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Two-phase entropy solutions of forward–backward parabolic problems
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In this paper we study a two-phase problem for a forward–backward parabolic equation with
diffusion function of cubic type. Existence and uniqueness for these kind of problems were obtained
in literature in the case in which the phases are both stable. Here we consider the situation in which
the unstable phase is taken in account, obtaining not trivial solutions of the problem. It is interesting
to note that such solutions are given by solving generalized Abel’s equations.
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1. Introduction

In this paper we study the following forward–backward parabolic problem:
�

ut D �.u/xx in QT WD R � .0; T /
u.x; 0/ D u0.x/ in R � f0g; (1)

where � is a nonmonotone function. This problem arises in different mathematical models in phase
transition [5], population dynamics [31], [32], oceanography [1], image processing [33]. Obviously
problem (1) is ill–posed whenever u takes values in the interval in which � decreases.

In this paper we focus to the model of phase transition where the response function � is of
“cubic type”. More precisely, we assume that � 2 Liploc.R/ and

lim
u!˙1

�.u/ D ˙1:

We suppose that � has a local minimum A and a local maximum B such that A < B . Let us
denote with c, respectively b, the point in which the local minimum A, respectively maximum B , is
achieved. There are three regions .�1; b/, .c;C1/ and .b; c/; the first two in which � increases
and the last one in which � decreases.

In the phase transition models, the function u gives the phase field, then the increasing intervals
correspond to the stable phases and the interval .b; c/ to the unstable, or metastable one.

In this framework it is included also the piecewise linear case in which � is given by

�.u/ D

8

ˆ

<

ˆ

:

�1.u/ for u 6 b

�0.u/ for b < u < c

�2.u/ for u > c ;

(2)
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where
�i .u/ WD i uC ıi ; i D 0; 1; 2:

Here �1 < b < c < 1, i > 0, i D 1; 2, ıi 2 R, A WD �2.c/ < �1.b/ DW B . In particular,
�0.u/ WD A.u�b/�B.u�c/

c�b
:

In [20] (see also [22]), it was proved that uniqueness does not hold for problem (1) also in the
class of solutions that take values only in the two stable phases.

Therefore, it is necessary to impose some stricter conditions in order to give a good formulation
of the problem (1). The idea is to introduce a proper regularization that comes from the physical
phenomena of the original model. A classical approximation term is that introduced by the Cahn–
Hilliard model that describes the cost of the inhomogeneities in phase transition. On the other hand,
the mathematical description of the physical phenomena is much more complicated to that given
by the Cahn–Hilliard equation and there are some other terms to take in account (see, e.g., [4, 5, 9,
19, 45]). As a matter of fact, it is possible to choose different types of regularization in which only
some phenomena are highlighted (see e.g. [1–3, 6, 15, 17, 26, 30, 34, 35, 42]).

In this paper we refer to the following pseudoparabolic regularization
�

ut D vxx in QT D R � .0; T /
u.x; 0/ D u0.x/ in R � f0g; (3)

where v D �.u/C �ut , � > 0.
The third order term �utxx is a viscosity term related to non-equilibrium effects (see, e.g., [4,

10, 19]).
In [30] the authors considered the following Neumann boundary problem

8

<

:

ut D �.�.u/C �ut / in QT D ˝ � .0; T /
@

d�
.�.u/C �ut / D 0 in QT D @˝ � .0; T /

u.x; 0/ D u0.x/ in ˝ � f0g;
(4)

where ˝ � R
n is a bounded “regular” domain. They obtained global existence and uniqueness for

a large class of initial data. Moreover, they proved that the solutions satisfy some viscous entropy
inequalities. These inequalities are crucial to obtain a priori estimates that do not depend on the
parameter �.

The singular limit of problems (4) was analyzed by Plotnikov (see [34–36]). Using that
approach, the author obtained an entropy formulation for the solutions of the original forward–
backward problem. The idea was to assume that the entropy solutions of the original forward–
backward problem are that obtained as limit of solutions of the problems (4) when � goes to
0C (see also [28, 44]). We do not enter in the details of the formulation given by Plotnikov (see
Section 2). However, it is important to mention that the original forward–backward equation is not
more satisfied. Just to give an idea, we can extract subsequences fu�n

g of solutions of the viscous
problems (4) converging in the weak* topology ofL1 to a function u and a corresponding sequence
fv�n

g, defined by v�n
D �.u�n

/ C �n.u�n
/t , converging to v, such that, in general, v ¤ �.u/.

Then, we have ut D vxx in a weak way. Therefore, the original forward-backward equation does
not hold generally. Plotnikov gave in [35] a characterization of the Young measure associated to
the converging sequence fu�n

g. More precisely, he proved that the Young measure is given by a
superposition of three Dirac measures. In particular, there is the following relation between the
functions u and v:

u D �1ˇ1.v/C �0ˇ0.v/C �2ˇ2.v/; (5)
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FIG. 1. The function �

where �i .x; t/ > 0, i D 0; 1; 2,
P2

iD0 �i .x; t/ D 1 in QT , ˇi .s/ correspond to the three monotone
branches of the graph s D �.u/ (see Fig. 1). From a physical point of view this fact could be
interpreted as a superposition of different phases where �i represents the fraction of phase i .

Therefore it can be proved that the equation ut D �.u/xx is satisfied in the sense of the
measure–valued solutions (see [28], [35]).

We can guess that the complex structure of the solution is due to the presence of the unstable
phase. Hence, if we suppose that the initial datum takes values only in the two stable phases, we can
assume that �0 � 0 and the fractions �1, �2 are suitable characteristic functions. Obviously in this
situation v D �.u/:

In light of these considerations the “two-phase problem” was introduced. In this setting we
suppose that initial datum u0 2 L1.R/ satisfies

8

<

:

u0 6 b in .�1; 0/;

u0 > c in .0;1/;

�.u0/ 2 H 1
loc
.R/:

(6)

Let us note that these assumptions assure that initial condition u0 is discontinuous only in the point
x0 D 0 and �.u0/ is continuous everywhere.

We search a solution that satisfies the entropy formulation of Plotnikov and has a particular
structure. More precisely, since the initial datum u0 takes values only in the stable phases, we
impose that solutions of the problem (1) are again in these phases with a regular interface separating
the domain QT into two different regions in which the different phases are achieved. Finally, we
suppose that equation ut D �.u/xx is fulfilled in the weak sense (see Definition 2.2 in Section
2). It is important to underline that the entropy formulation, obtained by the pseudoparabolic
approximation (3), gives a strong admissibility condition for the evolution of the interface that
separates the two stable phases (see Proposition 2.3). Existence and uniqueness results for the two-
phase problem was obtained in [29], [43], [41]. Therefore, at least for solutions in the two stable
phases, the formulation of the forward–backward problem suggested by Plotnikov is well–defined.
In particular, it is worth to note that the solutions obtained in [20] do not satisfy the entropy condition
introduced in [35]. We also point out that, in general, the limit of the Cahn–Hilliard approximation
does not satisfy those conditions (see [2, 3, 17]).
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On the contrary, if we consider initial data in the unstable phase, it is possible to exhibit
examples of non-uniqueness for solutions that satisfy the entropy formulation of Plotnikov (see
[44]). These examples are obtained by considering solutions that satisfy the forward–backward
equation in the measure-valued sense, that means that the coefficients �i , i D 0; 1; 2 are non-trivial
functions.

As we mentioned before, it is possible to give different types of approximation of the forward–
backward parabolic equation (1). In principle these could give different formulations and therefore
different admissible solutions for a given boundary value problem. Nevertheless, it is interesting
to compare the formulation given by the viscous approximation, that we consider in this paper,
to that obtained in recent papers ([3, 17, 21, 26]) in which semi-discrete schemes are considered.
In particular, it looks like ([17, 21]) that for the two-phase problem the solutions obtained by the
two types of regularization coincide. In [21] there are heuristic motivations, numerical experiments
and also some analytic results that show that the conditions along the interface for the two-phase
problem are equivalent (see [17] for the case of steady interface). It would be interesting to analyze
the general situation and in particular the case in which initial datum takes values also in the unstable
phase. In our knowledge this problem is still open.

In [3] authors analyze the case of data in the unstable phase and using a semi-discrete scheme
they exhibited examples of measure–valued solutions of the parabolic equations (1). Authors proved
that the solutions depend on the choice of the approximating sequence of the initial datum. Hence,
they obtained non-uniqueness results for a large class of initial data.

