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An ambiguity in the mathematical treatment of the study of bound state solutions of the Schrödinger

equation for infinite well type potentials (studied for the first time in a pioneering article of 1928 by

G. Gamow) is pointed out. An alternative to prove a similar “localizing effect” is here offered “in

terms Hardy type potentials” with the distance to the boundary as a variable. The existence of flat

solutions (with zero normal derivative at the boundary) and solutions with compact support is here

obtained by first time in the literature for elliptic problems for this kind of linear equations.
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1. On the ambiguity and statements of an alternative treatment

In his 1928 pioneering article Gamow [26] proved, for the first time, the tunneling effect which,

among many other applications lead to the construction of the electronic microscope and the

correct study of the alpha radioactivity. Most of his study was concerning with the bound states

 .x; t/ D e�iEtu.x/ of the Schrödinger equation in R
N , N > 1;

i¯@ 
@t

D � ¯2

2m
� C V.x/ ; in .0;1/ � R

N ;

associated to the potential V.x/; for a single elementary particle of mass m and energy E (which

we shall denote also by �). Here i D
p

�1 and ¯ is the renormalized Planck constant.

Gamow was specially interested in the Coulomb potential

V.x/ D k

jxj
x 2 R

N ; (1.1)

for a suitable k > 0, but he offered some reasons to truncate such a potential when 0 < jxj < r 0 for

some r 0 > 0: Then he proposed to replace the resulting potential by a simple potential which keeps
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the main properties of the original one: in this way he proposed, it seems that for the first time in

the literature, what today is usually called as the finite well potential

Vq.x W R; V0/ D
�
V0 if x 2 .�R;R/;
q if x … .�R;R/; (1.2)

for a given R > 0 and for some V0; q > 0. For the present purposes, the exact values ofm and ¯ are

not relevant and we can reformulate them in a different form. For instance assuming for simplicity

m D 1 and ¯ D 1, we see that the spatial component u.x/ of the bound states must solve the

stationary equation

��uC V.x/u D �u in R
N ; (1.3)

for a given potential V.x/ (possibly discontinuous).

In his article [26], Gamow consider the finite well potential by solving problem (1.3) in a weak

sense: the solution was not C
2 but merely C

1: The notion of ”solution” used by him was not

explicitly mentioned in the paper but it is coherent with the notion of weak solution introduced

several years later by other authors such as J. Leray, L. Sobolev and L. Schwartz.

In his paper he also made some comments on the study of the original (unbounded) Coulomb

potential (1.1). Probably that was the reason why the case of the so called infinite well potential

V1.x W R; V0/ D
�

V0 if x 2 .�R;R/;
C1 if x … .�R;R/; (1.4)

for some V0 2 R (which, without loss of generality, we can assume V0 > 0) arises in the literature

and started to be considered as a basic example in any text-book in Quantum Mechanics since then

to our-days. In many textbooks this case is presented as a limit case of the associate finite well

potential (1.2). In fact, there is an abuse of the notation in the above terminology. What is really

true is that we can introduce as definition of solution u of the infinite well potential problem any

function u D limq!1 uq with uq solution of (1.3) associated to the potential Vq.x W R; V0/ given

by (1.2) (see Lemma 2.1 below). It is usually claimed that u D limq!1 uq satisfies (at least in a

weak sense) equation (1.3) for the infinite well potential but, as we shall explain (see also Lemma 2.1

below) this is not correct since some other terms appear in the limit equation (which, in fact must

be understood in distributional sense).

As a matter of fact, after the work by Gamow, several authors considered some generalizations

of the infinite well potential corresponding to the case in which the constant value V0 is replaced by

a general function V0.x/ leading to the potential

V1
�
x W R; V0.�/

�
D

�
V0.x/ if x 2 .�R;R/;
C1 if x … .�R;R/:

More in general, the N -dimensional infinite potential well problem is defined by taking

V1
�
x W ˝;V0.�/

�
D

�
V0.x/ if x 2 ˝;
C1 if x … ˝;

where ˝ is a regular open bounded set of R
N . For instance, the case of V0 2 L1.�R;R/ was

already considered in the 1968 monograph [31]. The more singular case in which V0.x/ D ı0.x/;

the Dirac delta applied to x D 0, related with the so called Quantum Dots, was also considered in

the literature (see, e.g., Joglekar [28]).
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In contrast with the case of the tunneling effect (corresponding to the treatment of the finite

well potential (1.2)) the usual study of the infinite well potential, such as it is presented in most

of the textbooks, contains an ambiguity which, curiously enough, it seems unseen before: it is said

in many textbooks that to solve the equation in R
N outside ˝ it is necessary to impose that the

solution u.x/ of (1.3) let u.x/ � 0 if x … ˝ (a better justification of this fact can be given through

the approximation of such potential by a sequence of truncated potentials Vq and passing to the limit

on the associated solutions uq as q ! C1: see Lemma 2.1 below). Thus the study of problem (1.3)

leads to solve the associated Dirichlet problem on ˝

DP.V; �;˝/

�
��uC V.x/u D �u in ˝,

u D 0 on @˝.

This Dirichlet problem can be explicitly solved in many cases. For instance, for the one-dimensional

˝ D .�R;R/ and V.x/ � V0 we get

8
<
:
un.x/ D C sin

n�

2R
.x CR/;

�n � V0 D
� �
2R

�2

n2; n D 1; 2; :::
(1.5)

In terms of the original value of the parameters m and ¯ and denoting again the energy by E we get

the discrete set of energies

En WD ¯2

2m
�n

(see, e.g., Strauss [34]).

