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We show short time existence and uniqueness of C 1;1 solutions to the mean curvature flow with

obstacles, when the obstacles are of class C 1;1. If the initial interface is a periodic graph we show

long time existence of the evolution and convergence to a minimal constrained hypersurface.
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1. Introduction and main results

Mean curvature flow is a prototypical geometric evolution, arising in many models from Physics,

Biology and Material Science, as well as in a variety of mathematical problems. For such a reason,

this flow has been widely studied in the past years, starting from the pioneering work of K. Brakke

[3] (we refer to [4, 8, 11, 14, 15] for a far from complete list of references).

In some models, one needs to include the presence of hard obstacles, which the evolving surface

cannot penetrate (see for instance [12] and references therein). This leads to a double obstacle

problem for the mean curvature flow, which reads

v D H on Mt \ U; (1)

with constraint

Mt � U for all t; (2)

where v; H denote respectively the normal velocity and d times the mean curvature of the interface

Mt � R
dC1, and the closed set U c represents the obstacle. Notice that, due to the presence of

obstacles, the evolving interface is in general only of class C 1;1 in the space variable, differently

from the unconstrained case where it is analytic (see [17]). While the regularity of parabolic obstacle

problems is relatively well understood (see [23] and references therein), a satisfactory existence and

uniqueness theory for solutions is still missing.
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In [1] (see also [24]) the authors approximate such an obstacle problem with an implicit

variational scheme introduced in [2, 18]. As a byproduct, they prove global existence of weak

(variational) solutions, and short time existence and uniqueness of regular solutions in the two-

dimensional case. In [20] the first author adapts to this setting the theory of viscosity solutions

introduced in [4, 5], and constructs globally defined continuous (viscosity) solutions.

Let us now state the main results of this paper.

THEOREM 1 Let M0 � U be an initial hypersurface, and assume that both M0 and @U are

uniformly of class C 1;1, with dist.M0; @U / > 0. Then there exists T > 0 and a unique solution Mt

to (1), (2) on Œ0; T /, such that Mt is of class C 1;1 for all t 2 Œ0; T /.
Notice that Theorem 1 extends a result in [1] to dimensions greater than two.

When the hypersurface Mt can be written as the graph of a function u.�; t / W R
d ! R,

equation (1) reads

ut D
p

1C jruj2 div

 

ru
p

1C jruj2

!

: (3)

If the obstacles are also graphs, the constraint (2) can be written as

 �
6 u 6  C ; (4)

where the functions  ˙ W Rd ! R denote the obstacles.

THEOREM 2 Assume that  ˙ 2 C 1;1.Rd /, and let u0 2 C 1;1.Rd / satisfy (4). Then there exists a

unique (viscosity) solution u of (3), (4) on R
d � Œ0;C1/, such that

kru.�; t /kL1.Rd / 6 max
�

kru0kL1.Rd /; kr ˙kL1.Rd /

�

kut .�; t /kL1.Rd / 6







p

1C jru0j2 div

 

ru0
p

1C jru0j2

!




L1.Rd /

for all t > 0. Moreover u is also of class C 1;1 uniformly on Œ0;C1/.

We observe that Theorem 2 extends previous results by Ecker and Huisken [8] in the

unconstrained case (see also [6]).

THEOREM 3 Assume that u0 and  ˙ are Q-periodic, with periodicity cell Q D Œ0; L�d , for some

L > 0. Then the solution u.�; t / of (3), (4) is also Q-periodic. Moreover there exists a sequence

tn ! C1 such that u.�; tn/ converges uniformly as n ! C1 to a stationary solution to (3), (4).

Our strategy of proof will be to approximate the obstacles with “soft obstacles” modeled by a

sequence of uniformly bounded forcing terms. Differently from [1], where the existence of regular

solution is derived from variational estimates on the approximating scheme, we obtain estimates on

the evolving interface, in the spirit of [7, 9, 10], which are uniform in the forcing terms.

The plan of the paper is the following: in Section 2 we adapt some well known results on mean

curvature flow, such as Huisken’s monotonicity formula, to the case of forced mean curvature flow.

In Section 3 we prove Theorem 1. In Section 4 we prove Theorem 2. In Section 5 we prove Theorem

3. Eventually, in the Appendix at the end of the paper we adapt the concept of viscosity solution in

order to treat the case of mean curvature flow of graphs in the presence of obstacles.
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2. Mean curvature flow with a forcing term

2.1 Evolution of geometric quantities

LetM be a complete orientable d -dimensional Riemannian manifold without boundary, let F.�; t / W
M ! R

dC1 be a smooth family of immersions, and denote by Mt the image F.M; t/: Since Mt is

orientable, we can write Mt D @E.t/ where E.t/ is a family of open subsets of RdC1 depending

smoothly on t . We say that Mt evolves by mean curvature with forcing term k if

d

dt
F.p; t/ D �

�

H.p; t/C k.F.p; t//
�

�.p; t/; (5)

where k W RdC1 ! R is a smooth forcing term, � is the unit normal to Mt pointing outside E.t/,

andH is (d times) the mean curvature ofMt , with the convention thatH is positive whenever E.t/

is convex.

