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1. Introduction

Aim of this work is to provide a suitable finite element discretization of a geometrically consistent
anisotropic Willmore flow for parametric hypersurfaces in Rn.

First of all recall that the classical (isotropic) Willmore functional

W.x/ D
1

2

Z
Q�

h2dV (1.1)

is defined as the integral of the squared mean curvature h of a smooth compact orientable
hypersurface Q� isometrically immersed in space through the map x W Q� ! Rn. In the past years
the above functional and its related flow have been studied extensively both from an analytical and
numerical point of view. Motivations for this intense study include the role of (1.1) as a prototype
for a fourth order geometric problem and its applications to image processing and modeling of
biological membranes (see for instance the extensive reference list provided in [15]).

On the contrary, and in spite of the fact that anisotropy must be taken into account in the
description of many physical phenomena (see [8]), anisotropic Willmore functional has received
so far less attention. One reason why research has not developed in this direction as fast as in the
isotropic case, lies in the difficulties related to the mathematical treatment of anisotropy.

First steps in the study of an anisotropic version of (1.1) can be found in [5]. Here the author,
motivated by surface restoration problems, investigates the problem of finding a fourth order energy
having Wulff shapes as minimizers. The functional studied by Clarenz (see also [14]) is obtained
by replacing h in (1.1) with its anisotropic version h (see (2.8) below). In [9] Diewald provides a
finite element discretization of the related gradient flow: however extremely few numerical tests in
the anisotropic setting are presented. On the other hand some numerical experiments for the related
anisotropic elastic flow of curves are shown in [1, � 6.2]. These flows are interesting in their own
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right but they are not geometrical, in the sense that typical features of the isotropic setting are not
reproduced in the anisotropic setting, unless some ad-hoc mobility factor is incorporated in the
equation for the flow (see Remark 3.2 below).

On the other hand the author has provided and motivated in [18] a geometrically consistent
formulation of anisotropic Willmore functional (cf. also [2]). The point of view presented in [18]
is the same we adopt in this work. The considered anisotropic Willmore functional (see (2.10)
below) now differs from the one studied by Clarenz [5] and Palmer [14] in that the area element dV
is replaced by its more natural anisotropic counterpart. The gradient flow is realized by carefully
taking into consideration the anisotropic nature of space (more details are given in Section 2 and
in Section 3 below). With this approach relevant features of the isotropic setting carry over to the
anisotropic one (see for instance Example 3.1 below). In this paper we provide a mixed numerical
scheme for the evolution of parametric hypersurfaces, that uses piecewise linear finite elements and
that treats nonlinearities in an explicit way. The way the scheme is derived yields an immediate
stability result for its semi-discrete formulation. Experimental stability of the fully discrete scheme
is achieved through the introduction of a carefully chosen stability term. Along with other interesting
tests we show an appealing numerical example of evolution towards a stationary anisotropic torus
(see Figure 14). This is especially intriguing since, to our knowledge, there are very few examples of
toroidal anisotropic Willmore surfaces in the literature (cf. also [14], where an example of toroidal
critical surface for the considered functional is given under the assumption that the Wulff shape is
a surface of revolution). Several tests and simulations are provided also for the evolution of curves:
note that further examples for the anisotropic elastic flow of curves can be found in [15], where a
variational time discretization of the flow combined with a spatial discretization via piecewise affine
finite elements is studied.

This work is organized as follows. In Section 2 we briefly review the definitions of
anisotropic mean curvature vector, anisotropic area functional and anisotropic Willmore functional.
Furthermore we recall some important results concerning the first variation for the anisotropic
Willmore functional. In Section 3 we provide a geometrically meaningful formulation of Willmore
flow. Due to the highly nonlinear character of the flow we explore for possibilities of geometrically
equivalent flows (i.e. equivalent up to tangential components) that might be easier to treat
numerically. In Section 4 we compute the first variation of the anisotropic Willmore functional
and provide a variational formulation of the flows described in Section 3: here we pay particular
attention to allow only for those operations (specifically, integration by parts) that can be carried
out also in the spatial discrete setting, so that eventually it will be easy to infer a decrease of the
energy for the semi-discrete schemes (stability). After having chosen a formulation of the flow
most suitable for numerical computation its discretization in space is discussed in Section 5. Fully
discrete semi-implicit schemes and numerical tests are presented in Section 6: here successful ideas
for experimentally stable fully discrete schemes are developed first in the curve setting, where we
can carry out some elementary analysis and heuristics that help identifying good discretization
strategies. After presenting in Section 6.1.1 several numerical tests for the anisotropic Willmore
flow of curves, a discretization scheme is provided for the surface setting. Simulations of anisotropic
Willmore flow for surfaces are collected in Section 6.2.1.

2. Preliminaries

Here we briefly recall some notation and results that appeared in [5] and [18] and that are relevant
to our discussion.



COMPUTATIONAL ANISOTROPIC WILLMORE FLOW 191

Let x W Q� ! Rn be a smooth immersion of a smooth oriented compact hypersurface Q� (without
boundary) of Rn. The induced metric on Q� is given by

g.v;w/ D Dx.v/ �Dx.w/ 8 v;w 2 Tp Q� (2.1)

where � is the Euclidean inner product. The differential of the normal mapping � W Q� ! Sn�1

induces the shape operator S W Tp Q� ! Tp Q� via Dx ı S D D�.
The anisotropic area functional is given by

A .x/ WD
Z
Q�

.�/dV D

Z
Q�

d� ; (2.2)

where dV is the induced area element and the weighting function  W Rn ! Œ0;1/ is a norm on Rn.
We assume that  is as smooth as required (at least  2 C 2.Rn nf0g/ for the definitions of curvature
that follow, but more will be required later on). If we identify the normal � with the tangent space of
the hypersurface, we can think of the anisotropic map  as assigning different weights to different
tangent spaces. When  is the Euclidean norm, then .�/ � 1 and we recover the familiar area
definition (isotropic case). We denote by d� the anisotropic area element d� D .�/dV .

Recall that from the homogeneity property of the norm  (that is .�x/ D j�j.x/ for R 3 � ¤
0 and x 2 Rn) one easily infers that

 0.x/ � x D .x/;  0.�x/ D
�

j�j
 0.x/; (2.3)

 00.x/x � y D 0;  00.�x/ D
1

j�j
 00.x/; (2.4)

hold for all x 2 Rn n f0g, y 2 Rn and � ¤ 0 (cf. [8, � 8.1]).
From now on we assume that  satisfy the ellipticity condition

 00.p/q � q > c0jqj
2
8p; q 2 Rn; jpj D 1; q � p D 0 : (2.5)

Here j � j is the Euclidean norm and c0 is a positive constant.
After the usual identification of Rn with its dual .Rn/� (cf. [19, � 0 and � 1]), we call I the

convex body in Rn whose support function is  W Rn ' .Rn/� ! Œ0;1/, i.e.

I D
˚
x 2 Rn j � � x 6 .�/ 8 � 2 Rn

	
(2.6)

(cf. [19, � 2.2]). In the literature I is often referred to as the Wulff shape and it is known to be the
solution of an isoperimetric problem, namely, its boundary minimizes the anisotropic area functional
A in the class of surfaces enclosing the same volume (see for instance [6] and references therein
for more details). Let � be the norm in Rn whose unit ball is I , thus

�.x/ D sup
˚
x � y jy 2 Rn; .y/ 6 1

	
; .x 2 Rn/;

(or, in other words, � is dual to  ), and let T W .Rn; �/ ! ..Rn/�; / be the duality map
T .u/ D 1

2
@.�.u/2/, obtained by considering the subdifferential of the squared norm � (cf. [18]

and references therein). Condition (2.5) ensures that the Banach space X D .Rn; �/ and its dual
space X� D ..Rn/�; / are uniformly convex (see [18, � 2]), so that by [21, Proposition 47.19] we
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can deduce that the duality map T is an odd single-valued bijective continuous map , with T .0/ D 0,
T .�/ D �.�/.�/0.�/ for � ¤ 0, and such that its inverse T �1.p/ D .p/ 0.p/ for p ¤ 0,
T �1.0/ D 0 is also continuous and equal to the duality map from X� to X�� D X . Moreover
one has that hT .�/; �i D �.�/2 D .T .�//2 and ..�/0.�// D 1 D �. 0.x// for �; x ¤ 0 (cf.
also [3]). These properties will prove useful in the definition of the flow (see also [18, � 5]).

As done in the line above, the pairing of an element from a Banach space with one from its
dual will be usually denoted by h; i. Also note that throughout this paper we will often identify an
element f 2 ..Rn/�; / with xf 2 Rn uniquely defined by hf; yi D xf � y for all y 2 Rn, and we
will use the same notation for the two entities.

We denote by a W Tp Q� ! Tp Q� the symmetric mapping given by

a D .Dx/�1 00.�/Dx : (2.7)

Recall that a is well defined since  00.�/� D 0 due to (2.4).
Moreover, let grad.�/ and div.�/ denote respectively the gradient of smooth functions on Q� and

divergence of possibly non-tangential vector fields on Q� (for definitions of the operators grad.�/,
div.�/, t r.�/ and their representation in local coordinates see for instance [18, � 6.1] and references
given in there). The scalar anisotropic mean curvature is given by

h WD div
�
 0.�/

�
D t r.a ı S/ (2.8)

(note that here the definition of (anisotropic) mean curvature does not involve any arithmetic mean),
whereas the anisotropic mean curvature vector is given by

� WD �h
0.�/: (2.9)

As in [5, 18], we write4 .�/ D div.agrad.�// and jS j2 D t r.aS
2/.

Motivated by analytical and geometrical considerations presented by the author in [18, � 6] a
natural and geometrically consistent definition for the anisotropic Willmore functional is given by

W .x/ WD
1

2

Z
Q�

h2.�/dV D
1

2

Z
Q�

�.� /
2d� : (2.10)

Note that jh j is the length of the anisotropic mean curvature vector � D �h 0.�/ with respect
to the norm �, and recall that d� D .�/dV is the anisotropic area element.

REMARK 2.1 It is well known ( [20, Theorem 7.3.1]) that for n D 3 the classical Willmore
functional (i.e. in the isotropic setting) is invariant under conformal transformation of R3. Thus
similarity transformation and inversions do not change the functional. In the anisotropic setting the
functional (2.10) is still invariant under dilations. Indeed, let G W R3 ! R3 be defined through
G.x/ D ˛x for some fixed ˛ > 0 and let Qx W Q� ! R3 be defined by Qx D G ı x. With f@1; @2g a
local basis for the tangent space Tp. Q� /, and gij D Dx.@i / � Dx.@i /, Qgij D D Qx.@i / � D Qx.@i / we
get ˛2gij D Qgij , d QV D ˛2dV , .�/ D . Q�/ and h D div. 0.�// D gijD. 0.�//.@i / �Dx.@j / D
˛ QgijD. 0. Q�//.@i / �D Qx.@j / D ˛ Qh , so that W .x/ D W .Qx/ (here we have used the convention to
sum over repeated indices). Further invariances are subject to additional properties of the anisotropy
map  . For instance if  is rotationally symmetric around the z-axes, then (2.10) is invariant under
rotations around this axes.

The first variation for (2.10) is computed in [18]; precisely we have the following result.
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LEMMA 2.2 Consider a family of smooth immersions x W Q� �.�t0; t0/! Rn, such that x.�; 0/ D x
and

@t jtD0x.�; t / D '� CDx.v/ DW � (2.11)

where ' is a smooth function and v is a smooth tangential vector field on Q� . We have that

d

dt

ˇ̌̌
tD0
W
�
x.t/

�
D
˝
W 0 .x/; �

˛
(2.12)

D

Z
Q�

� �
�1
2
h3 � .�/4h � h t r

�
.a ı S/

2
�
� 2g

�
grad h ; agrad .�/

��
� dV :

REMARK 2.3 (i) For n D 2 one can show that Wulff shapes, more precisely the boundary of the
convex body I and any rescaled/translated version of it, are critical points for W subject to
fixed anisotropic length (see [18, Lemma 6.5]).