The ambiguity in this mathematical treatment arises because the derivatives of the extensions

of un by zero on R � .�R;R/ are discontinuous at the points x D ˙R, and thus such un are not

solutions of the equation in the whole domain R in the sense of distributions

� ¯2

2m

d2un

dx2
C V.x/un D Enun; in R;

but of the different equation

� ¯2

2m

d2un

dx2
C V.x/un D Enun C kn.R/ıfRg � kn.�R/ıf�Rg in R, (1.6)

since the second derivative develops two Dirac deltas (see Lemma 2.1 below). Here

kn.�R/ D ¯2

2m

p
2

R3=2
n� and kn.R/ D ¯2

2m

p
2

R3=2
n�.�1/n:

The presence of such discontinuities was noticed previously in the literature (see, e.g., [25, page

140]) but, as far as we know, it seems that a careful analysis of this ambiguity, and the study of

some alternative potential V.x/ preventing it, was not considered before.

Besides pointing out such ambiguity (see a more detailed presentation in Lemma 2.1 below), the

main goal of this paper is to present a set of results offering some kind of alternative. In particular,

here we shall deal merely with nonnegative solutions u > 0 of DP.V; �;˝/, and in fact in the

one-dimensional case, ˝ D .�R;R/. Our purpose is to give an answer to the following inverse
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free boundary problem: can we find a potential V.x/ and some values of the energy � such that the

solution of � d2u
dx2 C V.x/u D �u in R; gives rise to a free boundary given by @˝ in the sense that

u � 0 on R n˝ and du
dx
.˙R/ D 0?

We comment now that the case of higher dimensions will be the object of a separated work by

this author [16] and that the case of nodal solutions (i:e, changing sign on ˝) for the associated

semilinear problem was the main object of the paper Dı́az and Hernández [20].

It is useful to introduce the following notation (already used in the literature):

DEFINITION 1.1 We say that a function u 2 H 1
0 .˝/ is a (positive) “flat solution” of problem

DP.V; �;˝/ if u satisfies DP.V; �;˝/, u > 0 and du
dx
.˙R/ D 0.

We point out that this type of special solutions was called previously by other authors as “free

boundary solutions” (see, e.g., [29]). Nevertheless in our opinion the use of the expression “free

boundary” may be misleading: such terminology is more adequate in the context where the equation

is set in the whole real line (as in (1.3)) and not in a given bounded interval.

Our main result of this paper (improving the presentation made by the author in a series of

lectures [15]) is the following:

THEOREM 1.2 Let ˝ D .�R;R/ and let V 2 L1
loc
.˝/ be such that

C

d.x; @˝/˛
6 V.x/ 6

C

d.x; @˝/˛
a.e. x 2 ˝ D .�R;R/; (1.7)

for some ˛ 2 Œ0; 2� and some C > C > 0: Then:

1. If ˛ 2 Œ0; 2/ then, for any � > 0; no positive solution of DP.V; �;˝/ may be a flat solution.

2. If ˛ D 2, for any value of C and C , there exists �# D �#.R/ >
�

�
2R

�2
such that problem

DP.V; �#; ˝/ has a nonnegative solution u#.

3. If ˛ D 2, given u# nonnegative solution of DP.V; �#; ˝/ as in Part 2, there exists m# 2 Œ0; 1/

and there exists two positive constants C�.m#/ < C �.m#/ such that if

C� 6 C 6 C < C � (1.8)

then u# is a non-degenerate positive flat solution in the sense that

Kd.x; @˝/2=.1�m#/ 6 u#.x/ 6 Kd.x; @˝/2=.1�m#/ for any x 2 ˝; (1.9)

for some constants K.m#/ > K.m#/ > 0: Moreover u# 2 C
2=.1�m#/.˝/:

COROLLARY 1.3 Let ˝ D .�R;R/ and V1
�
x W R; V0.�/

�
with V0.�/ satisfying (1.7) and (1.8)

with ˛ D 2: Then there exists �# > 0 such that the Schrödinger equation (1.3), with N D 1, admits

a solution u 2 C
2=.1�m#/.R/ satisfying (1.9), for suitable m# 2 .0; 1/; K > K > 0, and such that

u � 0 on R n˝:

As far as we know, Theorem 1.2 is the first result in the literature showing the existence of a

flat solution for a linear elliptic problem. We recall that the first result in the literature on solutions

with compact support for elliptic problems was raised in the works Brezis and Stampacchia [12] and

[13] related to an obstacle problem formulated for the study of subsonic flows. Later the existence of

solutions with compact support was extended to other semilinear (sublinear) problems in Brezis [11]
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and Benilan, Brezis and Crandall [10]. Many other results for nonlinear problems can be found, for

instance, in the monograph [14]. Of course the existence of the flat solution is only possible when

the strong maximum principle cannot be applied (see e.g. [32], [35] and [33]).

REMARK 1.4 When C D C potentials V.x/ satisfying (1.7), with ˛ D 2, are called “Hardy type

potentials” on the distance to the boundary variable. There is a long literature dealing with problems

involving such potentials. We emphasize that here we are considering the so called “absorption

case” and that, in contrast with other authors considering the formation of a free boundary (see,

e:g., [3]), the main problem under consideration in this paper is linear. Moreover, we point out that

the solution u# mentioned in Part 2 of the above theorem exists for any value of the constants C

and C : so, if , for instance we have two potentials Vi .x/; with i D 1; 2; satisfying (1.7) with ˛ D 2

and some constants C i 6 C i such that C 1 < C 2 then the application of Part 2 implies that the

corresponding eigenvalues �#
i and nonnegative eigenfunctions u#

i of problem DP.Vi ; �
#; ˝/ verify

that u#
1 ¤ u#

2. In consequence, in Part 3 of Theorem 1.2 we would have the similar conclusion for

different values m#
i 2 Œ0; 1/ and positive constants C�.m#

i / < C
�.m#

i / for i D 1; 2:

After the above comments on the literature on solutions with compact support for nonlinear

problems perhaps it is not too strange to say that we use here some auxiliary nonlinear problem

giving rise to positive non-degenerate flat solutions in order to prove Theorem 1.2. To be more

precise, we shall start considering the nonlinear eigenvalue type problem

P.R;m; V0; �/ �

8
<
:

�d
2v

dx2
C V0v

m D �v; v > 0 in .�R;R/;

v.˙R/ D 0;

for a given V0 > 0 and m 2 .0; 1/: We shall prove:

PROPOSITION 1.5 For any � >
�

�
2R

�2
there exists a unique nonnegative solution vm of

P.R;m; V0; �/: Moreover, there exists a ��.m/ >
�

�
2R

�2
such that:

(i) If � > ��.m/ then

vm.x/ 6 Kd.x; @˝/2=.1�m/ for any x 2 ˝ D Œ�R;R�; (1.10)

for some constant K: In particular
dvm

dx
.˙R/ D 0 and vm is a flat solution.

(ii) If � 6 ��.m/ then

Kd.x; @˝/2=.1�m/ 6 vm.x/ for any x 2 ˝ D Œ�R;R�; (1.11)

for some constant K: In particular vm > 0 in ˝ is a non-degenerate solution.

(iii) If � D ��.m/ inequalities (1.10) and (1.11) hold for some K > K > 0:

REMARK 1.6 It is possible to get many variants of the above mentioned results. For instance

the spatial interval ˝ D .�R;R/ can be replaced by any other bounded interval not necessarily

symmetric or even by an unbounded interval of the form ˝ D .0;C1/: In this last case the

assumptions on the potential V.x/ are

C

x2
6 V.x/ 6

C

x2
for any x 2 .0; x0/ for some x0 > 0; (1.12)
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and

C 6 lim
x!C1

infV.x/x2 6 lim
x!C1

supV.x/x2 6 C : (1.13)

Notice that under the above condition the spectrum is still countable (see, e.g., [25]). The study of

flat solutions at x D 0 under condition (1.12) when assumption (1.13) fails (as for instance for the

“effective potential” associated to the Yukawa potential: also called “screened Coulomb potential”

W.r/ D L0

�r2
C k

r
e� r

a

with L0 the angular momentum, � the reduced mass and k 2 R; a > 0 some parameters) can be

considered by means of the local techniques presented in [16].

Concerning the case of nodal solutions of the semilinear problem P.R;m; V0; �/ constructed

in [20] we have:

COROLLARY 1.7 Estimates similar to the ones given by (1.10) and (1.11) also apply to
ˇ̌
u��

n.m/

ˇ̌

with u��
n.m/ the nodal solutions of the semilinear problem P.R;m; V0; �/ corresponding to suitable

values ��
n.m/ of the parameter � in branches bifurcating at the infinity from the simple eigenvalues

�n for any n 2 N.

We recall that the sentence ”bifurcating at the infinity from the simple eigenvalues �n” simply

means that the curves .�; u�/, with u� solution of P.R;m; V0; �/, are such that lim�&�n
u� D u�n

with u�n eigenfunctions of the linear problem DP.0; �;˝/:

As a particular consequence of Corollaries 1.3 and 1.7 it is possible to offer a correct alternative

to the ”localizing” process suggested by Gamow in his paper [26].

COROLLARY 1.8 For any R > 0; n 2 N and m 2 .0; 1/ there exists a countable set of values of

the parameter � D ��
n.m/ (in branches bifurcating at the infinity from the simple eigenvalues �n,

of the linear problem (DP.0; �;˝/), and there exists a countable set of infinite well type potentials

Vn;m.x/ D V1.x W R; V0;n;m.:// such that the associated Schrödinger equation

�d
2u

dx2
C Vn;m.x/u D ��

n.m/u in R;

admits a solution un;m 2 C
2

1�m .R/, changing sign n-times, such that un;m.x/ D 0 for any x …
.�R;R/ (and in particular u0

n;m.˙R/ D 0). Moreover V1
�
x W R; V0;n;m.x/

�
un;m.x/ D 0 for any

x … .�R;R/ (i:e: no Dirac delta is generated on the boundaries x D ˙R).

The proof of Corollary 1.8 holds now simply by taking

V1
�
x W R; V0;n;m.x/

�
D

�
V0

ˇ̌
v��

n.m/.x/
ˇ̌m�1

if x 2 .�R;R/;
C1 if x … .�R;R/;

where v��
n.m/ is the solution of the semilinear problem P.R;m; V0; �/ associated to � D ��

n.m/.

Some comments on the regularity un;m 2 C
2

1�m .R/ are offered in Remark 2.1 below. In fact,

Theorem 1.2 proves that there are many other potentials leading to the ”localizing” process

suggested by Gamow.
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We shall end the paper by proving, in Section 2, that the existence of flat solutions also holds

for other different linear problems in the presence of absorption potentials of Hardy type. More

precisely, we consider the nonhomogeneous problem

DP.V; f;R/

�
��uC V.x/u D f .x/ in .�R;R/,
u.˙R/ D 0:

We shall prove:

THEOREM 1.9 Let˝ D .�R;R/ and let V 2 L1
loc
.˝/ satisfying (1.7) for ˛ D 2: Let f 2 L1.˝/,

f .x/ > 0; a:e: x 2 .�R;R/ such that

f .x/ 6 Kd.x; @˝/.1Cm/=.1�m/ a.e. x 2 .�R;R/; (1.14)

for some suitablem 2 .0; 1/ andK > 0: Then the (unique) weak solution u ofDP.V; f;R/ satisfies

0 6 u.x/ 6 Kd.x; @˝/2=.1�m/ for any x 2 ˝ D Œ�R;R� (1.15)

for some constant K. In particular
du

dx
.˙R/ D 0.