We shall compute the evolution of some relevant geometric quantities under the law (5). We

denote by rS ; �S respectively the covariant derivative and the Laplace-Beltrami operator on M .

As in [15], the metric on Mt is denoted by gij .t/, it inverse is gij .t/, the scalar product (or any

tensors contraction using the metric) on Mt is denoted by h� ; �i whereas the ambient scalar product

is .� ; �/, the volume element is �t , and the second fundamental form is A. In particular we have

A
�

@i ; @j
�

D hij , where we set for simplicity @i D @
@xi

, and H D gijhij , using the Einstein

notation (we implicitly sum over every index which appears twice). We also denote by �1; : : : ; �d
the eigenvalues of A.

Notice that, in terms of the parametrization F , we have

gij D
�

@iF ; @jF
�

; hij D �
�

@2ijF ; �
�

for all i; j 2 f1; : : : ; dg: (6)

PROPOSITION 1 The following equalities hold:

d

dt
gij D �2.H C k/hij (7)

d

dt
� D rS .H C k/ (8)

d

dt
�t D �H.H C k/�t (9)

d

dt
hij D �Shij C rS

i rS
j k � 2Hhilglmhmj � kgmlhimhjl C jAj2hij (10)

d

dt
H D �S .H C k/C .H C k/jAj2 (11)

d

dt
jAj2 D �S jAj2 C 2kgijgslgmnhishlmhnj C 2jAj4 � 2jrSAj2 C 2

˝

A ; .rS /2k
˛

: (12)
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Proof. The proof follows by direct computations as in [10, 15]. Recalling (6), we get

d

dt
gij D d

dt

�

@iF ; @jF
�

D �.H C k/
� �

@i� ; @jF
�

C
�

@iF ; @j �
� �

D �2.H C k/hij ;

d

dt
� D

�
d

dt
� ; @iF

�

gij @jF D �
�

� ;
d

dt
@iF

�

gij @jF

D .� ; @i ..H C k/�// gij @jF D @i .H C k/gij @jF D rS .H C k/:

The evolution of the measure on Mt

�t D
p

detŒg�

is given by

d

dt

p

detŒg� D
d
dt

detŒg�

2
p

detŒg�
D

detŒg� � Tr
�

gij d
dt
gij

�

2
p

detŒg�

D �
p

detŒg� � .H C k/gijhj i D ��tH.H C k/:

In order to prove (10) we compute (as usual, we denote the Christoffel symbols by � kij )

d

dt
hij D � d

dt

�

� ; @2ijF
�

D �
�

rS .H C k/ ; @2ijF
�

C
�

@2ij .H C k/� ; �
�

D �
�

gkl@k.H C k/@lF ; �
k
ij @kF � hij �

�

C @2ij .H C k/C .H C k/
�

@j
�

himg
ml@lF

�

; �
�

D @2ij .H C k/ � � kij @k.H C k/C .H C k/himg
ml
�

� klj @kF � hlj � ; �
�

D rS
i rS

j .H C k/ � .H C k/hilg
lmhmj : (13)

Using Codazzi’s equations, one can show that

�Shij D rS
i rS

j H CHhilg
lmhmj � jAj2hij ; (14)

so that (10) follows from (14) and (13). From (10) we deduce

d

dt
H D d

dt
gijhij

D 2.H C k/gishslg
ljhij C gij

�

rS
i rS

j .H C k/ � .H C k/hilg
lmhmj

�

D �S .H C k/C .H C k/jAj2;
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which gives (11). In addition, we get

d

dt
jAj2 D d

dt

�

gikgjlhijhkl

�

D 2
d

dt
gjlhijhkl C 2gikgjl

d

dt
hijhkl

D 2
�

2.H C k/gjshstg
tl
�

gjlhijhkl

C 2gikgjl
�

�Shij C rS
i rS

j k � 2Hhilglmhmj � kgmlhimhjl C jAj2hij
�

hkl

D 2kgjshstg
tlgjlhijhkl C 2gikgjl�Shijhkl C 2jAj4 C 2

˝

A ; .rS /2k
˛

:
(15)

On the other hand, one has

�S jAj2 D 2
˝

�SA ; A
˛

C 2jrSAj2 D 2gpqgmnhpm�
Shqn C 2jrSAj2: (16)

so that (12) follows from (16) and (15).