(ii) For n D 3 Wulff shapes are critical points for W (see [18, Lemma 6.4]).

The statement (ii) above can be strengthened as follows.

THEOREM 2.4 Let  W R3 ! Œ0;1/ be a smooth norm satisfying (2.5) and x W Q� ! R3 a smooth
immersion of a compact oriented two-dimensional surface without boundary. We have that

W .x/ > 2A .@I / (2.13)

where I is the Wulff shape (2.6). Wulff shapes are the unique minimizers for the anisotropic
Willmore functional W .

Proof. A proof of the isotropic case can be found in [20, Theorem 7.2.2]. The proof in the
anisotropic setting uses exactly the same arguments of the analogous [5, Theorem 4.1], the main
difference being that in [5] the author considers the functional

R
Q�
h2dV and relates it to the isotropic

area functional. Here we report all arguments for the sake of completeness.
First of all observe that because of (2.5) the anisotropic mean curvature may be written as

h D t r.a ı S/ D t r
�
a
1
2
 ı S ı a

1
2


�
:

The symmetric endomorphism field a
1
2
 ı S ı a

1
2
 may be diagonalized with eigenvalues Q�1 and Q�2.

Let K be the anisotropic Gauss curvature K WD det.a ı S/ D det.a
1
2
 ı S ı a

1
2
 /. Using the fact

that h2 � 4K D . Q�1 C Q�2/
2 � 4 Q�1 Q�2 D . Q�1 � Q�2/

2 > 0 we deduce that

W .x/ >
1

2

Z
KC

h2 d� > 2

Z
KC

K d�;

where KC D f� 2 Q� W K.�/ > 0g with K the classical Gauss curvature. Since the surface is
compact we get in every normal direction a point � whereK.�/ > 0, thusKC ¤ ; and �.KC/ D S2

(cf. for instance [20, � 7.2]).
On the other hand notice that the map  0 W S2 ! R3, � 7!  0.�/, provides a parametrization

for the boundary of the Wulff shape I (recall �. 0.�// D 1 and  00.�/j�? is positive definite due
to (2.5)). Moreover for the normal mapping � W Q� ! S2 observe that the normal �.�/ at a point
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� 2 Q� coincides with the normal �.p/ at the point p D  0.�.�// 2 @I . Next consider a local chart
' W ˝ � R2 ! Q� for � 2 Q� such that  0.� ı '/ is also a local chart for p D  0.�.�// 2 @I . Then

@i
�
 0.� ı '/

�
D

@

@xi
. 0 ı � ı x�1 ı x ı '/ D  00.�/D.� ı x�1/

@

@xi
.x ı '/ i D 1; 2;

and we can relate the area elements for Q� and @I as followsˇ̌̌
@1
�
 0.� ı '/

�
^ @2

�
 0.� ı '/

�ˇ̌̌
D

ˇ̌̌
det

�
 00.�/D.� ı x�1/

�ˇ̌̌ˇ̌̌ @
@x1

.x ı '/ ^
@

@x2
.x ı '/

ˇ̌̌
D jK j

ˇ̌̌ @
@x1

.x ı '/ ^
@

@x2
.x ı '/

ˇ̌̌
:

It follows that 2
R
KC K d�;> 2A .@I /.

Next suppose that W .x/ D 2A .@I /. Then it must be Q�1 D Q�2 DW Q� and thus also a
1
2
 ı S ı

a
1
2
 D Q�Id . It follows that S ıa D Q�Id . As in [5] one derives grad. Q�/ D div.S ıa / D grad.h /,

from which it follows that h D Q�C const. on Q� . Since h D t r.a ı S/ D t r. Q�Id/ D 2 Q�, we
finally get that Q� D const. ¤ 0 on Q� . Next, from a ıS D Q�Id we inferD. 0.�// D  00.�/D� D
Q�Dx, which leads to x D x0 C 1

Q�
 0.�/ with x0 a constant vector in R3, and the claim follows.

Notation and general assumptions outlined in this section will be used throughout this work.

3. Anisotropic Willmore flow

To define the anisotropic Willmore flow we follows ideas presented in [18] for the anisotropic mean
curvature flow. A key point is to take into account the anisotropic nature of space and encode this
information in the formulation of the flow. When this is done correctly we observe that properties
typical of the isotropic case extend naturally to the anisotropic setting: an example is given in
Example 3.1 below.

DEFINITION 3.1 Let x0 W Q� ! Rn be an isometric immersion. The anisotropic Willmore flow is a
family of immersions x W Œ0; NT / � Q� ! Rn parametrized by t such that x.0/ D x0 andZ

Q�

˝
T .@tx/; �

˛
.�/dV.t/ D �

˝
W 0
�
x.t/

�
; �
˛

(3.1)

for all test functions � 2 C1. Q� ;Rn/ and t 2 .0; NT /.

Note that we have used the duality map T to relate in a consistent way the velocity vector @tx
to the gradient given by the first variation of the anisotropic Willmore functional (cf. [18, � 4] for
details on functional analytic aspects). Recall that in the isotropic setting (where  is simply the
Euclidean norm) hT .@tx/; �i D @tx � � and thus we recover the familiar formulation of L2-gradient
flow.

The anisotropic Willmore energy decreases along the flow since due to the property of the duality
map hT .�/; �i D �.�/2 we have that

d

dt
W
�
x.t/

�
D
˝
W 0
�
x.t/

�
; @tx

˛
D �

Z
Q�

˝
T .@tx/; @tx

˛
.�/dV.t/ D �

Z
Q�

�.@tx/2.�/dV.t/ 6 0 :
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After the usual identification of Rn with its dual .Rn/� and recalling (2.12), a classical formulation
for the flow is given by

T .@tx/ D �
�1
2
h3 � .�/4h � h t r

�
.a ı S/

2
�
� 2g

�
grad h ; agrad .�/

�� �

.�/
:

Applying T �1 to both sides we obtain

@tx D �
�1
2
h3 � .�/4h � h t r

�
.a ı S/

2
�
� 2g

�
grad h ; agrad .�/

��
 0.�/ : (3.2)

EXAMPLE 3.1 In the planar case Wulff shapes expand with the same velocity as do circles in the
isotropic setting. Indeed if we consider the parametrization x W Œ0; NT / � S1 ! R2, x.t; �/ D
R.t/ 0.cos �; sin �/, then since h D 1

R.t/
and t r..a ıS/2/ D 1

R.t/2
(see for instance [18, � 5.3.1])

equation (3.2) implies
d

dt
R.t/ D

1

2R.t/3

which is solved by R.t/ D .R.0/C 2t/
1
4 as in the isotropic case.

In contrast to the above example we make the following remark.

REMARK 3.2 In [5] a slightly different version of anisotropic Willmore functional is studied,
namely

QW .x/ D
1

2

Z
Q�

h2dV:

The above functional differs from (2.10) in that the anisotropic area element is replaced by the
isotropic one. For curves x W Œ0; NT / � S1 ! R2, x D x.t; �/, with isotropic length element ds D
jx� jd� , the L2-gradient flowZ

S1

xt
m.�/

�  ds D �
˝
QW 0
�
x.t/

�
;  
˛

8 2 C1.S1;R2/

with positive mobility factor m W S1 ! R induces the evolution equation

xt
m.�/

D

�
4h C h jS j

2
 �

1

2
hh2

�
�;

whose normal velocity V D xt � � satisfies

V

m.�/
D 4h C h jS j

2
 �

1

2
hh2 (3.3)

(cf. computations for the first variation of QW given in [5]). Since for curves jS j2 D t r.aS
2/ D

hh , a straightforward computation shows that a Wulff shape x W Œ0; NT / � S1 ! R2, x.t; �/ D
.R.0/ C 2t/1=4 0.cos �; sin �/ satisfies (3.3) provided m.�/ D .�/. 00.�/� � �/ where � D
.cos �; sin �/ and � D .sin �;� cos �/ (cf. also [1, Theorem 2.1]).

Goal of this paper is to find a suitable FEM-discretization of the flow that uses piecewise linear
finite elements. With this in mind, a mixed formulation for the flow of Definition 3.1 is the following.
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PROBLEM 3.3 Given an initial isometric immersion of x0 W Q� ! Rn, find x; � W Œ0; NT /� Q� ! Rn
such that x.0/ D x0, � .0/ D �.h 0.�//.0/, and such that on .0; NT / the following holdsZ

Q�

hT .@tx/; �
˛
.�/ dV.t/ D �

˝
W 0
�
x.t/

�
; �
˛
8 � 2 C1. Q� ;Rn/ ; (3.4)Z

Q�

˝
T .� /; '

˛
.�/ dV.t/ D �

˝
A0
�
x.t/

�
; '
˛
8' 2 C1. Q� ;Rn/ : (3.5)

To justify the term “mixed formulation”, it will be shown below (see Lemma 4.11) that the right-
hand side of equation (3.4) contains indeed � . Note that (3.5) properly defines � in weak terms
since the first variation for the anisotropic area functional is given by˝

A0 .x/; '
˛
D

Z
Q�

h� � ' dV 8' 2 C1. Q� ;Rn/ ; (3.6)

(see for example [4] and [8, � 8.3] or Remark 4.9 below) and � D �h 0.�/ D T �1.�h
�
.�/

/

(recall (2.9)).

3.1 An alternative formulation through a geometrically equivalent flow

The flow described in Problem 3.3 is rather hard to treat numerically because it is highly nonlinear.
For a discretization with finite elements the presence of the nonlinear operator T on both the time
derivative and curvature vector poses an additional problem. In principle one could try working with
approximations of the terms T .@tx/ and T .� / via Taylor expansions. However we are faced with
several challenges. First of all, since we expect @tx to tend to zero, it would make sense to consider
a linearization of T around the origin. However, although T is well defined in zero (T .0/ D 0), in
general, it will not be differentiable here (except for special cases. For instance if �.�/ D

p
A� � �

where A is a positive definite symmetric matrix, then T is linear with T � D A� and of course
everywhere differentiable. Cf. also comments in the proof of Lemma 4.11 below.) Secondly, even if
we tried to use the identity T .�/ D T 0.�/� for � ¤ 0 (which follows from the positive homogeneity
of T , namely T .a�/ D aT .�/ for a > 0), we would still have a numerical scheme that involves
computations of �,  , as well as their derivatives. This is a situation that we would gladly avoid.

To get around these problems and in particular to “get rid of” the nonlinear operator T acting on
the time derivative @tx and on � we will eventually consider another flow which, up to tangential
components, is equivalent to (3.2). Precisely, let us consider

1

.�/
@tx D �

�1
2
h3 � .�/4h � h t r..a ı S/

2/ � 2g
�
gradh ; agrad.�/

��
� ; (3.7)

which is obtained by taking the normal component in the righthand-side of (3.2). In weak form this
flow is described byZ

Q�

1

.�/
@tx � � dV.t/ D �

˝
W 0
�
x.t/

�
; �
˛
8 � 2 C1. Q� ;Rn/ : (3.8)

Note that by setting
�N WD � � � � D �.�/h� (3.9)
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we can write W .x/ D 1
2

R
Q�

ˇ̌̌
kN
.�/

ˇ̌̌2
.�/dV . Moreover, because of (3.6), a weak formulation for

kN is given by Z
Q�

kN � '
1

.�/
dV D �

˝
A0 .x/; '

˛
8' 2 C1. Q� ;Rn/ : (3.10)

Therefore a weak mixed formulation for the flow (3.7) can be formulated as follows.

