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We explore an optimal partition problem on surfaces using a computational approach. The problem is
to minimize the sum of the first Dirichlet Laplace–Beltrami operator eigenvalues over a given number
of partitions of a surface. We consider a method based on eigenfunction segregation and perform
calculations using modern high performance computing techniques. We first test the accuracy of the
method in the case of three partitions on the sphere then explore the problem for higher numbers of
partitions and on other surfaces.
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1. Introduction

In this paper, we use the surface finite element method to tackle an eigenvalue optimal partition
problem for n-dimensional hypersurfaces in RnC1. Our computations are restricted to n D 2. We
denote by � a closed, smooth, connected n-dimensional hypersurface embedded in RnC1. For a
given positive integer m, we say that f�igmiD1 is an m-partition of � if �i � � for i D 1; : : : ; m,
�i \ �j D ; for i; j D 1; : : : ; m with i ¤ j and

S
iD1;:::;m � i D � .

PROBLEM 1.1 Given a positive integer m and a smooth surface � , divide � into an m-partition
f�ig

m
iD1 to minimize the energy:

E
�
f�ig

m
iD1

�
D

mX
iD1

�1.�i /; (1.1)

where �1.�i / is the first eigenvalue of the Dirichlet Laplace–Beltrami operator over �i .

This is a generalization of a similar problem considered in various formulations over a Cartesian
domain ˝ with appropriate boundary conditions. The flat problem was studied in the context of
shape optimization in the 1990’s by Buttazzo and Dal Maso (1993); Sverak (1993); Bucur and
Zolesio (1995); Bucur, Buttazzo and Henrot (1998). A key challenge is how to define an appropriate
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space of admissible partitions and how to equip this space with a topology so that one can define
an absolute minimizer. By restricting to quasi-open sets, Bucur et al. (1998) show existence of a
optimal partition as a consequence of a more general result. Quasi-open sets are sets which are close
to open sets in the sense that given a quasi-open set there is an open set such that their symmetric
difference has arbitrarily small capacity (Caffarelli and Lin 2007). Formally speaking, these are a
class of general sets which can be used to define a weak form of elliptic equations. For example, all
open sets are quasi-open. The set A.˝/ of quasi-open sets in a domain ˝ can be equipped with a
notion of weak convergence by defining that a sequence of quasi-open sets fAng weakly converges
to A 2 A.˝/ if �An

! �A weakly in H 1.˝/ and A D f�A > 0g where �! 2 H 1.˝/ is the
extension to ˝ by zero of the unique weak solution of

���! D 1 in ! and �! D 0 on @!:

Using these notions it is possible to establish that the spectral functional is lower semi-continuous
with respect to weak convergence in A.˝/ and existence of an m-partition into quasi-open sets
follows from the direct method of the calculus of variations (Caffarelli and Lin 2007).

An alternative method is based on using the eigenfunctions to partition the domain using an
approach formulated by Caffarelli and Lin (2007). The energy (1.1) is transformed into a functional
form as a constrained Dirichlet energy:

PROBLEM 1.2 Given a positive integer m and a smooth surface � , find u D .u1; : : : ; um/ 2

H 1.�;�/ with kuikL2.� / D 1 for i D 1; : : : ; m, to minimize

E0SEG.u/ D

mX
iD1

Z
�

jr� ui j
2 d�; (1.2)

where � � Rm is the singular set

� D
n
y D .y1; : : : ; ym/ 2 Rm W

mX
iD1

X
i¤j

y2i y
2
j D 0 and yi > 0; i D 1; 2; : : : ; m

o
:

It was shown by Caffarelli and Lin (2007) that, when � is a Cartesian domain in Rn, (1.2) is
equivalent to (1.1) when we restrict tom-partitions of � in which �i are quasi-open sets. The proof
can be adapted to the surface case also. Let f�igmiD1 be a minimizer of (1.1) consisting of quasi-
open sets, then if ui is the first eigenfunction of the Dirichlet Laplace–Beltrami operator over �i ,
for i D 1; : : : ; m, the vector quantity u D .u1; : : : ; um/ is a minimizer of (1.2). Conversely, let the
function u D .u1; : : : ; um/ 2 H

1.�;�/ be a minimizer of (1.2), then setting �i D fui > 0g, for
i D 1; : : : ; m, the collection of quasi-open sets f�igmiD1 is anm-partition of � which is a minimizer
of (1.1) and

�1.�i / D

Z
�

jr� ui j
2 d� for i D 1; : : : ; m:

The authors Caffarelli and Lin (2007) use this formulation to show existence of minimizers and
regularity of the interface between partitions.

Other works by Conti, Terracini and Verzini (2002, 2003) and Caffarelli and Lin (2007, 2008)
have focused on regularity and more qualitative aspects of the problem for a Cartesian domain.
Conti, Terracini and Verzini derive optimality conditions, such as the gradient of eigenfunctions
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FIG. 1: Plots of solution of Problem 1.1 when � is a sphere,m D 1 (left),m D 2 (center) andm D 3
(right, Bishop’s conjecture) (Helffer et al. 2010)

should match at partition boundaries, and also that the partition consists of open sets. Caffarelli and
Lin obtain regularity results, such as C 1;˛-smoothness of the partition boundaries away from a set
of codimension two, and also an estimate of the behavior in the limit of large m. In particular,
they prove that the optimal energy is bounded above and below by a constant times the m-th
eigenvalue on � and conjecture that for largem the optimal partition will be asymptotically close to
a hexagonal tiling in the case of a planar domain. The problem can be seen as a strong competition
limit of segregating species either in Bose-Einstein condensate (Chang, Lin, Lin and Lin 2004),
population dynamics (Conti, Terracini and Verzini 2005a,b) or materials science (Chen 2002) in
curved geometries.