2. Proofs and additional remarks

Let us start by presenting now the details about the convergence of solutions uq of the problem in the

whole space (1.3) when the potential V is replaced by a family of finite well potentials Vq.x W R; V0/

(for a given R > 0 and for some V0) and q ! C1: This fact is developed in many textbooks but

usually the convergence is not well indicated in the sense that it is not indicated the functional space

in which the convergence of solutions uq takes place.

LEMMA 2.1 Given q > 0 and Vq.x W R; V0/ defined by (1.2) problem (1.3), with N D 1, has

a numerable sequence of eigenvalues �n.q/ and eigenfunctions uq;n.x/ (renormalized such thatuq;n


L2.R/

D 1). Moreover, as q ! C1,

�n.q/ !
� �
2R

�2

n2; with n 2 N,

and uq;n ! un weakly inH 1.R/; with un given by (1.5) and un extended by zero on R� .�R;R/.
Finally, .un/xx generate two family of Dirac deltas (depending on n 2 N): one at x D R and the

other at x D �R:

Proof. We shall follow here some of the computations made in [30] (see Section 4.7). Without lost

of generality we can assume V0 � 0. The function uq can be written as

uq.x/ D

8
<
:

Aeˇx C Be�ˇx x < �R;
Cei˛x CDe�i˛x �R < x < R;
Feˇx CGe�ˇx R < x;

(2.1)

for suitable constants A;B;C;D;F;G and

˛ D
p
�; ˇ D

p
q � �:
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Since we search solutions uq inH 2.R/we get two kinds of necessary conditions: i) the integrability

of
ˇ̌
uq

ˇ̌2
,
ˇ̌
.uq/x

ˇ̌2
and

ˇ̌
.uq/xx

ˇ̌2
on Rn.�R;R/ (which implies conditions B D F D 0), and ii) the

continuity of uq and .uq/x at the matching points x D ˙R (which implies the conditionsC D ˙D:

as a matter of fact we also deduce that C D D implies A D G and that C D �D implies A D �G;
i.e. the solutions uq.x/ exhibit the even or odd symmetry, or parity, with respect to x). Moreover

the identity in the differential equation leads to the following conditions on �:

8
<
:

cot
p
� D

p
�p

q��
if C D D;

� tan
p
� D

p
�p

q��
if C D �D:

It is not too difficult to show ([30]) that, given q 2 .0;C1/, the above transcendent equations have

a discrete set of solutions �n.q/ and that

�n.q/ !
� �
2R

�2

n2; as q ! C1, with n 2 N.

Moreover, the above set of solutions uq;n.x/ is renormalized such that

uq;n


L2.R/

D 1,

(since we want that the associated wave function represents a probability density). Then, by

multiplying the differential equation by uq;n, using that Vq.x W R; V0/ > 0 and integrating we

conclude that
uq;n


H 1.R/

is uniformly bounded (and thus
uq;n


Lp.R/

is uniformly bounded too

for any p 2 Œ1;C1�). Then uq;n ! un weakly in H 1.R/ and strongly in L2.I / for any bounded

open interval I � R: From the expression (2.1) we deduce that uq;n.x/ ! 0 if x … .�R;R/ and

that uq;n.x/ ! C �
n sin n�

2R
.x C R/ if x 2 .�R;R/, as q ! C1, for a suitable constant C �

n such

that Z R

�R

.C �
n /

2
�

sin
n�

2R
.x CR/

�2
dx D 1:

In other words, �n.q/ ! �n D
�

�
2R

�2
n2 and un is the function given in (1.5). Obviously .uq;n/xx

is discontinuous (although it belongs to L2.R/) since Vq.x W R; V0/uq;n.x/ is a discontinuous

function. Moreover we have Vq.x W R; V0/uq;n.x/ ! 0 if x … .�R;R/: Thus un … H 2.R/

since the first directional derivatives verify that .un/x.�RC/ ¤ 0 and .un/x.R�/ ¤ 0. Then, as

indicated in the introduction, there are two Dirac deltas generated by .un/xx : one at x D R and the

other at x D �R (the ones appearing in the equation (1.6) when we assume ¯2=2m D 1).

Now we pass to consider the proof of Theorem 1.2. As already mentioned the key point of it will

be the set of estimates stated in Proposition 1.5 for the solutions of the auxiliary nonlinear problem

P.R;m; V0; �/: To prove such estimates we shall use some suitable transformations and plane phase

methods of ordinary differential equations. These type of arguments were used in [18] (extended in

[22] to the case of m 2 .�1; 1/) to a variation of the equation P.R;m; V0; �/. They have the

advantage of providing a complete description of the solution set for P.R;m; V0; �/, something that

cannot be expected for the N -dimensional problem. The existence of a branch of positive solutions

for a bounded interval of the parameter, � 2
�
�1; �

�.m/
�

was proven in [20, Theorem 1]. We recall
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that �1 D
�

�
2R

�2
is the first eigenvalue of the linearized problem DP.0; �;˝/

(
� d2u

dx2 D �u in ˝;

u D 0 on @˝;
(2.2)

where˝ D .�R;R/. Here ��.m/ is a certain value of the parameter whose exact definition depends

crucially on the main assumption m 2 .0; 1/ W

��.m/ D 1

2R2

� Z .2=.1Cm//1=.1�m/

0

dr
�

� F.r/
�1=2

�2

(2.3)

with

F.r/ D r2

2
� rmC1

mC 1
: (2.4)

It is shown in [20, Theorem 1] that the (unique) positive solution for � D ��.m/ has a peculiar

behaviour near the boundary: it is a “flat positive solution” in the sense that u > 0 in ˝ and

@u

@n
.x/ D 0 on @˝:

The associated solution u��.m/;V0
(when extended by zero to the whole real line R) gives rise to

a continuum of nonnegative solutions u�;V0
for any � > ��.m/ through a double rescaling (in

amplitude and in the argument of application). This type of solutions have compact support in the

sense that

support (u�;V0
) ¨ ˝:

In [20, Theorem 2] we show a qualitatively similar result for the branches of nodal solutions

changing sign a finite number of times and emanating from the infinity from the simple eigenvalues

�n; for n > 1; of the linear problem (2.2). The main novelties of Proposition 1.5 are the estimates

(1.10) and (1.11).