In this paper we consider the two-phase problem in which one of the phases is the unstable one.
Obviously, since we impose that the forward–backward equation is satisfied at least in the weak
sense, we can not obtain existence for a generic initial datum. However this study is interesting for
different reasons.

The first one is that this provides a class of solutions that satisfy the entropy formulation of
the forward–backward problem with unstable phase. Moreover the resulting solutions satisfy the
forward–backward equation in the weak sense and not only in the class of measure–valued solutions.

Other examples of explicit entropy solutions of the forward–backward parabolic equation that
take values also in the unstable phase are given in [18], where the “Riemann problem” is considered
and a solution is obtained by self–similar methods.

The second one is that this study could give information about uniqueness or non-uniqueness
for entropy solutions that still satisfy the original forward–backward equation. This is not a trivial
question, since it is well-known (see e.g. [13]) that for backward parabolic problems uniqueness
results are still true.

This paper is organized in two further sections.
In Section 2 we shall state the precise definition of entropy solution. In particular we shall

give the definition of the two-phase problem. Moreover, we shall recall which are the entropy
admissibility conditions along the interface of the two-phase stable-stable problem. Finally we shall
characterize the admissibility condition also for the two-phase problem in which one of the two
phases is the unstable one.

In Section 3 there is the main result of the paper. We shall analyze existence for the two-phase
stable–unstable problem. We shall concentrate to the case in which the response function � is
piecewise linear. The scope of this study is to give examples of solutions of the forward–backward
parabolic problem that take values in stable and unstable regions. Using the results of Section 2
we find an easy condition that assures that the solution is also an entropy solution. We shall search
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solutions by fixing an admissible interface �.t/ such that �.0/ D 0, and considering on the right and
on the left hand side respectively a forward and a backward problem. More precisely

8

<

:

ut D vxx in QT D R � .0; T /
u.x; 0/ D u0.x/ in R

C � f0g
u.x; T / D uT .x/ in .�1; K/ � f0g;

(7)

with
�

u D ˇ0.v/ in V1;

u D ˇ2.v/ in V2;
(8)

where

V1 WD
˚

.x; t/ 2 QT j � 1 < x < �.t/ ; t 2 .0; T /
	

; (9)

V2 WD
˚

.x; t/ 2 QT j �.t/ < x < C1 ; t 2 .0; T /
	

: (10)

and �.T / D K.
Then, we have to glue together solutions of a forward parabolic problem and a backward

parabolic problem imposing the Rankine–Hugoniot condition (24) along the given interface. A
similar problem was studied in [16] for a Perona-Malik nonlinearity. Authors obtained that the class
of initial data for which there exists a regular solution of that forward–backward problem is dense in
a strong topology. In order to obtain those results they have to study forward and backward problem
separates by a steady interface. Here we have a different kind of response function, moreover we
have to treat a moving interface along which the solutions have a jump. Therefore we use completely
different technics. In Section 3 we prove that the solution of the problem is strictly related to the
solution of the following generalized Abel’s equation

Z t

0

k1.t; s/p
t � s

m0.s/ ds C
Z T

t

k2.t; s/p
s � t

m0.s/ ds D h.t/ (11)

where k1 and k2, are Holder continuous functions of order 1
2

, h.t/ is a function in C
1
2 .Œ0; T �/ that

depends on the initial data and m is the unknown that determines the values of the solutions along
the interface.

This kind of equation was studied in literature (see for instance [27, 38]) and in particular we
deduce an “algebraic Noether nature” of equation (58) this is the content of Theorem 3.17.

This allows to conclude that for a large class of initial data we have an entropy solution of two
phase stable–unstable problem.

2. Entropy formulation

Let us recall the precise definition of entropy solution introduced by Plotnikov (see [28, 34, 35]).
Here we consider the 1-dimensional case and the domain ˝ D R.

DEFINITION 2.1 An entropy solution to problem (1) in QT is given by u; �0; �1; �2 2 L1.QT /,
v 2 L1.QT / \ L2..0; T /;H 1

loc
.R// such that:

(a)
2
P

iD0

�i D 1, �i > 0 and there holds:

u D
2
X

iD0

�iˇi .v/ (12)
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with �1 D 1 if v < A, �2 D 1 if v > B;
(b) the couple .u; v/ is a weak solution of the equation ut D vxx in QT :

ZZ

QT

u t �v xdxdt C
Z

˝

u0.x/ .x; 0/dx D 0 (13)

for any  2 C 1.QT /;  .�; T / D 0 in ˝.
(c)

ZZ

QT

n

G� t �g.v/vx �  x � g0.v/jvxj2 
o

dxdt > 0 (14)

for any  2 C1
0 .QT /,  > 0, g 2 C 1.R/, g0

> 0 where

G�.x; t/ WD
2
X

iD0

�iG
�

ˇi

�

v.x; t/
�

�

for a.e. .x; t/ 2 QT : (15)

and

G.u/ WD
Z u

k

g
�

�.s/
�

ds; k 2 R: (16)

We do not enter in the details of such definition (see, e.g., [28, 35, 44]).
We just mention that the entropy inequality is obtained, formally, observing that the solutions of

the viscous regularization satisfy the following inequality

G.u�/t 6 Œg.v�/v�x �x � g0.v�/jv�x
j2 (17)

where v� D �.u�/ C �u� t . Therefore, the entropy inequality (14) given in Definition 2.1 is
consequence of (17) and the characterization of the Young limit associated to any converging
viscous sequence (see [35]).

In particular, we point out that the entropy inequality (14) is satisfied by any couple of functions
.u; v/, obtained by a proper limit of a subsequence of f.u�n

; v�n
/gn2N, where u�n

is the solution
of the pseudoparabolic problem and v�n

D �.u�n
/ C �n.u�n

/t . This entropy condition implies a
monotonicity condition on the coefficients �i , i D 1; 2 (see [28, 35]).

In this paper we are interested in the two-phase problem. Let us introduce the following

DEFINITION 2.2 Let u0 2 L1.R/ be such that
H1) �.u0/ 2 C.R/, �.u0/ 2 C 1..�1; 0//\C 1..0;1//, �.u0/

0 2 L1..�1; 0//\L1..0;1//;
H2) given the sets I1 D .�1; b�, I0 D Œb; c� and I2 D Œc;C1/

�

u0 2 Ii in .�1; 0/;

u0 2 Ij in .0;1/;
(18)

where i; j 2 f0; 1; 2g, i ¤ j .
By a two-phase solution to problem (1) we mean a triple .u; v; �/ such that:

(i) u 2 L1.QT /; v 2 L2..0; T /IH 1
loc
.R//, v 2 C.V 1/\C.V 2/, vx 2 L1..0; T /; L1.R// and

� W Œ0; T � ! ˝, � 2 C 1.Œ0; T �/, �.0/ D 0, v.�.�/; �/ 2 C.Œ0; T �/,

lim
ı!0C

v.�.t C ı/; t/ D lim
ı!0�

v.�.t C ı/; t/ for every t 2 .0; T /I
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(ii) we have:
�

u D ˇi .v/ in V1;

u D ǰ .v/ in V2;
(19)

where

V1 WD
˚

.x; t/ 2 QT j � 1 < x < �.t/ ; t 2 .0; T /
	

; (20)

V2 WD
˚

.x; t/ 2 QT j �.t/ < x < C1 ; t 2 .0; T /
	

; (21)

and

 WD @V1 \ @V2 D
˚

.�.t/; t/ j t 2 Œ0; T �
	

I (22)

(iii) u satisfies condition (b) of Definition 2.1;
(iv) u satisfies condition (c) of Definition 2.1.

By construction, a solution of the two-phase problem is also an entropy solution in the sense
of Definition 2.1 that has a particular structure. Observe that, the previous definition implies that
�.u/ D v everywhere so the coefficients �k , k 2 f0; 1; 2g, correspond to characteristic functions.
More precisely, �i D IV1

and �j D IV2
, where we denote with IE the characteristic function of the

set E. In this case G� defined in (15) is equal to G.u/.
This kind of problem was studied in different papers. However, only the case in which the initial

datum is in the two stable phases I1 and I2 was evaluated. In [29] and [43] the authors considered
the case in which the response function � is piecewise linear. Uniqueness and local existence was
obtained in [29], global existence was stated in [43]. The general nonlinear case was studied in [41],
where uniqueness was established and local existence was obtained for a class of initial data by
using directly the approximation problem (3).