PROBLEM 3.4 Given an initial isometric immersion x0 W Q� ! Rn find x; �N W Œ0; NT / � Q� ! Rn

such that x.0/ D x0, �N .0/ D �.h.�/�/.0/, and such that on .0; NT / the following holdsZ
Q�

1

.�/
@tx � � dV.t/ D �

˝
W 0
�
x.t/

�
; �
˛
8 � 2 C1. Q� ;Rn/ ; (3.11)Z

Q�

1

.�/
�N � ' dV.t/ D �

˝
A0
�
x.t/

�
; '
˛
8' 2 C1. Q� ;Rn/ : (3.12)

It will be shown below (see Lemma 4.12) that the right-hand side of equation (3.11) contains
indeed �N .

4. Variational formulation

In the following we derive a first variation of the anisotropic Willmore functional that can be carried
out also in the (spatial) discrete setting. A nice “side effect” is that it is not hard to prove stability
for the semi-discrete problem (this idea was first used in [10]).

A mixed formulation of the Willmore flow and its alternative (as described in Section 3.1), that
are suitable for discretization, are provided at the end of this section.

First of all we introduce some necessary notation, define and discuss the relevant anisotropic
operators, and provide for these some results and observations that are of independent interest.

4.1 Set up and notation

For simplicity we take Q� to be embedded in Rn through the identity map and we do not
distinguish between Q� and the image � D x. Q� /. Therefore � denotes a smooth, compact, oriented
hypersurface of Rn without boundary.

Since, to a certain extent, our numerical treatment of the anisotropic Willmore flow can be
thought of as a generalization of [10] to the anisotropic setting, from now on we will use most of the
notation adopted there. As in [10] it will be convenient to work with the identity map on the surface.
Thus, we define u W � ! Rn by

u
�
X.x/

�
D Id�

�
X.x/

�
D X.x/; x 2 U

where X W U ! Rn, U � Rn�1, is a local parametrisation of � .

4.1.1 General notation. For a; b 2 Rn we denote by a � b the Euclidean inner product. For n�n
matrices A;B we write AB for the usual matrix multiplication and

A W B D

nX
i;jD1

AijBij D t r.AB
T / D t r.ATB/ (4.1)
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for the matrix scalar product. Moreover a˝ b denotes the matrix with entries

.a˝ b/ij D aibj : (4.2)

The gradient of a smooth function f W Rn ! R is denoted by rf .x/ D f 0.x/ D

.@1f .x/; : : : ; @nf .x// D .fp1.x/; : : : ; fpn.x// 2 Rn.

4.1.2 Isotropic quantities. For a sufficiently smooth f W � ! R, defined in a neighbourhood of
� , we recall that the tangential gradient on the surface � with normal � is given by

r� f D rf � rf � � � ; (4.3)

with spacial components r� f D .D1f; : : : ;Dnf /. Introducing the projection P 2 Rn�n defined
by

Pij D ıij � �
i �j .i; j D 1; : : : ; n/; (4.4)

it is easy to see that r� f D Prf . For a vector field ' W � ! Rn, ' D .'1; : : : ; 'n/, the
divergence is given by

r� � ' D

nX
mD1

Dm'
m
D t r.Pr'/ ; (4.5)

where .r'/ij D @j'
i . Note that for a given smooth f W � ! R it is always possible to find

a smooth extension of f in a neighbourhood of � , for instance by using the distance function.
The definitions of tangential gradient and divergence do not depend on the extension chosen, see
for instance [8]. For the sake of readability we will from now on adopt the convention to sum over
repeated indices (so that for example the expression above becomes r� �' D Dm'

m). The Laplace
Beltrami operator is defined by

4� f D r� � r� f D DmDmf : (4.6)

Note that for a given a vector field ' W � ! Rn, the matrix r� ' has entries

.r� '/ij D Dj'
i : (4.7)

(This follows the notation used for the Jacobi matrix of a vector valued function, however it is
different from the notation used in [10].) We have that r� ' D r'P .

The symmetric matrix r� �, also known as extended Weingarten map, has one zero eigenvalue
corresponding to the eigenvector �. The remaining eigenvalues are the so called principal curvatures
�1; : : : �n�1. The mean curvature is defined by

h D r� � � D

n�1X
iD1

�i : (4.8)

It is not difficult to show that
�4� Id D h� on �; (4.9)

where Id W Rn ! Rn is the identity map (cf. for instance [8, � 2]). We recall that the formula for
integration by parts on the surface � isZ

�

Dif dV D

Z
�

f h�i dV; (4.10)



COMPUTATIONAL ANISOTROPIC WILLMORE FLOW 199

where dV denotes the surface volume element ( [8, � 2.4]).
Assuming that � is locally described by a diffeomorphism X W U ! Rn, where U is an

open subset of Rn�1, and by using the standard notation gij D @iX � @jX , g D det.gij /, gij D
..gij /

�1/ij , for i; j D 1; : : : ; n � 1, it is easy to infer that

r� f ıX D g
ij @j .f ıX/@iX ; Dmf D g

ij @j .f ıX/@iX
m ; (4.11)

.r� f � r� h/ ıX D g
ij @i .f ıX/@j .h ıX/ ; .r� ' W r� / ıX D g

ij @i .' ıX/ � @j . ıX/ ;

(4.12)

where f; h W � ! R, and '; W � ! Rn are smooth maps.

4.1.3 Anisotropic quantities. As usual let  W Rn ! Œ0;1/ be a sufficiently smooth norm and
let � denote the unit vector normal to � . As in [18] we define P  2 Rn�n to be the matrix

.P  /ij WD
�
I � r.�/˝

�

.�/

�
ij
D ıij � pi .�/

�j

.�/
: (4.13)

Note that P  and its transpose

QP  WD .P  /T D
�
I �

�

.�/
˝r.�/

�
(4.14)

are projectors, that is .P  /2 D P  and . QP  /2 D QP  . For a given smooth map f W � ! R, defined
in a neighbourhood of � , we define the anisotropic tangential gradient to be

r

� f WD rf � rf � r.�/

�

.�/
D QP rf ; (4.15)

with spacial componentsr� f D .D

1f; : : : ;D


nf /. Observe that forw 2 Rn we have that P w D

w � w � �
.�/
r.�/ 2< � >?, whereas QP w D w � w � r.�/ �

.�/
2< r.�/ >?.

It is easy to verify that

PP  D P  ; QP P D QP  ; (4.16)

P P D P ; P QP  D P : (4.17)

In particular we see that r� f D QP
Prf D QP r� f and therefore we deduce that the definition

given in (4.15) does only depend on the value of f on � (and not on the possibly chosen extension).
For a vector field ' W � ! Rn, the matrix r� ' has entries .r� '/ij D D


j '

i . For the identity
map Id.x/ D x in Rn one immediately deduces that Dkx

j D ıkj � �
k�j D Pkj and in the

anisotropic setting

ıjk �
�k

.�/
pj .�/ D P



jk
D QP



kj
D D



k
xj D .r


� Id/jk ; (4.18)

where j; k D 1; : : : ; n. For a given a vector field ' W � ! Rn we set

r

� � ' WD D


m'

m (4.19)
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to be the anisotropic divergence. Note that we can write

r

� � ' D

QP  W r' D t r.P r'/ D t r.P r� '/ D t r.P

r

� '/ D D


j .Id

i /D

i '

j : (4.20)

Again one can show that the definition given in (4.19) does only depend on the values of ' on � .
Indeed if ' � 0 on � , then r'k D r'k � � � D r.�/ � r'k �

.�/
(recall (2.3)), thus .r'/ij D

@j'
i D r.�/ � r'i �

j

.�/
and r� � ' D 0.

REMARK 4.1 Note that the following identity holds

.P r

� x

i /m D .P

r

� x

m/i : (4.21)

In the isotropic case this amount to

Dmx
i
D Dix

m
D Pim: (4.22)

The latter property, which implies r� � ' D P W r� ' D r� Id W r� ', is actually used to provide
suitable discretizations of the mean curvature flow ( [8, � 4.2]) and of the Willmore flow ( [10]) in
the isotropic setting.

LEMMA 4.2 Given smooth maps f; g W � ! R, ' W � ! Rn, defined in a neighbourhood of � ,
we have that

r

� .f C g/ D r


� f Cr


� g ; (4.23)

r

� .fg/ D f r


� g C gr


� f ; (4.24)

r

� � .f '/ D f r


� � ' Cr


� f � ' : (4.25)

The anisotropic Laplace operator for a smooth function f W � ! R is defined by

4

� f WD r


� �

�
 00
� �

.�/

�
r

� f

�
: (4.26)

Note that the above definitions of anisotropic tangential gradient, divergence and Laplace operator
appear also in [2]. At a point x 2 � with Euclidean unit normal � the anisotropic normal vector is
given by

� WD 
0.�/ : (4.27)

The anisotropic scalar curvature is defined by

h WD r

� � � : (4.28)

Using the homogeneity property (2.4) one infers that

h D r� � � D divRn� (4.29)

and thus equivalence between (4.28) and (2.8) can be recognized. The formula for integration by
parts is given in the following lemma (compare with the isotropic counterpart (4.10)).
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LEMMA 4.3 (Integration by parts) Let f W � ! R be a smooth function. Then we haveZ
�

D
mf d� D

Z
�

f h
�m

.�/
d� (4.30)

where d� is the anisotropic area element d� D .�/dV .

Proof. Using the definition for the anisotropic gradient, (2.3), and the standard integration by parts
formula (4.10) we infer thatZ

�

D
mf d� D

Z
�

�
ımi � pi .�/

�m

.�/

�
Dif d�

D

Z
�

Dm

�
f .�/

�
dV �

Z
�

f Dm

�
.�/

�
dV �

Z
�

Di .pi .�/f �
m/ dV

C

Z
�

f Di

�
pi .�/�

m
�
dV

D

Z
�

f h�m.�/ dV �

Z
�

f Dm

�
.�/

�
dV �

Z
�

f h�m.�/ dV

C

Z
�

f Di

�
pi .�/

�
�m dV C

Z
�

f pi .�/Di�
m dV :

The claim now follows using the fact that Di .pi .�// D h (see (4.29)) and Di�
m D Dm�

i

(cf. [8, � 2.3]).

As a consequence of Lemma 4.3 we obtain the following

LEMMA 4.4 Let f W � ! R, ' W � ! Rn be smooth maps. Then we haveZ
�

f r

� � ' d� D �

Z
�

' � r

� f d�C

Z
�

f h' �
�

.�/
d�

Proof. A straight forward computation givesZ
�

f r

� � ' d� D

Z
�

f D
m'

m d� D

Z
�

D
m.f '

m/ d� �

Z
�

'mD
mf d�:

from which the claim follows using Lemma 4.3.

From the above Lemma and (2.4) we immediately infer the following Green’s formulas.

