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In this article we are interested in studying regularity up to the boundary for one-phase singularly

perturbed fully nonlinear elliptic problems, associated to high energy activation potentials, namely

F.X; ru"; D2u"/ D �".u"/ in ˝ � R
n

where �" behaves asymptotically as the Dirac measure ı0 as " goes to zero. We shall establish global

gradient bounds independent of the parameter ".
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1. Introduction

Throughout the last three decades or so, variational problems involving singular PDEs has received

a warm attention as they often come from the theory of critical points of non-differentiable

functionals. The pioneering work of Alt-Caffarelli [1] marks the beginning of such a theory by

carrying out the variational analysis of the minimization problem

min

Z

˝

�
jrvj2 C �fv>0g

�
dX;

among competing functions with the same non-negative Dirichlet boundary condition.

Since the very beginning it has been well established that such discontinuous minimization

problems could be treated by penalization methods. Indeed, Lewy-Stampacchia, Kinderlehrer-

Nirenberg, Caffarelli among others were the precursors of such an approach to the study of problem

�u" D �".u"/ over of 70s and 80s. Linear problems in non-divergence form was firstly considered

by Berestycki et al in [2]. Teixeira in [7] started the journey of investigation into fully nonlinear

elliptic equations via singular perturbation methods:

F.X; D2u"/ D �".u"/ in ˝; (1.1)
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where �" � "�1�.0;"/. The problem appears in nonlinear formulations of high energy activation

models, see [6] and [7]. It can also be employed in the analysis of overdetermined problems as

follows. Given ˝ � R
n a domain and a non-negative function 'W ˝ ! R, it plays a crucial role

in Geometry and Mathematical Physics the question of finding a compact hyper-surface @˝ 0 � ˝

such that the following elliptic boundary value problem
8
<
:

F.X; ru; D2u/ D 0 in ˝n˝ 0;

u D ' on @˝;

u D 0 on @˝ 0;

(1.2)

can be solved.

Hereafter in this paper, F W ˝�R
n�Sym.n/ ! R is a fully nonlinear uniformly elliptic operator,

i.e, there exist constants � > � > 0 such that

�kN k 6 F.X; �!p ; M C N / � F.X; �!p ; M/ 6 �kN k; (Unif. Ellip.)

for all M; N 2 Sym.n/; N > 0; �!p 2 R
n and X 2 ˝. As usual Sym.n/ denotes the set of all n�n

symmetric matrices. Moreover, we must to observe the mapping M 7! F.X; �!p ; M/ is monotone

increasing in the natural order on Sym.n/ and Lipschitz. Under such a structural condition, the

theory of viscosity solutions provides a suitable notion for weak solutions.

DEFINITION 1.1 (Viscosity solution) For an operator F W ˝ �R
n �Sym.n/ ! R, we say a function

u 2 C 0.˝/ is a viscosity supersolution (resp. subsolution) to

F.X; ru; D2u/ D f .X/ in ˝;

if whenever we touch the graph of u by below (resp. by above) at a point Y 2 ˝ by a smooth

function �, there holds

F.Y; r�.Y /; D2�.Y // 6 f .Y / .resp. > f .Y //:

Finally, we say u is a viscosity solution if it is simultaneously a viscosity supersolution and

subsolution.

REMARK 1.2 All functions considered in the paper will be assumed continuous in ˝, namely C -

viscosity solutions, see Caffarellli-Cabré [3] and Teixeira [7]. However, we also can to consider

Lp-viscosity notion for such a solutions, see for example Winter [8].