Proof of Proposition 1.5. Let F.r/ be given by (2.4) and let

rF D
�
2=.1Cm/

�1=.1�m/
: (2.5)

For � 2 ŒrF ;C1/ we define

.�/ WD 1p
2

Z �

0

dr
�
F.�/ � F.r/

�1=2
: (2.6)

It is shown in [20, Theorem 1] that the mapping  W ŒrF ;C1/ ! R has the following properties:

(i)  2 C ŒrF ;1/ \ C 1.rF ;1/I (ii)  0.�/ ! �1 as � # rF ; (iii) For any � > rF  0.�/ < 0,

(iv) lim�!C1 .�/ D �

2
: Moreover, it was also shown there that if ��.m/ is given by (2.3) then

we know that:

(a) if � 2
�
0;

� �
2R

�2
�

there is no positive solution,
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(b) if � 2
�� �
2R

�2

; ��.m/

�
there is a unique positive solution v�;V0

. Moreover
@v�;V0

@n
.˙R/ < 0

and
v�;V0


L1.�R:R/

D
�
V0

�

� 1
1�m

�1
�p
�R

�
;

(c) if � D ��.m/ there is only one positive solution v��.m/;V0
. Moreover v0

��.m/;V0
.˙R/ D 0

v��.m/;V0


L1.�R;R/

D
�

2V0

��.m/.1Cm/

� 1
1�m

;

(d) if � > ��.m/; there is a family of nonnegative solutions which is generated by extending by zero

the function v��.m/;V0
outside .�R;R/ (and which we label again as v��.m/;V0

). In particular,

if � D ��.m/! with ! > 1 we have a family S1.�/ of compact support nonnegative solutions

with connected support defined by

v�;V0
.x/ D 1

!
1

1�m

v��.m/;V0

�p
!x � z

�
(2.7)

where the shifting argument z is arbitrary among the points z 2 .�R;R/ such that support

v�;V0
.�/ � .�R;R/: Moreover, for � > ��.m/ large enough we can build, similarly, a subset

of Sj .�/ of compact support nonnegative solutions with the support formed by j -components,

with j 2 f1; 2; : : : ; N g; for some suitable N D N.�/ and then the set of nontrivial and

nonnegative solutions of P.�/ is formed by S.�/ D [N
j D1Sj .�/: In any case these solutions

satisfy that

v�;V0


L1.�R;R/

D 1

!
1

1�m

v��.m/;V0


L1.�R;R/

D 1

!
1

1�m

�
2V0

��.m/.1Cm/

� 1
1�m

,

for any ! D �=��.m/ > 1:

In order to prove the estimates (1.10) and (1.11) we need to reconstruct some of the arguments

of the proof of Theorem 1 of [20]. We make the change of variables

v�;V0
.x/ D

�
V0

�

� 1
1�m

v
�p
�x

�
(2.8)

where v is now the solution of the renormalized problem

P.L/

�
�v00 D f .v/ in .�L;L/;
v.˙L/ D 0;

(2.9)

with f .v/ D v � vm and L D
p
�R. We introduce F.r/ given by (2.4) and note that F.s/ < 0 if

0 < s < rF and F.s/ > 0 for s > rF .

For � > rF we define the mapping  W ŒrF ;C1/ ! R given by (2.6). Now we use the

following fact whose proof is exactly as in [18] and [22]: a function v is a positive solution of

problem P.L/ if and only if

1p
2

Z �

v.x/

dr

.F.�/ � F.r//1=2
D jxj ; for jxj 6 L;
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where � WD kvkL1 (such that � 2 .rF ;1/) and L > 0 are related by the equation .�/ D L: In

particular, if � > rF we get that

v0.˙L/ D �
p
2F.�/: (2.10)

Thus ˇ̌
v0.˙L/

ˇ̌
D

ˇ̌
ˇ
p
2F.�/

ˇ̌
ˇ > 0;

which proves Part (ii) of the Proposition 1.5 for the case of � < ��.m/ since we know that it

corresponds to the case in which the transformed function v by the change of variables (2.8) has a

maximum � such that � > rF . In the case of � D ��.m/ the associated function v is such that

� D rF and in consequence v0.˙L/ D 0. Moreover, since

1

1Cm
r1Cm >

1

1Cm
r1Cm � 1

2
r2 >

.1 �m/
2.1Cm/

r1Cm for r 2 .0; 1/,

we get that there exist two positive constants M < M such that

M�
1�m

2 6
1p
2

Z �

0

drp
�F.r/

6 M�
1�m

2 (2.11)

for any � 2 .0; 1/ which leads to conclusion (iii) of Proposition 1.5 (and obviously also ii) for

� D ��.m/
�
.

Finally, since we know that for � > ��.m/ the nonnegative solutions are generated extending by

zero the function v��.m/;V0
outside .�R;R/ we get Part (i) of Proposition 1.5 thanks to the estimate

(2.11).

