined on hypersurfaces.

For reasons of space we shall only briefly touch upon the theory here and refer the reader to

[9, 12, 19, 25, 28] for more details on analysis on surfaces; we emphasize the text [25] which

contains a detailed overview of the essential facts.
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2.1 Evolving hypersurfaces and Sobolev spaces

Hypersurfaces. Recall that � is an n-dimensional C k hypersurface in RnC1 if for each x 2 � ,

there is an open set U � RnC1 with x 2 U and a function 	 2 C k.U / with r	 ¤ 0 on � \ U

and

� \ U D fx 2 U j 	.x/ D 0g:

A parametrized C k hypersurface in R
nC1 is a map  2 C k.Y IRnC1/ where Y � R

n is a

connected open set with rank.D .y// D n for all y 2 Y . Locally, parametrized hypersurfaces and

hypersurfaces are the same [26, Chapter 15]. We call � a C k hypersurface with boundary @� if

� n@� is aC k hypersurface and if for every x 2 @� , there exists an open setU � RnC1 with x 2 U

and a homeomorphism WH ! � \ U , where H WD B1.0/ \ fy D .y1; :::; yn/ 2 Rn j yn 6 0g;

with  .0/ D x and

1. rank
�

D .y/
�

D n for all y 2 H ,

2.  
�

B1.0/\
˚

y D .y1; : : : ; yn/ 2 Rn j yn < 0
	�

� � n@� ,

3.  
�

B1.0/\
˚

y D .y1; : : : ; yn/ 2 Rn j yn D 0
	�

� @�:

See [26, Chapter 20]. A compact hypersurface has no boundary. We say � is a compact

hypersurface with boundary @� if � is a hypersurface with boundary @� and � [ @� is compact.

Throughout this work we assume that � is orientable with unit normal �. We say � is flat if the

normal � is same everywhere on � .

Sobolev spaces. Suppose that � is an n-dimensional compact C k hypersurface in RnC1 with

k > 2 and smooth boundary @� . We can define L2.� / in the natural way: it consists of the set of

measurable functions f W� ! R such that

kf kL2.� / WD
�

Z

�

jf .x/j2 d�.x/
�

1

2

< 1;

where d� is the surface measure on � (which we often omit writing). We will use the notation

r� D .D1; : : : ;DnC1/ to stand for the surface gradient on a hypersurface � , and�� WD r� � r�

will denote the Laplace–Beltrami operator. The integration by parts formula for functions f 2

C 1.� IRnC1/ is
Z

�

r� � f D

Z

�

f �H� C

Z

@�

f � �

where H is the mean curvature and � is the unit conormal vector which is normal to @� and

tangential to �: Now if  2 C 1
c .� /, then this formula implies

Z

�

f Di D �

Z

�

 Dif C

Z

�

f  H�i for i D 1; : : : ; nC 1;

with the boundary term disappearing due to the compact support. This relation is the basis for

defining weak derivatives. We say f 2 L2.� / has weak derivative gi DW Dif 2 L2.� / if for

every  2 C 1
c .� /,

Z

�

f Di D �

Z

�

 gi C

Z

�

f  H�i

holds. Then we can define the Sobolev space

H 1.� / D
˚

f 2 L2.� / j Dif 2 L2.� /; i D 1; : : : ; nC 1
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with kf k2
H 1.� / WD kf k2

L2.� / C kr� f k2
L2.� / : The above applies to compact hypersurfaces too; in

this case the boundary terms in the integration by parts are simply not there. We write H�1.� / for

the dual space of H 1.� / when � is a compact hypersurface.

We shall also need a fractional-order Sobolev space. Let ˝ � Rn be a bounded Lipschitz

domain with boundary @˝ . Define the space

H
1

2 .@˝/ D

�

u 2 L2.@˝/ j

Z

@˝

Z

@˝

ju.x/ � u.y/j2

jx � yjn
d�.x/d�.y/ < 1

�

:

This is a Hilbert space with the inner product

.u; v/
H

1
2 .@˝/

D

Z

@˝

u.x/v.x/ d�.x/C

Z

@˝

Z

@˝

�

u.x/ � u.y/
��

v.x/ � v.y/
�

jx � yjn
d�.x/d�.y/:

See [25, ÷2.4] and [10, ÷3.2] for details. The notation

juj
H

1
2 .@˝/

D

�Z

@˝

Z

@˝

ju.x/ � u.y/j2

jx � yjn
d�.x/d�.y/

�

1

2

for the seminorm is convenient. Now, recall the standard Green’s formula:

Z

@˝

@v

@�
w D

Z

˝

rvrw C

Z

˝

w�v 8v 2 H 2.˝/; 8w 2 H 1.˝/:

When ˝ is of class C 1, this formula leads us to define a (weak) normal derivative for functions

v 2 H 1.˝/ with �v 2 L2.˝/ as the element @v=@� 2 H� 1

2 .@˝/ WD .H
1

2 .@˝//� determined by

�

@v

@�
;w

�

H
�

1
2 .@˝/;H

1
2 .@˝/

WD

Z

˝

rvrE.w/C

Z

˝

E.w/�v 8w 2 H
1

2 .@˝/; (2.1)

where E.w/ 2 H 1.˝/ is an extension of w 2 H
1

2 .@˝/; the functional @v=@� is independent of the

extension used for w: See [10, ÷5.5.1] for more details on this.

Evolving hypersurfaces. We say that f� .t/gt2Œ0;T � is an evolving hypersurface if for every t0 2

Œ0; T �, there exist open sets I D .t0 � ı; t0 C ı/ for some ı > 0 and U � RnC1 and a map

	 W I � U ! R such that r	.t; x/ ¤ 0 for x 2 � .t/ and t 2 I , and

� .t/ \ U D
˚

x 2 U j 	.t; x/ D 0
	

for t 2 I :

The normal velocity of a hypersurface � .t/ WD fx 2 RnC1 j 	.x; t/ D 0g defined by a (global)

level set function is given by

w� D �
	t

jr	 j

r	

jr	 j
:

REMARK 2.1 It is important to note that the normal velocity is sufficient to define the evolution of a

compact hypersurface. However, a parametrized hypersurface would require the prescription of the

full velocity of the parametrization.
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REMARK 2.2 Consider an evolving hypersurface with boundary. In this case, we need the normal

velocity of the surface and the conormal velocity of the boundary in order to describe the evolution.

The normal velocity of the surface must agree with the normal velocity of the boundary.

REMARK 2.3 An evolving bounded domain f˝.t/g in Rn can be viewed as an evolving flat

hypersurface with boundary f Ő .t/g in RnC1. If we embed each ˝.t/ into the same hyperplane

of RnC1 (for example, Ő .t/ D f.x1; : : : ; xn; 0/ j .x1; : : : ; xn/ 2 ˝.t/g), then the normal velocity

w� of Ő .t/ is zero.

In order to describe the evolution of a hypersurface, it is also useful to assume that there exists

a map F.�; t/W� .0/ ! � .t/ which is a diffeomorphism for each t 2 Œ0; T � satisfying F.�; 0/ � Id

and d
dt
F.�; t/ D w.F.�; t/; t/: Here we say that w is the material velocity field and write

w D w� C wa (2.2)

where w� is the given normal velocity of the evolving hypersurface and wa is a given tangential

velocity field.

In the next two definitions, we suppose that u is a sufficiently smooth function defined on

f� .t/gt2Œ0;T � (see ÷4.1 later).

DEFINITION 2.4 (Normal time derivative) Suppose that the hypersurface f� .t/g evolves with a

normal velocity w� . The normal time derivative is defined by

@ıu WD ut C ru � w� :

DEFINITION 2.5 (Material derivative) Suppose that the hypersurface f� .t/g evolves with a normal

velocity w� . Given a tangential velocity field wa, with w as in (2.2), the material derivative is

defined by

@�u WD ut C ru � w: (2.3)

We also write Pu for @�u. See [6, 7].

REMARK 2.6 (Velocity fields) It is useful to note that there are different notions of velocities for an

evolving hypersurface.

ı Suppose that the velocity w of an evolving compact hypersurface is purely tangential (so w � � D

0). In this case, material points on the initial surface get transported across the surface over time

but the surface remains the same. One can see this for a sufficiently smooth initial surface �0 by

supposing that �0 is the zero-level set of a function 	 WRnC1 ! R:

�0 D
˚

x 2 R
nC1 j 	.x/ D 0

	

:

Let P be a material point on �0 and .t/ denote the position of P at time t , with .t/ 2 � .t/.

Then a purely tangential velocity means that r	..t// �  0.t/ D 0; but this is precisely

d

dt
	

�

.t/
�

D 0;

so the point persists in being a zero of the level set. Since P was arbitrary, we conclude that � .t/

coincides with �0 for all t 2 Œ0; T �; i.e., � .t/ D fx 2 RnC1 j 	.x/ D 0g:



162 A. ALPHONSE, C. M. ELLIOTT AND B. STINNER

ı In applications, there may be a physical velocity

w� C w� ;

where w� is the normal component and w� is the tangential component. The tangential velocity

may be associated with the motion of physical material points and may be relevant to the

mathematical models of processes on the surface.

ı The velocity field (2.2) defines the path that points on the initial surface take with respect to

the mapping F . In finite element analysis, it may be necessary to choose the tangential velocity

wa in an ALE approach so as to yield a shape-regular or adequately refined mesh. See [16]

and [12, ÷5.7] for more details on this. One may wish to use this physical tangential velocity to

define the map F . In writing down PDEs on evolving surfaces it is important to distinguish these

notions.

ı In certain situations, it can be useful to consider on an evolving surface a boundary velocity wb

which we can extend (arbitrarily) to the interior. In the case of flat hypersurfaces with w� � 0

(this is the case when an evolving domain in Rn is viewed like in Remark 2.3), the conormal

component of the arbitrary velocity must agree with the conormal component of the boundary

velocity wb , otherwise the velocities map to two different surfaces.

2.2 The equations

We now state the equations we will study. Three of the problems are posed on evolving bounded

open sets in Rn. In this case, we shall denote by˝.t/ the evolving domain and � .t/ will denote the

evolving compact hypersurface @˝.t/. In the equations given below, w is a velocity field which has

a normal component w� agreeing with the normal velocity of the evolving hypersurface or domain

associated to the problem and an arbitrary tangential component wa.