In [6], several analytical and geometrical properties of such a fully nonlinear singular problem

(1.1) were established. Notwithstanding, regularity up to the boundary for approximating solutions

has not been proven in the literature yet. This is the key goal of the present article. More precisely,

we shall prove a uniform gradient estimate up to the boundary for viscosity solutions of the singular

perturbation problem
�

F.X; ru"; D2u"/ D �".u"/ in ˝;

u" D ' on @˝;
(E")

where the singular reaction term �".s/ D 1
"
�
�

s
"

�
for some non-negative � 2 C 1

0 .Œ0; 1�/, a parameter

" > 0, a non-negative ' 2 C 1;
 .˝/, with 0 < 
 < 1, and, a bounded C 1;1 domain ˝ (or

@˝ for short). Throughout this paper we will assume the following bounds: k'kC 1;
 .˝/ 6 A and

k�kL1.Œ0;1�/ 6 B.
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THEOREM 1.3 (Global uniform Lipschitz estimate) Let u" be a viscosity solution to the singular

perturbation problem (E"). Then under the assumptions (F1)–(F 3) there exists a constant C D
C.n; �; �; b; A; B; ˝/ > 0 independent of ", such that

kru"kL1.˝/ 6 C:

Our new estimate allows us to obtain existence for corresponding free boundary problem (1.2),

keeping the prescribed boundary value data, see Theorem 2.8. Finally, we should emphasize our

estimate generalizes the local gradient bound proven in [7], see also [6] for a rather complete local

analysis of such a free boundary problem.

Although we have chosen to carry out the global analysis for the homogeneous case, the results

presented in this paper can be adapted, under some natural adjustments, for the non-homogeneous

case, �
F.X; ru"; D2u"/ D �".u"/ C f".X/ in ˝;

u" D ' on @˝;

with c 6 f" 6 c�1.

Our approach follows the pioneering work of Gurevich [4], where it is introduced a new

strategy to investigate uniform estimate up to boundary of two-phase singular perturbation problems

involving linear elliptic operators of type Lu D @i .aij @j u/: This method has been successfully

applied by Karakhanyan in [5] for the one-phase problem in the case involving nonlinear

singular/degenerate elliptic operators of p-Laplacian type �pu" D �".u"/:

1.1 Notations and statements

We shall introduce some notations which we will use throughout this paper.

� n indicates the dimension of the Euclidean space.

� HC is the half-space fXn > 0g.

� T WD fX D .X1; : : : ; Xn/ 2 R
n W Xn D 0g indicates the hyperplane.

� OX is the vertical projection of X on T .

� �X WD fY 2 HC W jY � OY j >
1
2
jY � X jg for X 2 T .

� Br .X/ is the ball with center at X and radius r , and, Br the ball Br .0/.

� BC
r .X/ WD Br .X/ \ HC.

� B 0
r .X/ is the ball with center at X and radius r in T .

REMARK 1.4 Throughout this article Universal constants are the ones depending only on the

dimension, ellipticity and structural properties of F , i. e., n; �; � and b.

Also, following classical notation, for constants � > � > 0 we denote by

P
C
�;�

.M/ WD �
X

ei <0

ei C �
X

ei >0

ei and P
�
�;�.M/ WD � �

X

ei >0

ei C � �
X

ei <0

ei

the Pucci’s extremal operators, where ei D ei .M/ are the eigenvalues of M 2 Sym.n/.

We shall introduce structural conditions that will be frequently used throughout of this paper:

(F1) (Ellipticity and Lipschitz regularity condition ) For all M; N 2 Sym.n/, �!p ; �!q 2 R
n, X 2 ˝

P
�
�;�.M � N / � bj�!p � �!q j 6 F.X; �!p ; M/ � F.X; �!q ; N / 6 P

C
�;�

.M � N / C bj�!p � �!q j
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(F2) (Normalization condition) We shall suppose that,

F.X; 0; 0/ D 0

(F3) (Small oscillation condition) We must to assume

sup
X02˝

�F .X; X0/ � 1

where

�F .X; X0/ WD sup
M2Sym.n/nf0g

jF.X; 0; M/ � F.X0; 0; M/j

kMk

REMARK 1.5 Assumption .F1/ is equivalent to notion of uniform ellipticity Unif. Ellip. when
�!p D �!q . The assumption .F 2/ is not restrictive, since we can always redefine the operator in

order to check it. The smallest regime on oscillation of F , namely condition .F 3/, depends only on

universal parameters.