REMARK 2.2 Note that estimate (1.10) proves that if � > ��.m/ then the solution v of

P.R;m; V0; �/ is more regular than the usual definition of classical solution since v 2
C

2
1�m .Œ�R;R�/: As a matter of fact, given L > 0 we can produce C

1 functions with compact

support, contained in the open interval .�L;L/; and being solutions of problem P.L/ when we

take as a function f .v/ a variation of the function f arising in the above proof. Indeed, by taking

F.v/ D v2

2
� v2.ln v/2a (2.12)

for a given a > 1, we get that f .v/ D F 0.v/ satisfies that

f .v/ 6 v � vm

for any m 2 .0; 1/ but still Z �

0

drp
�F.r/

< C1;

for any � > 0. It is a routine matter to check that

M�
1�m

2 6
1p
2

Z �

0

drp
�F.r/

6 M�
1�m

2 (2.13)

for any m 2 .0; 1/ and thus, by taking the solution of maximum � D rF with rF the first positive

zero of F (i.e. such that F.s/ < 0 if 0 < s < rF and F.s/ > 0 for s > rF ) we get that the
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estimate (1.10) remains valid for anym 2 .0; 1/: Thus v 2 C
2

1�m .Œ�R;R�/ for anym 2 .0; 1/. This

gives an answer (for the one-dimensional case) to a question raised to the author by Jean-Michel

Coron during his visit to Madrid on May 2014.

REMARK 2.3 The constants M < M arising in (2.11), in the proof of Proposition 1.5, can be

estimated in a sharper way. Indeed, by l’Hôpital rule we have

lim
�&0

1p
2

R �

0
drp

�F .r/

�
1�m

2

D
p
2

2.1 �m/ lim
�&0

�
mC1

2

p
�F.r/

D
p
2

2.1 �m/
p
mC 1

WD C.m/ (2.14)

Then estimates (2.11) holds with

M D .C.m/ � �/; M D .C.m/ � �/ for some � > 0.

As a matter of fact, since we have

Mv.L � y/ 1�m
2 > .v.L � y// D y for any y 2 Œ0; L�

(and analogously with the other estimate), we get the estimates of the statement of Proposition 1.5

with

K D V
1

1�m

0

��.m/
m

1�m .C.m/ � �/ 2
1�m

, K D V
1

1�m

0

��.m/
m

1�m .C.m/C �/
2

1�m

:

Note that, curiously, if v��.m/.x W V0/ is the flat solution of P.R;m; V0; �
�.m// then

V0ˇ̌
v��.m/.x/

ˇ̌1�m
6

V0

.K/1�m

1

d.x; @˝/2
D ��.m/m.C.m/ � �/2 1

d.x; @˝/2
;

and
V0ˇ̌

v��.m/.x/
ˇ̌1�m

>
V0

.K/1�m

1

d.x; @˝/2
D ��.m/m.C.m/C �/2

1

d.x; @˝/2
;

i.e. with estimates independent of V0:

Now we can prove the main result of this paper:

Proof of Theorem 1.2. Part 1 holds since if ˛ < 2 then dv
dx
.�R/ > 0 and dv

dx
.R/ < 0: The proof is

an easy adaptation of the Höpf strong maximum principle, see, e.g., [32], [9] and [27].

In order to prove Part 2 we shall start by arguing as in the proof of Theorem 3.2 of [23] (see also

some further results in [21]). For any h 2 L2.˝/ (recall that ˝ D .�R;R/) we define the operator

T h D z 2 H 1
0 .˝/ solution of the linear problem

8
<
:

�d
2z

dx2
C V.x/z D h in ˝;

z D 0 on @˝:
(2.15)

This operator is well defined since problem (2.15) has a unique (weak) solution z 2 H 1
0 .˝/. This

follows from applying the Lax-Milgram Lemma to the associated bilinear form in H 1
0 .˝/

a.u; v/ D
Z

˝

du

dx

dv

dx
dx C

Z

˝

V.x/uv dx
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which is well-defined, continuous and coercive. Indeed, taking into account that

V.x/ 6
C

d.x; @˝/˛
a.e. x 2 ˝

(thanks to assumption (1.7)), Hardy’s inequality implies that

1

C

Z

˝

V.x/u2dx 6

Z

˝

u2

d.x/2
dx 6 k

Z

˝

ˇ̌
ˇ̌du
dx

ˇ̌
ˇ̌
2

dx

for some suitable constant k D k.˝/ and then

a.u; u/ 6 C kuk2

H 1
0

.˝/

for some C > 0, which implies that a is continuous (the coerciveness of a is a routine matter). Thus,

for any h 2 L2.˝/, there exists a unique T h 2 H 1
0 .˝/ solution of the above equation and it is

easy to see that the composition with the (compact) embedding H 1
0 .˝/ � L2.˝/ is a self-adjoint

compact linear operator eT D i ı T W L2.˝/ ! L2.˝/ for which we obtain in the usual way a

sequence of eigenvalues �n ! C1. If we call �# D �1 then, by well-known results we know that

�# > 0: In fact, since V.x/ > 0, we know that �# > �1.R/ D
�

�
2R

�2
:

The proof of Part 3 will result of the application of the iterative method of super and subsolutions

(since the comparison principle does not apply directly to solutions of the problem .DP /). We start

by proving that if �# is the eigenvalue mentioned in Part 2 then we can chose m# 2 Œ0; 1/ such that

�# D ��.m#/ (2.16)

with ��.m/ the critical eigenvalue of the nonlinear problem P.R;m; V0; �/ given in Proposition

1.5: Indeed, for any m 2 Œ0; 1/ we have

��.m/ D '.m/

2R2

where '.m/ WD
R rF

0
drq

rmC1

mC1
� r2

2

; with rF given by (2.5): Obviously function '.m/ is continuous,

'.m/ > 0 for any m 2 Œ0; 1/ and

limm%1 '.m/ D C1:

Moreover, it is not difficult to check that

Z b

a

drq
r � r2

2

D
p
2
�

arcsin.1 � a/ � arcsin.1 � b/
�
;

and thus

'.0/ D
Z 2

0

drq
r � r2

2

D
p
2�:

Then property (2.16) holds since we know that
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�# >

� �
2R

�2

>

p
2�

2R2
D ��.0/:

On the other hand the comparison principle holds for solutions of the problem

DP.V; f /

8
<
:

�d
2u

dx2
C V.x/u D f .x/ in ˝;

u D 0 on @˝;

in the sense that, since
C

d.x;@˝/2 6 V.x/; if f ; f 2 H�1.˝/ and f 6 f in H�1.˝/ then

there exist u; u 2 H 1
0 .˝/ solutions of DP.V; f / and DP.V; f /, respectively, such that u.x/ 6

u.x/ a.e. x 2 ˝. The proof of this follows by applying again the Hardy inequality (a different

argument, when f ; f 2 L1.˝; ı/; can be found in [24]). Then we can apply the iterative method

of super and subsolutions. We start by building the supersolution of DP.V; �#; ˝/ of the form

u.x/ D v��.m#/.x W V 0/ with v��.m#/.x W V 0/ the flat solution of P.R;m#; V 0; �
�.m#// with V 0

to be chosen later. Thanks to estimates (1.10), (1.11) and assumption (1.7), for any x 2 ˝ we have

V 0ˇ̌
v��.m#/.x/

ˇ̌1�m#
6

V 0

.K#/1�m#

1

d.x; @˝/2
6 V.x/;

if the condition
V 0

.K#/1�m#
6 C (2.17)

holds. As a matter of fact, from the proof of Proposition 1.5 we can see that (2.17) is equivalent to

1

K1�m#
6 C (2.18)

where K is the bound associated to the “direct case” V 0 D 1 and � D 1 (see Remark 2.3):Then, if

we assume (2.18) we have

��.m#/v��.m#/ D �
d2v��.m#/

dx2
C V 0v

m#

��.m#/
D �

d2v��.m#/

dx2
C V 0ˇ̌

v��.m#/.x/
ˇ̌1�m#

v��.m#/

6 �
d2v��.m#/

dx2
C V 0

.K#/1�m#

v��.m#/

d.x; @˝/2
6 �

d2v��.m#/

dx2
C V.x/v��.m#/;

which proves that v��.m#/.x W V 0/ is a supersolution (notice that for the moment V 0 is arbitrary).

The construction of a subsolution is more delicate. In fact we shall built a continuum of

subsolutions. Given bV0 > 0 (to be chosen later) we shall take a suitable � > ��.m#/ and

u.x/ D v�.x W bV0/ solution of P.R;m#; bV0; �/. By properties d) mentioned in the proof of

Proposition 1.5, if � D ��.m# W bV0/! with ! > 1 we have a family S1.�/ of compact support

nonnegative solutions with connected support defined by

v
�;bV0

.x/ D 1

!
1

1�m#

v
��.m#/;bV0

�p
!x � z

�
(2.19)
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where the shifting argument z is arbitrary among the points z 2 .�R;R/ such that support

v
�;bV0

.�/ � .�R;R/. Then, arguing as in the case of the supersolution, we have

�d
2u

dx2
C V.x/ 6 �d

2u

dx2
C bV0u

m# �
�
� � ��.m#/

�
u D ��.m#/u

assumed

C 6
!

.K
#
/1�m#

�
�
� � ��.m#/

�
R2; (2.20)

since we have
�

!

.K/1�m#
� ��.m#/.! � 1/R2

�
1

d.x; @˝/2
6 bV0u

m#�1 �
�
� � ��.m#/

�
;

with K the upper bound associated to the “direct case” bV0 D 1 and � D 1 (see Remark 2.3). If we

define " WD � � ��.m#/ then

! D �

��.m#/
D ��.m#/C "

��.m#/

and condition (2.20) can be written as

C 6

��.m#/C"

��.m#/
� "R2.K/1�m#

.K/1�m#
D
1C ". 1

��.m#/
�R2.K/1�m#

/

.K/1�m#
:

This implies that u is a subsolution.

Finally, to apply the super and subsolution method we must check that

u.x/ 6 u.x/ for any x 2 ˝: (2.21)

From the definitions of u.x/ and u.x/ we have that (2.21) holds if

bV0

�
6

V 0

��.m#/
; (2.22)

or equivalently

��.m#/C "

��.m#/
>

bV0

V 0

: (2.23)

Thus we can proceed as follows; we assume

C <
1

.K/1�m#
: (2.24)

Then, if 1
��.m#/

�R2.K/1�m#
> 0 we can take " > 0 arbitrary and then V 0 and bV0 such that (2.23)

holds. If by the contrary 1
��.m#/

�R2.K/1�m#
< 0 then we take

" <
1 � C.K/1�m#

.R2.K/1�m# � 1
��.m#/

/
;
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and again V 0 and bV0 such that (2.23) holds.

Then, by the super and subsolution method, we get the existence of a minimal u�.x/ and

maximal u�.x/ solution of .DP / such that

u.x/ 6 u�.x/ 6 u�.x/ 6 u.x/ for any x 2 ˝:

Since there is a continuum of subsolutions we can shift them in order to get that u�.x/ > 0 for

any x 2 ˝: Moreover from the spectral theory necessarily � u�.x/ D u# D �u�.x/ for some

�;� > 0 and the estimates (1.9) hold for the solutions of the linear problem thanks to Proposition

1.5. �

Proof of Corollary 1.7. As it is shown in [20], the nodal solutions v��
n.m/ of the semilinear problem

P.R;m; V0; �/ corresponding to suitable values ��
n.m/ of the parameter � bifurcating at the infinity

from the simple eigenvalues �n, n 2 N; are obtained by rescaling, gluing and translating the unique

positive flat solution corresponding to ��.m/: Thus the conclusion is an obvious consequence of

Proposition 1.5.