Surface heat equation. Suppose we have an evolving compact hypersurface� .t/ that evolves with

normal velocity w� . Given a surface flux q, we consider the conservation law

d

dt

Z

M.t/

u D �

Z

@M.t/

q � �

on an arbitrary portion M.t/ � � .t/, where � denotes the conormal on @M.t/. Without loss of

generality we can assume that q is tangential. This conservation law implies the pointwise equation

ut C ru � w� C ur� � w� C r� � q D 0: Assuming that the flux is a combination of a diffusive flux

and an advective flux, so that q D �r� uC ub� where b� is an advective tangential velocity field,

we obtain ut C ru � w� C ur� � w� ��� uC r� u � b� C ur� � b� D 0: Setting b D w� C b� ;

and recalling (2.3), we end up with the surface heat equation

Pu ��� uC ur� � b C r� u � .b � w/ D 0

u.0/ D u0

(2.4)

supplemented with an initial condition u0 2 L2.�0/.
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A bulk equation. With f .t/W˝.t/ ! R and u0W˝0 ! R given, consider the boundary value

problem

Pu.t/C .b.t/ � w.t// � ru.t/C u.t/r � b.t/ �D�u.t/ D f .t/ on ˝.t/;

u.t; �/ D 0 on � .t/;

u.0; �/ D u0.�/ on ˝0;

(2.5)

where D > 0 is a constant and the physical material velocity b.t/W˝.t/ ! Rn is sufficiently

smooth with kb.t/kL1.˝.t// 6 C1 and kr � b.t/kL1.˝.t// 6 C2 for constants C1 and C2 uniform

for all almost time. We refer the reader to [8] for a formulation of balance equations on moving

time-dependent bulk domains.

A coupled bulk-surface system. In [14], the authors consider the well-posedness of an elliptic

coupled bulk-surface system on a (static) domain; we now extend this to the parabolic case on an

evolving domain. Given f .t/W˝.t/ ! R, g.t/W� .t/ ! R; u0 2 H 1.˝0/ and v0 2 H 1.�0/, we

want to find solutions u.t/W˝.t/ ! R and v.t/W� .t/ ! R of the coupled bulk-surface system

Pu ��˝uC ur˝ � w D f on ˝.t/; (2.6)

Pv ��� v C vr� � w C r˝u � � D g on � .t/; (2.7)

r˝u � � D ˇv � ˛u on � .t/; (2.8)

u.0/ D u0 on ˝0; (2.9)

v.0/ D v0 on �0; (2.10)

where ˛, ˇ > 0 are constants. Note that (2.8) is a Robin boundary condition for u and that we

reused the notation u for denoting the trace of u. We use the physical material velocity to define the

mapping F and assume there is just the one velocity field w which advects u within ˝ and v on � .

A dynamic boundary problem for an elliptic equation. Given f .t/ 2 H� 1

2 .� .t// and v0 2

L2.�0/, we consider the problem of finding a function v.t/W˝.t/ ! R such that, with u.t/ WD

v.t/j� .t/ denoting the trace,

�v.t/ D 0 on ˝.t/;

Pu.t/C
@v.t/

@�.t/
C u.t/ D f .t/ on � .t/;

u.0/ D v0 on �0

(2.11)

holds in a weak sense. Here we assume that � .t/ evolves with the velocity w which we suppose

is a normal velocity. This is a natural (linearized) extension to evolving domains of the problem

considered by Lions in [21, ÷1.11.1].

In order to formulate these equations in an appropriate weak sense and carry out the analysis,

we will need Bochner-type function spaces for evolving hypersurfaces and the associated theory.

This is done in the abstract sense in the next section.

3. Abstract framework

The aim of this section is to give meaning to the setting and analysis of parabolic problems of the

form Pu.t/ C A.t/u.t/ D f .t/, where the equality is in V �.t/, with V.t/ a Hilbert space for each
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t 2 Œ0; T �. We employ the notations and results of [1] here and give a self-contained account (see [1]

for more details).

3.1 Evolving spaces

We informally identify a family of Hilbert spaces fX.t/gt2Œ0;T � with the symbol X , and given a

family of maps �t WX0 ! X.t/ we define the following notion of compatibility.

DEFINITION 3.1 (Compatibility) We say that a pair .X; .�t /t2Œ0;T �/ is compatible if all of the

following conditions hold.

For each t 2 Œ0; T �, X.t/ is a real separable Hilbert space (with X0 WD X.0/) and the map

�t WX0 ! X.t/ is a linear homeomorphism such that �0 is the identity. We denote by ��t WX.t/ !

X0 the inverse of �t : Furthermore, we assume there exists a constant CX independent of t such that

k�tukX.t/ 6 CX kukX0
8u 2 X0;

k��tukX0
6 CX kukX.t/ 8u 2 X.t/:

Finally, we assume continuity of the map t 7! k�tukX.t/ for all u 2 X0:

We often write the pair as .X; �.�// for convenience. We call �t and ��t the pushforward

and pullback maps respectively. In the following we will assume compatibility of .X; �.�//. As a

consequence, the dual operator of �t , denoted ��
t WX�.t/ ! X�

0 , is itself a linear homeomorphism,

as is its inverse ��
�t WX

�
0 ! X�.t/, and they satisfy

k��
t f kX�

0

6 CX kf kX�.t/ 8f 2 X�.t/;

k��
�tf kX�.t/ 6 CX kf kX�

0
8f 2 X�

0 :

By separability of X0, we have measurability of the map t 7! k��
�tf kX�.t/ for all f 2 X�

0 :

REMARK 3.2 The maps �t are similar to the Arbitrary Lagrangian Eulerian (ALE) maps ubiquitous

in applications on moving domains. See [2] for an account of the ALE framework and a comparable

set-up. Also, if we define U.t; s/WX.s/ ! X.t/ by U.t; s/ WD �t��s for s, t 2 Œ0; T �, it can be

readily seen from U.t; r/U.r; s/ D U.t; s/ that the family U.t; s/ is a two-parameter semigroup.

We now define suitable Bochner-type function spaces which are generalizations of those in [27].

DEFINITION 3.3 (The spaces L2
X and L2

X� ) Define the separable Hilbert spaces

L2
X D

n

u W Œ0; T � !
[

t2Œ0;T �

X.t/ � ftg; t 7!
�

Nu.t/; t
�

j ��.�/ Nu.�/ 2 L2.0; T IX0/
o

;

L2
X� D

n

f W Œ0; T � !
[

t2Œ0;T �

X�.t/ � ftg; t 7!
�

Nf .t/; t
�

j ��
.�/

Nf .�/ 2 L2.0; T IX�
0 /

o

with the inner products

.u; v/L2

X

D

Z T

0

�

u.t/; v.t/
�

X.t/
dt;

.f; g/L2

X�

D

Z T

0

�

f .t/; g.t/
�

X�.t/
dt:

(3.1)
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Note that we made an abuse of notation in (3.1) and identified u.t/ D . Nu.t/; t/ with Nu.t/ for

u 2 L2
X , (and likewise for f 2 L2

X� ); we shall persist with this abuse below. These spaces, to be

precise, consist of equivalence classes of functions agreeing almost everywhere in Œ0; T �. The maps

u 7! �.�/u.�/ from L2.0; T IX0/ to L2
X and f 7! ��

�.�/
f .�/ from L2.0; T IX�

0 / to L2
X� are both

isomorphisms between the respective spaces with the equivalence of norms

1

CX

kukL2

X

6


��.�/u.�/




L2.0;T IX0/
6 CX kukL2

X

8u 2 L2
X ;

1

CX

kf kL2

X�

6






��

.�/f .�/






L2.0;T IX�

0
/

6 CX kf kL2

X�

8f 2 L2
X� :

LEMMA 3.4 (Identification of .L2
X /

� and L2
X� ) The dual space of L2

X can be identified with L2
X� ,

and the duality pairing of f 2 L2
X� with u 2 L2

X is given by

hf; uiL2

X�
;L2

X

D

Z T

0

hf .t/; u.t/iX�.t/;X.t/ dt:

DEFINITION 3.5 (Spaces of pushed-forward continuously differentiable functions) Define

C k
X D f� 2 L2

X j ��.�/�.�/ 2 C k.Œ0; T �IX0/g for k 2 f0; 1; : : : g;

DX .0; T / D f� 2 L2
X j ��.�/�.�/ 2 D..0; T /IX0/g;

DX Œ0; T � D f� 2 L2
X j ��.�/�.�/ 2 D.Œ0; T �IX0/g:

Since D..0; T /IX0/ � D.Œ0; T �IX0/, we have DX .0; T / � DX Œ0; T � � C k
X :

3.2 Evolving Hilbert space structure

For each t 2 Œ0; T �, let V.t/ and H.t/ be (real) separable Hilbert spaces with V0 WD V.0/ and

H0 WD H.0/ such that V0 � H0 is a continuous and dense embedding. IdentifyingH0 with its dual

H�
0 via the Riesz representation theorem, it follows that V0 � H0 � V �

0 is a Gelfand triple.

ASSUMPTIONS 3.6 The pairs .H; �.�// and .V; �.�/jV0
/ are assumed to be compatible for a (given)

family of linear homeomorphisms f�t gt2Œ0;T �. We simply write �t instead of �t jV0
, and we denote

the dual operator of �t WV0 ! V.t/ by ��
t WV �.t/ ! V �

0 ; we are not interested in the dual of

�t WH0 ! H.t/:

See [1, ÷2.3] for a convenient summary of the meaning of these assumptions. It follows that for

each t 2 Œ0; T �, V.t/ � H.t/ is continuously and densely embedded. The results in ÷3.1 tell us that

the spaces L2
H , L2

V ; and L2
V � are Hilbert spaces with the inner product given by the formula (3.1).

It follows upon identification of L2
H with its dual in the natural manner that L2

V � L2
H � L2

V � is

a Gelfand triple. We make use of the formula hf; uiL2

V �
;L2

V

D .f; u/L2

H

whenever f 2 L2
H and

u 2 L2
V .

3.3 Abstract strong and weak material derivatives

DEFINITION 3.7 (Strong material derivative) For � 2 C 1
X define the strong material derivative

P� 2 C 0
X by

P�.t/ WD �t

� d

dt

�

��t�.t/
�

�

: (3.2)
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In the evolving surface case, we show in ÷4.1 that this abstract formula agrees with (2.3).

