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In this paper we prove the optimal nondegeneracy of the solution u of the obstacle problem 4u D
f�fu>0g in a bounded domain D � R

n, where we only require f to have a nondegeneracy of the

type f .x/ > �j.x1; � � � ; xp/j˛ for some � > 0, 1 6 p 6 n (an integer) and ˛ > 0. We prove

optimal .2 C ˛/-th order nondegeneracy. We also prove the optimal growth with the assumption

jf .x/j 6 �j.x1; � � � ; xp/j˛ for some � > 0 and the porosity of the free boundary.
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1. Introduction

Let n > 1 be an integer and D � R
n a bounded domain. Let f 2 L1.D/, g 2 H 1.D/ such that

g > 0 on @D. Let u 2 H 1.D/ be the unique minimiser (cf. [3]) of the functional

Z

D

�

jruj2 C 2f u
�

dx

in the admissible set of functions

˚

u > 0 a.e. in D and u D g on @D
	

.

It is known (cf. [5, p. 17]) that we have u 2 W
2;q

loc
.D/ for all 1 < q < 1 and thus by the Sobolev

embeddings we have u 2 C 1;ˇ

loc
.D/ for all 0 < ˇ < 1. Also we have

4u D f�fu>0g in D (1.1)

in the sense of distributions.

Let us denote by ˝ the noncoincidence set and by � the free boundary, i.e.

˝ D
˚

x 2 D
ˇ

ˇ u.x/ > 0
	

and � D D \ @˝.

To study the structure and regularity of the free boundary � it is crucial to have an optimal

nondegeneracy result of the solution. For example, using this nondegeneracy estimate one can rule

out degenerate blow up limits with the correct scaling at the free boundary.

In [1, 5], the authors have studied the case when the force term is bounded away from zero by

a positive constant, i.e. f > � for some constant � > 0. In this case one obtains optimal quadratic

nondegeneracy of the solution.
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In this paper our aim is to drop the assumption that f should be bounded away from zero by a

positive constant. By requiring f to grow away from its zeros as a power function, we still obtain

the appropriate optimal nondegeneracy estimate.

Let p be an integer such that 1 6 p 6 n and ˛ > 0 a positive real number. For x 2 R
n let us

denote x D .x0; x00/ where x0 D .x1; � � � ; xp/ and x00 D .xpC1; � � � ; xn/.

Our main result is the following theorem.

THEOREM 1.1 (Optimal Nondegeneracy) There exists a C > 0 (depending only on n, p and ˛)

such that if

f .x/ > �jx0j˛ for x 2 D (1.2)

holds then for x0 2 ˝ and Br .x
0/ �� D we have

sup
˝\@Br .x0/

u > u.x0/C C�r2.r˛ C j.x0/0j˛/. (1.3)

The proof is based on the construction of appropriate comparison functions. Homogeneous

harmonic polynomials which are positive on fx1 D 0gnf0g play an important role in the construction

of these comparison functions.

In [4] the author has obtained a nondegeneracy result for the obstacle problem with a rather

general force term f . The nondegeneracy result is stated in a ball BR.0/. The force term f is not

necessarily bounded away from zero but the assumption is that f .0/ D 1 and a quantity measuring

the distance of f to the constant 1 in BR.0/ appears in the final statement.

Although the main result of this paper is the nondegeneracy result stated above, we also prove

the optimal growth of the solution in Theorem 4.1 and the local porosity of the free boundary in

Theorem 5.4.

This paper is structured as follows. In Section 2, we state some estimates, which will be used

later. In Section 3 we prove the nondegeneracy estimate. In Section 4 we prove the growth estimate.

In Section 5 we prove the local porosity of the free boundary � .

2. Preliminary analysis

Let us define

 .y/ D 1

.˛ C 2/.˛ C p/
jyj˛C2 for y 2 R

p .

Because ˛ > 0 we have  2 C 2.Rp/. It is easy to see that 4 D jyj˛ . Functions v which satisfy

j4vj 6 C jyj˛ in B
p
1 .0/ have also been studied in [2].