2.2 The monotonicity formula

We extend Huisken’s monotonicity formula [16] to the forced mean curvature flow (5) (see also [7,

Section 2.2]).

Given a vector field ! W Mt ! R
dC1, we let

!? D .! ; �/ �; !T D ! � !? :

Letting X0 2 R
dC1 and t0 2 R, for .x; t/ 2 R

dC1 � Œt0;C1/ we define the kernel

�.x; t/ D 1

.4�.t0 � t //d=2 exp

��jx � x0j2
4.t0 � t /

�

:

A direct computation gives

d�

dt
D ��S�C �

�
.x0 � x ; .H C k/�/

t0 � t � j.x0 � x/?j2
4.t0 � t /2

�

: (17)

PROPOSITION 2 (Monotonicity formula)

d

dt

Z

Mt

� D �
Z

Mt

�

 ˇ
ˇ
ˇ
ˇ
H C k

2
C .x � x0 ; �/

2.t0 � t /

ˇ
ˇ
ˇ
ˇ

2

� k2

4

!

:
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Proof. Recalling (9), we compute

d

dt

Z

Mt

� D
Z

Mt

d

dt
� �H.H C k/�

D
Z

Mt

�

�

� jx � x0j2
4.t0 � t /2 C d

2.t0 � t / � .x � x0 ; �/
2.t0 � t / .H C k/ �H.H C k/

�

D �
Z

Mt

�

 ˇ
ˇ
ˇ
ˇ
H� C x � x0

2.t0 � t / C k�

2

ˇ
ˇ
ˇ
ˇ

2

� k2

4

!

C
Z

Mt

d

2.t0 � t /�

C
Z

Mt

�
.x � x0 ; �/H
2.t0 � t /

We use the first variation formula: for all vector field Y on Mt , we have
Z

Mt

divMt
Y D

Z

Mt

hH� ; Y i :

As a result, with Y D �.x�x0/
2.t�t0/

, we get

d

dt

Z

Mt

� D �
Z

Mt

�

 ˇ
ˇ
ˇ
ˇ
H� C x � x0

2.t0 � t / C k�

2

ˇ
ˇ
ˇ
ˇ

2

� k2

4
� j.x � x0/T j2

4.t0 � t /2

!

D �
Z

Mt

�

 ˇ
ˇ
ˇ
ˇ
H C .x � x0 ; �/

2.t0 � t / C k

2

ˇ
ˇ
ˇ
ˇ

2

� k2

4

!

:

In a similar way (see [8]) one can prove that for all functions f .X; t/ defined on Mt , one has

@t

Z

Mt

�f D
Z

Mt

�
df

dt
��Sf

�

� �
Z

Mt

f�

 ˇ
ˇ
ˇ
ˇ
H C .x � x0 ; �/

2.t0 � t / C k

2

ˇ
ˇ
ˇ
ˇ

2

� k2

4

!

: (18)

Indeed, using (17)

d

dt

Z

Mt

�f D
Z

Mt

f
d�

dt
C df

dt
� �H.H C k/f�

D
Z

Mt

f

�
d�

dt
�H.H C k/�

�

C df

dt
�

D
Z

Mt

f

�

��S�C �

�
.X0 �X ; .H C k/�/

t0 � t � 1

4

j.X0 �X/?j2
.t0 � t /2

�

�H.H C k/�

�

C df

dt
�

D
Z

Mt

��Sf�C
�

�

�
.X0 �X ; .H C k/�/

t0 � t � 1

4

j.X0 �X/?j2
.t0 � t /2

�

�H.H C k/�

�

C df

dt
�

D
Z

Mt

�

�
d

dt
f ��Sf

�

�
Z

f�

 ˇ
ˇ
ˇ
ˇ
H C .x � x0 ; �/

2.t0 � t / C k

2

ˇ
ˇ
ˇ
ˇ

2

� k2

4

!

:
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LEMMA 1 Let f be defined on Mt and satisfy

d

dt
f ��Sf 6 a � rSf on Mt (19)

for some vector field a bounded on Œ0; t1�. Then,

sup
Mt ; t2Œ0;t1�

f 6 sup
M0

f:

Proof. Denote by a0 the bound on a, k WD supM0
f and define fl D max.f � l; 0/: Assumption

(19) implies
�
d

dt
��S

�

f 2l 6 2fla � rSfl � 2jrSfl j2

which, thanks to Young’s inequality, gives

�
d

dt
��S

�

f 2l 6
1

2
a20f

2
l :

Applying (18) to f 2
l

, we get

d

dt

Z

f 2l � 6
1

2
.a20 C kkk21/

Z

f 2l �: (20)

Letting l D supM0
f , so that fl � 0 on M0, from (20) and the Gronwall’s Lemma we obtain that

fl � 0 on Mt for all t 2 .0; t1�, which gives thesis.