DEFINITION 3.8 (Relationship between H0 and H.t/) For all t 2 Œ0; T �, define the bounded

bilinear form Ob.t I �; �/WH0 �H0 ! R by Ob.t Iu0; v0/ D .�tu0; �tv0/H.t/ for u0, v0 2 H0.

It follows that for each t 2 Œ0; T �; Ob.t I �; �/ is an alternative inner product on H0; thanks to

the Riesz representation theorem, there exists a bounded linear operator Tt WH0 ! H0 such that
Ob.t Iu0; v0/ D .Ttu0; v0/H0

D .u0; Ttv0/H0
: In fact, Tt � �A

t �t , where �A
t WH.t/ ! H0 is the

Hilbert-adjoint of �t WH0 ! H.t/.

ASSUMPTIONS 3.9 For all u0, v0 2 H0, assume the following: �.t; u0/ WD d
dt

k�tu0k2
H.t/ exists

classically, u0 7! �.t; u0/ is continuous, and j�.t; u0 C v0/ � �.t; u0 � v0/j 6 C ku0kH0
kv0kH0

where the constant C is independent of t 2 Œ0; T �.

It follows that O�.t I �; �/WH0 � H0 ! R is well-defined by O�.t Iu0; v0/ WD d
dt

Ob.t Iu0; v0/ D
1
4
.�.t; u0 C v0/ � �.t; u0 � v0// : Denote by O�.t/WH0 ! H�

0 the map h O�.t/u0; v0i WD

O�.t Iu0; v0/:

DEFINITION 3.10 For u, v 2 H.t/, define the bilinear form �.t I �; �/WH.t/ � H.t/ ! R by

�.t Iu; v/ WD O�.t I��tu; ��tv/:

The map t 7! �.t Iu.t/; v.t// is measurable for all u, v 2 L2
H ; and �.t I �; �/WH.t/ �H.t/ ! R

is bounded independently of t : j�.t Iu; v/j 6 C kukH.t/ kvkH.t/ :

DEFINITION 3.11 (Weak material derivative) For u 2 L2
V , if there exists a function g 2 L2

V � such

that
Z T

0

hg.t/; �.t/iV �.t/;V.t/ D �

Z T

0

�

u.t/; P�.t/
�

H.t/
�

Z T

0

�
�

t Iu.t/; �.t/
�

holds for all � 2 DV .0; T /, then g is said to be the weak material derivative of u, and we write

Pu D g or @�u D g:

This concept of a weak material derivative is well-defined: if it exists, it is unique, and every

strong material derivative is also a weak material derivative.

DEFINITION 3.12 We denote by W.V; V �/ D fu 2 L2
V j Pu 2 L2

V �g the Hilbert space endowed

with the inner product

.u; v/W.V;V �/ D

Z T

0

�

u.t/; v.t/
�

V.t/
C

Z T

0

�

Pu.t/; Pv.t/
�

V �.t/
:

The space W.V; V �/ is deeply linked to the following standard Sobolev–Bochner space.

DEFINITION 3.13 ( [28, ÷25]) We denote by W.V0; V
�

0 / D fv 2 L2.0; T IV0/ j v0 2

L2.0; T IV �
0 /g the Hilbert space endowed with the inner product

.u; v/W.V0;V �

0
/ D

Z T

0

�

u.t/; v.t/
�

V0

C

Z T

0

�

u0.t/; v0.t/
�

V �

0

:

In practice, the next assumption is the most difficult to check.
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ASSUMPTION AND DEFINITION 3.14 We assume that there is an evolving space equivalence

between W.V; V �/ and W.V0; V
�

0 /. This means that v 2 W.V; V �/ if and only if ��.�/v.�/ 2

W.V0; V
�

0 /; and there holds the equivalence of norms

C1



��.�/v.�/




W.V0;V �

0
/

6 kvkW.V;V �/ 6 C2



��.�/v.�/




W.V0;V �

0
/
:

This assumption holds under the following conditions.

THEOREM 3.15 Suppose that

u 2 W.V0; V
�

0 / if and only if T.�/u.�/ 2 W.V0; V
�

0 / (T1)

and that there exist operators OS.t/WV �
0 ! V �

0 and OD.t/WV0 ! V �
0 such that for u 2 W.V0; V

�
0 /;

.Ttu.t//
0 D OS.t/u0.t/C O�.t/u.t/C OD.t/u.t/ (T2)

and OS.�/u0.�/, OD.�/u.�/ 2 L2.0; T IV �
0 /. Suppose also that OS.t/, OS.t/�1; and OD.t/ are bounded

independently of t . Then W.V; V �/ is equivalent to W.V0; V
�

0 / in the sense of Definition 3.14.

REMARK 3.16 If we knew that Ttv0 2 V0 for every v0 2 V0, then the assumption (T2) would

follow from (T1) with h OS.t/f; viV �

0
;V0

WD hf; TtviV �

0
;V0

and OD.t/ � 0.

COROLLARY 3.17 The space W.V; V �/ is a Hilbert space. We have the embedding W.V; V �/ �

C 0
H and the inequality

max
t2Œ0;T �

ku.t/kH.t/ 6 C kukW.V;V �/ 8u 2 W.V; V �/:

This allows us to define the subspace W0.V; V
�/ D fu 2 W.V; V �/ j u.0/ D 0g: Let

AC.Œ0; T �/ be the space of absolutely continuous functions from Œ0; T � into R. The following space

is needed for the formulation of an assumption for the regularity of the solution.

DEFINITION 3.18 We define the space

QC 1
V D

n

u j u.t/ D

m
X

j D1

j̨ .t/�
t
j ; m 2 N, j̨ 2 AC

�

Œ0; T �
�

and ˛0
j 2 L2.0; T /

o

:

Note that QC 1
V � C 0

V and QC 1
V � W.V; V /.

If u 2 QC 1
V with u.t/ D

Pm
j D1 j̨ .t/�

t
j as in the definition then Pu.t/ D

Pm
j D1 ˛

0
j .t/�

t
j : We

cannot use (3.2) for the strong material derivative Pu because ��.�/u.�/ … C 1.Œ0; T �IV0/ in general.

DEFINITION 3.19 Define the space W.V;H/ D fu 2 L2
V j Pu 2 L2

H g:

In order to obtain a regularity result, we need to make the following natural assumption, which

will also tell us that W.V;H/ is a Hilbert space.

ASSUMPTION 3.20 It is assumed that there is an evolving space equivalence betweenW.V;H/ and

W.V0;H0/.

This assumption follows if, for example, (T1) is altered in the obvious way and the maps OS.t/

and OD.t/ of Theorem 3.15 satisfy OS.t/WH0 ! H0 and OD.t/WV0 ! H0, with both maps and OS.t/�1

being bounded independently of t , and if OS.�/u0.�/, OD.�/u.�/ 2 L2.0; T IH0/ for u 2 W.V0;H0/.
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THEOREM 3.21 (Transport theorem and integration by parts) For all u, v 2 W.V; V �/, the map

t 7! .u.t/; v.t//H.t/ is absolutely continuous on Œ0; T � and

d

dt

�

u.t/; v.t/
�

H.t/
D h Pu.t/; v.t/iV �.t/;V.t/ C hPv.t/; u.t/iV �.t/;V.t/ C �

�

t Iu.t/; v.t/
�

for almost every t 2 Œ0; T �, hence there holds the integration by parts formula

�

u.T /; v.T /
�

H.T /
�

�

u.0/; v.0/
�

H0

D

Z T

0

h Pu.t/; v.t/iV �.t/;V.t/ C hPv.t/; u.t/iV �.t/;V.t/ C �
�

t Iu.t/; v.t/
�

dt:

3.4 Well-posedness and regularity

Continuing with the framework and notation presented in the previous subsections, and reiterating

in particular Assumptions 3.6, 3.9, and 3.14, we showed in [1] the existence, uniqueness, and

continuous dependence of solutions u 2 W.V; V �/ to equations of the form

L PuC AuC�u D f in L2
V �

u.0/ D u0 in H0;
(P)

where we identify .L Pu/.t/ D L.t/ Pu.t/, .Au/.t/ D A.t/u.t/ and .�u/.t/ D �.t/u.t/; with

L.t/ and A.t/ being linear operators that satisfy Assumptions 3.22 and 3.23 given below, and

�.t/WH.t/ ! H�.t/ is defined by h�.t/v; wiH �.t/;H.t/ WD �.t I v;w/ (see Definition 3.10).

ASSUMPTIONS 3.22 (Assumptions on L.t/) In the following, all constants Ci are positive and

independent of t 2 Œ0; T �. Assume for all g 2 L2
V � that

Lg 2 L2
V � and C1 kgkL2

V �

6 kLgkL2

V �

6 C2 kgkL2

V �

: (L1)

Suppose that the restrictionLjL2

H

satisfiesLjL2

H

WL2
H ! L2

H . Identify .LjL2

H

h/.t/ withLH .t/h.t/;

and suppose thatLH .t/WH.t/ ! H.t/ is symmetric and LH .t/WV.t/ ! V.t/:We just write L and

L.t/ for the above restrictions. Furthermore, for almost every t 2 Œ0; T �, assume

hL.t/g; viV �.t/;V.t/ D hg;L.t/viV �.t/;V.t/ 8g 2 V �.t/, 8v 2 V.t/; (L2)

kL.t/hkH.t/ 6 C3 khkH.t/ 8h 2 H.t/; (L3)

.L.t/h; h/H.t/ > C4 khk2
H.t/ 8h 2 H.t/; (L4)

Lv 2 L2
V 8v 2 L2

V ; (L5)

v 2 W.V; V �/ ” Lv 2 W.V; V �/; (L6)

and suppose the existence of a (linear symmetric) map PLWL2
V ! L2

V � (and identify . PLv/.t/ with
PL.t/v.t/) satisfying

@�.Lv/ D PLv C L Pv 2 L2
V � 8v 2 W.V; V �/; (L7)

k PL.t/vkV �.t/ 6 C5 kvkH.t/ 8v 2 V.t/: (L8)
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ASSUMPTIONS 3.23 (Assumptions on A.t/) Suppose that the map t 7! hA.t/v.t/; w.t/iV �.t/;V.t/

for all v, w 2 L2
V is measurable, and that there exist positive constants C1, C2 and C3 independent

of t such that for almost every t 2 Œ0; T �:

hA.t/v; viV �.t/;V.t/ > C1 kvk2
V.t/ � C2 kvk2

H.t/ 8v 2 V.t/ (A1)

jhA.t/v; wiV �.t/;V.t/j 6 C3 kvkV.t/ kwkV.t/ 8v;w 2 V.t/: (A2)

The standard equation PuCAuC�u D f is a special case of (P) when L D Id; in this case our

demands in Assumptions 3.22 are automatically met.