In some sense we can think that we have two different parabolic problems in the regions V1 and
V2. These problems are related each other by (13) and (14). The weak equation (13) gives us the
equation of the unknown interface � and the entropy integral inequality imposes some admissibility
conditions on that interface. The piecewise linear case is easier to treat since in the regions Vi

we have classical heat equations, then we get more regularity for the solutions. In particular, we
can assume the existence of the trace of the function vx along the interface. Then, using the weak
equation (13), we obtain the following Rankine–Hugoniot equation (see [8, 28])

� 0.t/ D
vx

�

�.t/�; t
�

� vx

�

�.t/C; t
�

u
�

�.t/C; t
�

� u
�

�.t/�; t
� ; (23)

where vx.�.t/˙; t / WD lim
s!˙0

vx.�.t/C s; t/ and u.�.t/˙; t / WD lim
s!˙0

u.�.t/C s; t/:

In the nonlinear case, in general, we can not write a Rankine–Hugoniot equation like (23) for
the interface. In fact the parabolic equation in the two regions V1 and V2 could degenerate at values
c and b. Thus the trace of vx does not exist in the classical sense. This problem can be handled by
observing that equation (13) implies that the field .u;�vx/ is divergence–free in the weak sense.
Then, using the general theory of divergence–measure vector fields, it is possible to give sense
to the trace of the field along an interface. More precisely we obtain the following generalized
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Rankine–Hugoniot equation

lim
ı!0C

1

ı

�Z t2

t1

Z 0

�ı

˚

� 0.t/u.y C �.t/; t/C vx.y C �.t/; t/
	

˛.t/ dydt

�
Z t2

t1

Z ı

0

˚

� 0.t/u.y C �.t/; t/C vx.y C �.t/; t/
	

˛.t/ dydt

#

D 0; (24)

where .t1; t2/ � .0; T // and ˛ is any test function in C 1
0 ..t1; t2// (see [41]).

Regarding admissibility conditions for the evolution of the interface �.t/, we have to consider
the entropy inequalities (14). Let us introduce for any g 2 C 1.R/, g0

> 0, the vector field
.G.u/;�ŒF .v/�x/, where G.�/ is defined in (16) and F.�/ is any primitive of g.�/. Therefore
using (14) we obtain that .G.u/;�ŒF .v/�x/ is a measure–valued vector field. Then, again we can
write a condition along the interface  . More precisely, for any interval .t1; t2/ 2 .0; T / there holds
(see [41])

lim
ı!0C

�

1

ı

Z t2

t1

Z 0

�ı

˚

ŒF .v/�x
�

y C �.t/; t
�

C � 0.t/G
�

u.y C �.t/; t
�	

˛.t/ dydt

� 1

ı

Z t2

t1

Z ı

0

˚

ŒF .v/�x
�

y C �.t/; t
�

C � 0.t/G
�

u.y C �.t/; t/
�	

˛.t/ dydt

!

6 0: (25)

for any test function ˛ 2 C 1
c ..t1; t2//, ˛ > 0.

In some sense we can think that (25) is an entropy condition along the interface  .
These admissibility conditions are rather strong when the two phases are the stable ones. More

precisely we have (see [41] for the proof)

PROPOSITION 2.3 Let us consider the two-phase problem with initial datum u0 that satisfies (6).
Let .u; v; �/ be a two-phase entropy solution of problem (1). Then

� 0.t/

8

<

:

6 0 if v
�

�.t/; t
�

D B

D 0 if v
�

�.t/; t
�

2 .A;B/
> 0 if v

�

�.t/; t
�

D A:

(26)

This means that the interface �.t/ moves only when �.u/ D v assumes the critical values A,
B along it. In particular, the interface does not move when v is in .A;B/. This allows to prove in
[29, 41] uniqueness results for the two-phase stable–stable problem.

It is important to note that equation (23) (or its weak version (24)), that gives the evolution of
the interface, depends only on the fact that the forward–backward equation is satisfied at least in the
weak sense. Therefore this is common in any formulation in which a solution is given by two phases
separated by an interface (see for instance [2]). On the contrary, the entropy conditions characterize
a solution in a stricter way. In particular, it is easy to observe that the admissibility conditions for
the interface given above are completely different to that used in [2], where the authors consider a
Cahn–Hilliard approximation of the forward–backward problem.

In the following we shall concentrate to the case in which one of the two phases is the unstable
one. This instance was not considered in literature. We shall prove that admissibility condition is
weaker in this situation.
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Let us consider an initial datum u0 that satisfies
�

u0 2 .b; c/ in .�1; 0/;

u0 2 Œc;1/ in .0;1/:
(27)

In the next we refer to the two-phase problem with an initial datum of type (27) as the “two-phase
stable–unstable problem” and we denote it with TP S–U.

Observe that we have to pay attention to the level set v D A. In fact, when � is regular, the
parabolic equations in the two regions Vi , i D 1; 2 have the same behavior of the porous media
equation. Then, it could exists a region with positive measure in which v � A. In this case the
interface � is not well defined since it is not clear where is the separation between the phases. For
this reason we restrict the choice of the initial data (27) to the case in which u0 2 .b; c/ for x 6 0.
When this choice is made, it is possible to fix T small enough, such that v.�.�/; �// > A in .0; T /.

For the TP S–U we have the following admissibility condition

PROPOSITION 2.4 Let us consider an initial data u0 that satisfies (27). Then, given a two-phase
solution .u; v; �/ of the TP SU we get

v
�

�.�/; �/
�

> A in .t1; t2/ � .0; T / H) � 0
6 0 in .t1; t2/ � .0; T /:

Proof. We use the same techniques introduced in [41]. In order to prove the assertion by
contradiction we suppose that there exists an interval .t1; t2/ and � > 0 such that � 0.t/ > 0 and
v.�.t/; t// > AC 2� for any t 2 .t1; t2/. Then, we can choose r small enough such that v > AC �

in the domain
S WD

˚

.x; t/ 2 QT W t 2 .t1; t2/; �.t/ � r 6 x 6 �.t/C r
	

:

Let us choice an increasing function g such that

g D
�

< 0 in .�1; AC �/

0 in ŒAC �;1/:

Moreover we consider

G.s/ D
Z s

u�

g
�

�.�/
�

d�; F.s/ D
Z s

B

g.�/ d�;

where u� is the point in .c;C1/ such that �.u�/ D AC �.
Then, using the entropy condition (25), we obtain

Z t2

t1

fG
�

u1.t/
�

�G
�

u2.t/
�

g � 0.t/˛.t/ dt

C lim
ı!0C

�

1

ı

Z t2

t1

˚

F
�

v.�.t/; t/
�

� F
�

v.�.t/ � ı; t/
�	

˛.t/ dt

� 1

ı

Z t2

t1

˚

F
�

v.�.t/C ı; t/
�

� F
�

v.�.t/; t/
�	

˛.t/ dt

�

6 0: (28)

where u1.t/ WD lim
s!0�

u.�.t/C s; t/ and u2.t/ WD lim
s!0�

u.�.t/C s; t/. Observe that by construction

we have F.v.�.t/ ˙ ı; t// D F.v.�.t/; t// D G.u2.t// D 0 for ı 6 r . Moreover, for every
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t 2 .t1; t2/, the function g.�.�// assumes negative values in a proper subinterval of .u1.t/; u
�/ ,

then we have G.u1.t// D
R u1.t/

u� g.�.s// ds > 0. Therefore, using � 0.t/ > 0, inequality (28) gives
a contradiction.

In the next section we shall focus to the solution of the TP S–U in the case of the piecewise
linear function � given in (2). As observed in the Introduction, in this context we may assume more
regularity for the solution of the two phase problem. More precisely, in the piecewise linear case,
we generalize the definition of the two-phase “stable–stable” problem given in [29], [43].

DEFINITION 2.5 Let � be the piecewise linear function (2). Let u0 be an initial datum that satisfies
the hypothesisH1/,H2/ of Definition 2.2. By a two-phase regular solution of problem (1) we mean
a triple .u; v; �/ that is solution in the sense of Definition 2.2 that satisfy also

(I) � 2 C 3
2 .0; T /I

(II) u 2 C 2;1
�

V1

�

\C 2;1
�

V2

�

, ux 2 L1.QT /, and for any t 2 .0; T / there exist finite the limits

lim
�!0C

ux.�.t/˙ �; t/ DW ux.�.t/
˙; t /:

This definition is motivated in the piecewise linear case by the existence results obtained in [29]
for the two-phase stable–stable problem.