There exists C > 0 (depending on ˛ and p) such that

jD2 .y/j D
 

n
X

i;j D1

�

@yi yj
 .y/

�2

!
1
2

D C jyj˛ for y 2 R
p , (2.1)

and there exists C > 0 (depending on ˛ and p) such that

C jyj˛j�j2 6 �TD2 .y/� for y; � 2 R
p: (2.2)

For y0 2 R
p , let us denote by wy0 the difference between  and its affine tangent, i.e.

wy0.y/ D  .y/ �  .y0/ � r .y0/ � .y � y0/ for y 2 R
p . (2.3)
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We havewy0 2 C 2.Rp/ and from the convexity of  it follows thatwy0 is convex and nonnegative.

Obviously we have wy0.y0/ D 0 and rwy0.y0/ D 0.

We will use the function wy0 to construct appropriate comparison functions in Theorems 1.1

and 4.1.

In the following lemma we prove estimates of wy0 both from above and below.

LEMMA 2.1 There exist 0 < C1 < C2 such that for y; y0 2 R
p we have

C1jy � y0j2.jy0j˛ C jy � y0j˛/ 6 wy0.y/ 6 C2jy � y0j2.jy0j˛ C jy � y0j˛/. (2.4)

Proof. We prove the first inequality in (2.4). The second inequality follows from (2.1) after some

computations.

To obtain the first inequality in (2.4), we compute, using (2.2)

wy0.y/ D
Z 1

0

.1 � s/.y � y0/TD2wy0

�

y0 C s.y � y0/
�

.y � y0/ds

> C jy � y0j2
Z 1

0

.1 � s/jy0 C s.y � y0/j˛ds. (2.5)

Now if we show that for some C3 > 0

Z 1

0

.1 � s/jy0 C s.y � y0/j˛ds > C3

�

jy0j˛ C jy � y0j˛
�

for y; y0 2 R
p (2.6)

then by (2.5) the proof will be complete.

In the case y0 D 0, for small enough C3 > 0 the inequality (2.6) holds, so we consider the

case when y0 6D 0. Let Oy0 be an orthonormal transformation such that Oy0e1 D y0

jy0j
. Then by the

change of variable y D y0 C jy0jOy0z it is easy to see that (2.6) is equivalent to the inequality

Z 1

0

.1 � s/je1 C szj˛ds > C3.1C jzj˛/ for z 2 R
p . (2.7)

From the inequality z1 > �jzj it follows that

je1 C szj >
ˇ

ˇe1 � sjzje1

ˇ

ˇ D
ˇ

ˇ1 � sjzj
ˇ

ˇ.

So denoting r D jzj the inequality (2.7) follows from the inequality

Z 1

0

.1 � s/j1 � sr j˛ds > C3.1C r˛/ for r > 0

and one may prove this by direct integration.

3. Optimal nondegeneracy

In this section we first define for k 2 N [ f0g the polynomials p2k and prove some properties

of these polynomials that we will use later on. For x0 2 R
n by adding appropriate scaled and

translated polynomials p2k to w.x0/0 we improve the lower bound in (2.4). In Theorem 1.1, using
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these improved lower bounds we prove the optimal nondegeneracy estimate. The optimality of our

estimate is evident by the optimal growth estimate proved in Theorem 4.1.

Let us define for k 2 N [ f0g

p2k.x/ D
k
X

j D0

ajx
2j
1 jxj2k�2j

where a0 D 1 and for 1 6 j 6 k, aj are given by the recursive equation

0 D j.2j � 1/aj C .k � j C 1/.2j C 2k C n � 4/aj �1. (3.1)

In the following lemma we prove some properties of the polynomials p2k which we will use later.

LEMMA 3.1 p2k is a 2k-th order homogeneous harmonic polynomial such that for all ˇ > 0 there

exists C > 0 (depending only on ˇ, k and n) such that

inf
x2@B1

�

jx1jˇ C Cp2k.x/
�

> 0. (3.2)

Proof. It is clear that p2k is a 2k-th order homogeneous polynomial. To prove that p2k is harmonic

one computes its Laplacian and uses the fact that the coefficients satisfy the equations (3.1).