Numerical studies of this type of problem have so far been limited to the planar case. We
mention in particular the study of Chang et al. (2004) and some special algorithms in the case
of small m given by Bozorgnia and Arakelyan (2013) and Bozorgnia (2009). Also Bourdin, Bucur
and Oudet (2010) considered the problem for large values of m using a fictitious domain approach.
This problem has also been considered on graphs (Coifman and Lafon 2006; Osting, White and
Oudet 2014) with applications in big data segmentation. Finally, we mention the study which will
be the basis of our work in the paper: an eigenfunction segregation approach (Du and Lin 2009).
We will describe the algorithm in more detail in the following.

The curved hypersurface problem has been studied analytically in the case that � is a sphere.
For m D 1, the result is clear and for m D 2 the solution is two hemispheres leading to total energy
2. The case m D 3 on the sphere leads to the Bishop conjecture (Bishop 1992).

CONJECTURE 1.3 The minimal 3-partition for Problem 1.1, with � D sphere, corresponds to the
Y-partition whose boundary is given, up to a fixed rotation, by the intersection of � with the three
half planes defined in polar coordinates by � D 0; 2�

3
; �2�
3

(see Figure 1 and Section 3.1).

A similar problem to Problem 1.1 has been considered by exchanging the sum in (1.1) to an
`p-norm for p 2 Œ1;1�.

PROBLEM 1.4 Given a positive integer m and a smooth surface � , divide � into an m-partition
f�ig

m
iD1 to minimize the energy

Ep.f�ig
m
iD1/ D

(�
1
m

Pm
iD1 �1.�i /

p
� 1

p p 2 Œ1;1/;

maxiD1;:::;m �1.�i / p D1:
(1.3)
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The differences between this more general problem and the case p D 1 have been studied by
Helffer and Hoffmann-Ostenhof (2010) in the case of Cartesian domains. In particular they show
a monotonicity formula for optimal partitions: Denoting by Pp the optimal partition for the energy
Ep , for p 2 Œ1;1�, then we have

Ep.Pp/ 6 Eq.Pq/ if p 6 q:

It is well known that the optimal partition for the case p D 1 is equi-spectral (equal �1 for each
set in the partition). This implies that if a partition is optimal for p D 1 and is equi-spectral then it
is optimal for p D1 (Helffer and Hoffmann-Ostenhof 2010, Proposition 2.1).

The case p D 1 has been studied on the sphere in the recent work of Helffer et al. (2010).
They show the optimal partition is given by two hemispheres for the casem D 2 and the Y-partition
for m D 3; see Figure 1 and Section 3.1. The authors also conjecture that for m D 4 the optimal
partition is a spherical projection of a regular tetrahedron. Furthermore, they show that for each m
there is an optimal partition which satisfies an equal angle condition which says that the boundary
arcs that meet at a critical point do so with equal angles. Computations for the p D1 case on a flat
torus can be found in Léna (2014).

We derive computational approaches using the surface finite element method (Dziuk 1988;
Dziuk and Elliott 2007) to find solutions to these problems. A review of computational techniques
for partial differential equations on surfaces is given by Dziuk and Elliott (2013). Our methods will
be one of the algorithms given by Du and Lin (2009) applied with the surface finite element method
in order to explore Problem 1.1.

We believe some of the techniques used in this paper, such as operator splitting and parallel
computing, could be applied in a wide range of multiphase problems; for example Gräser,
Kornhuber and Sack (2014). In these problems, one typically has a large system of reaction diffusion
systems to solve with small parameter " indicating an interfacial width. The small parameter " acts
with nonlinear terms to separate different phases. Our methods are designed to be transferable to this
type of problem also. In contrast to many multiphase problems, the dynamic problem considered in
this paper is based on non-local interface motion.

1.1 Approximation approach

One could try to directly compute the gradient flow of the energy E0SEG in (1.2); see Mayer (1998)
for analytic considerations of this approach. However, this would lead to equations which would be
hard to discretize. We instead relax the constraint that u takes values in � by adding a penalty term
to the energy functional following Caffarelli and Lin (2008). In this way, we consider the extended
energy functional:

E"SEG.u
"/ D

mX
iD1

1

2

Z
�

jr� u
"
i j
2 d� C

Z
�

F".u
"/ d�; F".u

"/ D
1

"2

mX
iD1

mX
jD1

j¤i

.u"i /
2.u"j /

2:

PROBLEM 1.5 Given a positive integerm, a smooth surface � and " > 0, find u" D .u"1; : : : ; u
"
m/ 2

H 1.�;Rm/ with


u"i 

L2.� /

D 1 for i D 1; : : : ; m, to minimize

E"SEG.u
"/ D

mX
iD1

1

2

Z
�

jr� u
"
i j
2 d� C

Z
�

F".u
"/ d�: (1.4)
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We will now compute the gradient flow of this relaxed problem. We seek a time dependent
function u"W� � RC ! Rm and �"WRC ! Rm satisfying

@tu
"
i D �� u

"
i C �iu

"
i �

2

"2

�X
j¤i

.u"j /
2
�
u"i on � � RC; for i D 1; : : : ; m; (1.5a)

u".�; 0/ D u0 on �; (1.5b)

subject to the constraint Z
�

ju"i j
2 d� D 1 for i D 1; : : : ; m: (1.6)

Here, we suppose that the initial condition partitions � and has unit norm:

u0 2 H 1.�;�/;

Z
�

ˇ̌
u0i
ˇ̌2

d� D 1 for i D 1; : : : ; m:

We remark that u0i > 0 implies u"i > 0 for i D 1; : : : ; m.
This gradient flow problem was studied by Caffarelli and Lin (2009) for Cartesian geometries.