LEMMA 4.5 (Green’s formulas) Let f; ' W � ! R be smooth functions. Then we haveZ
�

r

� f � r


� ' d� D �

Z
�

' r

� � .P


r

� f / d�: (4.31)

Note that from r� f D QP
r


� f we immediately inferZ

�

r

� f � r


� ' d� D

Z
�

.P r

� f / � r


� ' d� D

Z
�

r

� f � .P


r

� '/ d�:

Let f; g W � ! R be smooth functions, and4� .�/ be as in (4.26). Then we haveZ
�

g4

� f d� D

Z
�

gr

� �

�
 00
� �

.�/

�
r

� f

�
d� D �

Z
�

 00
� �

.�/

�
r

� f � r


� g d� : (4.32)
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REMARK 4.6 Unlike the isotropic setting where .�/ D j�j and (4.9) holds, in the anisotropic
setting we expect that in general

�r

� � .P


r

� Id/ ¤ h

�

.�/
;

and also

�r

� �

�
 00
� �

.�/

�
r

� Id

�
¤ h

�

.�/
:

Indeed, the left-hand side of the second expression contains third derivatives of the anisotropy
map  as opposed to the right-hand side with only second order derivatives. As for the first
expression, we compute

h
�i

.�/
D D

m

�
pm.�/

� �i
.�/

D D
m

�
pm.�/

�i

.�/

�
� pm.�/D


m

� �i

.�/

�
D D

m

�
pm.�/

�i

.�/

�
D �D

m

�
ımi � pm.�/

�i

.�/

�
D �D

m.P

mi / D �D


m.D


i x
m/:

Moreover
.P r


� Id

i /m D P


mk
D


k
xi D P



mk
P


ik
D P



mk
QP


ki
D .P  QP  /mi :

In the isotropic case (4.22) holds (from which (4.9) follows), whereas in the anisotropic setting all
we have is (4.21).

REMARK 4.7 Note that, with the notation introduced in this section, an anisotropic Willmore
surface � , i.e. a critical point for (2.10), satisfies the equation

0 D
1

2
h3 �4


� h � h t r

��
 00.�/D�

�2� on �

(see (2.12), [18, Remark 6.7] and recall also (4.26), (4.27), (4.28)).

4.2 Variations for the anisotropic area functional

We start by computing the first variation of the anisotropic area functional (2.2). The map u demotes
as usual the identity map on a smooth closed compact oriented hypersurface � � Rn.

LEMMA 4.8 The first variation for the anisotropic area functional (2.2) at u D id� in direction
' 2 C1.�;Rn/ is given by

hA0 .u/; 'i D

Z
�

r

� � ' d� : (4.33)

where d� is the anisotropic area element d� D .�/dV .

Proof. To calculate the first variation we first work for simplicity on a single chart X W U ! Rn,
where U � Rn�1 is an open set, and consider variations of the form

X� D X C �� (4.34)
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for some � 2 C10 .U;Rn/. We set � � D � on � n X.U / and � � D X�.U / otherwise, and define
' W � ! Rn by ' ıX D � on X.U / and ' D 0 otherwise.

We have that

hA0 .u/; 'i D
d

d�

ˇ̌̌
�D0

Z
� �
.��/dV � D

d

d�

ˇ̌̌
�D0

Z
U

.��/
q

det.g�ij / dx (4.35)

D

Z
�

.�/r� � ' � pk .�/�
lDk'

l dV D

Z
�

r

� � ' .�/dV :

To deduce the above equation one uses the Jacobi formula for the derivative of the determinant
(see for instance [13, � 8]) to infer that

d

d�

ˇ̌̌
�D0

q
det.g�ij / D r� � '

p
g D r� Id W r� '

p
g ; (4.36)

where obviously g�ij D @iX
� � @jX

� . Moreover we observe that

@�j�D0�
k
� D ��

lDk'
l : (4.37)

(Note that throughout this paper the index � will appear as a lower index whenever the upper index
position contains another piece of information, for example the space index). Indeed it follows from
the definition of tangential gradient in local coordinates (4.11) that

�lDk'
l
D �l

�
gmj @j �

l@mX
k
�
D gmj .� � @j�/ @mX

k :

On the other hand, since �� � �� D 1 for any �, we infer that the vector @��� lies in the tangential
space of � � and @��� D �gmn� .�� � @n@�X

�/@mX
� . Next evaluate this expression at � D 0.

Using partition of unity arguments one generalizes variations on single charts to arbitrary
variations on the surface.

REMARK 4.9 Observe that Lemma 4.8 and Lemma 4.3 provide a proof for (3.6).

LEMMA 4.10 The second variation of the anisotropic area functional at u D id� in direction
 ; ' 2 C1.�;Rn/ is given by

A00 .u/.';  / D

Z
�

r

� �  r


� � ' d� �

Z
�

D


l
'sD

s 
l d�

C

Z
�

�s

.�/

�l

.�/
pkpm

�
�

.�/

�
D
m'

sD


k
 l d� ; (4.38)

where d� is the anisotropic area element d� D .�/dV .

Proof. To compute the second variation we consider again for simplicity variations on a single
chart as in (4.34). The general case can be obtained by using partition of unity arguments. Given
a map  2 C1.�;Rn/, we define a family of smooth maps on � � by setting Q W � � ! Rn,
Q ı X� D  ı X on X�.U / and Q D  on � n X.U / (recall that � � D � on � n X.U /).

Furthermore let 	 W U ! Rn be defined by 	 D  ı X . The second variation in directions  and



204 P. POZZI

' is given by

A00 .u/.';  / D
d

d�

ˇ̌̌
�D0

Z
� �
r

� � �
Q .��/dV � (4.39)

D
d

d�

ˇ̌̌
�D0

(Z
U

�
r� �Id W r� � Q � pk .�

�/
�l�
.��/

D�
k
Q l
�q

det.g�ij /.�
�/ dx

C

Z
� nX.U/

r

� �  d�

�
:

Next we look at the differentiation of the single terms in the first integral. From the calculations
performed to evaluate the first variation for the anisotropic area functional we already know that

d

d�

ˇ̌̌
�D0

q
det.g�ij / .�

�/ D r

� � ' .�/

p
g : (4.40)

Next we infer that
d

d�

ˇ̌̌
�D0

�k�
.��/

D �
�l

.�/
D


k
'l : (4.41)

Indeed, using (4.37) and (2.3) we get

d

d�

ˇ̌̌
�D0

�k�
.��/

D �
�l

.�/
Dk'

l
C

�k

.�/2
pm.�/�

sDm'
s
D �

�l

.�/
@k'

l
C
�k�s

.�/2
r.�/ � r's

D �
�l

.�/

�
D


k
'l C

�k

.�/
r.�/ � r'l

�
C
�k�s

.�/2
r.�/ � r's D �

�l

.�/
D


k
'l :

Next we show that

d

d�

ˇ̌̌
�D0

�
r� �Id W r� � Q 

�
D r� ' W r� � .D.'/r� 

l / � r� Id
l ; (4.42)

where D.'/ is the symmetric matrix with entries

D.'/ij D Di'
j
CDj'

i : (4.43)

Using (4.12) we get that

r� �Id W r� � Q D g
ij
� @jX

�
� @i	 :

Using the fact that from g
ij
� D g

ik
� g

jl
� g

�
kl

we can infer that

d

d�

ˇ̌̌
�D0

gij� D �g
ikgjl

d

d�

ˇ̌̌
�D0

g�kl D �g
ikgjl .@k� � @lX C @l� � @kX/ ; (4.44)

we derive that

d

d�

ˇ̌̌
�D0

�
r� �Id W r� � Q 

�
D �gikgjl@jX � @i	.@lX � @k� C @l� � @kX/Cr� ' W r� :
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On the other hand, using (4.11), we have that�
D.'/r� 

l
�
� r� Id

q
D .Dj'

i
CDi'

j /Di 
lDj Id

q (4.45)

D .gmk@k�
i@mX

j
C gmk@k�

j @mX
i /gnp@p	

l@nX
igrs@sX

q@rX
j

D gnpgks.@k� � @nX/.@p	
l@sX

q/C gnpgrs.@n� � @rX/.@p	
l@sX

q/

D gnpgks.@p	
l@sX

q/.@k� � @nX C @n� � @kX/ :

If q D l this gives�
D.'/r� 

l
�
� r� Id

l
D gnpgks.@p	 � @sX/.@k� � @nX C @n� � @kX/

D gikgjl .@i	 � @jX/.@l� � @kX C @k� � @lX/

where in the last step we have renamed the indices as follows: k ! l , p ! i , s ! j , n ! k.
Therefore we have shown that (4.42) holds.

Next we show that

@�j�D0D
�
k
Q l D r� 

l
� r� '

k
�
�
D.'/r� 

l
�
� r� Id

k : (4.46)

Indeed, using (4.44) and the fact that D�
k
Q l D g

mj
� @j	

l@mX
k
� , we obtain

@�j�D0D
�
k
Q l D

n
� gmrgjs.@r� � @sX C @s� � @rX/@j	

l@mX
k
C gmj @j	

l@m�
k
o
:

Equation (4.46) now follows from (4.12) and (4.45) (after renaming indices in (4.45) as follows:
k ! r , n! s, p ! j , s ! m).

Using (4.42), (4.41), (4.46), (2.3), and (2.4), we can write

d

d�

ˇ̌̌
�D0
r

� � �
Q (4.47)

D
d

d�

ˇ̌̌
�D0

 
r� �Id W r� � Q � pk

�
��

.��/

�
�l�
.��/

D�
k
Q l

!
D r� ' W r� � .D.'/r� 

l / � r� Id
l
C pkpm

�
�

.�/

�
�s

.�/
D
m'

s �
l

.�/
Dk 

l

C pk .�/
�s

.�/
D


l
'sDk 

l
� pk .�/

�l

.�/

�
r� 

l
� r� '

k
�
�
D.'/r� 

l
�
� r� Id

k
�

D pkpm

�
�

.�/

�
�s

.�/
D
m'

s �
l

.�/
D


k
 l CQ ;

where

Q WD r� ' W r� � .D.'/r� 
l / � r� Id

l

C pk .�/
�s

.�/
D


l
'sDk 

l
� pk .�/

�l

.�/

�
r� 

l
� r� '

k
�
�
D.'/r� 

l
�
� r� Id

k
�
:
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Next we show that

Q D �D


l
'sD

s 
l : (4.48)

We have that

Q D Di'
jDi 

j
�

�
D.'/r� 

l / � r� Id
l
C pk .�/

�s

.�/
D


l
's.@k 

l
� r l � � �k

�
� pk .�/

�l

.�/

�
Di 

l
�Di'

k
�
�
D.'/r� 

l
�
� r� Id

k
�

D P


kl
Di 

l
�Di'

k
� P



kl
.Dm'

s
CDs'

m/Ds 
lDmId

k
C pk .�/

�s

.�/
D


l
'sD



k
 l

C
�s

.�/
D


l
'sr.�/ � r l � �sD



l
'sr l � �

D P


kl
Pim@m 

lPis@s'
k
� P



kl
.Pmi@i'

s
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Using (4.39), (4.40), (4.47) and (4.48) we can finally state that
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Note that in the isotropic case where .�/ D j�j we recover the results presented in [10,
Lemma 1 and Lemma 2].

4.3 First variation for the anisotropic Willmore functional

Next we derive the first variation for the anisotropic Willmore functional (2.10)

W .u/ D
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at u D id� . For the computation we use the weak formulation for the anisotropic mean curvature
vector � D �h� (recall (2.9), (4.27), (4.29)) given in Problem 3.3 and the result derived in
Lemma 4.8.

Observe that if � 2 L2.� /n, then so does T .� / D �h �
.�/

, due to .T .� // D �.� / and
the equivalence of norms in Rn. The reverse statement is also true.

LEMMA 4.11 Let � satisfyZ
�

T .� / �  d�C

Z
�

r

� �  d� D 0 8 2 C1.� /: (4.49)

The first variation of the anisotropic Willmore functional at u D id� in direction ' 2 C1.�;Rn/
is given by
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where d� is the anisotropic area element d� D .�/dV .