3. Proof of Theorem 1

We now prove short time existence for the mean curvature flow with obstacles (1), (2). Let M0 D
@E.0/ � U , where we assume that U , E.0/ are open sets with boundary uniformly of class C 1;1.

In particular, M0 satisfies a uniform exterior and interior ball condition, that is, there is R > 0

such that, for every x 2 M0, one can find two open balls BC and B� of radius R which are

tangent to M0 at x and such that BC � E.0/c and B� � E.0/: Let also ˝� WD E.0/ n U , and

˝C WD E.0/ [ U . Notice that ˝˙ are open sets with C 1;1 boundaries, with dist.˝�; @˝C/ > 0.

Note that the condition Mt � U can be rewritten as

˝� � E.t/ � ˝C:

Let also

k WD 2N.1 � �˝C � �˝�/

where N is bigger than (d times) the mean curvature of @U:

We want to show that equation (5), with k as above, has a solution in an interval Œ0; T /: To

this purpose, letting �" be a standard mollifier supported in the ball of radius " centered at 0, we

introduce a smooth regularization k" D k ��" of k. Notice that kk"k1 D 2N , k".x/ D �2N (resp.

k".x/ D 2N ) at every x 2 ˝� (resp. x … ˝C) such that dist.x; @U / > ", and k".x/ D 0 at every

x 2 U such that dist.x; @U / > ".
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Using standard arguments (see for instance [10, Theorem 4.1] and [9, Prop. 4.1]) one can show

existence of a smooth solutionM "
t of (5), with k replaced by k", on a maximal time interval Œ0; T"/:

Let now

˝�
" WD

˚

x 2 ˝� W dist.x; @˝�/ > "
	

and

˝C
" WD

˚

x 2 R
dC1 W dist.x;˝C/ < "

	

:

The following result follows directly from the definition of k".

PROPOSITION 3 The hypersurfaces @˝�
" and @.˝C

" /
c are respectively a super and a subsolution

of (5), with k replaced with k". In particular, by the parabolic comparison principle M "
t cannot

intersect @˝˙
" .

We will show that we can find a time T > 0 such that for every "; there exists a smooth solution

of (5) (with k replaced with k") on Œ0; T /:

The following result will be useful in the sequel. We omit the proof which is a simple ODE

argument.

LEMMA 2 Let M0 D @BR.x0/ be a ball of radius R 6 1 centered at x0. Then, the evolution

Mt by (5), with constant forcing term k D 2N , is given by Mt D BR.t/.x0/ with R.t/ >
p

R2 � .4N C 2d/t . In particular, the solution exists at least on Œ0; R2

4NC2d
/:

PROPOSITION 4 There exists r > 0, a collection of balls Bi D Br .xi / of radius r , and a positive

time T0 such that M "
t �

S

i Bi for every t 2 Œ0;min.T0; T"//. In addition, we can choose the balls

Bi in such a way that, for every i , there exists !i 2 R
dC1 such that the sets @˝˙ \ B4r .xi /, if

nonempty, are graphs of some functions  ˙
i W Rd ! R over !?

i .

In particular, one has

.rk" ; !i / > jrk"j=2 on B2r .xi /:

Most of this notation is summarized in Figure 1.

FIG. 1. Notation in Proposition 4
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Proof. By assumption, for every x 2 M0 there exist interior and exterior balls B˙
x of fixed radius

R 6 1. Let B˙
x .t/ be the evolution of B˙

x by (5) with forcing term k D 2N . By comparison, for

every t 2 Œ0; T"/, BC
x .t/ � ˝.t/c and B�

x .t/ � ˝.t/: Recalling Lemma 2, there exists ı > 0 and

T0 > 0, independent of ", such that Mt � fdM0
6 ıg DW Cı , for all t 2 Œ0;min.T"; T0//.

We eventually reduce ı; T0 such that Cı can be covered with a collection of balls Bi D Br .xi /,

centered at xi 2 M0 and with a radius r such that, for every i , there exists a unit vector !i 2 R
dC1

satisfying
�

!i ; �
C.x/

�

>
1

2
and

�

!i ; �
�.y/

�

>
1

2

for every x 2 @˝C \ B4r .xi / and y 2 @˝� \ B4r .xi /, where �˙ is the outer normal to ˝˙:

As a result, @˝˙ \B4r .xi / are graphs of some functions  ˙
i W Rd ! R over !?

i (see Figure 1).