The proofs can be easily transferred onto surfaces. We recall their results stated on surfaces:

�"i .t/ D

Z
�

jr� u
"
i j
2
C
2

"2

�X
j¤i

.u"j /
2
�
.u"i /

2 d�;

and

E"SEG.u
"/ 6

mX
iD1

�"i .t/ D E"SEG.u
"/C 2

Z
�

F".u
"/ d�:

Furthermore, they show that E"SEG.u
"/ is a monotone decreasing function of time for u" the solution

of (1.5). This implies the existence of a unique global strong solution u" 2 L1.RC;H 1.�;Rm//
for each " > 0. Finally, they give estimates of interest when considering the sharp interface limit:
Denoting by Nu" the minimizer of the "-problem, for any 0 < t1 < t2, we haveZ t2

t1

Z
�

F". Nu
"/ d� dt ! 0 as "! 0;

and that the limit of minimizing functions as " ! 0, Nu" converges strongly in H 1.� � RC/ to
a suitable weak solution of the constrained gradient flow of (1.2). Further asymptotic analysis of
the limit " ! 0 has been considered by Du and Zhang (2011) and Berestycki, Lin, Wei and Zhao
(2013).

A key advantage of this approach is that we are trying to approximate smooth functions u" in
place of the domains �i . The limiting function u� D .u�1 ; : : : ; u

�
m/, the limit of u" as " ! 0,

partitions � so we can define �i D fu�i > 0g and u�j D 0 in �j , j ¤ i . We note also that setting
v�i WD u�i �

P
j¤i u

�
j we have �i D fv�i > 0g. A possible disadvantage of this method is that it is

not clear how to relate u" to a partition f�ig when " is fixed. Possibilities for defining � "i include
� "i D fu

"
i > c."/g or � "i D fv

"
i > 0g where v"i WD u

"
i �

P
j¤i u

"
j .
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1.2 Outline

In the remainder of this paper, we will give a suitable discretization of this approach using the
surface finite element method. We will propose an algorithm to solve the discretized optimization
problem and give practical details of how we implement this method. Our experience is that the
eigenfunction segregation method performs very well. Our results section consists of three parts.
First, we will test our algorithm in the case of three partitions on the sphere for which we know the
absolute minimizer. We will then compute partitions of the sphere for larger values of m and make
some observations about the structure. Finally we consider other surfaces to see the different effects
of curvature and different genus surfaces. The computations lead to some natural conjectures.

2. Computational method

2.1 Discretization

We start the discretization by taking a polyhedral approximation �h of � . We assume that �h
consists of a shape regular triangulation Th where h is the maximal diameter of a simplex (triangle
for n D 2) in Th. We will denote by Nh the vertices of �h and call �h a triangulated surface. We
suppose that �h interpolates � in the sense that the vertices of triangles of �h lie on � .

Over this triangulation, we define two continuous finite element spaces, a space of scalar valued
functions Sh and a space of vector valued functions S h. These are given by

Sh D f�h 2 C.�h/ W �hjT is affine linear, for all T 2 Thg;

S h D f�
h
D .�h1; : : : ; �

h
m/ 2 C.�hIR

m/ W �hi 2 Sh for i D 1; : : : ; mg:

We can directly formulate the discrete version of Problem 1.5.

PROBLEM 2.1 Given a positive integer m, a triangulated surface �h and " > 0, find u";h D
.u
";h
1 ; : : : ; u

";h
m / 2 S h to minimize

E";hSEG.u
";h/ D

1

2

mX
iD1

Z
�h

ˇ̌̌
r�h

u
";h
i

ˇ̌̌2
d�h C

Z
�h

F".u
";h/ d�h: (2.1)

Our optimization strategy will be to directly solve a discretization of the gradient flow equations.
Discretizing in space first, we seek a time dependent finite element function u";h 2 C 1.RCIS h/
and �";hWRC ! Rm satisfying jju";hi jj

2
�h
D 1 for i D 1; 2; : : : m;Z

�h

@tu
";h
i �h Cr�h

u
";h
i � r�h

�h d�h

D

Z
�h

�
";h
i u

";h
i �h �

2

"2

�X
j¤i

.u
";h
j /2

�
u
";h
i �h d�h for all �h 2 Sh

u";h.�; 0/ D uh;0:

(2.2)

Here, uh;0 D .u
h;0
1 ; : : : ; u

h;0
m / is initial data in S h such that

P
j¤i .u

h;0
i /2.u

h;0
j /2 D 0 for

i D 1; : : : ; m.
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We discretize in time using a operator splitting strategy similar to a scheme proposed by Du
and Lin (2009). At each time step, we first solve one step of the heat equation, then solve an
ordinary differential equation for the nonlinear terms, and use a projection to deal with the Lagrange
multiplier.

2.2 Computational method

The operator splitting method is as follows.