EXAMPLE 1.6 An example which we must have in mind are the Isaacs’ operators from stochastic

game theory

F.X; �!p ; M/ WD sup
˛2A

inf
ˇ2B

�
trŒA˛;ˇ .X/ � M� C hB˛;ˇ .X/; �!p i

�
(1.3)

where A˛;ˇ is a family of measurable n�n real symmetric matrices with small oscillation satisfying

�k�k2
6 hA˛;ˇ .X/�; �i 6 �k�k2; 8 � 2 R

n and kB˛;ˇ kL1.˝/ 6 b:

2. Optimal Lipschitz regularity

In this section, we shall present the proof of Theorem 1.3. Thus let us assume the assumptions of

problem (E").

We make a pause as to discuss some remarks which will be important throughout this work.

Firstly it is important to highlight that is always possible to perform a change of variables to flatten

the boundary. Indeed, if @˝ is a C 1;1 set, the part of ˝ near @˝ can be covered with a finite

collection of regions that can be mapped onto half-balls by diffeomorphisms (with portions of @˝

being mapped onto the “flat” parts of the boundaries of the half-balls). Hence, we can use a smooth

mapping, reducing this way the general case to that one on BC
1 , and, the boundary data would be

given on B1 \ fXn D 0g.

Previously we start the proof of the global Lipschitz estimative, we need to assure the non-

negativity of solutions to (E"). Such a result will be used several times throughout this article. This

statement is a consequence of the Alexandroff-Bekelman-Pucci Maximum Principle, see [3] for

more details.

LEMMA 2.1 (Nonnegativity and bounds, [6] and [7]) Let u" be a viscosity solution to (E"). Then

there exists a universal constant C > 0 such that

0 6 u".X/ 6 C k'kL1.˝/ in ˝:

We will now establish a universal bound for the Lipschitz norm of u" up to the boundary. The

proof will be divided in two cases.

Case 1: Lipschitz regularity up to the boundary in the region f0 6 u"
6 "g.
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THEOREM 2.2 Let u" be a viscosity solution to (E"). For X 2 f0 6 u"
6 "g \ BC

1=2
there exists a

universal constant C1 > 0 independent of " such that

jru".X/j 6 C1:

Proof. We denote by

ı.X/ WD dist.X; fXn D 0g/

the vertical distance. If ı.X/ > ", then B".X/ � BC
1 for " � 1. Therefore, from local gradient

bounds [6, 7] , there exists a universal constant C0 > 0 independent of ", such that

jru".X/j 6 C0:

On the other hand, if ı.X/ < ", then it is sufficient to prove that there exists a universal constant

C0 > 0 independent of ", such that

u". OX/ 6 C0": (2.1)

Indeed, suppose that (2.1) holds. Consider hW B
C

1 ! R to be the viscosity solution to the Dirichlet

problem �
F.Y; rh; D2h/ D 0 in BC

1 ;

h D u" on @BC
1 :

From C 1;˛ regularity estimates up to the boundary (see for instance Theorem 3.1 in [8]), we know

that h 2 C 1;˛.B
C

3=4/ with the following estimate

jrh.Y /j 6 c.khk
L1.B

C
1

/
C k'k

C 1;
 .B
C
1

/
/ 6 C in BC

3=4

and by Comparison Principle we have

u"
6 h in BC

1 :

Hence, it follows from assumption (2.1) that

u".Y / 6 h.Y / 6 h. OX/ C C jY � OX j 6 C "; if Y 2 BC
2". OX/:

Then, again applying C 1;˛ regularity estimates, we obtain

jru".X/j 6 C0.n; �; �; b; B/:

In order to prove (2.1) suppose, by purpose of contradiction, there exists " > 0 such that

u". OX/ > k" for k � 1:

We shall denote

r0 WD dist. OX; f0 6 u"
6 "g/:

Consider X0 2 f0 6 u"
6 "g \ @BC

r0
. OX/ a point to which the distance is achieved, i. e., r0 D

jX0 � OX j: Thereafter, let � OX
be the cone with vertex at OX 2 fXn D 0g. Suppose initially that

X0 2 � OX
then Br0=2.X0/ � BC

1 . Now, let us define, v" W B1 ! R by

v".Y / WD
u".X0 C .r0=2/Y /

"
:
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X0

OXbb

r0

B r0
2

.X0/

BC
r0

. OX/

� OX

fXn D 0g

b

f0 6 u"
6 "g

FIG. 1. Geometric argument of the case X0 2 � OX

Therefore, v" satisfies in the viscosity sense

F".X; Dv"; D2v"/ D
1

"2

�r0

2

�2

�.v"/ WD g.Y /;

where

F".X; �!p ; M/W D
1

"

�r0

2

�2

F

 
X0 C

r0

2
Y;

2"

r0

� p; "

�
2

r0

�2

M

!
: (2.2)

Now note that g 2 L1.B1/, since r0 < " and F" satisfies .F1/ � .F 3/ with constant Qb D
.r0=2/b. Moreover, since v".0/ 6 1 it follows from Harnack inequality that

v".Y / 6 c for Y 2 B1=2;

i.e.,

u".X/ 6 c"; X 2 Br0=4.X0/:

Consider now Z 2 B 0
r0

. OX/. It follows that

'.Z/ > '. OX/ � A � jZ � OX j > k" � r0 � A > .k � A/"

since r0 < ". Define the scaled function w" W BC
1 ! R,

w".Y / WD
u". OX C r0Y /

"
:

It readily follows that �
F".Y; rw"; D2w"/ D 0 in BC

1 ;

w"
> k � A on B 0

1:

where F" is as in (2.2). Therefore according to Lemma 2.9,

w"
> c.k � A/ in BC

3=4
:
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In other words, we have reached that

u".X/ > c".k � A/ in BC
3r0=4

. OX/:

Hence

c".k � A/ 6 u".�/ 6 c"; 8 � 2 @BC
3r0=4

. OX/ \ @Br0=4.X0/;

which leads to a contradiction for k � 1.

On the one hand if X0 62 � OX
, choose X1 2 fu"

6 "g such that

r1 WD dist. OX0; fu"
6 "g/ D j OX0 � X1j:

From triangular inequality and the fact that r1 6
r0

2
we have

jX1 � OX j 6 jX1 � OX0j C j OX0 � OX j 6 r1 C r0 6
r0

2
C r0:

If X1 2 � OX0
the result follows from previous analysis. Otherwise, let X2 be such that

r2 WD dist. OX1; fu"
6 "g/ D j OX1 � X2j:

As before we have

jX2 � OX j 6 j OX1 � X2j C j OX1 � OX j 6
r0

4
C

r0

2
C r0;

since r2 6
r1

2
6

r0

4
. Observe that this process must finish up within a finite number of steps.

Indeed, suppose that we have a sequence of points Xj 2 @fu"
6 "g; Xj C1 62 � OXj

.j D 1; 2; : : :/

satisfying

rj C1 WD dist
�

OXj ; fu"
6 "g

�
D jXj C1 � OXj j;

and

rj C1 6
rj

2
6

r0

2j C1
: (2.3)

Thus, it follows from (2.3) that

jXj � OX j 6 r0 C r0

jX

iD1

1

2i
6 2r0:

Therefore, up to a subsequence, Xj ! � 2 B 0
2r0

. OX/ with '.�/ D ". However,

'.�/ > '. OX/ � A � j OX � �j > ".k � 2A/ � "

for k � 1 which drives us to a contradiction, and, hence the Assertion (2.1) is proved.
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OX

X0

OX0

X1

r1r0

OX1

� OX

f0 6 u"
6 "g

� OX0

fXn D 0g
bb b b

FIG. 2. Geometric argument of the inductive process

Case 2: Lipschitz regularity in the region BC
1=8

n fu"
6 "g.