Proof. As for the proof of the first variation of the area functional, we first work on a single chart
X W U ! Rn, where U � Rn�1 is an open set, and consider variations of the form X� D X C ��

for some � 2 C10 .U;Rn/. We set � � D � on � n X.U / and � � D X�.U / otherwise, and define
' W � ! Rn by ' ıX D � on X.U / and ' D 0 otherwise. Using the results from Lemma 4.8 and
the definition and properties of the duality map T �1 D 1

2
@.2/ (cf. also [21, Proposition 47.19] or

comments in Section 2) we infer that˝
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Note that under our assumptions T .�� / D �h
�


��

.��/
(recall also (4.29)) is smooth enough for its

derivative with respect to � to exist. However it is important to point out that when taking the partial
derivative with respect to � we can not apply the chain rule, since T is not necessarily Frechet
differentiable in zero (regardless how smooth � might be. Indeed, T has at the origin directional
derivative in direction � 2 Rn n f0g equal to limh!0

T.0Ch�/�T.0/
h

D T .�/ D �.�/.�/0.�/, which
is not necessarily linear with respect to �).

To determine the first integral in (4.51) we use the weak formulation for the anisotropic mean
curvature vector (4.49) and Lemma 4.10. Given a map  2 C1.�;Rn/, we define a family of
smooth maps on � � by setting Q W � � ! Rn, Q ıX� D  ıX onX�.U / and Q D  on � nX.U /
(recall that � � D � on � nX.U /). By differentiating with respect to � the equationZ

� �
T .�� / �

Q d�� C

Z
� �
r

� � �
Q d�� D 0



208 P. POZZI

we obtainZ
�
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By an approximation argument (if necessary) we can take  D � in the above equation; together
with (4.51) we obtain˝
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and the claim now follows from Lemma 4.10 and the fact that T .� /�� D .T .� //2 D �.� /2 D
h2 .

The general case where the variation is not contained in a single chart follows by using partition
of unity.

In Section 3.1 a flow geometrically equivalent to (3.2) (see also Definition 3.1) was discussed.
Since, as observed in Section 3.1, the Willmore functional can be written as
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where �N D � ��� D �.�/h�, we infer from (3.10), Lemma 4.8, and using the same arguments
and notation of the proof of Lemma 4.11 thatZ
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Therefore we obtain
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The first variation of the anisotropic Willmore functional at u D id� in direction ' 2 C1.�;Rn/
is given by
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where d� is the anisotropic area element d� D .�/dV .

4.4 A formulation of the flow that is suitable for discretization

As in [10] we assume that the evolving surfaces � .t/ are smooth in space and time and that all the
quantities that we shall use make sense. Let G NT be the topological cylinder

G NT D
[

t2Œ0; NT �

� .t/ � ftg :

We assume that for each t 2 Œ0; NT � the surface � .t/ is regularly and smoothly parametrised locally
by X D X.x; t/, x 2 U � Rn�1. Denote by u W G NT ! Rn the map

u
�
X.x; t/; t

�
D X.x; t/; x 2 U; t 2 Œ0; NT � :

For a function � W G NT ! R, the quantity P� denotes its material derivative

P� D �t CV � r� ; (4.55)

where V is the velocity of the surface � .t/ given by V.X.x; t/; t/ D Xt .x; t/ and r� is the usual
n-dimensional spatial gradient of a smooth extension of � to a neighborhood of G NT . In particular
P�.X.�; t /; t/ is equal to the time derivative of �.X.�; t /; t/. Note that the material derivative of the
identity map u is the velocity, i.e.

Pu
�
X.x; t/; t

�
D Xt .x; t/ 2 Rn :

Following this notation the evolution problem formulated in Definition 3.1 reads as follows.

PROBLEM 4.13 (Anisotropic Willmore flow) For a given hypersurface �0 � Rn determine a family
of smooth hypersurfaces .� .t//t2Œ0; NT � with � .0/ D �0, which move according to the lawZ
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T . Pu/ � ' d� D �hW 0 .u/; 'i (4.56)

for every test function ' and on the time interval .0; NT �.

By Lemma 4.11 a mixed formulation for the anisotropic Willmore flow (recall also Problem 3.3),
which allows for a discretization by piecewise linear finite elements, is the following.
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u D id� , u.�; 0/ D u0 on �0, andZ
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on the time interval .0; NT � and for all '; W G NT ! Rn.
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Next we observe that using Lemma 4.12 a mixed formulation for the (geometrically equivalent)
flow of Problem 3.4 now reads

PROBLEM 4.15 For given initial surface �0 and u0 D id�0 determine u; �N W G NT ! Rn such that
u D id� , u.�; 0/ D u0 on �0, andZ
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on the time interval .0; NT / and for all '; W G NT ! Rn.

In the isotropic case both Problem 4.14 and Problem 4.15 coincide with the formulation
presented in [10, Problem 2].

REMARK 4.16 Note that when working with curves in the plane we have that (using (6.1) below)
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'rD

r .�
N
 /

l d� D 0

and the above expression simplifies.

5. Discretization

As remarked in Section 3.1 we would like to avoid a numerical scheme containing expressions
involving  , � and their derivatives, hence we will discretize and provide numerical experiments
only for Problem 4.15.

As in [10] (cf. also [11]), for a fixed time t we approximate the smooth surface � D � .t/ by a
polyhedral surface �h D �h.t/, �h D

S
Th2Th

Th, consisting of nondegenerate .n � 1/-simplices
Th that form an admissible triangulation. Let Rn 3 aj D aj .t/ .j D 1; : : : ; N / be the vertices
(nodes) of the triangulation. The finite element space

Sh.t/ D
˚
� 2 C 0

�
�h.t/

�
W �jTh 2 P1.Th/; Th 2 Th

	
is spanned by the usual nodal basis functions, i.e. Sh.t/ D spanf�1; : : : ; �N g with �i .aj .t// D ıij .
For a function � 2 C 0.�h.t//we denote by Ih� 2 Sh.t/ the map defined by Ih�.aj .t// D �.aj .t//.
Thus we can write Ih� D

PN
jD1 �.aj .t//�j .

As in the smooth setting it is useful to consider the topological cylinder Gh
NT
D
S
t2Œ0; NT � �h.t/�

ftg :With uh we denote the map uh W GhNT ! Rn such that uh.p; t/ D p. For a local parametrisation
Xh of �h.t/ we get that Puh.Xh.x; t/; t/ D Xht .x; t/. With some abuse of notation let �i W GhNT !
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R, j D 1; : : : ; N be the map such that �i .aj .t/; t/ D ıij . These maps are piecewise linear in
space and do not depend on time, therefore P�i .Xh.x; t/; t/ D d

dt
�i .Xh.x; t/; t/ D 0. We can write

uh.p; t/ D
PN
jD1 aj .t/�j .p; t/ for p 2 �h.t/ and we obtain Xht .x; t/ D Puh.Xh.x; t/; t/ D

d
dt
.
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0
j .t/�j .Xh.x; t/; t/. Therefore the discrete velocity is

given by
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NX
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a0j .t/�j .p; t/; p 2 �h.t/:

The spatial discretization of Problem 4.15 is given as follows.
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on the time interval .0; NT / and for all 'h;  h 2 Sh.t/n.

Note that the discrete (anisotropic) tangential gradient and divergence are understood piecewise
on each simplex.

As in the smooth setting, we can show that the energy decreases along the flow.

LEMMA 5.2 Assume that .uh; �Nh / is a solution of Problem 5.1. Let
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be the discrete anisotropic Willmore functional. Then the energy relationZ
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j Puhj
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holds for all times in .0; NT /.

Proof. First of all note that the first equation in Problem 5.1 is equal toZ
�h
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.�h/
� 'h dV C hW

0
h.uh/; 'hi D 0 :
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To prove the above statement one can repeat the arguments used for the computation of the first
variation of the Willmore functional (see Section 4.3). Note that all steps are still meaningful in the
discrete setting, since no integration by parts was used.

Finally, the claim is achieved by choosing 'h D Puh. Note that Puh is an admissible
function since by definition uh D id�h and as remarked above Puh.Xh.x; t// D Xht .x; t/ DPN
jD1 a

0
j .t/�j .Xh.x; t/; t/ 2 Sh.t/

n.

When dealing with curves we will find it more convenient to work with the interpolation operator
(similarly also to the isotropic case studied in [7]). Thus we define
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on the time interval .0; NT / and for all 'h;  h 2 Sh.t/n.

Using the arguments employed for the proof of the analogous Lemma 5.2, the fact that .�h/ is
a constant function on each simplex, and the linearity of the interpolation operator, we infer that

LEMMA 5.4 Assume that .uh; �Nh / is a solution of Problem 5.3. Let
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be the discrete anisotropic Willmore functional. Then the energy relationZ
�h

Ih

�
j Puhj

2

.�h/

�
dV C

d

dt
Wh.uh/ D 0

holds for all times in .0; NT /.

6. Fully discrete numerical schemes

The time discretization of the anisotropic Willmore flow is a challenging task. In theory there are
many possible different approaches and it is difficult to tell a priori which scheme will be successful.

Our goal is to provide semi-implicit schemes that treats nonlinearities in an explicit way. This
allows for a straightforward implementation (basically a linear system has to be solved in each time
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step); however we are bound to pay in terms of stability, as the experience with the anisotropic mean
curvature flow has shown us (cf. for instance [16], [17], where we had to introduce a stability term
in order to make the discretization a stable one).

Note that since the mixed formulation for the anisotropic Willmore flow basically contains
a formulation for the anisotropic mean curvature flow, we really are faced with two non-trivial
problems: we have to deal with the possible instability of the anisotropic mean curvature component
and, simultaneously, we have to make sure to provide a good time discretization for the anisotropic
Willmore flow.

6.1 The curve case

We start with the curve case, since its simpler structure allows for some elementary analysis and
heuristics that proves helpful in identifying good discretization strategies.

Since curves can be parametrized over the fixed domain S1 D Œ0; 2��, we start by reviewing
briefly the anisotropic operators identified in Section 4.1.3 in terms of this parametrization. More
precisely, for a regular curve u W S1 ! R2, u D u.x/, with euclidean unit tangent � D ux

jux j
D us ,

where s denotes the arc-length parameter (hence ds D juxjdx, @s D 1
jux j

@x), and Euclidean unit
normal �, we have r� f D .@sf /� and

D
mf D @sf

�
�m �

�
 0.�/ � �

� �m
.�/

�
(6.1)

(recall (4.11) and (4.15)). Note that for simplicity of notation we use here the same notation for a
map f W � D u.S1/ ! R and f ı u W S1 ! R. For a vector field  W � ! R2, we infer from
(4.19) that
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�: (6.2)

REMARK 6.1 Note that another expression for (6.2) is obtained using (4.20) as follows

r

� �  D D


j .Id

i /D

i  

j (6.3)

D @su
i

�
�j �

�
 0.�/ � �

� �j
.�/

�
@s 

j

�
� i �

�
 0.�/ � �

� �i
.�/

�
D .@su � �/.� � @s / �

�
 0.�/ � �

�
.@su �

�

.�/
/.� � @s / �

�
 0.�/ � �

�
.@s �

�

.�/
/.� � @su/

C
�
 0.�/ � �

�2
.@s �

�

.�/
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Of course equations (6.2) and (6.3) are analytically identical, since obviously

@su D �; .@su � �/ D 1; .@su � �/ D 0: (6.4)

However if we use a time discretization which treats @su and � as different objects, i.e. if we consider
@su and � as approximations of the same map but at different time levels, (for instance by taking
u implicit and � explicit, that is by considering @su as approximation of the unit tangent at time
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tmC1 D .m C 1/ı and � at time tm D ım ) then (6.4) no longer holds and we might introduce
several errors in the discrete schema.

This phenomenon can be observed very well in the isotropic case. Here, since .�/ D 1,  0.�/ D
�, and r� D r� , we infer for (6.2) that

r� �  D Dm 
m
D @s � �: (6.5)

Moreover from (6.3) and using (4.22), we can equivalently write

r� �  D Dj .Id
i /Di 

j
D Di .Id

j /Di 
j
D r� .Id/ W r� D @s � @su: (6.6)

In practice (6.6) is the expression used for example to provide a stable discretization for the curve
shortening flow: here one takes the map u implicit (see [8, (4.14)]) .