ALGORITHM 2.2 Given " > 0, a positive integer m, a time step � > 0 and an initial condition
uh;0 D ..u

h;0
1 /; : : : ; .u

h;0
m // 2 S h with

P
j¤i u

h;0
i .z/2u

h;0
j .z/2 D 0 for all z 2 Nh and i D

1; : : : ; m, for k D 0; 1; 2; : : :,
1. Solve one time step of the heat equation for i D 1; : : : ; m using an implicit Euler method. We

wish to find Qu";h D . Qu
";h
1 ; : : : ; Qu

";h
m / 2 S hZ

�h

1
�

�
Qu
";h
i � .u

";h
i /k

�
�h Cr�h

Qu
";h
i � r�h

�h d�h D 0 for all �h 2 Sh; i D 1; : : : ; m:

2. Solve the nonlinear terms exactly as an ordinary differential equation at each node. For all nodes
z 2 Nh and i D 1; : : : ; m, find Ou";hi .z/W Œtk ; tkC1�! R such that

d
dt

�
Ou
";h
i .z/.t/

�
D �

� 2
"2

X
j¤i

. Qu
";h
j .z//2

�
Ou
";h
i .z/.t/; Ou

";h
i .z/.tk/ D Qu

";h
i .z/:

3. Find the new solution .u";h/kC1 by normalizing the final time solution
. Ou
";h
1 .�/.tkC1/; : : : ; Ou

";h
m .�/.tkC1//:

.u
";h
i .z//kC1 D

Ou
";h
i .z/.tkC1/


 Ou";hi .�/.tkC1/





L2.�h/

for all z 2 Nh; i D 1; : : : ; m:

Similarly to Bao and Du (2004), one can show an energy decreasing property for this scheme.
The method is the same as the scheme of Du and Lin (2009) except we exchange a Gauss-Seidel
iteration in step 2 for a Jacobi iteration. The ordinary differential equation from Step 2 can be solved
exactly to give:

Ou
";h
i .z/.tkC1/ D Qu

";h
i .z/ exp

�
�
�

"2

X
j¤i

�
Qu
";h
j .z/.t/

�2�
:

Using this solution, we write a more practical version of Step 2 as

2. For each node z 2 Nh,
(a) For i D 1; : : : ; m, compute Qu";hi .z/2;
(b) Find S D

Pm
iD1 Qu

";h
i .z/2;

(c) For i D 1; : : : ; m, compute Ou";hi .z/.tkC1/ by

Ou
";h
i .z/.tkC1/ D Qu

";h
i .z/ exp

�
�
2�

"2

�
S � Qu

";h
i .z/2

��
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We stop the computation when the change in energy is less than 10�6. In order to reduce the
computational cost this is only calculated every M� iterations where 0:1 DM�� .

Since, in general, we do not know the configuration of the optimal domains, we initialize the
computations with a random initial condition. We loop over the grid nodes z 2 Nh and uniformly
at random choose one value i 2 f1; : : : ; mg and set .uh0/.z/i D 1 and .uh0/.z/j D 0 for j ¤ i then
normalize each component, .uh0/i , for i D 1; : : : ; m, in L2.� /. As a result the first linear solve for
the heat equation step will take more iterations, however the difference is not significant in this case.

REMARK In practice, we find this operator splitting method to be stable and efficient. If we
discretized (2.2) in time directly using the Lagrange multiplier, we would have the choice to
take the Lagrange multiplier implicitly or explicitly. An implicit discretization would leave a fully
coupled system of equations to solve, which would not be so easily implemented using parallel high
performance computing techniques. An explicit discretization would imply a time step restriction
based on the size of the maximum H 1-semi norm of each component. We wish to start with a
random initial condition in order to avoid local minima, however this has a very large H 1-semi
norm which would give an unfeasible time step restriction. All three methods are considered for the
flat problem in the time discrete-space continuous case by Du and Lin (2009).

2.3 Parallel computations

The algorithm has been formulated so that we can use high performance computing to implement
the optimization. The key idea is to store the solution overm parallel processors and perform most of
the computations on a single processor. Communication between processors is kept to a minimum.

We distribute the solution u";h over m processors so that processor i stores u";hi . At each time
step, each processor performs one linear solve (step 1), one loop over all nodes communicating
with all other nodes to perform the sum in step 2(b) (step 2), then one more loop over all nodes to
normalize the solution (step 3). In particular, computing sum in step 2(b) over all j is more efficient
then computing the sum over all other j ¤ i .

A similar approach was also taken to parallelisation by Bourdin et al. (2010) who computed up
to 512 partitions. Our approach performs very well for m 6 32. At the moment we restricted to this
number of partitions because we wish to have a meaningful number of elements in each partition. It
is possible that one may gain efficiency by using an adaptive mesh refinement on the unstructured
grids enabling sufficiently accurate computations with a larger number of partitions. This is left for
future work.

All test cases were implemented using the Distributed and Unified Numerics Environment
(DUNE) (Bastian, Blatt, Dedner, Engwer, Klöfkorn, Ohlberger and Sander 2008b; Bastian, Blatt,
Dedner, Engwer, Klöfkorn, Kornhuber, Ohlberger and Sander 2008a). Matrices are assembled using
the DUNE-FEM (Dedner, Klöfkorn, Nolte and Ohlberger 2010) and solved using a conjugate
gradient method preconditioned with algebraic multigrid Jacobi preconditioner from DUNE-ISTL
(Blatt and Bastian 2007). Parallelisation is performed using MPI. All visualization is performed in
ParaView (Henderson 2014). The code we have written for the simulations in this paper is available
at http://users.dune-project.org/projects/dune-partition.

http://users.dune-project.org/projects/dune-partition
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3. Results

3.1 Convergence tests for three partitions of the sphere

Bishop’s conjecture (Conjecture 1.3) suggests that the Y-partition is optimal in the case m D 3 on
the sphere. This corresponds (up to rotations of the sphere) to �1 D f0 < ' < 2�=3g, �2f�2�=3 <
' < 0g and �3 D fj'j > 2�=3g. We can compute that the first eigenfunctions are:

u1.�; '/ D sin.3'
2
/.sin �/

3
2 on �1;

u2.�; '/ D � sin.3'
2
/.sin �/

3
2 on �2;

u3.�; '/ D sin.3j'j
2
� �/.sin �/

3
2 on �3:

Each of these eigenfunctions has eigenvalue 15=4. We will test our scheme by checking the rate of
convergence to the Y-partition.