THEOREM 2.3 Let u" be a viscosity solution to (E"). Suppose that X 2 BC
1=8

satisfies u".X/ > ",

then there exists a constant C0 D C0.n; �; �; b; A/ > 0 such that

jru".X/j 6 C0:

The proof of the theorem consists in analyzing three possible cases (Lemmas 2.5, 2.6, 2.7

below). Henceforth we shall use the following notation

ı".X/ WD dist.X; fu"
6 "g/ and ı.X/ WD dist.X; fXn D 0g/:

The next result is decisive in our approach.

LEMMA 2.4 Let u" be a viscosity solution to (E") with ' 2 C 1;
 .B
C

1 /. Then, for all X 2 B 0
1=4

satisfying u".X/ > ", there exists a constant c0 D c0.n; �; �; b/ > 0 such that

'.X/ 6 " C c0 � ı".X/:

Proof. Let us suppose for sake of contradiction that there exists an " > 0 and X0 2 B 0
1=4

n fu"
6 "g

such that

'.X0/ > " C k � ı".X0/

holds for k � 1, large enough. Let Z D Z" 2 @fu"
6 "g be a point to which the distance is

achieved, i.e.

ı" WD ı".X0/ D jX0 � Zj:

We have two cases to analyze: If Z 2 �X0
, then the normalized function v"W BC

1 ! R given by

v".Y / WD
u".X0 C ı"Y / � "

ı"

;
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satisfies

F".Y; rv"; D2v"/ D 0 in BC
1

in the viscosity sense, where

F".Y; �!p ; M/ WD ı"F.X0 C ı"Y; �!p ; ı�1
" M/:

As in Theorem 2.2, F" satisfies .F1/–.F 3/ with constant Qb D ı"b. Moreover,

v".Y / > 0 in BC
1 :

Now, for any X 2 B 0
ı"

.X0/ we should have for k � 1,

'.X/ > '.X0/ � Aı" > " C kı" � Aı"

> " C
k

2
ı";

i.e,
'.X0 C ı"Y / � "

ı"

>
k

2
in B 0

1

In other words,

v".Y / > ck 8 Y 2 B 0
1:

Hence, from Lemma 2.9 we have that v"
> ck in BC

3=4
in a more precise manner,

u".X/ > " C C kı"; X 2 BC
3ı"=4

.X0/: (2.4)

From now on, let us consider QB WD B ı"
4

.P /, where P D P" WD Z C X0�Z
4

. If we define !" WD

u" � ", then since Z 2 @ QB , it follows that

F".X; r!"; D2!"/ D 0 in QB; (2.5)

!".Z/ D u".Z/ � " D 0; (2.6)

@!"

@�
.Z/ 6 jr!".Z/j 6 C: (2.7)

Therefore, from (2.5)–(2.7) we can apply Lemma 2.10, which gives !".P / 6 C0 � ı", i.e.,

u".P / 6 " C Cı": (2.8)

At a point P on @BC
3ı"=4

.X0/ we have (according to (2.4) and (2.8))

" C kcı" 6 u".P / 6 " C C0ı"

which gives a contradiction if k has been chosen large enough.