On the other hand (6.3) gives (without any sort of manipulation)

r� �  D Dj .Id
i /Di 

j
D .@su � �/.� � @s /: (6.7)

If we stick to making u implicit and � explicit then we see that we obtain quite a different scheme
and it is a priori not clear why (6.7) should be as good as (6.6). In fact, in addition to the nasty
coupling of the equations for different space components (recall Dj .Id

i /Di 
j ), we loose the

beautiful linear structure of (6.6).
In view of these considerations we “discard” formulation (6.3) (in spite of it being analytically

very appealing, since we use the same anisotropic operator r� .�/ on both maps Id and  ) and
concentrate on expression (6.2). Also in this case we still have several possibilities regarding the
choices of explicit and implicit terms. In this paper we will study schemes corresponding to

r

� �  D @s �

�
@su �

�
� �  0.�/

� �

.�/

�
; (6.8)

where as above u refers to the quantity treated implicitly. Note that this scheme corresponds to
the one for anisotropic mean curvature flow of surfaces ( [17, (6.1)], [6, � 4.2]), which has proved
experimentally to be unstable.

The expression for the anisotropic Willmore flow of curves simplifies if we consider � W R2 !
Œ0;1/ such that �.�/ D .�/, with � D �? (where .a1; a2/? D .�a2; a1/ ) and write all integrals
in terms of �. With this in mind, observe that from �.�/ D .�/ we infer

 0.�/ D �0.�/?; �00.�/� � � D  00.�/� � �;

as well as (recall also (2.4))�
 00.�/� � �

�
.@s' � �/ .@s�

N
 � �/ D �

00.�/.@s' � �/� � .@s�
N
 � �/� D �

00.�/@s' � @s�
N
 : (6.9)

Moreover �0.�/ D �0.ux/, �00.�/ D juxj�00.ux/, and � � �0.�/ D �� �  0.�/. Finally, using �.�/ D
.�/, �.�/ D �0.�/ � � , (6.8), and taking � D 1 we can write

r

� �  �.�/ D �.�/@s �

�
@su � �/C Œ.�

0.�/ � �/� C
�
�0.�/ � �

�
�
�
� @s 

D ��.�/@s � .@su � �/C
�
@s � �

0.�/
�
: (6.10)
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Note that in the isotropic case we recover r� �  �.�/ D @s � @su. The idea exploited in [17]
and [16] for the anisotropic mean curvature flow was to choose some � > 1 (determined by the
value of some higher norms of �), so that stability could be obtained for the discrete flow. We will
do something similar in what follows.

Replacing first  with � as remarked above, using (6.10), (6.6), (6.1), (6.9), and Remark 4.16
we can write Problem 4.15 as

PROBLEM 6.2 Let � D 0 and � D Q� D O� D 1. For a given initial curve u0 W S1 ! R2, determine
u; �N W S

1 � Œ0; T /! R2 such that u.�; 0/ D u0 and

0 D

Z
S1

ut

�.�/
� 'ds C Q�

1

2

Z
S1

ˇ̌̌̌
ˇ �N�.�/

ˇ̌̌̌
ˇ
2

@s' � .@su � �/ �.�/ds C
1

2

Z
S1

ˇ̌̌̌
ˇ �N�.�/

ˇ̌̌̌
ˇ
2

@s' � �
0.�/ ds

�

Z
S1

ˇ̌̌̌
ˇ �N�.�/

ˇ̌̌̌
ˇ
2

@s' � @su�.�/ds �

Z
S1
�00.�/@s' � @s�

N
 ds

C �

�
O�

Z
S1
@s' � .@su � �/ �.�/ ds C

Z
S1
�0.�/ � 's ds

�
; (E1)

0 D

Z
S1

�N

�.�/
�  ds C �

Z
S1
@s � .@su � �/ �.�/ ds C

Z
S1
�0.�/ �  s ds (E2)

on the time interval .0; T / and for all test functions '; W S1 ! R2.

The term multiplying � has been introduced as a term penalizing the growth of the anisotropic
length of the curve: in other words if we choose � > 0 we are considering a gradient flow for the
energy

E.u/ D
1

2

Z
S1

j�N j
2

�.�/
ds C �

Z
S1
�.�/ds D W .u/C �A .u/;

where, as usual, .�/ D �.�/. A motivation for penalizing the length growth is given by
Example 3.1.

We now discretize in space and time. We use the notation vm D v.�; mı/ for the discrete time
levels with time step ı > 0 and m D 0; 1; : : : ; mT , where mT ı D T . A discretization of the above
Problem 6.2 in the spirit of Problem 5.3 (where now we write �h instead of �N

h
for simplicity of

notation) and leaving now freedom in the choice of the positive parameter �, � , O� , and Q� , is given
by

PROBLEM 6.3 Let � > 0 and �; Q�; O� > 1. For a given initial polygonal curve u0 D Ih.u0/, and
time step ı, determine for m D 0; : : : ; mT � 1 piecewise linear continuous maps umC1

h
; �mC1
h

such
that

0 D

Z
S1
Ih

 
umC1
h
� um

h

ı �.�m
h
/
� 'h

!
jumhxjdx C

Q�

2

Z
S1
Ih

 
j�m
h
j2

�.�m
h
/

!
'hx �

umC1
hx
� um

hx

jum
hx
j

dx

C
1

2

Z
S1
Ih

 
j�m
h
j2

j�.�m
h
/j2

!
'hx � �

0.�mh /dx �

Z
S1
Ih

 
j�m
h
j2

�.�m
h
/

!
'hx �

umC1
hx

jum
hx
j
dx
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�

Z
S1
.�00.�mh /'hx �

�mC1
hx

jum
hx
j
/ dx

C �

 
O�

Z
S1
'hx �

umC1
hx
� um

hx

jum
hx
j

�.�mh /dx C

Z
S1
'hx � �

0.�mh /dx

!
;

0 D

Z
S1
Ih

 
�mC1
h

�.�m
h
/
�  

!
jumhxjdx C �

Z
S1
 hx �

umC1
hx
� um

hx

jum
hx
j

�.�mh /dx C

Z
S1
 hx � �

0.�mh /dx

for all (piecewise linear and globally continuos) test functions 'h;  h W S1 ! R2.

Note that in the isotropic setting (�.x/ D jxj) and with 1 D � D O� D Q� we recover the
discretization presented in [7] for the (isotropic) elastic flow of curves (in this paper an error analysis
for the semi-discrete scheme is also derived).

REMARK 6.4 Here we try to motivate the introduction of the (stability) parameters Q� and �

(analogous considerations can be made for O� ). For simplicity, consider the flow without any
constraint on the length, thus � D 0 (so that O� plays no role). In the above scheme the parameter �
and Q� should be thought of as

� D 1C �; Q� D 1C Q�

where �; Q� > 0 must be chosen appropriately. The � -parameter is related to the stability of the
anisotropic mean curvature component. Numerical experiments (see Section 6.1.1 below) show that
it is best to choose � D 1. A heuristic for the isotropic Willmore flow of curves indicates that
a choice of Q� > 1 might help making the isotropic elastic flow more stable. Numerical tests in
isotropic and anisotropic setting (see Section 6.1.1 below) further support the claim that stability is
achieved by appropriate choices of Q�.

Of course the addition of the Q�-term modifies the flow, however it can be thought of as a term
approximating

ı

2

Z
S1
Ih

 
j�m
h
j2

�.�m
h
/

!
'hx �

umC1
hx
� um

hx

ıjum
hx
j

dx '
ı

2

Z
S1
Ih.: : :/'s � utsds

which, under suitable assumptions on the velocity of ut , should “disappear” as we make the time
step smaller ı ! 0.

The heuristic mentioned above for the choice of this stability term is based on the derivation
of the energy estimates in the smooth (or semi-discrete) and fully discrete setting of the isotropic
elastic flow (cf. also [7, Remark 2.1(b)]). In the smooth setting the verification that the energy
decreases along the flow can be obtained by taking ' D ut in .E1/ and  D �N in the equation
.E2/ after derivation with respect to time, thus in .E2/t (cf. Problem 6.2 in the isotropic setting
with � D Q� D 1, � D 0, �.�/ D 1). The discrete approximation of .E2/t , which is obtained by
subtracting the discrete equation for �h at two subsequent time-steps, does not quite reproduce the
above term. Hence the stability term can be interpreted as an attempt to make up for this failure.

We now make more precise the notation used for the discretization given in Problem 6.3. Let
0 D x0 < x1 < : : : < xN D 2� be a partition of Œ0; 2�� and hj WD xj � xj�1 as well as
h WD maxjD1;:::;N hj . The piecewise linear continuous maps um

h
; �m
h
W S1 ! R2 can be described
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as follows

.umh /i .x/ D

NX
jD1

umj;i'j .x/; .�mh /i .x/ D

NX
jD1

kmj;i'j .x/; .i D 1; 2/;

where 'j W S1 ! R is the piecewise linear nodal basis function with 'j .xr / D ırj ; .r; j D

1; : : : N /, umj D .umj;1; u
m
j;2/, k

m
j D .kmj;1; k

m
j;2/ 2 R2, j D 1; : : : ; N , and where periodicity

conditions hold (i.e. um0 D u
m
N , um1 D u

m
NC1, km0 D k

m
N , km1 D k

m
NC1). We have

qmj WD ju
m
j � u

m
j�1j; jumhx.x/j D

qmj

hj
x 2 Œxj�1; xj �; (6.11)

�mh .x/ D �
m
j D

umj � u
m
j�1

jumj � u
m
j�1j

; �mh .x/ D �
m
j D .�

m
j /
?; x 2 Œxj�1; xj �; (6.12)

together with the periodicity conditions �mNC1 D �m1 , �m1 D �mNC1, and qm1 D qmNC1. Moreover we
write

j̨ WD
�.�mj /

qmj
; mj WD

jkmj�1j
2 C jkmj j

2

4qmj �.�
m
j /

.j D 1; : : : ; N /;

(where we have omitted the time indices for better readability) with periodicity conditions ˛1 D
˛NC1, and mNC1 D m1. Problem 6.3 yields the following system (for j D 1; : : : ; N ):

1

2ı

�
1

j̨

C
1

j̨C1

�
umj C Q�.q

m
j mj �

m
j � q

m
jC1mjC1�

m
jC1/ �

�0.�mj /

�.�mj /
qmj mj C

�0.�mjC1/

�.�mjC1/
qmjC1mjC1

C �
�
� �0.�mj /C �

0.�mjC1/
�
C � O�

�
� �.�mjC1/�

m
jC1 C �.�

m
j /�

m
j

�
D

�
1

2ı

�
1

j̨

C
1

j̨C1

�
C . Q� � 2/.mj CmjC1/C � O�. j̨ C j̨C1/

�
umC1j

�
�
. Q� � 2/mj C � O� j̨ /

�
umC1j�1 �

�
. Q� � 2/mjC1 C � O� j̨C1/

�
umC1jC1

C
�00.�mj /

qmj
kmC1j�1 �

 
�00.�mj /

qmj
C
�00.�mjC1/

qmjC1

!
kmC1j C

�00.�mjC1/

qmjC1
kmC1jC1 ;

�.��.�mjC1/�
m
jC1 C �.�

m
j /�

m
j / � �

0.�mj /C �
0.�mjC1/

D
1

2

�
1

j̨

C
1

j̨C1

�
kmC1j C �. j̨ C j̨C1/u

mC1
j � � j̨u

mC1
j�1 � � j̨C1u

mC1
jC1 :