Notice also that k is a BV function and Dk is a Radon measure concentrated on @U such that

.Dk ; !i / >
jDkj
2

on B4r .xi /:

Then, for every x 2 B2r .xi / and " sufficiently small (such that �".x/ D 0 as soon as jxj > 2r), we

have

.rk" ; !i / D
�

r
Z

RdC1

k.x � y/�".y/dy ; !i
�

D
Z

RdC1

.Dk.x � y/ ; !i / �".y/dy

>

Z

RdC1

jDkj.x � y/
2

�".y/dy

>
jDkj � �"

2
>

jrk"j
2

:

In what follows, we will control the geometric quantities of M "
t inside each ball Bi : As in [9],

we introduce a localization function �i as follows: let �i .x; t/ D jx � xi j2 C .2d C �/t (� be a

positive constant that will be fixed later) and, for R D 2r , �i .x; t/ D .R2 � �i .x; t//
C: We denote

by �i the quantity �i .x; t /, where x D x.p; t/ will be a generic point in Mt . Notice that there exists

T1 D r2

2dC�
such that for all t 2 Œ0;min.T1; T"//,

M "
t �

[

i

f�i > r2g: (21)

As a result, we have the following

LEMMA 3 Let f be a smooth function defined on M "
t . Assume that there is a C > 0 such that

�if 6 C on M "
t 8t 6 min.T"; T1/ and 8i 2 N:

Then,

f 6 ˛C on M "
t 8t 6 min.T"; T1/;

where ˛ depends only on the C 1;1 norm of M0.
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LEMMA 4 Let v WD .� ; !/�1. The quantity v2�2 satisfies

�
d

dt
��S

��
v2�2

2

�

6
1

2

�

rS .v2�2/ ;
rS�2

�2

�

� �2v3
�

rSk" ; !
�

C v2�.2k" .x ; �/ ��/:
(22)

Proof. In this proof and the proofs further, we use normal coordinates: we assume that gij D ıij
(Kronecker symbol) and that the Christoffel symbols � kij vanish at the computation point.

We expand the derivatives

�
d

dt
��S

��
v2�2

2

�

D v2
�
d

dt
��S

�
�2

2
C �2

�
d

dt
��S

�
v2

2
� 2

�

rS �
2

2
; rS v

2

2

�

:

First term. We start computing

�
d

dt
��S

�

jxj2 D �2k" .x ; �/ � 2d:

Then,
�
d

dt
��S

�

�2 D 2�.2k" .x � xi ; �/ ��/ � 2jrS jxj2j2:

Second term. We are interested in

1

2

d

dt
.! ; �/2 D .! ; �/

�
d

dt
� ; !

�

D .! ; �/
�

rS .H C k"/ ; !
�

:

So,
1

2

d

dt
.! ; �/�2 D � .! ; �/�3

�

rS .H C k"/ ; !
�

: (23)

On the other hand,

1

2
�S
�

.! ; �/�2
�

D .! ; �/�1�S .! ; �/�1 �
D

rS .! ; �/�1 ; rS .! ; �/�1
E

: (24)

Let us note that

@ij � D @i

�

hjlg
lm@mF

�

D @i .hjl /ılm@mF � hjlılm.�him�/ D @i .hjl /@lF � �2i ıij �:

We then get

�S .! ; �/�1 D @i i .! ; �/
�1 D @i

�

� .! ; @i�/ .! ; �/�2
�

D � .! ; @i i�/ .! ; �/�2 C 2 .! ; @i�/
2 .! ; �/�3

D � .! ; �/�2
�

@ihil@lF � �2i � ; !
�

C 2 .! ; �/�3 .! ; �i@iF /
2 :

D � .! ; �/�2 .@lhi i@lF ; !/C jAj2 .� ; !/�1 C 2 .! ; �/�3 .! ; �i@iF /
2 :
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We also have

D

rS .! ; �/�1 ; rS .! ; �/�1
E

D .! ; �/�4 .! ; @k�/ .! ; @k�/

D .! ; �/�4 .! ; hkug
uv@vF /

2 D .! ; �/�4 .! ; �k@kF /
2 ;

which leads to

�
d

dt
��S

�
v2

2
D �v3

�

rS .H C k"/ ; !
�

C v3@m.hi i / .! ; @mF /

� jAj2v2 � 2v4�2k .! ; @kF /
2 � v4 .! ; �k@kF /2 :