To prove (3.2) we write

p2k.x/ D jxj2k C q2k�2.x/x
2
1 (3.3)

where in the case k D 0 we set q�2 D 0 and for k > 1

q2k�2.x/ D
k
X

j D1

ajx
2j �2
1 jxj2k�2j .

Let

A D sup
x2@B1

ˇ

ˇq2k�2.x/
ˇ

ˇ

then from (3.3) we have

p2k.x/ > 1 � Ax2
1 for x 2 @B1. (3.4)

Let ˇ > 0 then to show (3.2), by (3.4) it is enough to show that there exists a C > 0 such that

inf
t2Œ0;1�

�

tˇ C C.1 � At2/
�

> 0. (3.5)

To prove (3.5) let 0 < ı < 1 to be chosen later, now we estimate

tˇ C C.1 � At2/ > �f06t6ıg

�

C.1 � Aı2/
�

C �fı<t61g

�

ıˇ C C.1 � A/
�

thus if we can choose 0 < ı < 1 and C > 0 such that

1 > Aı2 and ıˇ > C.A � 1/ (3.6)

then (3.5) is proved.
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For a fixed C > 0 there exists a 0 < ı < 1 such that (3.6) holds if and only if

1p
A
> .C.A � 1/C/

1
ˇ . (3.7)

For all A > 0 it is possible to choose C > 0 such that (3.7) holds and this completes the proof of

the lemma.

For x0 2 R
n by the first inequality in (2.4) we have w.x0/0.x0/ > C jx0 � .x0/0j2.j.x0/0j˛ C

jx0 � .x0/0j˛/. In the following two lemma by adding polynomial terms to w.x0/0 we improve this

inequality, such that instead of jx0 � .x0/0j we have jx � x0j.

LEMMA 3.2 There exist a > 0 and C > 0 such that for all x,x0 2 R
n

w.x0/0.x0/C aj.x0/0j˛p2.x � x0/ > C j.x0/0j˛jx � x0j2.

Proof. Let x 6D x0. By Lemma 2.1 there exists a C1 > 0 such that for x,x0 2 R
n

w.x0/0.x0/ > C1j.x0/0j˛jx0 � .x0/0j2. (3.8)

By Lemma 3.1 there exist C2; C3 > 0 such that

jx1j2 C C2p2.x/ > C3 for x 2 @B1. (3.9)

Now by (3.8) and (3.9) taking a D C1C2 we compute

w.x0/0.x0/C aj.x0/0j˛p2.x � x0/ > j.x0/0j˛
�

C1jx0 � .x0/0j2 C ap2.x � x0/
�

D j.x0/0j˛jx � x0j2
 

C1

ˇ

ˇ

ˇ

x0 � .x0/0

jx � x0j

ˇ

ˇ

ˇ

2

C ap2

� x � x0

jx � x0j

�

!

> j.x0/0j˛jx � x0j2
 

C1

ˇ

ˇ

ˇ

x1 � x0
1

jx � x0j

ˇ

ˇ

ˇ

2

C ap2

� x � x0

jx � x0j

�

!

D C1j.x0/0j˛jx � x0j2
 

ˇ

ˇ

ˇ

x1 � x0
1

jx � x0j

ˇ

ˇ

ˇ

2

C C2p2

� x � x0

jx � x0j

�

!

> C1C3j.x0/0j˛jx � x0j2

which proves the lemma.