We first test convergence with respect to the discretization parameters. We perform our algorithm
at " D 5 �10�3 and � D 10�4 over five levels of mesh refinement, reducing from h D 3:21614 �10�2

to h D 2:01073 �10�3. We compute until t D 2. We have plotted the energy along the time evolution
in Figure 2 and see good convergence. We have also included a dashed line at the Y-partition energy
45=4 for " D 0. We see that for a given " the error in energy can be large.

To test the convergence of the regularization we compute the minimizer for a sequence for values
for ". We start on a coarse mesh (h D 3:21614 � 10�2) with � D 8 � 10�4, once we have reached

0.0 0.5 1.0 1.5 2.0

time

10.0

10.5

11.0

11.5

12.0

E
n
er

g
y

h = 3.21614 · 10−2

h = 1.60846 · 10−2

h = 8.04275 · 10−3

h = 4.02144 · 10−3

h = 2.01073 · 10−3

FIG. 2: Convergence with respect to discretization parameters for " D 5 � 10�3 to the Y-partition on
the sphere. The dashed grey line is the Y-partition energy for " D 0.
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TABLE 1: Results of convergence test in " for numerical tests for three partition case. Energy is E"SEG
at the best computed partition, energy error is the difference to 45=4, the Y-partition energy for
" D 0, and S" is given by (3.1).

" Energy Energy error (eoc) S" (eoc)

5:00000 � 10�1 1:9100 9:3400 — 1:9098 —
2:50000 � 10�1 4:8759 6:3741 0:5512 1:5350 0:3151

1:25000 � 10�1 6:6257 4:6243 0:4630 1:0548 0:5413

6:25000 � 10�2 7:8829 3:3671 0:4577 0:7751 0:4444

3:12500 � 10�2 8:8095 2:4405 0:4643 0:5714 0:4400

1:56250 � 10�2 9:4907 1:7593 0:4721 0:4188 0:4482

7:81250 � 10�3 9:9880 1:2620 0:4793 0:3050 0:4576

3:90625 � 10�3 10:3487 0:9013 0:4856 0:2209 0:4652

1:95312 � 10�3 10:6088 0:6412 0:4912 0:1605 0:4605

9:76562 � 10�4 10:7958 0:4542 0:4974 0:1168 0:4591

a minimizer, we refine the mesh by bisecting elements once (two bisections reduces h roughly by
half) and reduce � by a factor 1=

p
2. Instead of computing a new random initial condition after each

refinement, we use the previous minimizer as the new initial condition.
We define S" to be part of the energy associated with regularization:

S".u
";h/ WD

Z
�h

F".u
";h/ d�h D

1

"2

Z
�h

mX
iD1

X
j¤i

.u
";h
i /2.u

";h
j /2 d�h: (3.1)

These values illustrate the convergence of the relaxation to the exact problem. We expect S" ! 0

as we know that we recover a minimizer of the partition problem as "! 0.
We have computed the full and regularization energy at each minimizer. The results are shown

in Table 1 and Figure 3. The tables also show the experimental order of convergence (eoc) which is
computed via the formula

.eoc/i D
log.errori=errori�1/

log.1=2/
:

where errori is the error in energy against the Y-partition at refinement level i .
The eigenfunction segregation approach performs very well with respect to convergence in ".

We observe order "
1
2 convergence both for the full energy and also for S". The errors are still quite

large for reasonable sized values of " so we must take very small values of " to trust any predictions
of energy values using this method.

3.2 Computed partitions of the sphere for m > 3

We proceed with the following refinement rules. We initialize the problem with a random initial
condition for "0 D 1

2
, �0 D 8 � 10�4 on a mesh �h;0, then for l D 0; 1; 2; : : :, we find a minimizer of

the "l -problem on �h;l , then refine the mesh globally by bisecting all elements, and find "lC1 and
�lC1 as

"lC1 D
p
2"l �lC1 D

p
2�l :
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FIG. 3: Convergence with respect to " to the Y-partition on the sphere. The energy error is difference
to 45=4, the Y-partition energy for " D 0, and S" is given by (3.1).

We use the optimal function for level l � 1 as the initial condition on level l . The final parameters
are given in Table 2.

Plots of the solutions for several values ofm are given in Figure 4. Observe that the color coding
of these figures indicates the partitions using the computed values of the eigenfunctions. Eigenvalue
estimates are computing by taking the mean H 1-semi norm of the components. The computed
eigenvalues are plotted in Figure 5. Theorem 3 of the work by Caffarelli and Lin (2007) proves that
the energy scales like �m.� / up to a constant factor. Using Weyl’s asymptotics, we see that in two

TABLE 2: Final parameters for computations on the sphere

m l Degrees of freedom "

3 9 579 830 6:25 � 10�4

4 9 786 440 6:25 � 10�4

5 9 983 050 6:25 � 10�4

6 9 1 179 660 6:25 � 10�4

7 9 1 376 270 6:25 � 10�4

8 7 196 624 1:25 � 10�3

16 7 393 248 1:25 � 10�3

32 7 786 496 1:25 � 10�3
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space dimensions this means that the average eigenvalue is bounded above and below by m times a
constant. This is indicated by the blue line which is m times the first eigenvalue corresponding to a
hexagon H of area 4� (the surface area of the sphere) – this is the conjectured average eigenvalue
for largem in the plane (Caffarelli and Lin 2007). Our results indicate a similar scaling property for
the sphere.