Setting�
RHSK.j /1; RHSK.j /2

�
D �

�
� �.�mjC1/�

m
jC1 C �.�

m
j /�

m
j

�
� �0.�mj /C �

0.�mjC1/ 2 R2;�
RHSU.j /1; RHSU.j /2

�
D

1

2ı

�
1

j̨

C
1

j̨C1

�
umj C Q�.q

m
j mj �

m
j � q

m
jC1mjC1�

m
jC1/

�
�0.�mj /

�.�mj /
qmj mj C

�0.�mjC1/

�.�mjC1/
qmjC1mjC1

C �
�
� �0.�mj /C �

0.�mjC1/
�
C � O�

�
� �.�mjC1/�

m
jC1 C �.�

m
j /�

m
j

�
2 R2; .j D 1 : : : ; N /
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and

ur D .u1;r ; : : : ; uN;r /; kr D .k1;r ; : : : ; kN;r /;
�
r 2 f1; 2g

�
vr D

�
RHSU.1/r ; : : : ; RHSU.N/r

�
; wr D

�
RHSK.1/r ; : : : ; RHSK.N/r

�
;

as well as symmetric .N �N/-matrices

M D diag
�
1

2

� 1
j̨

C
1

j̨C1

��
;

S D tridiag.� j̨ ; j̨ C j̨C1;� j̨C1/;

R D tridiag.�mj ; mj CmjC1;�mjC1/;

˚rl D tridiag

 
�
1

qmj
�prpl .�

m
j /;

1

qmj
�prpl .�

m
j /C

1

qmjC1
�prpl .�

m
jC1/;�

1

qmjC1
�prpl .�

m
jC1/

!
;

where tridiag denotes a tridiagonal matrix except for two entries in the last column of the first row
and in the first column of the last row, which are due to periodicity, then we can write

vr D
1

ı
MumC1r C . Q� � 2/RumC1r C � O�SumC1r �

2X
lD1

˚rlkmC1l
;

wr DMkmC1r C �SumC1r

with r D 1; 2. We can eliminate k from the first equation and obtain

vr C
2X
lD1

˚rlM
�1wl D

1

ı
MumC1r C . Q� � 2/RumC1r C � O�SumC1r C �

2X
lD1

˚rlM
�1SumC1

l
:

(6.13)

This gives a system�
A B

B C

��
umC11

umC12

�
D

�
v1 C ˚11M�1w1 C ˚12M�1w2
v2 C ˚21M�1w1 C ˚22M�1w2

�
;

where A D 1
ı
M C . Q� � 2/R C � O�S C �˚11M

�1S , B D �˚12M
�1S D �˚21M

�1S , and
C D 1

ı
M C . Q� � 2/R C � O�S C �˚22M

�1S . The vectors k0r , r D 1; 2, are computed using
the initial data by solving wr D Mk0r with � D 0 in wr . We solve the linear system with the
BICGstab-method.

6.1.1 Numerical tests for curves in the plane. In the tests that follow we have parametrized all
initial curves over the interval Œ0; 2�� and have used a uniform grid. Thus the grid parameter h is
given by h D 2�=nv, where nv denotes the number of nodes. Unless otherwise stated we have used
a uniform time step ı. The energy for the discrete curve um

h
is calculated as follows

E.umh / D
1

2

Z
S1
Ih

 
j�m
h
j2

�.�m
h
/

!
jumhxjdx C �

Z
S1
�.�mh /ju

m
hxjdx: (6.14)

First of all we show experiments that do not impose any constraint on the length of the curve,
thus � D 0.
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Experiments with no constraint on the length (� D 0)

We know from the theory that Wulff shapes expand self-similarly in time (recall Example 3.1).
Our first sets of experiments study this behavior for different choices of parameters � and Q� (the
parameter O� plays no role since � D 0). We will measure the following errors

E.1;1; r/ WD sup
16m6mT

sup
06j6N

ˇ̌
�
�
umh .jh/

�
� r.mı/

ˇ̌
;

E.1; 2; r/ WD sup
16m6mT

�Z
S1

�
�
�
umh .�/

�
� r.mı/

�2
d�

�1=2
;

where r.t/ D .1C 2t/
1
4 .

TestC1-Unit circle expanding self-similarly in isotropic space

For the following tests (a), (b) and (c), the initial curve is given by the unit circle u0.�/ D
.cos �; sin �/, � 2 Œ0; 2��, and we work in the isotropic setting, thus .�/ D �.�/ D j � j. The
final time is T D 1 and the time step is chosen as ı D 0:1h2.

(a) TestC1-a: here � D 1, Q� D 1. The results are shown in Table 1.

TABLE 1. TestC1-a: � D 0, ı D 0:1h2, � D Q� D 1

nv h final T E.1;1; r/ eoc E.1; 2; r/ eoc

10 0.628318531 1.02643887 0.0163426516 — 0.10334087 —
20 0.314159265 1.00669966 0.00391720658 2.0607 0.0259083662 1.9959
40 0.157079633 1.00176486 0.000969443211 2.0145 0.00648141865 1.999
80 0.0785398163 1.00053116 0.000241754233 2.0036 0.00162062164 1.9997
160 0.0392699082 1.00006852 6.03998004E-05 2.0009 0.000405160689 1.9999

(b) TestC1-b: here � D 1, Q� D 100. In this test we see how the error increases by choosing a
value for Q� bigger that one (the flow is modified: recall also Remark 6.4). Note however that the
convergence rate is basically preserved. The results are shown in Table 2.

TABLE 2. TestC1-b: � D 0, ı D 0:1h2, � D 1; Q� D 100

nv h final T E.1;1; r/ eoc E.1; 2; r/ eoc

10 0.628318531 1.02643887 0.152760322 - 0.483283335 -
20 0.314159265 1.00669966 0.0507761028 1.589 0.154442473 1.6457
40 0.157079633 1.00176486 0.013501761 1.911 0.0408327279 1.9192
80 0.0785398163 1.00053116 0.00342232288 1.98 0.0103391907 1.9816
160 0.0392699082 1.00006852 0.000858414896 1.9952 0.0025927508 1.9955

(c) TestC1-c: taking � larger than one is not a good idea. If we take Q� D 1, and increase � , things
go wrong, in the sense that for instance the energy ( see (6.14) with � D 0) does not decrease as it
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FIG. 1. TestC1-c: isotropic Willmore flow (� D 0): a unit circle is expanding. The energy is depicted for: � D Q� D 1 as in
test a) (left), � D 1, Q� D 100 as in test (b) (middle), � D 15, Q� D 1 (right).

should. In Figure 1 we show the evolution of the energy on the time interval Œ0; 1�, when nv D 80,
ı D 0:1h2, � D 0 for choices a) � D 1, Q� D 1, b) � D 1, Q� D 100 and c) � D 15, Q� D 1. In view
of this behaviour it seems reasonable to keep � D 1 throughout the following tests.

TestC2: Wulff shape expanding self-similarly in anisotropic space

Here we take the anisotropy to be defined through

�.x/ D

q
4x21 C x

2
2 ; .x 2 R2/: (6.15)

Hence the corresponding map  is described by the norm .x/ D

q
x21 C 4x

2
2 and its dual (whose

unit ball is the Wulff shape I , recall (2.6)) is given by �.x/ D
q
x21 C

x2
2

4
. As initial curve we take

the boundary of the Wulff shape, precisely

u0.�/ D

 
cos �p

cos2 � C 4 sin2 �
;

4 sin �p
cos2 � C 4 sin2 �

!
; � 2 Œ0; 2��:

Here we choose T D 1, � D 0, ı D 0:1h3, � D 1, and Q� D 100. The results are shown in
Table 3.

In Figure 2 we show the evolution for the case nv D 80.

TABLE 3. TestC2: � D 0, ı D 0:1h3, � D 1, Q� D 100

nv h final T E.1;1; r/ eoc E.1; 2; r/ eoc

10 0.628318531 1.01700589 0.17854992 - 0.507306778 -
20 0.314159265 1.00150275 0.0561985944 1.6677 0.146557953 1.7913
40 0.157079633 1.00034002 0.0120647329 2.2197 0.0325866208 2.1691
80 0.0785398163 1.00000089 0.00201139329 2.5845 0.00640480912 2.347
160 0.0392699082 1.00000089 0.000426727042 2.2368 0.00133705359 2.26
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FIG. 2. TestC2: A Wulff shape expanding self similarly

FIG. 3. TestC3: Unstable evolution of a circle expanding in anisotropic setting

TestC3: A unit circle evolving in anisotropic space

The usefulness and necessity of the stability term introduced by choosing Q� > 1 is best demonstrated
when a significant change in the curvature takes place during the evolution. For instance we let a
unit circle develop under the anisotropy (6.15) without any constraint on the length curve. We take
nv D 80, ı D 0:1h2, and, as usual, � D 0 and � D 1. For choices of Q� D 1 and Q� D 300 the
evolution is not stable: this is manifested through a “corrugation phenomena” as shown in Figure 3,
where the evolution for Q� D 300 is depicted. On the other hand evolution for Q� D 1000 is shown in
Figure 4.

TestC4: Lp-type anisotropy

Next we consider the anisotropy map

�.x/ D .x41 C x
4
2/
1=4; .x 2 R2/; (6.16)
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FIG. 4. TestC3: A circle expanding in anisotropic setting

even if it does not satisfy the ellipticity condition (2.5). The Wulff shape in given by I D fx 2 R2 W
�.x/ 6 1g, where

�.x/ D .jx1j
q
C jx2j

q/1=q; q D
4

3
:

The initial curve is given by the boundary of the Wulff shape, thus

u0.�/ D
1

.j cos � j4=3 C j sin � j4=3/3=4
.cos �; sin �/; � 2 Œ0; 2��:

We choose ı D 0:1h3, � D 0, � D 1, T D 0:5. Evolution at time t D 0 and T for nv D 160 and
Q� D 2000 or Q� D 4000 is shown in Figure 5.

One notices that the grid is improved by taking a larger values of Q� . For Q� D 8000 error
estimates are collected in Table 4 and a picture of the evolution at time T D 0:5 (again with
nv D 160) is given in Figure 6.

FIG. 5. TestC4: A Lq-Wulff shape expanding in anisotropic setting. Evolution for Q� D 2000 (left) and Q� D 4000 (right).
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TABLE 4. TestC4: � D 0, ı D 0:1h3, � D 1, Q� D 8000

nv h final T E.1;1; r/ eoc E.1; 2; r/ eoc

10 0.628318531 0.520905456 0.19490107 - 0.579459428 -
20 0.314159265 0.50230169 0.179820439 0.1161 0.458406457 0.338
40 0.157079633 0.500363797 0.102260843 0.8143 0.256153486 0.8396
80 0.0785398163 0.500024666 0.0264166087 1.9527 0.0657562798 1.9618
160 0.0392699082 0.500000443 0.00666932488 1.9858 0.0126488636 2.3781

FIG. 6. TestC4: A Lq-Wulff expanding in anisotropic setting. Evolution for Q� D 8000.

Experiments with a constraint of the length (� > 0)

TestL1: Evolution of a hypocycloid

Here we briefly compare the initial evolution of a hypocycloid

u0.x/ D

�
�
5

2
cos.x/C 4 cos.5x/;�

5

2
sin.x/C 4 sin.5x/

�
; x 2 Œ0; 2��;

under isotropic (cf. [7, Example 4.4]) and anisotropic elastic flow. In both situations we take nv D
200, � D O� D 1, � D 0:025, and variable time step chosen in each iteration as

ı D 0:1min
j
juj � uj�1j

2:

In the isotropic setting Q� D 1, whereas for the anisotropic setting we take � as in the previous
example, see (6.16), and set Q� D 8000. Shots for both evolutions are depicted in Figure 7.