Third term. We notice, as in [9] that jrS�2j2 D 4�2jrS .jxj2/j2 and

�
�

rS .v2/ ; rS�2
�

D �3
�

vrS .v/ ; rS�2
�

C 1

2

��

rS .v2�2/ ;
rS�2

�2

�

� v2 jrS�2j2
�2

�

:

Then, Young’s inequality gives

2
ˇ
ˇ
ˇv
�

rSv ; rS�2
�
ˇ
ˇ
ˇ 6 2�2jrSv2j2 C 1

2�2
jrS�2j2

6 2�2jrSv2j2 C 2v2jrS jxj2j2:

Hence,

�

rS .v2/ ; rS�2
�

6 �3�2jrSv2j2 � 3v2jrS jxj2j2 C 1

2

��

rS .v2�2/ ;
rS�2

�2

�

� v2 jrS�2j2
�2

�

:

Summing the three terms, we get

�
d

dt
��S

��
v2�2

2

�

6
1

2

�

rS .v2�2/ ;
rS�2

�2

�

� �2v3
�

rSk" ; !
�

C v2�
�

2k" .x ; �/ ��
�

:

For  > 0, we let

 .v2/ WD v2

1 � v2 :

LEMMA 5 For " 6 r , we have

�
d

dt
��S

�
�2jAj2 .v2/

2
6 �2 .v2/

�

�  jAj4 � 2k"
X

i

�3i � 2
˝

A ; .rS /2k"
˛ �

� �2jAj2v3 0.v2/
�

rSk" ; !
�

� �2jAj2
X

i

.�i!
i /2
2v4 C v6

.1 � v2/3 :
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Proof. We denote V D �2jAj2 .v2/
2

and compute

�
d

dt
��S

�
�2jAj2 .v2/

2
D jAj2 .v2/

�
d

dt
��S

�
1

2
�2 C �2 .v2/

�
d

dt
��S

�
1

2
jAj2

C �2jAj2
�
d

dt
��S

�
1

2
 .v2/ � 2

˝

1=2rS jAj2 ; 1=2rS�2
˛

� 2
˝

1=2rS jAj2 ; 1=2rS .v2/
˛

� 2
˝

1=2rS�2 ; 1=2rS .v2/
˛

:

The two first terms have already been computed. Let us consider the third one.

1

2

d

dt
 .v2/ D v

dv

dt
 0.v2/ D �v3 0.v2/

�

rS .H C k"/ ; !
�

;

1

2
�S .v2/ D 1

2
@i i .v

2/ D @i
�

v@iv 
0.v2/

�

D v�Sv 0.v2/C 2v2jrSvj2 00.v2/C jrSvj2 0.v2/

D
�

3jrSvj2 � v3
�

@l .hkk/w
l
�

C v2jAj2
�

 0.v2/C 2jrSvj2 00.v2/:

Hence

�
d

dt
��S

�
1

2
 .v2/ D �v3 0.v2/

�

rSk" ; !
�

�.3jrSvj2Cv2jAj2/ 0.v2/�2v2jrSvj2 00.v2/:

As above, we want to conclude the proof using the weak maximum principle. So, we want to rewrite

the last terms (which are gradient terms) using the gradient of V . Let us expand rSV .

rS �
2jAj2 .v2/

2
D �2jAj2 1

2
rS .v2/C jAj2 .v2/1

2
rS�2 C �2 .v2/

1

2
rS jAj2:

So,

ˇ
ˇ
ˇ
ˇ
rS �

2jAj2 .v2/
2

ˇ
ˇ
ˇ
ˇ

2

D �4jAj4 jrS .v2/j2
4

C jAj4 2.v2/ jr
S�2j2
4

C �4 2.v2/
jrS jAj2j2

4

C �2jAj4 .v2/
˝

rS .v2/ ; rS�2
˛

C �4jAj2 .v2/
˝

rS .v2/ ; rS jAj2
˛

C jAj2 2.v2/�2
˝

rS�2 ; rS jAj2
˛

:

As a matter of fact,

1

�2jAj2 .v2/

ˇ
ˇ
ˇ
ˇ
rS �

2jAj2 .v2/
2

ˇ
ˇ
ˇ
ˇ

2

D �2jAj2 jrS .v2/j2
4 .v2/

C jAj2 .v2/ jr
S�2j2
4�2

C �2 .v2/
jrS jAj2j2
4jAj2 C 2jAj2

˝

rS .v2/=2 ; rS�2=2
˛

C 2�2
˝

rS .v2/=2 ; rS jAj2=2
˛

C 2 .v2/
˝

rS�2=2 ; rS jAj2=2
˛

:
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We use the last equality to rewrite