The second case, namely Z 62 �X0
, it is treated similarly as in Theorem 2.2 and we omit the

details here.
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LEMMA 2.5 Let u" be a viscosity solution to (E") and X 2 BC
1=8

satisfying u".X/ > " with

ı".X/ 6 ı.X/. Then there is a universal constant C0 > 0, such that

jru".X/j 6 C0:

Proof. We may assume with no loss of generality that ı".X/ 6
1
8

. Otherwise, if we suppose that

ı".X/ > 1
8

, then the result would follow from [6, 7]. From now on, we select X" 2 @fu"
6 "g a

point which achieves the distance, i.e.,

ı"W D ı".X/ D jX � X"j:

Since

jX"j 6 jX j C ı" 6
1

4
;

we must have that X" 2 BC
1=4

\fu"
6 "g. This way, by applying Theorem 2.2, there exists a constant

C1 D C.n; �; �; b; A; B/ > 0 such that

jru".X"/j 6 C1:

By defining the re-normalized function v" W B1 ! R as

v".Y / WD
u".X C ı"Y / � "

ı"

:

Then, as before v" satisfies

F".Y; rv"; D2v"/ D 0 in B1; (2.9)

v".Y"/ D 0; (2.10)

jrv".Y"/j 6 C1; (2.11)

v".Y / > 0 for Y 2 B1; (2.12)

where

F".Y; �!p ; M/ WD ı"F.X C ı"Y; �!p ; ı�1
" M/ and Y" WD

X" � X

ı"

2 @B1:

From (2.9)-(2.12) we are able to apply Lemma 2.10 and conclude that there exists a universal

constant c > 0 such that

v".0/ 6 c:

Moreover, from Harnack inequality

v"
6 C0 in B1=2:

Therefore, by C 1;˛ regularity estimates (see Theorem 3.1 in [3]) we must have that

jru".X/j D jrv".0/j 6
1

ı"

ku" � "k 6 C0;

and the Lemma is proved.
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LEMMA 2.6 Given X 2 BC
1=8

such that u".X/ > ". If ı.X/ < ı".X/ 6 4ı.X/, then

jru".X/j 6 C0

for some constant C0 D C0.n; �; �; b; A; B/ > 0.

Proof. Similar to Lemma 2.5, we may assume that ı" 6
1
8

, otherwise, as in Lemma 2.5 the gradient

boundedness follows from local estimates [6, 7]. Define the scaled function v"W B1 ! R by

v".Y / WD
u".X C ıY / � "

ı
;

where ı D ı.X/. Clearly

Fı.Y; rv"; D2v"/ D 0 in B1

in the viscosity sense, and, from Harnack inequality

v"
6 C v".0/ �

1

ı
in B1=2:

By applying once more C 1;˛ regularity estimates, we obtain

jru".X/j D jrv".0/j 6
C

ı
: (2.13)

Therefore, the idea is to find an estimate for u" � " in terms of the vertical distance ı.X/: To this

end, consider h the viscosity solution to the Dirichlet problem

�
F.X; rh; D2h/ D 0 in BC

1 ;

h D u" on @BC
1 :

(2.14)

Since 0 6 u"
6 C.n; �; �; b; B/, it follows from C 1;˛ estimate up to boundary that h 2

C 1;˛.B
C

3=4/. Moreover

jrh.X/j 6 C.khkL1 C k'kC 1;˛ / 6 C.C C A/:

From Comparison Principle, we have that

u"
6 h in BC

1 :

Hence,

u".X/ 6 h.X/ 6 h. OX/ C C.C C A/jX � OX j 6 '. OX/ C C.C C A/ı: (2.15)

Now, we have that j OX j 6 jX j C ı 6
1
4

, and, consequently we are able to apply Lemma 2.4 which

gives

'. OX/ 6 " C c0 � dist. OX; fu"
6 "g/ 6 " C c0.ı" C ı/ 6 " C 5c0ı: (2.16)

Thus, it follows from (2.15) and (2.16) that u".X/ � " 6 C0ı; where C0W D C.5c0 C C.C C A//.