TestL2: Evolution of an asymmetric figure of eight

Here we work with the initial curve being an asymmetric figure of eight. Its parametrization is given
by

u0.x/ D

�
a.cos x C b/ cos x
1C .sin x/2

;
a.cos x C b/ cos x
1C .sin x/2

sin x
�
; x 2 Œ0; 2��; (6.17)
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FIG. 7. TestL1: Evolution of a hypocycloid. Isotropic case (left), anisotropic case (right)

where a D 1, b D 2. We take nv D 100, ı D 0:1h3, and � D 1.

(a) TestL2-a First of all we consider the isotropic setting, with � D Q� D O� D 1. The evolution is
depicted in Figure 8.

FIG. 8. TestL2-a: Evolution of an asymmetric lemniscate in the isotropic case with � D 1. Shots of the evolution with and
without lines and associated energy evolution
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(b) TestL2-b Here we consider the anisotropy (6.15), with O� D � D 1. Several tests have shown
that no stability is achieved for Q� 2 Œ1; 500�. For Q� D 1000 the evolution is depicted in Figure 9.
Now the evolutions seems to be stable until there is such a degeneration of the grid that the flows
stops behaving as we think it should.

All in all, we recognize that the term associated with Q� is responsible for the stability of the
flow, it generally provides a grid improvement but it does not rule out a grid degeneration. It is now
interesting to see if the flows might benefit from a different choice of O� .

(c) TestL2-c Here we consider again the anisotropy (6.15), with � D 1. Furthermore we take Q� D
1000 as in the previous test, and set O� D 500. Compared to the TestL2-b we notice an improvement
of the flow, see Figure 10. However, after the flow has dwelled for some time around the same energy
level (see evolution around t D 1), a sudden grid deterioration “destroys” the flow (see evolution
around t D 1; 3).

FIG. 9. TestL2-b: Evolution of a asymmetric lemniscate: anisotropic case, � D 1, Q� D 1000 and associated energy
evolution

FIG. 10. TestL2-c: Evolution of a asymmetric lemniscate in anisotropic setting with � D 1, Q� D 1000, O� D 500, and
associated energy evolution
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Note that we do not expect stationary points to be attained in finite time: although the author is
not aware of long-time existence analysis for the anisotropic Willmore flow, results for the isotropic
case in [12] point in this direction.

We conclude this section with a few general remarks. Although stability and a general grid
improvement is attained through the introduction of the stability term related to Q� (and O� when
� > 0), a deterioration of the grid can not be avoided in general. The latter problem is not untypical
also for the isotropic setting as mentioned in [7, example 4.3] (it has partly to do with the fact that
the discrete flow approximates motion in an entirely normal direction). Therefore, especially for
longtime computation, some sort of grid improvement through a redistribution of the nodes would
be advisable. This issue is outside the scope of this paper and will be treated elsewhere.

6.2 The surface case

Here we consider Problem 4.15 and its semi-discrete formulation Problem 5.1 with n > 3. Arguing
similarly to the curve case (cf. (6.10), recall also (4.19) and (4.36)) we can write

r

� � ' D r� � ' � pk .�/

�l

.�/
Dk'

l
D r� u W r� ' � pk .�/

�l

.�/
Dk'

l

D �r� .u � Id/ W r� ' Cr� Id W r� ' � pk .�/
�l

.�/
Dk'

l ;

where � D 1 and u D Id . With the usual notation f m D f .�; ım/ for time step ı > 0, mT ı D T ,
and with

Smh D Sh.mı/ D spanf�m1 ; : : : ; �
m
N g;

(recall notation of Section 5) we propose following discretization which is the analogue to what we
presented in Problem 6.3 for the flow of curves (with � D 0):

PROBLEM 6.5 For a given initial discrete surface � 0
h

, u0
h
, and time step ı, determine for m D

0; 1 : : : ; mT � 1 solutions .umC1
h

; �mC1
h

/ 2 Sm
h
� Sm

h
, such thatZ

�m
h

umC1
h
� um

h

ı.�m
h
/
� 'h dV C

Q�

2

Z
�m
h

j�m
h
j2

.�m
h
/
r�m

h
.umC1
h
� umh / W r�mh

'h dV

C
1

2

Z
�m
h

j�m
h
j2

.�m
h
/

�
r�m

h
umh W r�mh

'h � pk .�
m
h /
.�m
h
/l

.�m
h
/
Dk'

l
h

�
dV

�

Z
�m
h

j�m
h
j2

.�m
h
/
r�m

h
umC1
h
W r�m

h
'h dV �

Z
�m
h

.�mh /r


�m
h

� �mC1
h
r


�m
h

� 'h dV

C

Z
�m
h

.�mh /D


l
'shD


s .�

mC1
h

/l dV �

Z
�m
h

.�mh /
s.�mh /

lpkpj
�
�mh
�
D

j '

s
hD



k
.�mC1
h

/l dV D 0;Z
�m
h

�mC1
h

.�m
h
/
�  h dV C

Z
�m
h

.�mh /r�mh
umC1
h
W r�m

h
 h � pk .�

m
h /.�

m
h /lDk 

l
hdV D 0

for all 'h;  h 2 Smh . Here uj
h
.x/ D x for x 2 � j

h
for all j D 0; : : : ; mT . Also Q� D 1 C Q�

with Q� > 0 to be chosen appropriately as stability term. (Moreover, Dlf denotes the l-th spacial
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component of r�m
h
f and D

l
f the l-th spacial component of . QP  /mr�m

h
f ). We set

� mC1
h

D umC1
h

.� mh /:

Notice that in the isotropic case with Q� D 1 and .p/ D jpj (from which it follows  00.�/ D
I � � ˝ �) we recover [10, Algorithm 6]. We can express the solution .umC1

h
; �mC1
h

/ as

umC1
h

.x/ D

NX
jD1

uj�
m
j .x/; �mC1

h
.x/ D

NX
jD1

�j�
m
j .x/; x 2 � mh ;

with coefficients uj ; �j 2 Rn. Using the notation

ur D .ur1; : : : ; u
r
N /; �r D .�r1 ; : : : ; �

r
N /; .r D 1; : : : ; n/;

as well as the symmetric .N �N/-matrices M;Q;S with entries

Mkl D

Z
�m
h

1

.�m
h
/
�mk �

m
l dV; Qkl D

1

2

Z
�m
h

j�m
h
j2

.�m
h
/
r�m

h
�mk � r�mh

�ml dV; (6.18)

Skl D

Z
�m
h

.�mh /r�mh
�mk � r�mh

�ml dV; (6.19)

and .N �N/- matrices S rs; Rrs (r; s D 1; : : : ; n) with entries

.S rs/kl D

Z
�m
h

.�mh /D

r �

m
k D


s �

m
l dV (6.20)

.Rrs/kl D

Z
�m
h

.�mh /r .�
m
h /s

nX
j;qD1

pqpj .�
m
h /Dj�

m
k Dq�

m
l dV (6.21)

and right-hand sides br ; vr 2 RN (r D 1; : : : ; n) with

brk D
1

ı

Z
�m
h

xr

.�m
h
/
�mk dV C

Q� � 1

2

Z
�m
h

j�m
h
j2

.�m
h
/
r�m

h
�mk � r�mh

xr dV

C
1

2

Z
�m
h

.�mh /r
j�m
h
j2

.�m
h
/2
 0.�mh / � r�mh

�mk dV; (6.22)

and

vrk D

Z
�m
h

 0.�mh / � r�mh
�mk .�

m
h /r dV; (6.23)

for k D 1; : : : ; N , we see (after plugging in ' D �m
k
er and the expressions for umC1 and �mC1

in the system of the above Problem 6.5) that in each time step we have to solve a linear system.
Precisely we obtain the following Algorithm.
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ALGORITHM 6.1 For each time step m D 0; 1; : : : ; mT � 1 compute the matrices according to
(6.18), (6.19), (6.20), (6.21), as well as the vectors (6.22), (6.23) and solve the linear system

1

ı
Mur C . Q� � 2/Qur �

nX
iD1

S ri�i C

nX
iD1

S ir�i �

nX
iD1

Rri�i D br

M�r C Sur D vr

for r D 1; : : : ; n.

We solve the above linear system by the BICGstab-method.

6.2.1 Numerical simulations for the surface case. Here we show a few simulations in the
anisotropic setting for n D 3. It is important to have in mind the theoretical results mentioned
in Remark 2.3 and Theorem 2.4. In the following the energy computed is given by the expression
(5.3) at the considered time level. Unless otherwise stated we use an adaptive time step of type
ı D ctime � h4, where ctime is a constant that will be specified below and h denotes the grid
size of the considered discrete surface (thus the biggest side of the triangles of the triangulation).
Note that if one uses a moderately coarse triangulation (useful to reduce computation times) or if
some triangles increase considerably in size during the evolution, then it is advisable to use a small
constant ctime. A relatively small time step is desirable not only for a good approximation of the
velocity, but also because working with a semi-discrete scheme some sort of coupling between time
step and grid size is expected. Moreover in view of the considerations made on the stability term
(Remark 6.4), a small time step should help “controlling” the modification of the flow induced by
the Q�-term.

No grid smoothing technique has been used for any of the experiments.

TestS1: The stability term is needed

In our first experiment we show that in general (similarly to the curve case) the introduction of a

Q�-stability term with Q� > 0 is necessary. Here we choose .x/ D
q
x21 C

x2
2

16
C x23 , hence the

Wulff shape is given by

I D

�
x 2 R3 W

q
x21 C 16x

2
2 C x

2
3 6 1

�
:

As an initial surface we take the unit sphere. Moreover we set Q� D 1. As shown in Figure 11
instability shows up: the energy oscillates and the surface “corrugates”.

TestS2: Evolution of a unit sphere in an anisotropic setting

Here we choose .x/ D
q
x21 C 4x

2
2 C x

2
3 , hence the Wulff shape is given by

I D

8<:x 2 R3 W

s
x21 C

x22
4
C x23 6 1

9=; :
As an initial surface we take the unit sphere. We set Q� D 1000 and ctime D 0:0001. Some shots of
the evolution are shown in Figure 12.
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FIG. 11. TestS1: Evolution of a unit sphere in an anisotropic setting with Q� D 1: surface at time t D 0:0865479892 (left)
and oscillating energy (right)
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FIG. 12. TestS2: Evolution of a unit sphere in an anisotropic setting with Q� D 1000: initial surface (top left), surface at
time t D 0:0409685227 (top right), surface at time t D 0:432086046 (bottom left), energy evolution (bottom right)

TestS3: Evolution of a unit sphere and a Clifford torus in an anisotropic setting

Here we choose .x/ D kxk4 D .x41 C x
4
2 C x

4
3/
1=4, hence the Wulff shape is given by

I D
˚
x 2 R3 W kxkq 6 1

	
; with q D

4

3
: (6.24)
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FIG. 13. TestS3-a: Evolution of a unit sphere in anisotropic setting with Q� D 8000: initial surface (top left), surface at time
t D 0:18076126 (top right), surface at time t D 0:700395393 (bottom left), energy evolution (bottom right)

(a) TestS3-a As in the experiment above we take the initial surface to be a unit sphere. We set
Q� D 8000 and ctime D 0:0001. Some shots of the evolution are shown in Figure 13. We notice
that the grid degenerates in time.

(b) TestS3-b Here we choose as initial surface a Clifford torus

� 0 D

�
x 2 R3 W .1 �

q
x21 C x

2
2/
2
C x23 D

1

2

�
:

Moreover, we set Q� D 8000 and ctime D 0:00001. Some shots of the evolution are shown in
Figure 14.
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