Rather than just using the computed eigenfunction values, as mentioned earlier, we may define
an approximate partition by

�
";h
i WD

n
x 2 � W v

";h
i .x/ WD u

";h
i .x/ �

X
j¤i

u
";h
j .x/ > 0

o
for i D 1; : : : ; m: (3.2)

We motivate the use of this definition by noting that each u";hi is positive and the supports of fu";hi g
overlap, hence this function is zero only surrounding one partition where u";hi D u

";h
j for some

j ¤ i . Note that these sets will not cover � and there will be a small void between regions.
Furthermore we may use v";hi in the following interesting way. Suppose that 
 is a curve on �
defined by as the zero level set of a function �, 
 D f� D 0g, then the geodesic curvature of 
 ,
which we denote by �g is given by

�g D r� �

�
r� �

jr� �j

�
: (3.3)

We can use ParaView’s gradient reconstruction function to compute an approximation of �g over
the interface at the boundary of each partition �i using � D v

";h
i . An example of this is shown in

Figure 6. We see that this value is small away from junctions.
We observe that at junctions three partitions coincide with equal angles. See, for example,

Figure 7. This is consistent with the results of Helffer et al. (2010) who prove, for the case p D1,
that all partitions have an equal angle property. From our results it is difficult to quantify this result
since at any triple point there is a void region because of our regularization. Also in Figure 7, we
have superimposed an equal angle triple junction which shows good agreement to results we have.
We can consider a reduced problem of finding the first eigenvalue over partitions of the unit disk.
We find with three equal partitions (similar to the Y-partition) the total energy is approximately
60:6.D 3 � 20:2/ and for four partitions, one in each quadrant, the total energy is approximately
105:6.D 4 � 26:4/. Taking three partitions leads to a significant reduction in energy.

Table 3 shows one representative of each polygon similarity class and more details of the
best estimate of the energy and also the similarity classes of polygons. The energy calculation
shows the values of each eigenvalue (mean and standard deviation for each similarity class of
polygons) and also S" for each of the final configurations. We note that for m D 3; 4; 6, our
optimal configuration are equi-spectral and for the case m D 4 we recover a spherically projected
tetrahedron as conjectured by Helffer et al. (2010). Thus we conjecture that there partitions are
optimal for the case p D1 also.

There are several striking features:
� All partitions consist of curvi-linear polygons;
� The boundary of each partition consists of arcs with zero geodesic curvature (“straight lines”);
� Each junction is a triple junction with an equal angle condition satisfied;
� There are at most two types of polygon in the partition;
� In the case of two different polygons, the polygon with more sides has lower eigenvalue;
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� As m increases the number of edges in each polygon increases;
� Each polygon has at most 6 edges.

(a) m D 3, 3 lens (pink) (b) m D 4, 4 triangles (red) (c) m D 5, 2 triangles (red)
and 3 quadrilaterals (orange)

(d) m D 6, 6 quadrilaterals
(orange)

(e) m D 7, 5 quadrilaterals
(orange) and 2 pentagons (yel-
low)

(f) m D 8, 4 quadrilaterals
(orange) and 4 pentagons (yel-
low)

(g) m D 16, 8 A and 4
B pentagons (yellow) and 4
hexagons (green)

(h)m D 32, 12 pentagons (yel-
low) and 20 hexagons (green)

FIG. 4: Plots of the minimizing configurations f� ";hi g
m
iD1 with void regions in grey. Colors only

in the online version. Each partition is colored according to the polygon type and shaded by the
eigenfunction from white for ui D 0 to black for ui at the maximum.
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FIG. 5: Plot of the eigenvalues at different values of m. The blue line is m�1.H/ where H is the
planar hexagon with area 4� (equal to the surface area of the sphere).

FIG. 6: Plots of one partition and �g for m D 8 (left) and m D 16 (right). The value of u";hi is shown
on a black to white scale and �g is plotted on the curve fv";hi D 0g on a black to orange scale.

We define the dual polygon to a partition by considering the edges and vertices as a graph and
taking the dual graph. In our case, since we always have triple junctions this defines a triangulation
of the sphere. Let V be the number of vertices, E the number of edges and F the number of
faces in the dual polygon to a partition f�igmiD1. We know that this will satisfy Euler’s identity,
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FIG. 7: A zoom of a triple junction on the sphere. Three partitions fv";hi > 0g are colored on blue,
green and orange according to the eigenfunction u";hi with red boundaries at fv";hi D 0g. The void
region is shown in yellow. Additionally in the right plot we have added black lines which would
correspond to an equal angle triple junction.

V �E C F D �, where � is the Euler characteristic (2 in the case of a sphere), and also that

2E D

1X
kD0

knk ; 3F D

1X
kD0

knk ; V D

1X
kD0

nk ;

where nk is the degree of a vertex in the dual polygon. The degree of a vertex is equal to the number
of edges of the corresponding partition. Using these equations in Euler’s identity gives

4n2 C 3n3 C 2n4 C n5 D 6�C

1X
kD7

.k � 6/nk : (3.4)

This result is a special case of the Gauss-Bonnet theorem. We can think of this result as saying
that polygons with less than six sides correspond to regions of positive Gauss curvature, hexagons
correspond to zero Gauss curvature and polygons with more than six sides correspond to negative
Gauss curvature.

This identity is consistent with the partitions in Table 3. Our computations suggest that the
polygonal structure of the optimal partition consists of polygons with six or less sides. This agrees
with the idea that the sphere has uniform positive Gauss curvature. We can deduce that if an m-
partition of the sphere consists of only pentagons and hexagons, then there will be 12 pentagons and
m � 12 hexagons. We expect this to be the optimal partition for large values of m.