LEMMA 3.3 Let k 2 N such that 2k > 2C ˛ then there exist b > 0 and C > 0 such that for r > 0,

x0 2 R
n and x 2 Br .x

0/

w.x0/0.x0/C b

r2k�.2C˛/
p2k.x � x0/ > C

jx � x0j2k

r2k�.2C˛/
. (3.10)

Proof. Let x 6D x0 and k 2 N be such that 2k > 2 C ˛. By Lemma 2.1 there exists C1 > 0 such

that for x,x0 2 R
n we have

w.x0/0.x0/ > C1jx0 � .x0/0j2C˛ . (3.11)
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By Lemma 3.1 there exist C2,C3 > 0 such that

jx1j2k C C2p2k.x/ > C3 for x 2 @B1. (3.12)

We have
r

jx � x0j > 1 for x 2 Br .x
0/. (3.13)

Now by (3.11), (3.12) and (3.13) taking b D C1C2 for x0 2 R
n and x 2 Br .x

0/ we compute

w.x0/0.x0/C b

r2k�.2C˛/
p2k.x � x0/

> C1jx0 � .x0/0j2C˛ C b

r2k�.2C˛/
p2k.x � x0/

D jx � x0j2k

r2k�.2C˛/

 

C1

r2k�.2C˛/

jx � x0j2k
jx0 � .x0/0j2C˛ C b

jx � x0j2k
p2k.x � x0/

!

D jx � x0j2k

r2k�.2C˛/

 

C1

r2k�.2C˛/

jx � x0j2k�.2C˛/

ˇ

ˇ

ˇ

x0 � .x0/0

jx � x0j

ˇ

ˇ

ˇ

2C˛

C bp2k

� x � x0

jx � x0j

�

!

>
jx � x0j2k

r2k�.2C˛/

 

C1

ˇ

ˇ

ˇ

x0 � .x0/0

jx � x0j

ˇ

ˇ

ˇ

2C˛

C bp2k

� x � x0

jx � x0j

�

!

>
jx � x0j2k

r2k�.2C˛/

 

C1

ˇ

ˇ

ˇ

x1 � x0
1

jx � x0j

ˇ

ˇ

ˇ

2C˛

C bp2k

� x � x0

jx � x0j

�

!

D C1

jx � x0j2k

r2k�.2C˛/

 

ˇ

ˇ

ˇ

x1 � x0
1

jx � x0j

ˇ

ˇ

ˇ

2C˛

C C2p2k

� x � x0

jx � x0j

�

!

> C1C3

jx � x0j2k

r2k�.2C˛/

which proves the lemma.

Proof of Theorem 1.1. Let x0 and r be as in the statement of the theorem. Let k 2 N be such that

2k > ˛ C 2 and a; b > 0 be as in Lemma 3.2 and 3.3.

We define

h.x/ D u.x/ � u.x0/ � �
�

w.x0/0.x0/C a

2

ˇ

ˇ.x0/0
ˇ

ˇ

˛
p2.x � x0/C b

2r2k�.2C˛/
p2k.x � x0/

�

:

Then by (1.1) we have

4h.x/ D 4u.x/ � �
�

4w.x0/0.x0/C a

2

ˇ

ˇ.x0/0
ˇ

ˇ

˛4p2.x � x0/C b

2r2k�.2C˛/
4p2k.x � x0/

�

D f � �jx0j˛ > 0 in ˝. (3.14)

Because w.x0/0..x0/0/ D 0 we have

h.x0/ D ��
�

w.x0/0

�

.x0/0
�

C a

2

ˇ

ˇ.x0/0
ˇ

ˇ

˛
p2.0/C b

2r2k�.2C˛/
p2k.0/

�

D 0. (3.15)
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For x 2 � we have u.x/ D 0, thus because of u.x0/ > 0 and Lemma 3.2 and 3.3 we have

h.x/ D �u.x0/ � �
�

w.x0/0.x0/C a

2

ˇ

ˇ.x0/0
ˇ

ˇ

˛
p2.x � x0/C b

2r2k�.2C˛/
p2k.x � x0/

�

D �u.x0/ � �
�1

2

�

w.x0/0.x0/C a
ˇ

ˇ.x0/0
ˇ

ˇ

˛
p2.x � x0/

�

C 1

2

�

w.x0/0.x0/C b

r2k�.2C˛/
p2k.x � x0/

�

�

< 0 on �: (3.16)

By (3.14) we have that h is subharmonic in the domain ˝ \ Br .x
0/. Applying the maximum

principle for the domain ˝ \ Br .x
0/ and the subharmonic function h we have

sup
@.˝\Br .x0//

h.x/ > h.x0/. (3.17)