REMARK 2.4 Theorem 1.2 and Proposition 1.5 also hold to N > 1 for suitable convex regular

domains, for instance, satisfying the interior sphere condition (see [16]).

Proof of Theorem 1.9. Now the comparison principle can be applied directly and so it suffices to

follow the same scheme of proof as in Theorem 1.2. The sub and supersolutions are obtained by

solving the associate sublinear problem

8
<
:

�d
2v

dx2
C V0v

m D f .x/ in .�R;R/;
v.˙R/ D 0;

for suitable choices of m 2 .0; 1/ and V0 > 0. The boundary estimate similar to the given in (1.10)

was obtained in Theorem 1.15 of [14] (see also [2]) thanks to the crucial assumption (1.14).

REMARK 2.5 A different type of localizing results concerning the non-linear Schrödinger equation,

arising in nonlinear optics,

i¯@ 
@t

D � ¯2

2m
� C aj j� ; in .0;1/ � R

N ;

were also presented in the series of lectures [15]. We recall that in most of the papers in the literature

it is assumed � D 2, nevertheless there are many applications in which � 2 .�1; 0/: In a series of

papers in collaboration with P. Bégout ([4], [5], [6], [7] and [8]) we prove precise estimates on the

location of the support of  .x; t/, whose boundary gives rise to a free boundary associated to the

problem. The techniques of proof are some extensions of the ones of [1] and are entirely different

to the ones used in the present paper.

REMARK 2.6 As it will be presented in [17], some of the ideas of this paper can be adapted to the

study the existence of ”large solutions” of the same type of linear equation

�
��uC V.x/u D f .x/ in ˝;

u D C1 on @˝;
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when the potential V satisfies (1.7). We recall (Theorem 2.10 of [24]) that given f 2 L1.˝ W ı/,
f .x/ > 0 a.e. x 2 ˝; V0 > 0, the existence of a large solution of the semilinear problem

�
��v C V0v

m D f .x/ in ˝;

v D C1 on @˝;

requires now the key assumption m > 1 (compare this condition to the assumption m 2 .0; 1/ used

in the proof of Theorem 1.9 for the existence of a flat solution).
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8. BÉGOUT, P. & DIAZ, J. I., Existence of weak solutions to some stationary Schrödinger equations with

singular nonlinearity. Rev. R. Acad. Cienc. Exactas Fı́s. Nat., Ser. A Mat. RACSAM 109 (2015), 43–63.

Zbl1309.35126 MR3315701

9. BERTSCH, M. & ROSTAMIAN, R., The principle of linearized stability for a class of degenerate diffusion

equations. J. Differ. Equat 57 (1985) 373–405. Zbl0583.35061 MR0790282

10. BENILAN, PH., BREZIS, H. & CRANDALL, M. G., A semilinear equation in L1(RN ), Ann. Scuola Norm.

Sup. Pisa 4 (1975), 523–555. Zbl0314.35077 MR0390473

11. BREZIS, H., Solutions of variational inequalities with compact support. Uspekhi Mat. Nauk., 129 (1974)

103–108. Zbl0304.35036 MR0481460

12. BREZIS, H. & STAMPACCHIA, G., Une nouvelle méthode pour l’étude d’écoulements stationnaires. C.R.

Acad. Sci. 276 (1973), 129–132. Zbl0246.35021 MR0315973

Zbl 0988.35002
http://www.emis.de/MATH-item?0988.35002
MR 1858749
http://www.ams.org/mathscinet-getitem?mr=1858749
Zbl 1171.35368
http://www.emis.de/MATH-item?1171.35368
MR 2525165
http://www.ams.org/mathscinet-getitem?mr=2525165
Zbl 06446449
http://www.emis.de/MATH-item?06446449
MR 3334180
http://www.ams.org/mathscinet-getitem?mr=3334180
Zbl 1094.35113
http://www.emis.de/MATH-item?1094.35113
MR 2214595
http://www.ams.org/mathscinet-getitem?mr=2214595
Zbl 1241.35185
http://www.emis.de/MATH-item?1241.35185
MR 2876246
http://www.ams.org/mathscinet-getitem?mr=2876246
Zbl 1305.35022
http://www.emis.de/MATH-item?1305.35022
MR 3190983
http://www.ams.org/mathscinet-getitem?mr=3190983
Zbl 1291.35331
http://www.emis.de/MATH-item?1291.35331
MR 3193996
http://www.ams.org/mathscinet-getitem?mr=3193996
Zbl 1309.35126
http://www.emis.de/MATH-item?1309.35126
MR 3315701
http://www.ams.org/mathscinet-getitem?mr=3315701
Zbl 0583.35061
http://www.emis.de/MATH-item?0583.35061
MR 0790282
http://www.ams.org/mathscinet-getitem?mr=0790282
Zbl 0314.35077
http://www.emis.de/MATH-item?0314.35077
MR 0390473
http://www.ams.org/mathscinet-getitem?mr=0390473
Zbl 0304.35036
http://www.emis.de/MATH-item?0304.35036
MR 0481460
http://www.ams.org/mathscinet-getitem?mr=0481460
Zbl 0246.35021
http://www.emis.de/MATH-item?0246.35021
MR 0315973
http://www.ams.org/mathscinet-getitem?mr=0315973


350 J. I. DÍAZ
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23. D ÍAZ, J. I., HERNÁNDEZ, J. & ILYASOV, Y., On the existence of positive solutions and solutions

with compact support for a spectral nonlinear elliptic problem with strong absorption. Nonlinear Anal.,

Theory Methods Appl., Ser. A, Theory Methods 119 (Article ID 10437) (2015), 484–500. Zbl 06446470

MR3334201
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