Finally, if we apply C 1;˛ estimate, Harnack inequality and estimate (2.13), respectively, we end up

with

jru".X/j D jrv".0/j 6
1

ı
ku" � "kL1.B1=2/ 6 C0

which concludes the proof.
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LEMMA 2.7 Let X 2 BC
1=8

be such that u".X/ > ". If 4ı.X/ < ı".X/, then there exists a constant

C0 D C0.n; �; �; b; A; B/ > 0 such that

jru".X/j 6 C0:

Proof. Initially we will consider the case when ı" 6 1=8. The following inclusion holds true:

BC
ı"=2

. OX/ � BC
1=4

n fu"
6 "g. In fact, if Y 2 BC

ı"=2
. OX/ then

jY j 6 jY � X j C jX j 6 2
ı"

2
C jX j 6

1

4
:

Now, using the same argument as in Lemma 2.6 (see (2.14)) we are able to estimate u" in BC
ı"=2

. OX/

as follows

u".Y / 6 u". OY / C C.C C A/
ı"

2
6 " C c0 � dist. OY ; fu"

6 "g/ C C.C C A/
ı"

2
:

Since the distance function is Lipschitz continuous with Lipschitz constant 1, we have

dist. OY ; fu"
6 "g/ 6 ı" C j OY � X j 6 2ı":

Therefore,

u".Y / 6 " C

�
2c0 C

C.C C A/

2

�
ı" D " C cı":

By considering the function v".Y / D u".Y / � " in BC
ı"=2

. OX/, we have that

F.Y; rv"; D2v"/ D 0 in BC
ı"=2

. OX/

in the viscosity sense. From C 1;˛ estimate up to boundary and Lemma 2.1, we have

jru".X/j D jrv".X/j 6 C.c C A/:

On the other hand, for the case ı" > 1=8 we have the following inclusion BC
1=16

. OX/ � B1nfu"
6 "g.

In this situation, since supp.ˇ"/ D Œ0; "�,

(
F.X; ru"; D2u"/ D 0 in BC

1=16
. OX/;

0 6 u"
6 C on @BC

1=16
. OX/;

and, consequently, the estimate will follow from C 1;˛ estimates up to the boundary.

An immediate consequence of Theorem 1.3 is the existence of solutions via compactness in the

Lip-Topology for any family .u"/">0 of viscosity solutions to singular perturbation problem (E").

We consequently obtain

THEOREM 2.8 (Limiting free boundary problem) Let .u"/">0 be a family of solutions to (E"). For

every "k ! 0 there are a subsequence "kj
! 0 and u0 2 C 0;1.˝/ such that

(1) u
"kj ! u0 uniformly in ˝,

(2) F.X; ru0; D2u0/ D 0 in ˝ \ fu0 > 0g in the viscosity sense.



REGULARITY UP TO THE BOUNDARY 329

Appendix

In this final section we are going to give the proof of some results, which were temporarily omitted.

LEMMA 2.9 (Boundary’s estimates propagation Lemma) Suppose that u > 0 is a viscosity solution

to �
F.X; ru; D2u/ D 0 in BC

1 ;

u > � > 0 on B 0
1:

Then there exists a universal constant C D C.n; �; �; b/ > 0 such that

u.X/ > C�; X 2 BC
3=4

:

Proof. First of all consider the following Dirichlet problem

8
<
:

F.X; rw; D2w/ D 0 in BC
1 ;

w D � on B 0
1;

w D 0 on @B1 \ fXn > 0g:
(2.17)

From C 1;˛ regularity estimate we have w 2 C 1;˛.B
C

3=4/, and, by the Comparison Principle

0 6 w 6 � in BC
1 : (2.18)

From now on, it is appropriate we define the following reflection U W B1 ! R,

G.X; �!p ; M/ WD

(
F.X; �!p ; M/ if Xn > 0

�F.eX;
�!ep ;fM/ if Xn < 0;

(2.19)

We observe that U is a viscosity solution to

G.X; DU; D2U / D 0 in B1;

where

G.X; Ep; M/W D

�
F.X; Ep; M/ if Xn > 0;

�F.eX; Eep;fM/ if Xn < 0;

with

eX D .X1; : : : ; Xn�1; �Xn/;

ep D .�p1; : : : ; �pn�1; pn/;

fM D

�
�Mij if 1 6 i; j 6 n � 1 or i D j D n

Mij otherwise.