By (3.15) and (3.17) we obtain

sup
@.˝\Br .x0//

h.x/ > 0. (3.18)

Because

@
�

˝ \ Br .x
0/
�

D
�

@˝ \ Br .x
0/
�

[
�

˝ \ @Br .x
0/
�

by (3.16) and (3.18) we obtain

sup
˝\@Br .x0/

h.x/ > 0. (3.19)

By the definition of h, from (3.19) we get the inequality

sup
˝\@Br .x0/

u > u.x0/C � inf
˝\@Br .x0/

�

w.x0/0.x0/

C a

2

ˇ

ˇ.x0/0
ˇ

ˇ

˛
p2.x � x0/C b

2r2k�.2C˛/
p2k.x � x0/

�

. (3.20)

Now by Lemma 3.2 and 3.3 we obtain for x 2 @Br .x
0/

w.x0/0.x0/C a

2
j.x0/0j˛p2.x � x0/C b

2r2k�.2C˛/
p2k.x � x0/

D 1

2

�

w.x0/0.x0/C aj.x0/0j˛p2.x � x0/
�

C 1

2

�

w.x0/0.x0/C b

r2k�.2C˛/
p2k.x � x0/

�

>
1

2
C2j.x0/0j˛jx � x0j2 C 1

2
C3

jx � x0j2k

r2k�.2C˛/

D 1

2
C2j.x0/0j˛r2 C 1

2
C3r

2C˛

> C4r
2.r˛ C j.x0/0j˛/. (3.21)

By (3.20) and (3.21) the theorem is proved.

REMARK 3.4 The constant C > 0 in Theorem 1.1 might be chosen to be a decreasing function of

˛ > 0.
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4. Optimal growth

In the following theorem we prove the optimal growth of solutions.

THEOREM 4.1 (Optimal Growth) There exists a C > 0 (depending only on n, p and ˛) such that if

for some � > 0 we have

jf .x/j 6 �jx0j˛ for x 2 D (4.1)

then for Br .x
0/ � D we have

u.x/ 6 C
�

u.x0/C�r2.r˛ C j.x0/0j˛/
�

for x 2 B r
2
.x0/.

Proof. Let us split u D u1 C u2 where u1 is the solution to

(

4u1 D 4u in Br .x
0/,

u1 D 0 on @Br .x
0/

and u2 is the solution to
(

4u2 D 0 in Br .x
0/,

u2 D u on @Br .x
0/.

Let

�.x/ D �
�

Cr2.r˛ C j.x0/0j˛/ � w.x0/0.x0/
�

with C > 0 as in the second inequality in (2.4). Then because of 4w.x0/0.x0/ D jx0j˛ and the

second inequality in (2.4) we have

(

� 4� D �jx0j˛ in Br .x
0/,

� > 0 in Br .x
0/.

We have by (4.1)

��jx0j˛ 6 ��fu>0gf 6 �jx0j˛

thus because �4u1 D �4u D ��fu>0gf , �4� D �jx0j˛ , u1 D 0 on @Br .x
0/ and � > 0 on

@Br .x
0/ we have

(

� 4.��/ 6 �4u1 6 �4� in Br .x
0/,

� � 6 u1 6 � on @Br .x
0/

hence by the comparison principle we obtain

�� 6 u1 6 � in Br .x
0/. (4.2)

Because �4u1 D �4u and u1 D 0 6 u on @Br .x
0/ we have u1 6 u in Br .x

0/ and therefore

u2 D u � u1 > 0 in Br .x
0/.

By the first inequality in (4.2) we have

u2.x
0/ D u.x0/ � u1.x

0/ 6 u.x0/C �.x0/.
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Thus by the Harnack inequality

u2.x/ 6 C1u2.x
0/ 6 C1

�

u.x0/C �.x0/
�

for x 2 B r
2
.x0/

for a dimensional constant C1 > 0.