Then, we can prove the following admissibility result for the TP S–U.

PROPOSITION 2.6 Let � be the piecewise linear function (2). Let u0 satisfies the hypothesis of
Definition 2.2 with u0 2 I0 for x < 0 and u0 2 I2 for x > 0. Then for any two-phase regular
solution .u; v; �/ of the TP S–U such that u 6� c in QT we have � 0

6 0 in .0; T /.

Proof. Let us suppose that there exists t such that � 0.t/ > 0. Then if v.�.t/; t/ > A we obtain a
contradiction by using Proposition 2.4. Therefore v.�.t/; t/ D A. Let us assume that there exists
a sequence ftngn2N converging to t such that v.�.tn/; tn/ > A. Again by continuity we have a
contradiction. Then the only possibility is that there exists an interval .t1; t2/ containing t such
that � 0.�/ > 0 and u.�.�/; �/ � c in .t1; t2/. Suppose that there exists s2 2 .t1; t2/ such that
ux.�.s2/

C; s2/ D 0. Hence, using the well-known results on the maximum principle (see e.g [13]),
we get that there is s2 2 .t1; t2/ such that u � c in V2 \ R � Œ0; s2�. Analogously, if there exists
s1 2 .t1; t2/ such that ux.�.s1/

C; s1/ D 0, thus we can find s1 2 .t1; t2/ such that u � c in
V1 \ R � Œs1; T �. Therefore we deduce that, if u 6� c in QT , necessarily ux.�.t/

C; t / > 0 or
ux.�.t/

�; t / > 0 for every t 2 .t1; t2/.
Let us suppose that u 6� c inQT . This contradicts the Rankine–Hugoniot condition (24). In fact

we get

0 D
Z t2

t1

˛.t/� 0.t/.c � c/ dt

D lim
ı!0C

1

ı

 

Z t2

t1

˛.t/

 

�

v
�

�.t/ � ı; t
�

� A
�

C
�

v
�

�.t/C ı; t
�

� A
�

!

dt

!

Z t2

t1

˛.t/.
�

2ux.�.t/
C; t

�

� 0ux.�.t/
�; t // dt (29)

for any nonnegative test function ˛.t/ 2 C 1
c ..t1; t2//.
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Since 0 < 0 and 2 > 0 (the coefficients given in (2)) the left hand side in (29) is strictly
positive then we obtain a contradiction.

In the following we always assume that � is the piecewise function defined in (2).
Using Proposition 2.6, we saw that the admissibility condition for the TP S–U implies that the

unstable phase tends to disappear. In the next proposition we shall prove that the condition � 0
6 0

is in fact equivalent to the admissibility condition.

PROPOSITION 2.7 Let u0 satisfies the hypothesis of Proposition 2.6. Let .u; v; �/ be a triple that
satisfies conditions i/, i i/, i i i/ of Definition 2.2 and the conditions I / and II / of Definition 2.5,
moreover assume that u 6� c in QT . Then the triple .u; v; �/ is a regular solution of the TP S–U if
and only if � 0

6 0 in .0; T /.

Proof. Using Proposition 2.6 it remains to prove that � 0
6 0 in .0; T / implies that the triple .u; v; �/

satisfies the entropy admissibility condition (14).
First of all, we observe that, the solution is regular in the regions V1 and V2. Therefore the

entropy admissibility condition (14) is equivalent to the admissibility condition (25) along the
boundary. Moreover, there exist the traces of the functions u and v along the interface  . Let
us introduce the notations u1.t/ D u.�.t/�; t /, u2.t/ D u.�.t/C; t /, v1

x.t/ D vx.�.t/
�; t /,

v2
x.t/ D vx.�.t/

C; t /. Therefore condition (25) becomes

Z T

0

˚

G
�

u1.t/
�

�G
�

u2.t/
�	

� 0.t/˛.t/ dt

C
Z T

0

�

g
�

�
�

u1.t/
�

�

v1
x.t/ � g

�

�
�

u2.t/
�

�

v2
x.t/

�

˛.t/ dt 6 0: (30)

for any test function ˛ 2 C 1
c ..0; T //, ˛ > 0. Let us recall that, for hypothesis, �.u1.t// D �.u2.t//

for any t 2 .0; T /.
Then, in order to prove (30) it is enough to check that

h.t/ WD
�

G
�

u1.t/
�

�G
�

u2.t/
�

�

� 0.t/C �
�

u2.t/
��

v1
x.t/ � v2

x.t/
�

6 0 (31)

for any t 2 .0; T /.
Let us observe that the Rankine–Hugoniot condition (24) becomes in this “regular” case

Z T

0

ˇ.t/� 0.t/.u1.t/ � u2.t// dt �
Z T

0

ˇ.t/
�

.v2
x.t/ � v1

x.t/
�

dt D 0 (32)

for any test function ˇ 2 C 1
c ..0; T //. Let us consider the set J WD ft 2 .0; T / W u1.t/ ¤ u2.t/g.

We deduce the classical Rankine–Hugoniot condition

� 0.t/ D v2
x.t/ � v1

x.t/

u1.t/ � u2.t/
(33)

for any t 2 J .
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Therefore, using � 0.t/ 6 0 and �.s/ 6 �.u2.t// D �.u1.t//, for any s 2 .u1.t/; u2.t//, we get

h.t/ D �� 0.t/
�

G
�

u2.t/
�

�G
�

u1.t/
�

� g
�

�
�

u2.t/
�

�

�

u2.t/ � u1.t/
�

�

D �� 0.t/

 

Z u2.t/

u1.t/

g
�

�.s/
�

� g
�

�
�

u2.t/
�

�

ds

!

6 0

for any t 2 J . Let us prove that J D Œ0; T �. Suppose that this is not true, then there exists an interval
I D .t1; t2/ such that u1 � u2 � c in I . Therefore, reasoning as in the proof of Proposition 2.6,
we obtain u � c in QT . This contradicts the hypothesis.

3. Existence results for two-phase stable–unstable problem

In this section we analyze the existence of solutions of the TP S–U. Obviously we can not expect
to have solutions for general initial data. In fact, in the left hand side of the interface  , we have to
consider a backward parabolic problem.

Here, we are interested in obtaining explicit solutions of the TP S–U without imposing the initial
condition in the semiaxis x 6 0. This problem is not well-posed since uniqueness could not be true.
In any case it is interesting to study the inverse problem in which we impose the final data u.�; T /
in the backward region.

Therefore, we search regular solutions of the two phase stable–unstable problem that satisfy all
the conditions of Definition 2.5 but we replace initial condition u.x; 0/ D u0.x/ for x 6 0 with
u.x; T / D uT .x/ for x 2 .�1; K�, whereK 6 0 is a fixed constant ad uT a fixed datum that takes
values in the unstable phase.

In the following we assume more regularity for the interface � and data u0, uT . More precisely
we give the following definition

DEFINITION 3.1 LetK be a fixed constant in .�1; 0�. Let u0 2 L1.RC/ such that u0 2 C 2.RC/,
u0

0 2 L1.RC/, u00
0 2 L1.RC/, u0 > c in R. Let uT 2 C 2..�1; K//, u0

T 2 L1.�1; K/,
u00

T 2 L1.�1K/, uT 2 .b; c/ in .�1; K�. By a regular two phase entropy solution of the problem

8

<

:

ut D �.u/xx in QT D R � .0; T /
u.x; 0/ D u0.x/ in R

C � f0g
u.x; T / D uT .x/ in .�1; K/ � f0g;

(34)

we mean a triple .u; v; �/ such that:
(i) u 2 L1.QT /; v 2 L2..0; T /IH 1

loc
.R//, v 2 C.V 1/ \ C.V 2/, vx 2 L1..0; T /; L1.R///

and � 2 C 1Cˇ .Œ0; T �/, ˇ > 1
2

, �.0/ D 0, �.T / D K, v.�.�/; �/ 2 C.Œ0; T �//,

lim
ı!0C

v.�.t C ı/; t/ D lim
ı!0�

v.�.t C ı/; t/ for every t 2 .0; T /I

(ii) we have:
�

u D ˇ0.v/ in V1;

u D ˇ2.v/ in V2;
(35)
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where

V1 WD
˚

.x; t/ 2 QT j � 1 < x < �.t/ ; t 2 .0; T /
	

; (36)

V2 WD
˚

.x; t/ 2 QT j �.t/ < x < C1 ; t 2 .0; T /
	

; (37)

and
 WD @V1 \ @V2 D f.�.t/; t/ j t 2 Œ0; T �g I (38)

u 2 C 2;1
�

V1

�

\ C 2;1
�

V2

�

, ux 2 L1.QT /, and for any t 2 .0; T / there exist finite the limits

lim
�!0C

ux.�.t/˙ �; t/ DW ux.�.t/
˙; t /:

(iii) the function u fulfills the equation ut D �.u/xx in the regions V1 and V2; with u.�; 0/ D u0

in R and u.�; T / D uT in .�1; K/;
(iv) the Rankine–Hugoniot condition (29) is satisfied;
(v) � 0.t/ 6 0 for every t 2 .0; T /.