THEOREM 3.24 (Well-posedness of (P), [1, Theorem 3.6]) Under the assumptions in Assumptions

3.22 and 3.23, for f 2 L2
V � and u0 2 H0, there is a unique solution u 2 W.V; V �/ satisfying (P)

such that

kukW.V;V �/ 6 C
�

ku0kH0
C kf kL2

V �

�

:

Now, suppose that f 2 L2
H and u0 2 V0. Under additional assumptions, we can obtain Pu 2 L2

H .

ASSUMPTION 3.25 It is assumed that there exists a basis f�0
j gj 2N of V0 and a sequence fu0N gN 2N

with u0N 2 spanf�0
1; :::; �

0
N g for each N , such that u0N ! u0 in V0, ku0N kH0

6 C1 ku0kH0
and

ku0N kV0
6 C2 ku0kV0

, where C1 and C2 do not depend on N or u0.

REMARK 3.26 Thanks to Hilbert–Schmidt theory, such a basis as required by the last assumption

always exists if V0 � H0 is compact.

Let us define the bilinear forms l.t I �; �/WV �.t/ � V.t/ ! R and a.t I �; �/WV.t/ � V.t/ ! R by

l.t Ig;w/ WD hL.t/g;wiV �.t/;V.t/ and a.t I v;w/ WD hA.t/v; wiV �.t/;V.t/: For Pu, f 2 L2
V � , note

that (P) is in fact equivalent to

l.t I Pu.t/; v/C a.t Iu.t/; v/ C �.t Iu.t/; v/ D hf .t/; viV �.t/;V.t/

u.0/ D u0

for all v 2 V.t/ and for almost every t 2 Œ0; T � (the null set is independent of v). A similar

formulation holds if Pu, f 2 L2
H .

ASSUMPTIONS 3.27 (Further assumptions on a.t I �; �/) Suppose that a.t I �; �/ has the form

a.t I �; �/ D as.t I �; �/C an.t I �; �/ where as.t I �; �/WV.t/�V.t/ ! R and an.t I �; �/WV.t/�H.t/ ! R

are bilinear forms (we allow the possibility an � 0) such that the map

t 7! as.t Iy.t/; y.t// is absolutely continuous on Œ0; T � for all y 2 QC 1
V . (A3)

Suppose also that there exist positive constants C1, C2 and C3 independent of t such that

jan.t I v;w/j 6 C1 kvkV.t/ kwkH.t/ 8v 2 V.t/; w 2 H.t/ (A4)

jas.t I v;w/j 6 C2 kvkV.t/ kwkV.t/ 8v;w 2 V.t/ (A5)

as.t I v; v/ > 0 8v 2 V.t/ (A6)

d

dt
as.t Iy.t/; y.t// D 2as.t Iy.t/; Py.t//C r.t Iy.t// 8y 2 QC 1

V ; (A7)

for almost all t 2 Œ0; T �, where the d
dt

here is the classical derivative, and r.t I �/WV.t/ ! R satisfies

jr.t I v/j 6 C3 kvk2
V.t/ 8v 2 V.t/: (A8)
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REMARK 3.28 Note that we require only one part of the bilinear form a.t I �; �/ to be differentiable;

however, any potentially non-differentiable terms require the stronger boundedness condition (A4).

THEOREM 3.29 (Regularity of the solution to (P), [1, Theorem 3.13]) Under the assumptions in

Assumptions 3.22, 3.23, 3.25, and 3.27, if f 2 L2
H and u0 2 V0, the unique solution u of (P) from

Theorem 3.24 satisfies the regularity u 2 W.V;H/ and the estimate

kukW.V;H/ 6 C
�

ku0kV0
C kf kL2

H

�

:

4. Function spaces for evolving hypersurfaces

We now discuss evolving compact hypersurfaces (as defined in ÷2) and evolving domains in the

context of the abstract framework presented in ÷3.

4.1 Evolving compact hypersurfaces

For each t 2 Œ0; T �; let � .t/ � RnC1 be a compact (i.e., no boundary) n-dimensional hypersurface

of classC 2, and assume the existence of a flow˚ W Œ0; T ��RnC1 ! RnC1 such that for all t 2 Œ0; T �,

with �0 WD � .0/, the map ˚0
t .�/ WD ˚.t; �/W�0 ! � .t/ is a C 2-diffeomorphism that satisfies

d

dt
˚0

t .�/ D w
�

t; ˚0
t .�/

�

;

˚0
0 .�/ D Id.�/;

(4.1)

where the map wW Œ0; T ��R
nC1 ! R

nC1 is a velocity field (with normal component agreeing with

the normal velocity of � .t/), and we assume that it is C 2 and satisfies the uniform bound

jr� .t/ � w.t/j 6 C for all t 2 Œ0; T �.

A normal vector field on the hypersurfaces is denoted by �W Œ0; T � � RnC1 ! RnC1. Let V.t/ D

H 1.� .t// and H.t/ D L2.� .t//: We define the pullback operator by

��tv D v ı ˚0
t :

By [27, Lemma 3.2], the map ��t is such that

��t WL
2
�

� .t/
�

! L2.�0/ and ��t WH
1
�

� .t/
�

! H 1.�0/

are linear homeomorphisms with the constants of continuity not dependent on t . We denote by

��
�t WH

�1.�0/ ! H�1.� .t// the dual operator. The maps t 7! k�tukX.t/ (for X D L2 and H 1)

are continuous [27, Lemma 3.3], thus we have compatibility of the pairs .H; �.�// and .V; �.�/jV /,

and the spaces L2
H D L2

L2
, L2

V D L2
H 1

and L2
V � D L2

H �1
are well-defined.

Let us now work out a formula for the strong material derivative. Note that, by the smoothness

of � .t/, any function uW� .t/ ! R can be extended to a neighborhood of the space time surface

[t2Œ0;T �� .t/� ftg in RnC2 in which ru and ut for the extension are well-defined (see for example

[12, ÷2.2]). The derivative of the pullback of a function u 2 C 1
V is

d

dt
��tu.t/ D

d

dt
u

�

t; ˚0
t .y/

�

D ut

�

t; ˚0
t .y/

�

C ruj�
t;˚0

t
.y/

� � w
�

t; ˚0
t .y/

�

D ��tut .t; y/C ��t

�

ru.t; y/
�

� ��t

�

w.t; y/
�

; y 2 �0
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giving Pu.t; x/ D ut .t; x/Cru.t; x/ � w.t; x/ for x 2 � .t/: The expression on the right hand side is

independent of the extension. It is clear that our definition of the strong material derivative coincides

with the well-established definition (2.3).

We denote by J 0
t the change of area element when transforming from �0 to � .t/, i.e., for any

integrable function �W� .t/ ! R

Z

� .t/

� D

Z

�0

.� ı ˚0
t /J

0
t D

Z

�0

��t�J
0
t :

Using the transport identity

d

dt

Z

G.t/

�.t/
ˇ

ˇ

ˇ

t
D

Z

G.t/

P�.t/C �.t/rG.t/ � w.t/

on any portion G � � with points that move with the velocity field w (for instance, see [11]) one

can easily show that
d

dt
J 0

t D ��t .r� .t/ � w.t//J 0
t : (4.2)

The field J 0
t is uniformly bounded by positive constants

1

CJ

6 J 0
t .z/ 6 CJ for all z 2 �0 and for all t 2 Œ0; T �:

The L2.� .t// inner product is

.u; v/L2.� .t// D

Z

� .t/

uv D

Z

�0

��tu��tvJ
0
t :

The bilinear form Ob.t I �; �/WH0 �H0 ! R (defined by .u; v/H.t/ D Ob.��tv; ��tv/) is

Ob.t Iu0; v0/ D

Z

�0

u0v0J
0
t ;

so the action of the operator Tt WH0 ! H0 (see Definition 3.8 and Theorem 3.15) is just pointwise

multiplication:

Ttu0 D J 0
t u0:

We see that the function � from Assumptions 3.9 is

�.t; u0/ D
d

dt
k�tu0k2

L2.� .t//
D

d

dt

Z

�0

u2
0J

0
t D

Z

�0

u2
0��t

�

r� .t/ � w.t/
�

J 0
t

D

Z

� .t/

.�tu0/
2r� � w.t/;

where the cancellation of the Jacobian terms in the last equality is due to the inverse function

theorem. Now, v 7! �.t; v/ is continuous because if vn ! v in L2.�0/, then v2
n ! v2 in L1.�0/

and so

ˇ

ˇ�.t; vn/ � �.t; v/
ˇ

ˇ 6

Z

�0

jv2
n � v2jj��t

�

r� .t/ � w.t/
�

J 0
t j 6 C



v2
n � v2





L1.�0/
! 0:
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Finally,

ˇ

ˇ�.t; u0 C v0/ � �.t; u0 � v0/
ˇ

ˇ D
ˇ

ˇ

ˇ
4

Z

� .t/

�tu0�tv0r� .t/ � w.t/
ˇ

ˇ

ˇ
6 C ku0kL2.�0/ kv0kL2.�0/ :

So we have checked Assumptions 3.9. Now if u0, v0 2 L2.�0/,

O�.t Iu0; v0/ D
@

@t
Ob.t Iu0; v0/ D

Z

�0

u0v0��t .r� .t/ � w/J 0
t ;

thus the bilinear form �.t I �; �/ of Definition 3.10 is

�.t Iu; v/ D

Z

�0

��tu��tv��t .r� .t/ � w/J 0
t D

Z

� .t/

uvr� .t/ � w;

which, as claimed, is measurable in t and bounded on H.t/ � H.t/. So then u 2 L2
V has a weak

material derivative Pu 2 L2
V � if and only if

Z T

0

˝

Pu.t/; �.t/
˛

V �.t/;V.t/
D �

Z T

0

Z

� .t/

u.t/ P�.t/ �

Z T

0

Z

� .t/

u.t/�.t/r� .t/ � w.t/

holds for all � 2 DV .0; T / (cf. [23, 27]).