Now becausew.x0/0..x0/0/ D 0 andw.x0/0 > 0we have �.x0/ D �Cr2.r˛ Cj.x0/0j˛/ > �.x/

and by the second inequality in (4.2) we obtain the estimate

u.x/ D u1.x/C u2.x/ 6 �.x/C C1.u.x
0/C �.x0// 6 C1u.x

0/C .1C C1/�.x
0/

D C1u.x
0/C .1C C1/�Cr

2.r˛ C j.x0/0j˛/ for x 2 B r
2
.x0/

which proves the theorem.

REMARK 4.2 The constant C > 0 in Theorem 4.1 might be chosen to be an increasing function of

˛ > 0.

5. Porosity of the free boundary

In this section we prove that the free boundary � is locally porous in D. The definition of local

porosity is as follows.

DEFINITION 5.1 For the sets A1,A2 � R
n we say that A1 is locally porous in A2 if for every

compact set K �� A2 there exists a constant 0 < ıK < 1 with the property that every ball

Br .x/ � R
n contains a smaller ball BıKr .x

1/ such that BıKr .x
1/ � Br .x/n.A1 \K/.

Let us first mention some known results about the classical obstacle problem with nondegenerate

force term.

The optimal growth estimate for the classical obstacle problem states that there exists a C > 0

(depending only on n) such that if for a constant � > 0, jf j 6 � in D then for Br .x
0/ � D we

have

u.x/ 6 C
�

u.x0/C�r2
�

for x 2 B r
2
.x0/. (5.1)

The optimal nondegeneracy estimate for the classical obstacle problem states that there exists a

C > 0 (depending on n) such that if for a constant � > 0, � 6 f in D then for x0 2 ˝ and

Br .x
0/ �� D we have

sup
˝\@Br .x0/

u > u.x0/C C�r2.

By the continuity of u as a corollary we have that even if x0 2 � and Br .x
0/ �� D then

sup
˝\@Br .x0/

u > C�r2. (5.2)

LEMMA 5.2 For each a > 0 there exists 0 < ıa < 1 with the property that if f > 0 in B1 and

supB1
f

infB1
f

6 a

then for any u > 0 solution to the obstacle problem in B1 with the force term f such that 0 2 � ,

there exists Bıa
.x0/ � ˝.
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Proof. By (5.2) we have for some x0 2 @B 1
2

u.x0/ D sup
˝\@B 1

2

u > C1.
1

2
/2 inf

B1

f . (5.3)

Let

0 < r 6
1

6
(5.4)

then for x1 2 Br .x
0/ we have

x0 2 Br .x
1/ � B2r .x

1/ � B2rCjx1�x0jCjx0j.0/ � B3rC 1
2
.0/ � B1.0/

hence by (5.1) we have

u.x0/ 6 C2.u.x
1/C .2r/2 sup

B1

f /. (5.5)

From (5.3) and (5.5) it follows that if r satisfies

r <
1

4

s

C1

C2

1p
a

(5.6)

then Br .x
0/ � ˝.

Now if we define

ıa D min

 

1

6
;
1

8

s

C1

C2

1p
a

!

then r D ıa satisfies both (5.4) and (5.6).

In the following theorem we prove a general porosity result.

THEOREM 5.3 Let u > 0 be a solution of the obstacle problem (1.1). If there exists 0 < ıf < 1

and a > 0 with the property that for all balls Br .x/ � D there exists Bıf r .x
1/ � Br .x/ such that

supBıf r .x1/ f

infBıf r .x1/ f
6 a

then � is locally porous in D.

Proof. Let K �� D then we should find a 0 < ıK < 1 such that for arbitrary Br .x/ � R
n there

exists BıK r .x
0/ � Br .x/n.� \K/.

Now fix K �� D and let Br .x/ � R
n be an arbitrary ball. We consider the two cases r >

diam.K/ and r < diam.K/ separately.

Assume first that r > diam.K/.

If B r
4
.x � 3

4
re1/ \ .� \ K/ D ; we set x0 D x � 3

4
re1 and by taking ıK 6

1
4

we obtain

BıKr .x
0/ � Br .x/n.� \K/. If B r

4
.x� 3

4
re1/\ .� \K/ 6D ; then because r > diam.K/ we have

that B r
4
.x C 3

4
re1/ \ .� \ K/ D ; and similarly as in the previous case we set x0 D x C 3

4
re1

and obtain BıKr .x
0/ � Br .x/n.� \K/. This finishes the analysis of the case r > diam.K/.
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Assume now that r < diam.K/.