3.3 Computed partitions of other surfaces

We consider two other surfaces to see if these conclusions persist on a large class of surfaces. The
first example, surface (D), is taken from the work of Dziuk (1988) where the surface is given by
� D fx 2 R3 W ˚.x/ D 0g for ˚ given by

˚.x1; x2; x3/ WD .x1 � x
2
3/
2
C x22 C x

2
3 � 1:
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TABLE 3: More details of optimal partitions. In the small plots, we plot the corresponding u";hi with a
black contour at v";hi D 0.

m Shape Energy information

3

3 lens

Lens eigenvalue: 3:605 .2:59 � 10�4/
S": 0:072

Total energy: 10:887

4

4 triangles

Triangle eigenvalue: 4:966 .2:46 � 10�4/
S": 0:121

Total energy: 19:987

5

2 triangles

and

3 quadrilaterals
Triangle eigenvalue: 7:118 .3:35 � 10�4/

Quadrilateral eigenvalue: 6:302
S": 0:187

Total energy: 33:330

6

6 quadrilaterals

Quadrilateral eigenvalue: 7:812 .7:22 � 10�4/
S": 0:248

Total energy: 47:122

7

5 quadrilaterals

and

2 pentagons
Quadrilateral eigenvalue: 9:988 .1:63 � 10�3/

Pentagon eigenvalue: 8:298 .7:50 � 10�5/
S": 0:322

Total energy: 66:859

8

4 quadrilaterals

and

4 pentagons
Quadrilateral eigenvalue: 11:380 .5:31 � 10�3/

Pentagon eigenvalue: 10:230 .2:91 � 10�3/
S": 0:650

Total energy: 87:102

16

8 A and 4 B pentagons

and

4 hexagons
Pentagon (A) eigenvalue: 22:647 .1:05 � 10�2/
Pentagon (B) eigenvalue: 23:610 .2:43 � 10�2/

Hexagon eigenvalue: 20:496 .1:05 � 10�2/
S": 1:264

Total energy: 362:718

32

12 pentagons

and

20 hexagons
Pentagon eigenvalue: 48:436 .1:46 � 10�1/
Hexagon eigenvalue: 44:460 .1:24 � 10�1/

S": 2:496
Total energy: 1472:920
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TABLE 4: Final parameters for computations on the surface (D) and the torus

m Surface (D) Torus

l Degrees of freedom " l Degrees of freedom "

3 12 311 982 3:125 � 10�4 12 393 216 3:125 � 10�4

4 12 415 976 3:125 � 10�4 12 524 288 3:125 � 10�4

5 10 256 365 6:25 � 10�4 10 326 680 6:25 � 10�4

6 9 150 900 8:883 � 10�4 10 393 216 6:25 � 10�4

7 9 176 050 8:883 � 10�4 10 458 752 6:25 � 10�4

8 9 201 200 8:883 � 10�4 10 524 288 6:25 � 10�4

16 9 402 400 8:883 � 10�4 10 1 048 576 6:25 � 10�4

32 9 804 800 8:883 � 10�4 8 1 045 696 8:883 � 10�4

This has the same genus as a sphere but has large changes in curvature. The second example is given
by a torus (T) with inner radius 0:6 and outer radius 1. This has different genus to the sphere. We
proceed with the same refinement strategy as on the sphere. Details of the parameters are given in
Table 4.

We plot for the eigenvalues corresponding to the optimal partition in Figure 8. We compute
the eigenvalue as the H 1.� / semi-norm of each component. We have also included the line at
m�1.HD/ and m�1.HT / in each plot, where HD and HT are the regular hexagons with area equal
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FIG. 8: Plot of the eigenvalues at different values ofm. Left for the surface (D) and right for the torus
(T). The blue line indicates the scaled eigenvalue corresponding to a hexagon H of equal area to
each surface – this is the conjectured average eigenvalue for largem in the plane (Caffarelli and Lin
2007).
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to the surface (D) and the torus (T). We do not have direct access to the eigenvalues on either of
these surfaces so do not add that to this plot.

For surface (D), we plot the optimal configurations in Figure 9 with more details given, including
eigenvalues and energy, in Table 5. For the torus, we plot the optimal configurations in Figure 10
with more details given, include eigenvalues and energy, in Table 6.

(a) m D 3, 3 lens (pink) (b) m D 4, 4 triangles (red) (c) m D 5, 2 triangles
(red) and 3 quadrilaterals
(orange)

(d) m D 6, 6 quadrilaterals
(orange)

(e) m D 7, 5 quadrilaterals
(orange) and 2 pentagons
(yellow)

(f) m D 8, 4 quadrilaterals
(orange) and 4 pentagons
(yellow)

(g) m D 16, 3 quadrilateral
(orange), 6 pentagons (yel-
low), 7 hexagons (green)

(h) m D 32, 12 pentagons
(yellow) and 20 hexagons
(green).

FIG. 9: Plots of the minimizing configurations on the surface (D). Same coloring as Figure 4.
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(a) m D 3, 3 cylinders
(pink)

(b) m D 4, 4 cylinders
(pink)

(c) m D 5, 4 two-sided
shapes (pink) and 1 quadri-
lateral (orange)

(d) m D 6, 6 hexagons
(green)

(e) m D 7, 2 quadrilaterals
(orange), 2 pentagons (yel-
low), 1 hexagon (green), 1
octagon (blue), 1 decagon
(purple)

(f) m D 8, 4 pentagons
(yellow), 1 hexagon
(green), 2 heptagons
(cyan), 1 octagon (blue)

(g) m D 16, 2
quadrilaterals (orange),
4 pentagons (yellow), 8
hexagons (green) and 2
decagons (purple)

(h) m D 32, 8 pentagons
(yellow), 18 hexagons
(green), 4 heptagons (cyan)
and 2 octagons (blue)