REMARK 3.2 Using Proposition 2.7 it follows that a two phase entropy solution of problem (34) it
is a two phase entropy solution of problem (1) with initial data

u0 D
�

u0 in R
C

u.�; 0/ in R
�:

REMARK 3.3 If we assume that v.�.�/; �/ ¤ A in .0; T /, we can replace the integral Rankine–
Hugoniot condition with the more classical condition (23).

The introduction of the previous problem could be useful for studying inverse problems.
Nevertheless, the unique scope of this paper is to obtain explicit entropy solutions of the two-phase
problem when one of the phases is the unstable one.

We shall see, in general, that if a solution of the two-phase problem (34) exists this is not unique.
In order to study this problem we fix a decreasing function � 2 C 1Cˇ ..0; T //, ˇ > 1

2
and we search

an entropy two-phase solution of problem (34) with K D �.T /. Moreover we suppose that

sup
x2.�1;K/

uT .x/ < c; inf
x2.0;1/

u0.x/ > c

and we search a solution such that v.�.t/; t/ ¤ A for every t 2 .0; T /.
In order to consider the two phase problem (34) we need some results on the Dirichlet-to-

Neumann map in Time-dependent Domains proved in [12] (see also [11]). More precisely

THEOREM 3.4 Let �.t/ 2 C 1..0; T //, q0 2 C 1.Œ0;1// such that q0
0 2 L1..0;1//, g0 2

C 1.Œ0; T �/. Let us denote with q.x; t/ the solution of the Dirichlet problem
8

<

:

qt D qxx in V�

q.�.t/; t/ D g0.t/ in .0; T /
q.x; 0/ D q0.x/ in R

(39)

where V� WD
˚

.x; t/ 2 QT j �.t/ < x < C1 ; t 2 .0; T /
	

. Then, the function f .t/ WD qx.�.t/; t/

is characterized as the solution of the following Volterra’s equation

�f .t/ D N.t/C
Z t

0

K.s; t/f .s/ ds (40)
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where the integral kernel is defined by

K.s; t/ D
p
�

2

�.t/ � �.s/
t � s

e� .�.t/��.s//2

4.t�s/

.t � s/ 1
2

; 0 < s < t < T

and the function N.t/ that depends on the initial-boundary value is given by

N.t/ D
p
�

2

4

1p
t

Z 1

0

e� .�.t/�x/2

4t q0
0.x/ dx �

Z t

0

e� .�.t/��.s//2

4.t�s/

.t � s/ 1
2

g0
0.s/ ds

3

5 :

We shall obtain a solution of the two phase problem (34) by imposing the Rankine–Hugoniot
condition (23) and the continuity of the function v D �.u/ along the interface. Using the results
of Theorem 3.4 we shall see that the solution of the original problem is associated to a generalized
Abel’s problem.

We proceed as follows. We have to consider the following parabolic problems
8

<

:

ut D 0uxx in V1;

u.�.t/; t/ D g�
0 .t/ in .0; T /;

u.x; T / D uT in .�1; K/;

(41)

8

<

:

ut D 2uxx in V2;

u.�.t/; t/ D gC
0 .t/ in .0; T /;

u.x; 0/ D u0 in R;

(42)

where V1 and V2 are given in (20), gC
0 , g�

0 are unknown of the problem that are related each other
by the continuity condition �.u.�.t/�; t // D �.u.�.t/C; t // in .0; T /. More precisely, we have

0g
�
0 .t/C ı0 D 2g

C
0 .t/C ı2 DW m.t/:

Finally we determinate the unknown function m.t/ by using the Dirichlet–Neumann maps
associated to the problems (41) and (42) and imposing the Rankine–Hugoniot condition (23). We
shall obtain such Dirichlet–Neumann maps by standard change of variable. More precisely, we have

PROPOSITION 3.5 Let uC be the solution of the parabolic problem (42). Then the function f C.t/ D
uC

x .�.t/; t/ D f2.2t /, where f2 is the solution of the following Volterra problem

�f2.�/ D N2.�/C
Z �

0

K2.s; �/f2.�/ ds; 0 6 � 6 2T (43)

with the kernel

K2.s; �/ D
p
�

2

�.�/ � �.s/
� � s

e� .�.�/��.s//2

4.��s/

.� � s/ 1
2

; 0 < s < � < 2T;

�.�/ D �. �
2
/ and

N2.�/ D
p
�

2

4

1p
�

Z 1

0

e� .�.�/�x/2

4� u0
0.x/ dx �

Z �

0

e� .�.�/��.s//2

4.��s/

.� � s/ 1
2

gC
0

0
. s

2
/

2

ds

3

5
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Proof. This is consequence of Theorem 3.4.
Let us consider the function w.y; �/ WD uC.y; �

2
/ then this is solution of the problem

8

<

:

w� D wyy in V 2;

w.�.�/; �/ D gC
0 .

�
2
/ in .0; 2T /;

w.y; 0/ D u0.y/ in R;

(44)

where �.�/ D �. �
2
/ is defined in .0; 2T / and

V 2 D
˚

.x; �/ 2 Q2T j �.�/ < x < C1 ; � 2 .0; 2T /
	

:

Therefore f2.�/ D wx.�.�/; �/ is characterized by Theorem 3.4. Obviously f C.t/ D f2.2t / then
we obtain the thesis.

Analogously we get the Dirichlet–Neumann map for the parabolic problem (41). More precisely

PROPOSITION 3.6 Let u� be the solution of the parabolic problem (41). Then the function f �.t/ D
u�

x .�.t/; t/ D �f1.j0j.T � t //, where f1 is the solution of the following Volterra problem

�f1.�/ D N1.�/C
Z �

0

K1.s; �/f1.�/ ds; 0 6 � 6 j0jT (45)

with the kernel

K1.s; �/ D
p
�

2

�.�/ � �.s/
� � s

e� .�.�/��.s//2

4.��s/

.� � s/ 1
2

; 0 < s < � < j0jT;

�.�/ D K � �.T � �
j0j / and

N1.�/ D
p
�

2

4� 1p
�

Z 1

0

e� .�.�/�x/2

4� u0
T .K � x/ dx C

Z �

0

e� .�.�/��.s//2

4.��s/

.� � s/ 1
2

g�
0

0.T � s
j0j /

j0j ds

3

5 :

Proof. In this case we consider the function �.y; �/ WD u�.K�y; T � �
j0j /. It is easy to check that

� satisfies the following parabolic problem

8

<

:

�� D �yy in V 1;

�.�.�/; �/ D g�
0 .T � �

j0j / in .0; j0jT /;
�.y; 0/ D u0.K � y/ in R;

(46)

where

V 1 D
˚

.x; �/ 2 Qj0jT j �.�/ < x < C1 ; � 2 .0; j0jT /
	

:

Again we use Theorem 3.4 and the relation f �.t/ D �f1.j0j.T � t // with f1.�/ D �x.�.�/; �/

to obtain the thesis.
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REMARK 3.7 In order to determinate the unknown m.t/ D v.�.t/; t// we impose the Rankine–
Hugoniot condition (23) that for Propositions 3.5, 3.6 becomes

� 0.t/ D
j0jf1

�

j0j.T � t /
�

� 2f2.2t /

gC.t/ � g�.t/
: (47)

We shall prove that equation (47) could be written as a generalized Abel’s equation.