If B r
2
.x/ \ .� \ K/ D ; then we set x0 D x and taking ıK 6

1
2

we have BıK r .x
0/ �

B r
2
.x0/ D B r

2
.x/ D B r

2
.x/n.� \K/ � Br .x/n.� \K/.

If B r
2
.x/ \ .� \K/ 6D ; then there exists x1 2 B r

2
.x/ \ .� \K/.

Let us denote

QıK D min
�1

2
;

dist.K;Dc/

diam.K/

�

.

Since

dist.x1;Dc/ > dist.K;Dc/ > QıK diam.K/ > QıKr
we have

BQıKr
.x1/ � D. (5.7)

Also we have

BQıKr
.x1/ � BQıKrCjx1�xj

.x/ � Br .x/. (5.8)

By (5.7) and (5.8) we have

BQıKr
.x1/ � D \ Br .x/. (5.9)

By the condition on f there exists B
ıf

QıKr
.x2/ � BQıK r

.x1/ such that

supB
ıf

QıK r
.x2/ f

infB
ıf

QıK r
.x2/ f

6 a. (5.10)

If B 1
2 ıf

QıKr
.x2/\ .� \K/ D ; then we set x0 D x2 and taking ıK 6

1
2
ıf QıK we have BıK r .x

0/ D
BıKr .x

2/ � B 1
2 ıf

QıKr
.x2/ � Br .x/n.� \K/.

If B 1
2 ıf

QıKr
.x2/ \ .� \K/ 6D ; then there exists x3 2 B 1

2 ıf
QıKr
.x2/ \ .� \K/ and we have

B 1
2 ıf

QıKr
.x3/ � B 1

2 ıf
QıKrCjx3�x2j

.x2/ � B
ıf

QıKr
.x2/. (5.11)

Now by (5.10) and (5.11) we have

supB 1
2

ıf
QıK r

.x3/ f

infB 1
2

ıf
QıK r

.x3/ f
6

supB
ıf

QıK r
.x2/ f

infB
ıf

QıK r
.x2/ f

6 a. (5.12)

After a scaling, by Lemma 5.2 because of (5.12) we obtain

B 1
2 ıaıf

QıKr
.x4/ � B 1

2 ıf
QıKr
.x3/n� . (5.13)

So we have

B 1
2 ıaıf

QıKr
.x4/ � B 1

2 ıf
QıKr
.x3/n� � B

ıf
QıKr
.x2/n�

� BQıK r
.x1/n� � Br .x/n� � Br .x/n.� \K/

and by setting x0 D x4 and taking ıK 6
1
2
ıaıf QıK the lemma is proved.
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THEOREM 5.4 (Porosity) If for some 0 < � 6 � the following inequalities hold

�jx0j˛ 6 f .x/ 6 �jx0j˛ for x 2 D (5.14)

then � is locally porous in D.

Proof. Let us check that the condition on f in Theorem 5.3 holds. Let Br .x/ � D then because

the set fx0 D 0g is porous with porosity constant 1
2

there exists B r
2
.x1/ � Br .x/nfx0 D 0g �

Dnfx0 D 0g. Now by (5.14) because
j.x1/0j

r
>

1
2

we have

supB 1
4

r
.x1/ f

infB 1
4

r
.x1/ f

6
�

�

�

supB 1
4

r
.x1/ jx0j

infB 1
4

r
.x1/ jx0j

�˛
6
�

�

� j.x1/0j C 1
4
r

j.x1/0j � 1
4
r

�˛ D �

�

�

j.x1/0j
r

C 1
4

j.x1/0j
r

� 1
4

�˛
6
�

�
3˛

so f satisfies the condition of Theorem 5.3 with ıf D 1
4

and a D �
�
3˛ , and the theorem is

proved.
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