Thus, from (2.18),

� 6 U 6 2� in B�
1 :

Hence,

0 6 U 6 2� in B1:
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Moreover, from Harnack inequality we have that

sup
B3=4

U 6 c0 inf
B3=4

U;

and, in particular,

w.X/ > c�1
0 � in BC

3=4
:

Therefore, the proof follows through the previous inequality combined with the Comparison

Principle.

LEMMA 2.10 (Hopf’s type boundary principle) Let u be a viscosity solution to

�
F.X; ru; D2u/ D 0 in Br .Z/;

u > 0 in Br .Z/:

with r 6 1. Assume that for some X0 2 @Br .Z/,

u.X0/ D 0 and
@u

@�
.X0/ 6 �;

where � is the inward normal direction at X0. Then there exists a universal constant C > 0 such

that

u.Z/ 6 C�r:

Proof. By using a scaling argument, we may assume r D 1. Indeed, it is sufficient to consider the

scaled function v W B1 ! R

vr .Y / D
u.X C rY /

r
:

As before, vr is a viscosity solution of

Fr .Y; rvr ; D2vr / D 0 in B1;

with

Fr .Y; �!p ; M/ WD rF.X C rY; �!p ; r�1M/:

Let A WD B1 n B1=2 be an annular region and define !W A ! R by

!.Y / WD �.e�ıjY j2 � e�ı/

where the positive constants � and ı will be chosen a posteriori. One can computer the gradient

and Hessian of ! in A as follows

@i !.Y / D �2�ıYi e
�ıjY j2 ;

@ij !.Y / D 4�ı2Yi Yj e�ıjY j2 � 2�ıe�ıjY j2ıij ;

jr!.Y /j D 2�ıe�ıjY j2 jY j:
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In particular, for every M 2 A�;� WD fA 2 Sym.n/ W �k�k2
6 Aij �i �j 6 �k�k2; 8 � 2 R

ng we

have

Tr
�
M � D2!

�
� bjr!j D

nX

i;j D1

mij @ij ! � b �

vuut
nX

iD1

.@i !/2

D 4�ı2e�ıjY j2Tr.M � Y ˝ Y / � 2ı�Tr.M/e�ıjY j2 � 2�ıbjY je�ıjY j2

> 4�ı2�jY j2e��jY j2 � 2ı�n�e�ıjY j2 � 2�ıbjY je�ıjY j2

D 2�ı.2ı�jY j2 � bjY j � n�/e�ıjY j2

> 2�ı.
ı�

2
� b � n�/e�ıjY j2 in A;

where � ˝ � D .�i �j /i;j . Choose and fix ı >
2
�

.b C n�/. Then, it follows readily that

P
�
�;�.D2!/ � bjr!j > 0 in A:

Therefore, since r 6 1, if ı 2
h

2
�

. Qb C n�/; C1
�

, with Qb D rb, we have

Fr .X; r!.X/; D2!.X// > 0 in A:

Now by Harnack inequality

vr .0/ 6 sup
B1=2

vr 6 c0 inf
B1=2

vr :

By choosing � D vr .0/

c0.e�ı=4�e�ı/
we have ! 6 vr on @A and via Comparison Principle gives that

! 6 vr in A. Thus, if we label Y0 WD X0�Z
r

then

�ıe�ı
6

@!

@�
.Y0/ 6

@vr

@�
.Y0/ 6 �:

Therefore,

v.0/ 6 �ı�1c0.e
3ı
4 � 1/;

and by returning to the original sentence we can conclude that

u.Z/ 6 c� r:
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