FIG. 10: Plots of the minimizing configurations on the torus. Same coloring as Figure 4.
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TABLE 5: More details of optimal partitions on the surface (D). In the small plots, we plot the
corresponding u";hi with a black contour at v";hi D 0.

m Partition

3

lens

2.664

crescent

2.664

crescent

2.372
S": 0:040

Total energy: 7:741

4

triangle

3.493

triangle

3.494

triangle

4.008

triangle

3.952
S": 0:103

Total energy: 15:051

5

triangle

5.843

triangle

5.125

quadrilateral

6.004

quadrilateral

5.944

quadrilateral

3.942
S": 0:312852

Total energy: 27:072

6

quadrilateral

7.808

quadrilateral

7.241

quadrilateral

7.093

quadrilateral

6.753

quadrilateral

6.730

quadrilateral

5.443
S": 0:753

Total energy: 41:821
(cont.)
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(Table 5 continued)

m Partition

7

quadrilateral

9.569

quadrilateral

9.556

quadrilateral

9.275

quadrilateral

8.748

quadrilateral

7.780
pentagon

8.009

pentagon

6.058
S": 1:102

Total energy: 60:096

8

quadrilateral

10.1602

quadrilateral

9.83384

quadrilateral

8.09237

quadrilateral

7.978
pentagon

10.128

pentagon

10.034

pentagon

9.965

pentagon

9.539
S": 1:63602

Total energy: 77:367
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TABLE 6: More details of optimal partitions on the torus. In the small plots, we plot the corresponding
u
";h
i with a black contour at v";hi D 0.

m Partition

3

cylinder

1.725

cylinder

1.703

cylinder

1.717
S": 1:207

Total energy: 6:353

4

cylinder

2.758

cylinder

2.637

cylinder

2.595

cylinder

2.595
S": 0:106

Total energy: 10:890

5

two sided shape

3.772

two sided shape

3.940

two sided shape

3.683

two sided shape

3.914

quadrilateral

3.812
S": 0:595

Total energy: 19:717

6

hexagon

4.215

hexagon

4.481

hexagon

4.319
hexagon

4.319

hexagon

4.480

hexagon

4.215
S": 1:005

Total energy: 27:035
(cont.)
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(Table 6 continued)

m Partition

7

quadrilateral

4.803

quadrilateral

5.064

pentagon

5.168

pentagon

4.94272
hexagon

5.465

octagon

5.459

decagon

5.908
S": 0:81257

Total energy: 37:623

8

pentagon

5.951

pentagon

5.841

pentagon

6.070

pentagon

6.105
hexagon

5.692

heptagon

6.186

heptagon

6.184

octagon

6.254
S": 1:257

Total energy: 49:540

By using � ";hi and v";hi from (3.2), we can define the boundary of partition on these surfaces
also. This allows us to compute the geodesic curvature (3.3) of the boundary of � ";hi ; see Figure 11
for computations. We again see that away from junctions the geodesic curvature is small. We also
see that boundaries all meet at triple junction with the equal angle condition satisfied. We conjecture
that on all surfaces optimal partitions have boundaries with zero geodesic curvature which meet at
triple junctions with equal angles between each boundary.

On surface (D), the partition has exactly the same structure as for the sphere for m 6 8 but the
eigenvalues do not group in the same way because of the variations in curvature. For large values
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FIG. 11: Plots of one partition and �g for m D 8 on the surface (D) (left) and m D 6 on the torus
(right). The value of u";hi is shown on a black to white scale and �g is plotted on the curve fv";hi D 0g
on a black to orange scale.

of m the structure changes. Now in regions with higher curvature we see partitions with few sides.
In fact, for m D 16, three partitions have four sides, which does not occur in the case of the sphere.
The familiar pattern of pentagons and hexagons reoccurs for m D 32 except now the pentagons
are clustered in regions of high curvature. The number of sides of each partition is still limited to
six. Because of (3.4), for larger values of m we expect to see 12 pentagons and m � 12 hexagons
with the pentagons clustered in the higher curvature regions. We see that none of the partitions are
equi-spectral.

On the torus (T), the situation is very different. For m 6 6, we have very structured partitions
which reflect the symmetry of the surface. For the case of m D 5, we see all triple junctions occur
in the center of the torus. For m > 6, we have partitions with more that 6 sides. The formula (3.4)
tells us that the numbers of partitions with more than six sides must balance the number of partitions
with less than six sides. For the cases we see, the partitions with more than six sides cluster in the
center and those with less than six sides cluster on the exterior. As we increasem we see an increase
in the number of hexagons, however it is not clear whether the number of non-hexagonal partitions
will decrease. For smaller area partitions, for larger m, the curvature of the surface is less important
and the problem becomes more like the flat problem, so we expect that for large values ofm, we will
see a preponderance of hexagons. We see that the partitions for m D 3; 4 are almost equi-spectral
and so conjecture that these partitions are also optimal for the case p D1.

4. Discussion

We have explored an eigenvalue partition problem on three different surfaces and for many different
numbers of partitions. We have observed good convergence both with respect to discretization
parameters and also with respect to our choice of regularization. From our results we make the
following conjectures:
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1. The optimal partition consists of curvilinear polygons whose edges have zero geodesic
curvature.

2. Partitions either meet along edges or at triple junctions where edges meet at equal angles.
3. For genus zero surfaces, for large values of m the optimal partition consists of 12 pentagons

and m � 12 hexagons. If the curvature of the surface varies, the pentagons will be located
where the curvature is highest.

4. For genus one surfaces, for large values of m the optimal partition has a preponderance of
hexagons.
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