Finally, [27, Lemma 3.7] proves that T.�/u.�/ 2 W.V0; V
�

0 / if and only if u 2 W.V0; V
�

0 /, due

to the fact that both J 0
.�/

and its reciprocal 1=J 0
.�/

are in C 1.Œ0; T � � �0/: To see that the evolving

space equivalence (Assumption 3.14) holds, take u 2 W.V0; V
�

0 / and obtain by the product rule

and (4.2) the identity

�

J 0
t u.t/

�0
D J 0

t u
0.t/C ��t .r� .t/ � w/J 0

t u.t/:

Therefore, the maps OS.t/ and OD.t/ (from Theorem 3.15) are OS.t/u0.t/ D J 0
t u

0.t/ and OD.t/ � 0. It

follows by the smoothness of ˚0
t and J 0

t that OS.�/u0.�/ 2 L2.0; T IV �
0 /. By Theorem 3.15, we have

that the space W.V; V �/ D fu 2 L2
H 1

j Pu 2 L2
H �1

g is indeed isomorphic to W.V0; V
�

0 / and there

is an equivalence of norms between

kukW.V;V �/ and


��.�/u.�/




W.V0;V �

0
/
:

See also [27, Lemma 3.9]. It is easy to see that W.V;H/ and W.V0;H0/ are also equivalent.

4.2 Evolving domains

We discuss here what is common to the three examples on evolving domains and leave the specifics

and peculiarities to be detailed on a case-by-case basis as required.

For each t 2 Œ0; T �; let ˝.t/ � Rn be a bounded open and connected domain of class C 2

with boundary � .t/. It is possible to view ˝.t/ as an evolving flat hypersurface in RnC1 (see

Remark 2.3), though we choose not to follow this approach. The boundary � .t/ is an evolving

compact .n � 1/-dimensional hypersurface in Rn. We denote ˝0 WD ˝.0/ and �0 WD � .0/. For
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each t 2 Œ0; T �, we assume the existence of a map ˚0
t W˝0 ! ˝.t/ such that ˚0

t .˝0/ D ˝.t/;

˚0
t .�0/ D � .t/,

˚0
t W˝0 ! ˝.t/ is a C 2-diffeomorphism and ˚0

.�/ 2 C 2.Œ0; T � �˝0/:

We assume that ˚0
t satisfies the ODE (4.1) on ˝0 for a C 2 velocity w (with the normal part of w

agreeing with the normal velocity of the domain) with jr � w.t/j and jr� .t/ � w.t/j both bounded

above uniformly in t , like before. We write ˚ t
0 WD .˚0

t /
�1.

DEFINITION 4.1 For functions uW˝0 ! R and vW�0 ! R, define the restrictions

�˝;tu D u ı ˚ t
0j˝0

and ��;tv D v ı ˚ t
0j�0

:

We find that

�˝;t WH
1.˝0/ ! H 1

�

˝.t/
�

and �˝;t WL
2.˝0/ ! L2

�

˝.t/
�

are linear homeomorphisms with the constants of continuity not depending on t (we can either

adapt the proofs in [27] or use Problem 1.3.1 in [22]). One of the most important terms in the

solution space regime is the Jacobian J 0
˝;.�/

WD detD˚0
.�/

2 C 1.Œ0; T � � ˝0/; one can show that it

satisfies much of the same properties (see [5] for this) as the Jacobian term did in ÷4.1 for the case

of compact hypersurfaces. Hence it is straightforward to adapt the proofs for the case of a domain

with boundary to yield the fulfilment of the evolving space equivalence Assumption 3.20 between

W.H 1.˝0/; .H
1.˝0//

�/ and W.H 1
˝ ; .H

1
˝/

�/, and W.H 1.˝0/; L
2.˝0// and W.H 1

˝ ; L
2
˝/.

Furthermore, assuming

˚0
t W�0 ! � .t/ is a C 2-diffeomorphism,

since the boundary � .t/ is a C 2 hypersurface, it satisfies the assumptions in ÷4.1 and so it follows

that the maps

��;t WH
1.�0/ ! H 1

�

� .t/
�

and ��;t WL
2.�0/ ! L2

�

� .t/
�

are also linear homeomorphisms with the constants of continuity not depending on t . The trace map

�t WH
1.˝.t// ! L2.� .t// (see [28, ÷I.8, Theorem 8.7]) will play a prominent role. We need the

following lemma to show that the constant in the trace inequality is uniform in time.

LEMMA 4.2 For all w 2 H 1.˝0/, the equality �t .�˝;tw/ D ��;t .�0w/ holds in L2.� .t//.

Proof. This is because �t .�˝;twn/ D ��;t .�0wn/ holds for all wn 2 C 1.˝0/ (one can see this

identity by using the fact that the same formula defines �˝;t and ��;t and that ˚ t
0 maps boundary

to boundary), in particular, it holds for wn 2 C 1.˝0/ \ H 1.˝0/ such that wn ! w in H 1.˝0/.

Then by continuity of the various maps, we can pass to the limit and obtain the identity.

Now let u 2 H 1.˝0/. Using Lemma 4.2 and the properties of the maps ��;t and �˝;t , we

obtain

k�0ukL2.�0/ > C1 k��;t .�0u/k
L2

�

� .t/
� D C1 k�t .�˝;tu/k

L2

�

� .t/
�

and

kukH 1.˝0/ 6 C2 k�˝;tuk
H 1

�

˝.t/
� ;
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and these inequalities together with the trace inequality on ˝0 imply the existence of CT such that

k�tuk
L2

�

� .t/
� 6 CT kuk

H 1

�

˝.t/
� 8u 2 H 1

�

˝.t/
�

;8t 2 Œ0; T �: (4.3)

REMARK 4.3 Observe that the velocity field w may have no physical or actual relevance to a

particular problem posed on an evolving hypersurface apart from having the normal component

of w agreeing with the normal velocity of the hypersurface (or domain). The tangential component

of w can be chosen arbitrarily, as mentioned before. On the other hand, w plays an indispensable

role in the definition of the function spaces in which we look for solutions.

5. Weak formulation and well-posedness

We are now in a position to prove the well-posedness of the equations in ÷2.2 in a weak sense.

5.1 The surface advection-diffusion equation (2.4)

Let us assume for simplicity that b D w in (2.4); that is, the physical velocity agrees with the

velocity of the parametrization. Let us suppose that � .t/ possesses the properties in ÷4.1. Availing

ourselves of the framework in ÷4.1, the weak formulation of (2.4) asks to find u 2 W.V; V �/ such

that

Z T

0

˝

Pu.t/; v.t/
˛

H �1.� .t//;H 1.� .t//
C

Z T

0

Z

� .t/

r� u.t/ �r� v.t/C

Z T

0

Z

� .t/

u.t/v.t/r� �w.t/ D 0

holds for all v 2 L2
V . Here,

a.t Iu; v/ D

Z

� .t/

r� u � r� v

which clearly satisfies the assumptions listed in Assumptions 3.23. Applying Theorem 3.24, we

obtain a unique solution u 2 W.V; V �/. If instead we ask for Pu 2 L2
H , in addition to requiring

u0 2 H 1.�0/, we need to check Assumptions 3.25 and 3.27; the former follows since for example

we can take �0
j to be the eigenfunctions of the Laplacian (see Remark 3.26). We take as � a as

defined above and set an � 0. Most of the remaining assumptions are easy to check. For (A3), we

see from [11, Lemma 2.2] that for � 2 C1
V , the pointwise derivative

d

dt

Z

� .t/

jr� �.t/j
2

D

Z

� .t/

�

2r� �.t/ � r� P�.t/ � 2r� �.t/
�

D� w.t/
�

r� �.t/C jr� �.t/j
2r� � w.t/

�

holds everywhere with .D� w.t//ij WD Dj wi .t/: Since the right hand side of the above expression is

in L1.0; T /, we have that the derivative is in fact a weak derivative. By a density argument, we find

that the formula above holds in the weak sense also for � 2 QC 1
V . Since the right hand side and the

term being differentiated on the left hand side are in L1.0; T /, it follows that t 7!
R

� .t/
jr� �.t/j

2
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has an absolutely continuous representative with the pointwise a.e. derivative as above, giving (A7).

It is easy to see that

r.t I �/ D

Z

� .t/

�

� 2r� �
�

D� w.t/
�

r� �C jr� �j
2r� � w.t/

�

satisfies (A8). Finally, an application of Theorem 3.29 shows that u 2 W.V;H/.

REMARK 5.1 We mentioned in Remark 2.6 that if w is purely tangential, the surface does not

evolve. However, even in this situation, it can still be useful to think of spaces of functions on

� .t/ � �0 as H.t/ and V.t/ (i.e., still parametrized by t 2 Œ0; T �). Consider the surface heat

equation

Pu ��� uC ur� � w D f:

If w.t; �/ is a tangential velocity field, then this equation corresponds to

ut ��� uC ur� � w C w � r� u D f;

which could be advection-dominated (if w is sufficiently large) and potentially problematic for

numerical computations. The first formulation, in which we make use of H.t/ and V.t/ for each

t 2 Œ0; T �, avoids this issue.

5.2 The bulk equation (2.5)

Here, we use the notations and results of ÷4.2. Observe that the velocity field w does not appear

in the physical equation (2.5); w is an extension to the interior (or bulk) of the boundary velocity,

and the normal component of this boundary velocity must agree with the normal velocity of ˝.t/.