� d

dt
��S

��2jAj2 .v2/
2

D jAj2 .v2/
�

�.2k" .x ; �/ ��/ � jrS jxj2j2
�

C �2 .v2/
�

�
˝

rSA ; rSA
˛

C jAj4 � 2k"gjshstgtlgjlhijhkl � 2
˝

A ; .rS /2k"
˛�

C �2jAj2
�

�v3 0.v2/
�

rSk" ; !
�

� .3jrSvj2 C v2jAj2/ 0.v2/ � 2v2jrSvj2 00.v2/
�

� 1

�2jAj2 .v2/

ˇ
ˇ
ˇ
ˇ
rS �

2jAj2 .v2/
2

ˇ
ˇ
ˇ
ˇ

2

C �2jAj2 jrS .v2/j2
4 .v2/

C jAj2 .v2/ jr
S�2j2
4�2

C �2 .v2/
jrS jAj2j2
4jAj2 :

(25)

Let us rewrite some terms as follows:

jrS�2j2 D 4�2 � j � 2xT j2 D 4�2.4jxj2 � 4 .x ; �//;
jrS .v2/j2 D  0.v2/2jrSv2j2 D 4 0.v2/2v6

X

k

.�k!
k/2;

jrS jAj2j2 D 4
X

i

.@i .hl l /�l /
2;

jrSAj2 D
X

i;k;l

.@i .hkm//
2:

In addition, we have the obvious estimate

jrS jAj2j2 6 4jAj2jrSAj2:
So,

�2jAj2 jrS .v2/j2
4 .v2/

C jAj2 .v2/ jr
S�2j2
4�2

C �2 .v2/
jrS jAj2j2
4jAj2

6 �2jAj2 
0.v2/2v6

P

k.�k!
k/2

 .v2/
C 4jAj2 .v2/.jxj2 � .x ; �/2/C �2 .v2/jrSAj2:

We plug this inequality into (25) and obtain

� d

dt
��S

��2jAj2 .v2/
2

6 jAj2 .v2/
�

�.2k" .x ; �/ ��/ � jrS jxj2j2
�

C �2 .v2/
�

�
˝

rSA ; rSA
˛

C jAj4 � 2k"gjshstgtlgjlhijhkl � 2
˝

A ; .rS /2k"
˛�

C �2jAj2
�

�v3 0.v2/
�

rSk" ; !
�

� .3jrSvj2 C v2jAj2/ 0.v2/ � 2v2jrSvj2 00.v2/
�

� 1

�2jAj2 .v2/

ˇ
ˇ
ˇ
ˇ
r �

2jAj2 .v2/
2

ˇ
ˇ
ˇ
ˇ

2

C �2jAj2 
0.v2/2v6

P

k.�k!
k/2

 .v2/
C 4jAj2 .v2/.jxj2 � .x ; �/2/C �2 .v2/jrSAj2:
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Let us regroup some terms (noting that jrSvj2 D v4
P

i .�i!
i /2), we get

� d

dt
��S

��2jAj2 .v2/
2

6 jAj2 .v2/ .�.2k" .x ; �/ ��//
C �2jAj4. .v2/ � v2 0.v2// � 2�2 .v2/k"gjshstgtlgjlhijhkl � 2�2 .v2/

˝

A ; .rS /2k"
˛

� �2jAj2v3 0.v2/
�

rSk" ; !
�

� 1

�2jAj2 .v2/

ˇ
ˇ
ˇ
ˇ
rS �

2jAj2 .v2/
2

ˇ
ˇ
ˇ
ˇ

2

C �2jAj2
X

i

.�i!
i /2
�
v6 0.v2/2

 .v2/
� 3v4 0.v2/ � 2v6 00.v2/

�

:

Then, we note that

v6 0.v2/2

 .v2/
� 3v4 0.v2/ � 2v6 00.v2/ D � 2v

4 C v6

.1 � v2/3 6 0

and

 .v2/ � v2 0.v2/ D � 2.v2/ 6 0:

So,

�
d

dt
��S

�
�2jAj2 .v2/

2
6 �2 .v2/.� jAj4 � 2k"

X

i

�3i � 2
˝

A ; .rS /2k"
˛

/

� �2jAj2v3 0.v2/
�

rSk" ; !
�

� �2jAj2
X

i

.�i!
i /2
2v4 C v6

.1 � v2/3 ;

what was expected.

We now show that Mt can be locally written as a Lipschitz graph, with Lipschitz constant

independent of ".