First of all we have to enunciate this result on the Volterra equation (for a proof see, e.g., [43]).

PROPOSITION 3.8 Let K be a continuous function defined in CT WD f.t; s/ 2 .0; T / � .0; T / W
0 < s < tg and M be a positive constant such that

jK.t; s/j 6
Mp
t � s

for every .t; s/ 2 CT :

Let us consider the operator L W C.Œ0; T �/ ! C.Œ0; T �/ defined by

L
�

x.t/
�

D x.t/ �
Z t

0

K.t; s/x.s/ ds: (48)

Then, there exists a continuous function H.t; s/ defined in CT such that

x.t/ D L
�

x.t/
�

C
Z t

0

H.t; s/L
�

x.s/
�

ds; (49)

with H.t; s/ D K.t; s/CG.t; s/ in CT and G continuous in C T .

REMARK 3.9 Following the proof given in [43] (Lemma 2.7) we obtain that

G.t; s/ D
C1
X

iD2

Hi .t; s/ (50)

where
H1.t; s/ D K.t; s/I.0;t/.s/; (51)

(we denote, again, with IE the characteristic function of the set E) and Hn, n > 2 are defined
recursively by

Hn.t; s/ D
Z T

0

Hn�1.t; z/H1.z; s/ dz:

Moreover the convergence in (50) is uniform in Œ0; T � � Œ0; T �.
More precisely in [43] it is proved by induction that

jHnC2.t; s/j 6
M nC2�

nC1
2 � .1

2
/

� .2Cn
2
/

.t � s/n
2 I.0;t/.s/ (52)

for every n 2 N, where � is the classical Gamma function.
Let us put h1.t; s/ D H1.t; s/

p
t � s, suppose that there exist ˛ < 1

2
and S > 0 such that

j@th1.t; s/j; j@sh1.t; s/j 6
S

.t � s/˛ in CT (53)
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then using the same technics that give the estimates (52) we obtain that there exists a constant S
such that

j@tG.t; s/j; j@sG.t; s/j 6
S

.t � s/ 1
2

in CT : (54)

Using Proposition 3.8 we can give the functions f1 and f2 in the Volterra equation (43) and (45)
in a more explicit way. More precisely we have

PROPOSITION 3.10 There exists an Holder continuous function G2.t; s/, of order 1
2

, defined in
C 2T , satisfying (54), such that

f2.t/ D N2.t/

�
C 1

�2

Z t

0

�

K2.t; s/CG2.t; s/
�

N2.s/ ds in .0; 2T / (55)

where f2 and N2 are the functions defined in Proposition 3.6.

Proof. It is enough to use Proposition 3.8 and Remark 3.9. In fact by a straightforward calculation
we obtain that there exists a constant M2 such that

K2.s; t/ 6
M2p
t � s

in Cj2jT :

Moreover, since � 2 C 1Cˇ , ˇ > 1
2

we obtain that h1.t; s/ D
p
t � sK2.t; s/ satisfies estimate (53)

with ˛ D 1 � ˇ < 1
2

. Therefore the thesis is consequence of the equation (43)

Analogously we get

PROPOSITION 3.11 There exists an Holder continuous function G1.t; s/, of order 1
2

, defined in
C j0jT , satisfying (54), such that

f1.t/ D N1.t/

�
C 1

�2

Z t

0

�

K1.t; s/CG1.t; s/
�

N1.s/ ds in .0; j0jT / (56)

where f1 and N1 are the functions defined in Proposition 3.5.

Using the previous results the Rankine–Hugoniot equation (47) becomes

� 0.t/

�

m.t/ � ı2

2

� m.t/ � ı0

0

�

D j0jN1.j0j.T � t //
�

C j0j
�2

Z j0j.T �t/

0

.K1.j0j.T � t /; s/CG1

�

j0j.T � t /; s/
�

N1.s/ ds

� 2N2.2t /

�
� 2

�2

Z 2t

0

�

K2.2t; s/CG2.2t; s/
�

N2.s/ ds (57)

for every t 2 .0; T /. Let us observe that N1 and N2 depend on the unknown m.t/. Then we have
to analyze in detail the previous equation in order to state that this is equivalent to an Abel’s type
equation for the function m0.t/. This is the content of the following
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THEOREM 3.12 Equation (57) is equivalent to the following generalized first order Abel’s equation:

Z t

0

k1.t; s/p
t � s

m0.s/ ds C
Z T

t

k2.t; s/p
s � t

m0.s/ ds D h.t/ (58)

where k1, respectively k2, is an Holder continuos function of order 1
2

defined in the set C T ,

respectively Œ0; T � � Œ0; T � n CT and h.t/ is a function in C
1
2 .Œ0; T �/ that depends on the initial

data u0
0, u0

T and m.0/.

In order to prove the previous theorem we introduce the following lemmas.

LEMMA 3.13 Let g1, g2 Holder continuous functions of order  defined in CT . Let us consider the
function

h.t; s/ D
Z t

s

g1.t; z/g2.z; s/p
t � z

p
z � s

dz;

then h is Holder continuous of order  in CT .

Let us fix .t; s/ 2 CT , consider for every � 2 .s � t; T � t / the following change of variable
w D f .w/ D s C .w � s/ t�sC�

t�s
. We get

h.t C �; s/ D
Z t

s

g1

�

t C �; f .w/
�

g2

�

f .w/; s
�

p
t � w

p
w � s

dw: (59)

Therefore

h.t C �; s/ � h.t; s/ D
Z t

s

g1

�

t C �; f .w/
�

g2.f .w/; s/ � g1.t; w/g2.w; s/p
t � w

p
w � s

dw:

Let us estimate the numerator in the integrand of (59). We get

ˇ

ˇg1

�

t C �; f .w/
�

g2

�

f .w/; s
�

� g1.t; w/g2.w; s/
ˇ

ˇ

6
ˇ

ˇg2

�

f .w/; s
�
ˇ

ˇ

ˇ

ˇg1

�

t C �; f .w/
�

� g1.t; w/
ˇ

ˇC jg1.t; w/j
ˇ

ˇg2

�

f .w/; s
�

� g2.w; s/
ˇ

ˇ

6 jg2.f .w/; s/j
�

ˇ

ˇg1

�

t C �; f .w/
�

� g1

�

t; f .w/
�ˇ

ˇC
ˇ

ˇg1

�

t; f .w/
�

� g1.t; w/
ˇ

ˇ

�

C jg1.t; w/jjg2.f .w/; s/ � g2.w; s/j:

Since g1 and g2 are Holder continuous, we obtain

ˇ

ˇg1

�

t C �; f .w/
�

g2

�

f .w/; s
�

� g1.t; w/g2.w; s/
ˇ

ˇ 6 P.j� j C jf .w/ � wj /

D P

�

j� j C
ˇ

ˇ

ˇ

ˇ

�.w � s/
t � s

ˇ

ˇ

ˇ

ˇ

�

6 2P j� j ;

where P is a constant that does not depend on s; t; � . This implies that h.�; s/ is Holder continuous
of order  uniformly in s. Analogously we can prove that h.t; �/ is Holder continuous of order 
uniformly in t .
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LEMMA 3.14 Let � 2 C 1Cˇ .Œ0; T �/, ˇ > 1
2

, f 2 C
1
2 .Œ0; T �/. Let us consider the following

function

g.t/ WD
Z t

0

K.t; s/f .s/ ds;

where

K.t; s/ D �.t/ � �.s/
t � s

e� .�.t/��.s//2

4.t�s/

.t � s/ 1
2

: (60)

Then g 2 C 1
2 .Œ0; T �/:

Proof. Let t1; t2 2 Œ0; T �. It is not restrictive to assume t1 < t2. By changing variable, we have

g.t/ D
Z t

0

�.t/ � �.t � y/
y

3
2

e� .�.t/��.t�y//2

4y f .t � y/ dy: (61)

In order to simplify the notations we introduce the functions

g1.t; y/ D �.t/ � �.t � y/
y

3
2

; g2.t; y/ D e� .�.t/��.t�y//2

4y

defined in CT . Then

jg.t2/ � g.t1/j D
ˇ

ˇ

ˇ

Z t2

t1

g1.t2; y/g2.t2; y/f .t2 � y/ dy

C
Z t1

0

g1.t2; y/g2.t2; y/f .t2 � y/ � g1.t1; y/g2.t1; y/f .t1 � y/
ˇ

ˇ

ˇ
: (62)