For example, if the normal velocity of ˝.t/ were b � � then w can be taken to be an extension of

b � �. In this sense, w is not relevant to the physical problem but it is essential to the functional

setting we have built up (see Remark 4.3). Let V.t/ D H 1
0 .˝.t// and H.t/ D L2.˝.t//. With

�t referring to the map �˝;t from Definition 4.1, it follows from ÷4.2 that .H; �.�// and .V; �.�/jV /

are compatible and that there is an evolving space equivalence between W.V0; V
�

0 / andW.V; V �/:

For convenience, set p WD b � w. Our weak formulation is: with f 2 L2
H and u0 2 V0, find

u 2 W.V;H/ such that

Z T

0

Z

˝.t/

�

Pu.t/v.t/C p.t/ � ru.t/v.t/ C r � b.t/u.t/v.t/CDru.t/ � rv.t/
�

D

Z T

0

Z

˝.t/

f .t/v.t/

u.0/ D u0

holds for all v 2 L2
V . Now, Assumption 3.25 holds just like in the previous example. We need to

check Assumptions 3.23 and 3.27. We have

a.t Iu; v/ D

Z

˝.t/

p.t/ � ruv C
�

r � b.t/
�

uv CDru � rv

with

as.t Iu; v/ D

Z

˝.t/

Dru � rv and an.t Iu; v/ D

Z

˝.t/

�

�

r � b.t/
�

uC p.t/ � ru
�

v:
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The boundedness of a.t I �; �/ is easy, while coercivity can be shown by the use of Young’s equality

with �:

a.t I v; v/ > D krvk2
L2.˝.t// �

C

2D



p2.t/




L1.˝.t//
kvk2

L2.˝.t// �
D

2
krvk2

L2.˝.t//

� kr � b.t/kL1.˝.t// kvk2
L2.˝.t//

D �

�

C

2D



p2.t/




L1.˝.t//
C kr � b.t/kL1.˝.t//

�

kvk2
L2.˝.t// C

D

2
krvk2

L2.˝.t// :

Coming to the term as.t I �; �/; firstly, positivity and boundedness are obvious, and absolute continuity

and a.e. differentiability are the same as for the bilinear form a.t I �; �/ in the previous example:

d

dt
as

�

t I �.t/; �.t/
�

D 2as

�

t I P�.t/; �.t/
�

C r
�

t I �.t/
�

for � 2 QC 1
V , where

r
�

t I �.t/
�

D D

Z

˝.t/

�

� 2r�.t/
�

Dw.t/
�

r�.t/C jr�.t/j2r � w.t/
�

which is obviously bounded. Finally, the uniform bound on an.t I �; �/WV.t/�H.t/ ! R follows by

the assumptions made on b in ÷2.2. With all the assumptions checked, we apply Theorem 3.29 and

find a unique solution u 2 W.V;H/.

5.3 The coupled bulk-surface system (2.6)–(2.10)

We are again going to use the framework of ÷4.2. The setting up of the function spaces is slightly

more involved now.

5.3.1 Function spaces. Define the product Hilbert spaces

V.t/ D H 1
�

˝.t/
�

�H 1
�

� .t/
�

and H.t/ D L2
�

˝.t/
�

�L2
�

� .t/
�

which we equip with the inner products

�

.!1; 1/; .!2; 2/
�

H.t/
D .!1; !2/L2.˝.t// C .1; 2/L2.� .t//

�

.!1; 1/; .!2; 2/
�

V.t/
D .!1; !2/H 1.˝.t// C .1; 2/

H 1

�

� .t/
�:

Clearly V.t/ � H.t/ is continuous and dense and both spaces are separable. The dual space of V.t/

is V �.t/ D .H 1.˝.t///� �H�1.� .t// and the duality pairing is

˝

.f! ; f /; .u! ; u /
˛

V �.t/;V.t/
D hf!; u!i.H 1.˝.t///�;H 1.˝.t// C hf ; u iH �1.� .t//;H 1.� .t//:

Define the map �t WH0 ! H.t/ by

�t

�

.!; /
�

D .�˝;t!; ��;t/
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where �˝;t and ��;t are as defined previously. From ÷4.1 and ÷4.2, we find that .H; �.�// and

.V; �.�/jV / are compatible, and we have the evolving space equivalence between W.V0; V
�

0 / and

W.V; V �/:

To define the weak material derivative, note that because the inner product on H.t/ is a sum of

the L2 inner products on ˝.t/ and � .t/, it follows that the bilinear form �.t I �; �/ is

�
�

t I .!1; 1/; .!2; 2/
�

D �˝.t I!1; !2/C �� .t I 1; 2/

with

�˝.t I!1; !2/ D

Z

˝.t/

!1!2r˝ � w.t/ and �� .t I 1; 2/ D

Z

� .t/

12r� � w.t/

being the bilinear forms associated with the material derivatives of the constituent spaces of the

product space.

5.3.2 Weak formulation and well-posedness. To obtain the weak form, we let .!; / 2 L2
V and

take the inner product of (2.6) with ! and the inner product of (2.7) with  :

Z

˝.t/

Pu! C

Z

˝.t/

r˝u � r˝! �

Z

� .t/

!r˝u � � C

Z

˝.t/

u!r˝ � w D

Z

˝.t/

f! (5.1)

Z

� .t/

Pv C

Z

� .t/

r� v � r�  C

Z

� .t/

vr� � w C

Z

� .t/

r˝u � � D

Z

� .t/

g: (5.2)

Multiplying (5.1) by ˛ and (5.2) by ˇ, taking the sum and substituting the boundary condition (2.8),

we end up with

˛

Z

˝.t/

Pu! C ˇ

Z

� .t/

Pv C ˛

Z

˝.t/

r˝u � r˝! C ˇ

Z

� .t/

r� v � r�  C ˛

Z

˝.t/

u!r˝ � w

C ˇ

Z

� .t/

vr� � w C

Z

� .t/

.ˇv � ˛u/.ˇ � ˛!/ D ˛

Z

˝.t/

f! C ˇ

Z

� .t/

g:

Defining the bilinear forms

l
�

t I . Pu; Pv/; .!; /
�

D ˛h Pu; !i.H 1.˝.t///�;H 1.˝.t// C ˇh Pv; iH �1.� .t//;H 1.� .t//

a
�

t I .u; v/; .!; /
�

D ˛

Z

˝.t/

r˝u � r˝! C ˇ

Z

� .t/

r� v � r�  C

Z

� .t/

.ˇv � ˛u/.ˇ � ˛!/;

our weak formulation reads: given .f; g/ 2 L2
H and .u0; v0/ 2 V0, find .u; v/ 2 W.V;H/ such that

Z T

0

�

l
�

t I . Pu; Pv/; .!; /
�

C a
�

t I .u; v/; .!; /
�

C �
�

t I .u; v/; .!; /
�

�

D

Z T

0

�

. f̨; ˛g/; .!; /
�

H.t/

�

u.0/; v.0/
�

D .u0; v0/
(Pbs)

for all .!; / 2 L2
V . Note that Assumption 3.25 holds due to the compactness of V0 � H0. Let us

now check Assumptions 3.22.
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Assumptions (L1)–(L8). We can write

l
�

t I . Pu; Pv/; .!; /
�

D hL.t/. Pu; Pv/; .!; /iV �.t/;V.t/ D h.˛ Pu; ˇ Pv/; .!; /iV �.t/;V.t/;

i.e., L. Pu; Pv/ is the functional
R T

0
h.˛ Pu.t/; ˇ Pv.t//; .�/.t/iV �.t/;V.t/, which obviously satisfies (L1).

We see that LWL2
H ! L2

H , and when . Pu; Pv/ 2 H.t/;
˝

L.t/. Pu; Pv/; .!; /
˛

D
�

.˛ Pu; ˇ Pv/; .!; /
�

H.t/
;

so indeed L.t/jH.t/ has range in H.t/ and L.t/jV.t/ has range in V.t/. Assumptions (L2)–(L5) are

immediate, and (L6) also follows easily. For (L7) and (L8), note that the map PL � 0.

We also need to check Assumptions 3.23 and 3.27 on the bilinear form a.t I �; �/. Set vi D .!i ; i /

for i D 1; 2: Coercivity of a.t I �; �/ (assumption (A1)) is achieved with no great difficulty (one uses

the L1 bound on w � �, the trace inequality and Young’s inequality with �).

Assumption (A2) For boundedness of a.t I �; �/, we start with

ˇ

ˇa.t I v1; v2/
ˇ

ˇ 6 C kv1kV.t/ kv2kV.t/ C

Z

� .t/

ˇ

ˇˇ212 C ˛2!1!2 � ˛ˇ.!12 C 1!2/
ˇ

ˇ: (5.3)

The trace inequality (4.3) allows us to estimate the last term of (5.3) as follows:
Z

� .t/

jˇ212 C ˛2!1!2 � ˛ˇ.!12 C 1!2/j

6 ˇ2 k1kL2.� .t// k2kL2.� .t// C ˛2C 2
T k!1kH 1.˝.t// k!2kH 1.˝.t//

C ˛ˇCT

�

k!1kH 1.˝.t// k2kL2.� .t// C k1kL2.� .t// k!2kH 1.˝.t//

�

6 C k.!1; 1/kV.t/ k.!2; 2/kV.t/ D C kv1kV.t/ kv2kV.t/ :

Assumptions (A7) and (A8). We do not require the splitting of a.t I �; �/ into a differentiable and

non-differentiable part since a.t I �; �/ is differentiable as shown below (the absolute continuity

follows like before). In view of this and Remark 3.28, we still need to check (A7) and (A8). Let

us define

a˝.t I!1; !2/ D ˛

Z

˝.t/

r˝!1 � r˝!2 and a� .t I 1; 2/ D ˇ

Z

� .t/

r� 1 � r� 2;

so that

a
�

t I .!1; 1/; .!2; 2/
�

D a˝.t I!1; !2/C a� .t I 1; 2/C

Z

� .t/

.ˇ1 � ˛!1/.ˇ2 � ˛!2/

Taking v1 2 QC 1
V ; we differentiate:

d

dt
a.t I v1; v1/ D 2a˝.t I P!1; !1/C r˝.t I!1/C 2a� .t I P1; 1/C r� .t I 1/

C 2.ˇ P1 � ˛ P!1; ˇ1 � ˛!1/L2.� .t// C �� .t Iˇ1 � ˛!1; ˇ1 � ˛!1/

D 2a
�

t I . P!1; P1/; .!1; 1/
�

C r
�

t I .!1; 1/
�

D 2a.t I Pv1; v1/C r.t I v1/:
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Here, we defined

r
�

t I .!1; 1/
�

D r˝.t I!1/C r� .t I 1/C �� .t Iˇ1 � ˛!1; ˇ1 � ˛!1/

where r˝ and r� are the form r from ÷5.1 with domain ˝ and � respectively. By the bounds on

r˝ ; r� and �, we have

ˇ

ˇr.t I v1/
ˇ

ˇ 6 C1

�

k!1k2
H 1.˝.t//

C k1k2
H 1.� .t//

C kˇ1 � ˛!1k2
L2.� .t//

�

6 C2

�

k!1k2
H 1.˝.t//

C k1k2
H 1.� .t//

C k1k2
L2.� .t//

C k!1k2
L2.� .t//

�

6 C2

�

.1C C 2
T / k!1k2

H 1.˝.t//
C 2 k1k2

H 1.� .t//

�

6 C3 kv1k2
V.t/ ;

i.e. r.t I �/ is bounded in V.t/. With all the assumptions satisfied, we find from Theorem 3.29 that

there is a unique solution .u; v/ 2 W.V;H/ to the problem (Pbs).

5.4 The dynamic boundary problem for an elliptic equation (2.11)

We are going to formulate the problem (2.11) as a parabolic equation on � .t/. Note that v.t/ has a

normal derivative (we expect v.t/ 2 H 1.˝.t// and since �v.t/ D 0) and so we can define using

(2.1) the Dirichlet-to-Neumann map A.t/WH
1

2 .� .t// ! H� 1

2 .� .t// (which is also bounded) by

A.t/u.t/ D
@v.t/

@�.t/
:

This map is also commonly known as the Poincaré–Steklov operator in the theory of boundary

integral equations [25, ÷3.7]. Now, define D.t/WH
1

2 .� .t// ! H 1.˝.t// by D.t/ Qu D Qv where Qv is

the unique weak solution of

� Qv D 0 on ˝.t/;

Qv D Qu on � .t/;
(5.4)

given Qu 2 H
1

2 .� .t//. These maps give us a clue as to the spaces where we should look for solutions.

Formally, we may think of a solution of the PDE (2.11) as a pair .v; u/ 2 L2
H 1

� W.H
1

2 ;H� 1

2 /

such that given f 2 L2

H
�

1
2

,

v D Du in L2
H 1 ;

PuC AuC u D f in L2

H
�

1
2

;

u.0/ D v0 in L2.�0/

(5.5)

holds. Note that .Du/.t/ D D.t/u.t/ for a.e. t . Of course, we have not defined these spaces yet so

this is just formal as mentioned.

5.4.1 Function spaces. We use the notation and the established results of ÷4.1. We assume some

stronger regularity on the map ˚0
t here, namely

˚0
t W�0 ! � .t/ is a C 3-diffeomorphism and ˚0

.�/ 2 C 3.Œ0; T � � �0/:
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In this case, we use the pivot space H.t/ D L2.� .t// but now require V.t/ D H
1

2 .� .t//: Below,

we shall mainly make use of ��;t and to save space we shall write it simply as �t . We only revert to

the full notation when ambiguity forces us to.

We already know that ��t WL
2.� .t// ! L2.�0/ is a well-defined linear homeomorphism. Now

we show that the map ��t WH
1

2 .� .t// ! H
1

2 .�0/ is also a linear homeomorphism. Letting u 2

H
1

2 .� .t//, it suffices to estimate only the seminorm j��tuj
H

1
2 .�0/

:

Z

�0

Z

�0

j��tu.x/ � ��tu.y/j
2

jx � yjn
D

Z

� .t/

Z

� .t/

ju.xt / � u.yt /j
2

j˚ t
0.xt / � ˚ t

0.yt /jn
J t

0.xt /J
t
0.yt / (5.6)

where we made the substitutions xt D ˚0
t .x/ 2 � .t/ and yt D ˚0

t .y/ 2 � .t/. Since ˚0
t

is a C 1-diffeomorphism between compact spaces, it is bi-Lipschitz with Lipschitz constant CL

independent of t (because the spatial derivatives of ˚0
t are uniformly bounded). This implies

jxt � yt j 6 CLj˚ t
0.xt / � ˚ t

0.yt /j so that (5.6) becomes

j��tuj2
H

1
2 .�0/

6 C n
LC

2
J

Z

� .t/

Z

� .t/

ju.xt / � u.yt /j
2

jxt � yt jn
D C n

LC
2
J juj2

H
1
2 .� .t//

;

where we used the uniform bound on J t
0 . So we have the uniform bound

k��tuk
H

1
2 .�0/

6 C kuk
H

1
2 .� .t//

:

A similar bound holds for the operator �t by the same arguments as above since ˚ t
0 D .˚0

t /
�1 also

satisfies the same properties as above. It follows by the smoothness on ˚0
.�/

that J 0
.�/

2 C 2.Œ0; T � �

�0/: This implies that J 0
t W�0 ! R is (globally) Lipschitz (see the paragraph after the proof of

Proposition 2.4 in [20]).

The map

t 7! j�tuj2
H

1
2 .� .t//

D

Z

� .t/

Z

� .t/

j�tu.x/ � �tu.y/j
2

jx � yjn

D

Z

�0

Z

�0

ju.x0/ � u.y0/j
2

j˚0
t .x0/ � ˚0

t .y0/jn
J 0

t .x0/J
0
t .y0/

is continuous. To see this, define the integrand

g.x0; y0; t/ D
ju.x0/ � u.y0/j

2

j˚0
t .x0/ � ˚0

t .y0/jn
J 0

t .x0/J
0
t .y0/:

Now, t 7! g.x0; y0; t/ is continuous for almost all .x0; y0/ (it only fails when the denominator is

zero, where x0 D y0, and the set of such points has zero measure), and we have the domination

g.x0; y0; t/ 6 h.x0; y0/ for all t and almost all .x0; y0/ by an integrable function h; this follows due

to the smoothness assumptions on ˚0
.�/

and J 0
.�/

. Therefore, t 7!
R

�0

R

�0
g.x0; y0; t/ is continuous.

This enables us to conclude that .H; �.�// and .V; �.�/jV / are compatible.

There is some effort needed in order to show the evolving space equivalence. We start with the

following two results which are used continually.
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LEMMA 5.2 For y 2 �0, we have

Z

�0

1

jx � yjn�2
d�.x/ < C

where C does not depend on y:

This lemma can be proved by first setting y D 0 (without loss of generality) and then splitting

the domain of integration into two sets, one of which is a ball centered at the origin. The integral

over the ball can be tackled with the assumption of the domain being Lipschitz and switching to

polar coordinates, while the integral over the complement of the ball is obviously finite.

LEMMA 5.3 If � 2 C 1.�0/ and u 2 H
1

2 .�0/ then �u 2 H
1

2 .�0/ and

k�uk
H

1
2 .�0/

6 C k�kC 1.�0/ kuk
H

1
2 .�0/

(5.7)

where C does not depend on � or u.

Proof. Note that � and r� are bounded from above and � is Lipschitz. We begin with

k�uk2

H
1
2 .�0/

6 k�k2
C 0.�0/ kuk2

L2.�0/
C

Z

�0

Z

�0

j�.x/u.x/ � �.y/u.y/j2

jx � yjn
dxdy:

The last term is

Z

�0

Z

�0

j�.x/u.x/ � �.y/u.y/j2

jx � yjn

6 2

Z

�0

Z

�0

j�.x/j2ju.x/ � u.y/j2

jx � yjn
C 2

Z

�0

Z

�0

ju.y/j2j�.x/ � �.y/j2

jx � yjn

6 2 k�k2
C 0.�0/

juj2
H

1
2 .�0/

C 2 kr�k2
C 0.�0/

Z

�0

Z

�0

ju.y/j2

jx � yjn�2
:

Using the previous lemma, the integral in the second term is

Z

�0

Z

�0

ju.y/j2

jx � yjn�2
D

Z

�0

ju.y/j2
Z

�0

jx � yj2�n
6 C1 kuk2

L2.�0/
:

Putting it all together, we achieve (5.7).

In the following lemmas, let J 2 C 2.Œ0; T � � �0/.

LEMMA 5.4 If  2 D..0; T /IH
1

2 .�0//, then  J 2 W.V0; V
�

0 / and . J /0 D  0J C  J 0.

Proof. Let us note that

 2 C 0
�

Œ0; T �IH
1

2 .�0/
�

and J 2 C 0
�

Œ0; T �IH
1

2 .�0// \ C 1.Œ0; T �IC 1.�0/
�

:

The first part of the second inclusion holds because J 2 C 0.Œ0; T �IH 1.�0// and because

H 1.�0/ � H
1

2 .�0/ is continuous [25, Theorem 2.5.1 and Theorem 2.5.5]. The uniform continuity

of J over the compact set Œ0; T � � �0 gives the second part.
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Now, note that  .t/J.t/ 2 H
1

2 .�0/ for all t by Lemma 5.3. To see that  J 2

C 0.Œ0; T �IH
1

2 .�0//, fix an arbitrary t 2 Œ0; T �, let tn ! t and consider

k .t/J.t/ �  .tn/J.tn/k
H

1
2 .�0/

6


 .t/
�

J.t/ � J.tn/
�




H
1
2 .�0/

C


J.tn/
�

 .t/ �  .tn/
�



H
1
2 .�0/

6 CkJ.t/ � J.tn/kC 1.�0/ k .t/k
H

1
2 .�0/

C C kJ.tn/kC 1.�0/ k .t/ �  .tn/k
H

1
2 .�0/

:

The first of these terms tends to zero as tn ! t because J 2 C 0.Œ0; T �IC 1.�0// and the second

because  2 C 0.Œ0; T �IH
1

2 .�0// in addition to the aforementioned smoothness of J .

Now we show that in fact  J is (classically) differentiable and that . J /0 D  0J C  J 0.