Observe that, by hypothesis, there exists a constant H1 such that

ˇ

ˇg1.t2; y/g2.t2; y/f .t2 � y/ � g1.t1; y/g2.t1; y/f .t1 � y/
ˇ

ˇ 6
H1p
y

then
ˇ

ˇ

ˇ

ˇ

Z t2

t1

g1.t2; y/g2.t2; y/f .t2 � y/ dy
ˇ

ˇ

ˇ

ˇ

6 H2

p
t2 � t1; (63)

where H2 is a proper constant.
Let us consider in .0; t1/ the term

g1.t2; y/g2.t2; y/f .t2 � y/ � g1.t1; y/g2.t1; y/f .t1 � y/
D g1.t1; y/g2.t1; y/

�

f .t2 � y/ � f .t1 � y/
�

C
�

g1.t2; y/g2.t2; y/ � g1.t1; y/g2.t1; y/
�

f .t2 � y/:

We can choose H3 such that

ˇ

ˇg1.t1; y/g2.t1; y/
�

f .t2 � y/ � f .t1 � y/
�
ˇ

ˇ 6
H3p
y

p
t2 � t1;
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then there exists a constant H4, that does not depend on t1, such that
ˇ

ˇ

ˇ

ˇ

Z t1

0

g1.t1; y/g2.t1; y/
�

f .t2 � y/ � f .t1 � y/
�

dy

ˇ

ˇ

ˇ

ˇ

6

Z t1

0

H1p
y

p
t2 � t1 dy 6 H4

p
t2 � t1:

(64)
It remains to estimate the term

�

g1.t2; y/g2.t2; y/ � g1.t1; y/g2.t1; y/
�

f .t2 � y/
D Œ.g1.t2; y/ � g1.t1; y/�g2.t2; y//f .t2 � y/

C Œ.g2.t2; y/ � g2.t1; y/�g1.t1; y//f .t2 � y/:

First of all we consider g1.t2; y/ � g1.t1; y/. Let us apply, for every y 2 .0; t1/, the Lagrange
theorem to the function s.�; t / D �.�/��.��y/

y
3
2

. Then, for every y 2 .0; t1/, there exists ty 2 .t1; t2/

such that

jg1.t2; y/ � g1.t1; y/j D
ˇ

ˇ

ˇ

ˇ

ˇ

� 0.ty/ � � 0.ty � y/
y

3
2

ˇ

ˇ

ˇ

ˇ

ˇ

jt2 � t1j 6
H5

y
3
2 �ˇ

jt2 � t1j

where again H5 is a suitable constant. Since ˇ > 1
2

we deduce that there exists a constant H6 such
that

ˇ

ˇ

ˇ

ˇ

Z t1

0

Œg1.t2; y/ � g1.t1; y/�g2.t2; y//f .t2 � y/ dy
ˇ

ˇ

ˇ

ˇ

6 H6jt2 � t1j: (65)

Finally we have to consider the term g2.t2; y/ � g2.t1; y/. Again we apply the Lagrange theorem

to the function l.�; y/ D e
�.�.�/��.��y//2

4y , obtaining that for every y 2 .0; t1/ there exists t 0y 2 .t1; t2/
such that

jg2.t2; y/ � g2.t1; y/j D
ˇ

ˇ

ˇ

ˇ

e
�.�.t0

y /��.t0
y �y//2

4y
.�.t 0y/ � �.t 0y � y//.� 0.t 0y/ � � 0.t 0y � y//

2y

ˇ

ˇ

ˇ

ˇ

jt2 � t1j:

Hence, we deduce
Z t1

0

Œ.g2.t2; y/ � g2.t1; y/�g1.t1; y//f .t2 � y/ dy 6 H7jt2 � t1j (66)

with a proper constant H7.
Obviously the constants H1; : : : ;H7 depend only on the Holder constants of � 0, f and the

Lipschitz constant of � . Therefore, using (61)–(66), we obtain the claim.

LEMMA 3.15 Let � 2 C 1Cˇ .Œ0; T �/, ˇ > 1
2

, f 2 C
1
2 .Œ0; T �/. Let K the function defined in (60)

and G.t; s/ the associated function obtained in Proposition 3.8 and Remark 3.9. Then the function

v.t/ WD
Z t

0

G.t; s/f .s/ ds;

is in the space C
1
2 .Œ0; T �/:

Proof. We easily have this result. In fact, � 2 C 1Cˇ , ˇ > 1
2

implies thatG.�; s/ is Holder continuous
with exponent 1

2
uniformly with respect to the variable s.
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Proof of Theorem 3.10. In order to prove this result we have to separate the terms that depend
on m0 and the terms that do not depend on it. Thus, it is useful to rewrite N1 D N 1

1 C N 2
1 and

N2 D N 1
2 CN 2

2 where N 1
i , i D 1; 2 depend only on the initial data u0

0 and u0
T . Since g�

0
0 D m0.t/

0

and gC
0

0 D m0.t/
2

, we get

N 1
1 .t/ D �

p
�p
t

Z 1

0

e� .�.t/�x/2

4t u0
T .K � x/ dx in .0; j0jT /;

N 1
2 .t/ D

p
�p
t

Z 1

0

e� .�.t/�x/2

4t u0
0.x/ dx in .0; 2T /

and

N 2
1 .t/ D ��

Z t

0

e� .�.t/��.s//2

4.t�s/

.t � s/ 1
2

m0.T � s
j0j /

j0j2 ds in .0; j0jT /;

N 2
2 .t/ D ��

Z t

0

e� .�.t/��.s//2

4.t�s/

.t � s/ 1
2

m0. s
2
/

2
2

ds in .0; 2T /

where � and � are defined in Proposition 3.6 and 3.5.
Let us introduce the following twelve functions

s1.t/ D j0j
�
N 1

1 .j0j.T � t //;

s2.t/ D �2

�
N 1

2 .2t /;

s3.t/ D j0j
�2

Z j0j.T �t/

0

K1.j0j.T � t /; s/N 1
1 .s/ ds;

s4.t/ D � 2

�2

Z 2t

0

K2.2t; s/N
1
2 .s/ ds;

s5.t/ D j0j
�2

Z j0j.T �t/

0

G1.j0j.T � t /; s/N 1
1 .s/ ds

s6.t/ D � 2

�2

Z 2t

0

G2.2t; s/N
1
2 .s/ ds;

s7.t/ D j0j
�
N 2

1 .j0j.T � t //;

s8.t/ D �2

�
N 2

2 .2t /;

s9.t/ D j0j
�2

Z j0j.T �t/

0

K1.j0j.T � t /; s/N 2
1 .s/ ds;

s10.t/ D � 2

�2

Z 2t

0

K2.2t; s/N
2
2 .s/ ds;

s11.t/ D j0j
�2

Z j0j.T �t/

0

G1.j0j.T � t /; s/N 2
1 .s/ ds;



310 A. TERRACINA

s12.t/ D � 2

�2

Z 2t

0

G2.2t; s/N
2
2 .s/ ds:

Therefore the right hand side of (57) is equal to
P12

iD1 si .t/ in Œ0; T �. Observe that the functions si ,
i D 1; : : : ; 6 do not depend on the function m.t/.

Let us analyze the terms s1 and s2. It is clear that these have the same regularity of N 1
1 .t/ and

N 1
2 .t/. By changing variable we can write

N 1
2 .t/ D C2

Z C1

��. t
2

/

2
p

t

e�y2

u0
0

�

2
p
ty C �

�

t

2

��

dy

where C2 is a proper constant. Then, we easily obtain, using u00
0 2 L1..0;1// and �.0/ D 0, the

following estimate
d

dt
N 1

2 .t/ 6
C 2p
t

in .0; 2T �

where C 2 is a suitable constant. This implies that N 1
2 .t/ is in the space C

1
2 .Œ0; 2T �/.

Analogously with the change of variable y D
xC�.T � t

j0j /�K

2
p

t
we get

N 1
2 .t/ D C1

Z C1
�.T � t

j0j /�K

2
p

t

e�y2

u0
T

�

�2
p
ty C �

�

T � t

j0j

��

dy

and using the conditions �.T / D K, u00
T 2 L1..�1; K// we obtain that N 1

1 is in the space

C
1
2 .Œ0; j0jT �/.