Observe that  0.t/J.t/ C  .t/J 0.t/ 2 H
1

2 .�0/ by Lemma 5.3. Define the difference quotient

DhJ.t/ D .J.t C h/ � J.t//=h and Dh .t/ similarly and note that








 .t C h/J.t C h/ �  .t/J.t/

h
�  0.t/J.t/ �  .t/J 0.t/









H
1
2 .�0/

6






 .t C h/DhJ.t/ �  .t/J 0.t/







H
1
2 .�0/

C





Dh .t/J.t/ �  0.t/J.t/







H
1
2 .�0/

6 C





DhJ.t/ � J 0.t/







C 1.�0/
k .t C h/k

H
1
2 .�0/

C C


J 0.t/




C 1.�0/
k .t C h/ �  .t/k

H
1
2 .�0/

C C kJ.t/kC 1.�0/






Dh .t/ �  0.t/







H
1
2 .�0/

:

In the above, we used






 .t C h/DhJ.t/ �  .t/J 0.t/







H
1
2 .�0/

6






 .t C h/

�

DhJ.t/ � J 0.t/
�





H
1
2 .�0/

C


. .t C h/ �  .t//J 0.t/




H
1
2 .�0/

:

It follows that


DhJ.t/ � J 0.t/




C 1.�0/
! 0 because J 2 C 1.Œ0; T �IC 1.�0//. Thus, we find

lim
h!0









 .t C h/J.t C h/ �  .t/J.t/

h
�  0.t/J.t/ �  .t/J 0.t/









H
1
2 .�0/

D 0:

This proves the product rule for . J /0. Now we finish by proving that . J /0 2 C 0.Œ0; T �IH
1

2 .�0//.

Fix again t 2 Œ0; T � and let tn ! t . Observe that


 0.tn/J.tn/C  .tn/J
0.tn/ �  0.t/J.t/ �  .t/J 0.t/





H
1
2 .�0/

6


 0.tn/.J.tn/ � J.t//




H
1
2 .�0/

C


J.t/. 0.tn/ �  0.t//




H
1
2 .�0/

C


 .tn/.J
0.tn/ � J 0.t//





H
1
2 .�0/

C


J 0.t/. .tn/ �  .t//




H
1
2 .�0/

6 C


 0.tn/




H
1
2 .�0/

kJ.tn/ � J.t/kC 1.�0/ C C kJ.t/kC 1.�0/



 0.tn/ �  0.t/




H
1
2 .�0/

C C k .tn/k
H

1
2 .�0/



J 0.tn/ � J 0.t/




C 1.�0/
C C



J 0.t/




C 1.�0/
k .tn/ �  .t/k

H
1
2 .�0/
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and this tends to zero because J 2 C 1.Œ0; T �IC 1.�0// and  2 C 1.Œ0; T �IH
1

2 .�0//. All in all, we

have shown that  J 2 C 1.Œ0; T �IH
1

2 .�0// � W.V0; V
�

0 /.

LEMMA 5.5 For every u 2 W.V0; V
�

0 /, Ju 2 W.V0; V
�

0 /.

Proof. Let  2 D..0; T /IH
1

2 .�0// and for u 2 W.V0; V
�

0 /, consider

Z T

0

hu0.t/; J.t/ .t/i
H

�
1
2 .�0/;H

1
2 .�0/

D �

Z T

0

�

J 0.t/ .t/C J.t/ 0.t/; u.t/
�

L2.�0/

(by integration by parts and the last lemma)

D �

Z T

0

�

 .t/; J 0.t/u.t/
�

L2.�0/
�

Z T

0

. 0.t/; J.t/u.t//L2.�0/:

A rearrangement yields

Z T

0

�

J.t/u.t/;  0.t/
�

L2.�0/
D �

Z T

0

˝

J 0.t/u.t/C J.t/u0.t/;  .t/
˛

H
�

1
2 .�0/;H

1
2 .�0/

:

This shows that Ju has a weak derivative, and .Ju/0 2 L2.0; T IH� 1

2 .�0// since we have J 0u 2

L2.0; T IH
1

2 .�0// and Ju0 2 L2.0; T IH� 1

2 .�0//.

THEOREM 5.1 The evolving space equivalence between W.V0; V
�

0 / andW.V; V �/ holds.

Proof. The last result shows that if u 2 W.V0; V
�

0 / then J 0
t u 2 W.V0; V

�
0 /. Because 1=J 0

t 2

C 2.Œ0; T � � �0/; the converse also holds. Since

�

J 0
t u.t/

�0
D J 0

t u
0.t/C O�.t/u.t/;

we have (in the notation of Theorem 3.15) OS.t/ D Tt D J 0
t and OD.t/ � 0; and it follows that

OS.�/u0.�/ 2 L2.0; T IH� 1

2 .�0//: Thus Theorem 3.15 can be applied.

5.4.2 Weak formulation and well-posedness. Now that we have defined some notation and

function spaces, the equation (5.5) has a precise meaning and we can define a notion of solution.

DEFINITION 5.6 With H 1 D fH 1.˝.t//gt2Œ0;T �, given f 2 L2
V � , a solution of (2.11) is a pair

.v; u/ 2 L2
H 1

�W.V; V �/ such that

v D Du in L2
H 1 ;

PuC AuC u D f in L2
V � ;

u.0/ D v0 in H0:

(5.8)

Note that the first condition implies �tv.t/ D 0 and v.t/j� .t/ D u.t/ for almost every t . We

need the following auxiliary result.

LEMMA 5.7 The map D.t/WH
1

2 .� .t// ! H 1.˝.t// is uniformly bounded:

kD.t/ QukH 1.˝.t// 6 C k Quk
H

1
2 .� .t//

8 Qu 2 H
1

2

�

� .t/
�

(5.9)

where the constant C does not depend on t 2 Œ0; T �.
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To prove this lemma, we need the following results which show that certain standard results

are in a sense uniform in t 2 Œ0; T �. The method of proof of the next lemma is identical to that of

Lemma 4.2.

LEMMA 5.8 Let �t WH
1.˝.t// ! H

1

2 .� .t// denote the trace map. For all v 2 H 1.˝0/; the

equality �t .�˝;tv/ D ��;t .�0v/ holds in H
1

2 .� .t//.

LEMMA 5.9 For each t 2 Œ0; T �, we have

kvkH 1.˝.t// 6 C1 krvkL2.˝.t// 8v 2 H 1
0

�

˝.t/
�

; (5.10)

krvk2
L2.˝.t//

C kvk2
L2.� .t//

> C2 kvk2
H 1.˝.t//

8v 2 H 1
�

˝.t/
�

; (5.11)

inf
v2H 1.˝.t//

�t vDu

kvkH 1.˝.t// 6 C3 kuk
H

1
2 .� .t//

8u 2 H
1

2

�

� .t/
�

; (5.12)

k�tvk
H

1
2 .� .t//

6 C4 kvkH 1.˝.t// 8v 2 H 1
�

˝.t/
�

(5.13)

where C1, C2; C3; and C4 do not depend on t .

The strategy to prove this lemma is to start with each respective inequality at t D 0, in which

case: (5.10) is the Poincaré inequality on ˝0, (5.11) follows by a compactness argument, (5.12) is

an equivalence of norms and (5.13) is the trace inequality on ˝0. Then for (5.10), use the chain

rule r.��tv/ D r.v ı˚0
t / D ��t .rv/D˚

0
t and the uniform boundedness of D˚0

t . The inequality

(5.11) is obtained with the identity rv D r.��t�tv/ D ��t .r�tv/D˚
0
t and Lemma 5.8. The

lemma is also the key ingredient to show (5.12) and (5.13) (see the discussion in ÷4.2 for how to

prove the latter).

Proof of Lemma 5.7. We prove the well-posedness of (5.4) in addition to the uniform bound (5.9)

for the convenience of the reader. First, we use the trace map �t WH
1.˝.t// ! H

1

2 .� .t// to see

that there is a function Qv Qu 2 H 1.˝.t// such that �t Qv Qu D Qu. With Qv D D.t/ Qu, set d WD Qv� Qv Qu. Then

d solves
�d D �� Qv Qu on ˝.t/;

d D 0 on � .t/:
(5.14)

Define bt .�; �/WH
1.˝.t// �H 1.˝.t// ! R and lt .�/WH

1.˝.t// ! R by

bt .d; '/ D

Z

˝.t/

rdr' and lt .'/ D

Z

˝.t/

r Qw Qur':

Clearly lt and bt are bounded and the Poincaré inequality (5.10) implies that bt is coercive with

the coercivity constant C�1
P independent of t . By Lax–Milgram, there is a unique solution d 2

H 1
0 .˝.t// to (5.14) satisfying

kdkH 1.˝.t// 6 CP k Qv QukH 1.˝.t// :

Because this inequality holds for all lifts Qv Qu of Qu we must have

kdkH 1.˝.t// 6 CP inf
w2H 1.˝.t//;

�t wD Qu

kwkH 1.˝.t//

6 C1 k Quk
H

1
2 .� .t//
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where the second inequality is thanks to (5.12). Since Qv D d C Qv Qu, we see that (5.4) has a unique

solution Qv 2 H 1.˝.t// with

k QvkH 1.˝.t// 6 C2 k Quk
H

1
2 .� .t//

due to the arbitrariness of the lift Qv Qu.

Now we can conclude the well-posedness of (5.8) by checking the assumptions on A. With

w 2 L2
V and using (2.1),

˝

A.t/u.t/; w.t/
˛

H
�

1
2 .� .t//;H

1
2

�

� .t/
� D

Z

˝.t/

r
�

D.t/u.t/
�

r
�

E.t/w.t/
�

:

So the bilinear form a.t I �; �/WH
1

2 .� .t// �H
1

2 .� .t// ! R is

a.t Iu;w/ WD

Z

˝.t/

r
�

D.t/u
�

r
�

E.t/w
�

C

Z

� .t/

uw:

We take E D D, and we obtain by the uniform bound (5.9) the boundedness of a.t I �; �/:

ja.t Iu;w/j 6 kD.t/ukH 1.˝.t// kD.t/wkH 1.˝.t// C kukL2.� .t// kwkL2.� .t//

6 C 2
D kuk

H
1
2 .� .t//

kwk
H

1
2 .� .t//

C kukL2.� .t// kwkL2.� .t//

6 .C 2
D C 1/ kuk

H
1
2 .� .t//

kwk
H

1
2 .� .t//

:

For coercivity,

a.t Iw;w/ D kr.D.t/w/k2
L2.˝.t// C kwk2

L2.� .t// (again with E D D)

> C1 kD.t/wk2
H 1.˝.t// (using (5.11))

> C2 kwk2

H
1
2 .� .t//

by the trace inequality (5.13). Therefore, we have a unique solution u 2 W.H
1

2 ;H� 1

2 / to (5.8),

and with v.t/ WD D.t/u.t/ and the uniform bound (5.9), we find .v; u/ to be a solution of (2.11).
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