In order to prove that the functions s3 and s4 are inC
1
2 .Œ0; T �/ it is enough to apply Lemma 3.14.

The Holder continuity of the functions s5 and s6 are consequence of Lemma 3.15.
Let us analyze the terms s7; : : : s12 involving the unknown function m.t/.
We have

s7.t/ D �j0j
Z j0j.T �t/

0

e
�.�.j0j.T �t//��.s//2

4Œj0j.T �t/�s�

.j0j.T � t / � s/ 1
2

m0.T � s
j0j /

j0j2 ds:

Introducing the variable y D T � s
j0j and using the relation �.j0j.T � z// D K � �.z/ we obtain

the following

s7.t/ D �
Z T

t

e
�.�.y/��.t//2

4Œj0j.y�t/�

j0j 1
2 .y � t / 1

2

m0.y/ dy: (67)

The term s8 is given by a similar singular integral kernel. More precisely we have

s8.t/ D
Z 2t

0

e
�.�.2t/��.s//2

4.2t�s�

.2t � s/ 1
2

m0. s
2
/

2

ds:

Again by changing variable and using the definition of � this becomes

s8.t/ D
Z t

0

e
�.�.y/��.t//2

4Œ2y�


1
2

2 .t � y/ 1
2

m0.y/ dy: (68)
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Let us consider term s10.t/. We have

s10.t/ D 1

�

Z 2t

0

K2.2t; s/

2

4

Z s

0

e
�.�.s/��.�//2

4.s��/

.s � �/ 1
2

m0. �
2
/

2

d�

3

5 ds:

We use the change of variables s D y and � D 2z. We obtain

s10.t/ D 
1
2

2

�

Z t

0

K2.2t; 2y/

2

6

4

Z s

0

e
�.�.2y/��.2z//2

42.y�z/

.y � z/ 1
2

m0.z/ dz

3

7

5
dy

Utilizing the definition of � and changing the order of integration, s10 becomes

2
1
2

�

Z t

0

2

4

Z t

z

K2.2t; 2y/
e

�.�.y/��.z//2

42.y�z/

.y � z/ 1
2

dy

3

5m0.z/ dz: (69)

Denoting with QK2.t; z/ the function in the square brackets of (69), we observe that this is an Holder
continuous function defined in CT by Lemma 3.13.

With similar techniques we can prove that there exist three Holder continuous functions of order
1
2

; QK1, QG1, defined in Œ0; T � � Œ0; T � n CT and QG2 defined in C T such that

s9.t/ D
Z T

t

QK1.t; z/m
0.z/ dz; (70)

s11.t/ D
Z T

t

QG1.t; z/m
0.z/ dz; (71)

s12.t/ D
Z t

0

QG2.t; z/m
0.z/ dz: (72)

Considering equation (57), we can write m.t/ D m.0/ C
R t

0
m0.z/ dz. Therefore the assertion of

the Theorem comes from the Holder regularity of the functions � 0, s1; : : : ; s6 and from the formulas
(67)–(72).

REMARK 3.16 Observe that from the computations given in the proof of Theorem 3.10 we obtain
k1.t; t/ D � 1

j0j
1
2

and k2.t; t/ D 1


1
2

2

. More precisely these values are obtained in (67) and (68).

Generalized Abel’ s equation like (58) are strictly related to the solutions of singular integral
equations. We do not analyze in details this kind of problems we refer to the book of Samko, Kilbas
& Marichev ([38]) for a complete treatise of the subject and to [14] and [27] for the singular integral
equations. We just recall that, choosing properly the class of the solutions, it can be proved the
Noether nature of the operator

A. / D
Z t

0

k1.t; s/p
t � s

 .s/ ds C
Z T

t

k2.t; s/p
s � t

 .s/ ds: (73)
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In particular in [38] it is proved that if ki are Holder continuos of order  > 1
2

, denoting with

I
1
2

�

Lp.0; T /
�

D
�

v 2 Lp.0; T / W there exists � 2 Lp.0; T / such that v.t/ D
Z t

0

�.s/p
t � s

ds

�

then A W Lp.0; T / ! I
1
2 .Lp.0; T // is a Noether operator when p < 2 (see also [37] for a

generalization in the case p > 2).
Unfortunately in our situation ki are Holder continuos at most of order 1

2
then we can not apply

this result. On the other hand, in this case, we can apply a result proved again in [38] which gives
the “algebraic Noether nature” of equation (58). In order to enunciate this result we use Remark
3.16 and rewrite equation (58) as

1
p
2

Z t

0

m0.s/p
t � s

ds � 1
p

j0j

Z T

t

m0.s/p
s � t

ds C
Z T

0

T .t; s/m0.s/ ds D h.t/ (74)

where T is a regular function in f.t; s/ 2 Œ0; T � � Œ0; T � W t ¤ sg which has a singularity along the
diagonal of order strictly lesser that 1

jt�sj
1
2

. In particular by straightforward calculations it satisfies

the hypothesis of Lemma 31.3 in [38].
In this case equation (74) is well posed when m0 is taken in the space H� and h is in the space

H�
1
2

, where

H�
1
2

WD
[

1
2 <�61;�1;�22.0;1/

H�
0 .�1; �2/;

H�
0 .�1; �2/ WD

n

f .t/ D t1��1.T � t /1��2g.t/ W g 2 C �.Œ0; T �/; g.0/ D g.T / D 0
o

and

H� WD
[

0<�61;�1;�22.0;1/

H�
0 .�1; �2/:

In some sense the space H�
1
2

corresponds to the space of Holder continuous functions of order

strictly bigger than 1
2

except on the end points t D 0 and t D T where the functions can also be
singular. Analogously, the space H� corresponds to the space of Holder continuous functions of
any arbitrary order except on the end points t D 0 and t D T , in which singularities are allowed.
These are good spaces for studying the Abel’s equation (74) since it can be proved (see [38]) that
the operators

A1. / D
Z t

0

 .s/p
t � s

ds; A2. / D
Z T

t

 .s/p
s � t

ds;

are well defined from H� to H�
1
2

.

In our case we easily obtain that h.t/ is in the spaceH�
1
2

. In fact, for hypothesis � 0 2 C ˇ .Œ0; T �/,

with ˇ > 1
2

. Moreover we obtained in the proof of Theorem 3.10 that N 1
1 , N 2

1 are not only Holder
continuous function of order 1

2
but also differentiable in .0; 1/ with derivative that has a singularity

of order 1
2

at the end point t D 0 or t D T . Hence we get that s1; � � � s6 are in the space H�
1
2

.

Therefore we can apply the following result obtained in [38, p. 650, Theorem 31.11]
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THEOREM 3.17 Equation (74) is solvable in H� if and only if

Z T

0

h.s/ j .s/ ds D 0; j D 1; � � � ; k;

where  j is a complete system of solutions of the homogenous equation

1
p
2

Z T

t

m0.s/p
t � s

ds � 1
p

j0j

Z t

0

m0.s/p
s � t

ds C
Z T

0

T .t; s/m0.s/ ds D 0: (75)

Here k is the finite dimension of the subspace. Moreover, for every j D 1; � � � ; k,  j has the
following form

 j .t/ D
 �

j .t/

t
1
2 .T � t / 1

2

with  �
j .t/ an Holder continuous function of any order in Œ0; T �, .

The difference between numbers of linearly independent solutions of equations (74) and (75) is
equal to 1.

REMARK 3.18 Observe that, choosing properly the data u0 and uT , previous result allows to get
explicit entropy solutions of the forward–backward parabolic problem in which the presence of the
unstable phase is non-trivial. It is important to point out that a solution .u; v/ obtained before is also
an entropy solution of the original problem (34) only if v.�.t/; t/ 2 .A;B/ for every t 2 Œ0; T �.
When such a solution exists Theorem 3.17 gives also non-uniqueness.

In general we can choose � 6 T , such that v.�.t/; t/ 2 .A;B/ for every t 2 Œ0; ��. In this
manner we have an entropy solution of the forward–backward equation in the strip R � Œ0; ��.

REMARK 3.19 The case �.�/ � 0 is more easier since we can choose in (74) T .t; s/ � 0. In this
context we can obtain more satisfactory results for the generalized Abel’s equation (see [38]).

REMARK 3.20 The analysis handled in this section could be useful to study forward parabolic
equation with discontinuous coefficients along a given interface.
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