PROPOSITION 5 Let " 6 r . Then, for every t 2 Œ0;min.T"; T1//, Mt \ Bi can be written as a

Lipschitz graph over !?
i , with Lipschitz constant independent of ":

Proof. We want to show that the quantity .� ; !i / is bounded from below, or, equivalently, that

v WD .� ; !i /
�1 is bounded from above on every ball Bi . We want to estimate the quantity v2�2

(we drop the explicit dependence on the index i ) using Lemma 4.

We choose � such that the last term in (22) is nonpositive (take for instance � D 2NR). We

also have to control

v
�

rSk" ; !
�

D .� ; !/�1
�

.rk" ; !/ � .rk" ; �/ .� ; !/
�

D .� ; !/�1 .rk" ; !/ � .rk" ; �/ :
Proposition 4 provides immediately

.� ; !/�1 .rk" ; !/ � .rk" ; �/ > .� ; !/�1
jrk"j
2

� jrk"j

which is nonnegative as soon as .! ; �/ 6
1
2

. From Lemma 4 and the weak maximum principle (see

[22]), we obtain that kv2�2k1.t/ 6 max.kv2�2k1.0/; 4R
2/. Thanks to Lemma 3, this provides a

uniform Lipschitz bound on the whole Mt , for t 6 T1.
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Recalling Theorem 8.1 in [15], from Proposition 5 it follows that, if T" < T1, the second

fundamental form of Mt blows up as t ! T". Let us show that it does not happen.

PROPOSITION 6 For every " 6 r , there exists C" > 0 such that

kAkL1.Mt / 6 C" for all t 2 Œ0;min.T"; T1//:

Proof. As in [9], we are interested in the evolution of the quantity

�2jAj2 .v2/
2

and use the estimates of Lemma 5. Notice that

j�i j3 D j�i jj�i j2 6
1

2˛
�4i C ˛

2
�2i :

Choosing ˛ such that 2N
˛

6

2

, one can write

ˇ
ˇ
ˇ
ˇ
ˇ
�2k"�2 .v2/

X

i

�3i

ˇ
ˇ
ˇ
ˇ
ˇ

6 �2 .v2/
�

2
jAj4 CN˛jAj2

�

:

In addition, as soon as jAj2 > 1, one has
˝

A ; .rS /2k"
˛

6 jAj2jr2k"j: One can also notice that

as above, v
�

rSk" ; !
�

> 0 as soon as v > 2: On the other hand, if v 6 2, one has v3 0.v2/ D
 .v/v

1�v2 6 4 .v/ for  sufficiently small.

So, anyway, if jAj > 1,

�
d

dt
��S

�
�2jAj2 .v2/

2
6 2N˛

�2jAj2 .v2/
2

C 4jr2k"j
�2jAj2 .v2/

2

C 8
�2jAj2 .v2/

2
jrSk"j:

Finally, we apply the maximum principle to the quantity

QA WD e�.2N˛C4kr2k"k1C8krk"k1/t �
2jAj2 .v2/

2

which satisfies �
d

dt
��S

�

QA 6 0:

It provides

8t 6 min.T"; T1/; k QAk1.t/ 6 k QAk1.0/

which shows that
�2jAj2 .v2/

2
does not blow up.

Using Lemma 3 and choosing  such that .v2/ is bounded and remains far from zero, we know

that jAj does not blow up for t 6 T1.

COROLLARY 1 There exists T1, depending only on the dimension, kkk1 and the radius in the ball

condition forM0, such that there exists a solutionM "
t of the mean curvature flow with forcing term

k" on Œ0; T1/:
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The surfaces M "
t are uniformly Lipschitz and every M "

t \ Bi can be written as the graph of

some function u"i .x; t/. All the u"i are Lipchitz (in space) with a constant which depends neither on

i nor in ". We want to show that they are also equicontinuous in time.

PROPOSITION 7 The functions u"i are Lipschitz continuous in x and 1=2-Hölder continuous in t on

Bi � Œ0; T1/, uniformly with respect to " and i .

In addition, they are (classical) solutions of the equation

@tu
"
i D

q

1C jru"i j2 div

 

ru"i
p

1C jru"i j2

!

�
q

1C jru"i j2 k".x; u"i /: (26)

Proof. Let ı be fixed (we drop the index " in what follows), and let t0 2 Œ0; T1/. Let x0 2 Mt and

i such that x0 2 Bi . Then, .�.x0/ ; !i /
�1 is bounded above and Mt is the graph of a function u

over !?
i : Then, let x1 D x0 C ı!i . Thanks to the Lipschitz condition, there is a ball B1=Cı.x1/

that does not touch Mt . Evolving by mean curvature with forcing term k", this ball vanishes in a

positive time Tı > !.ı/ WD ı2

C2.2dC1/
(note that Tı does not depend on "). By comparison principle,

for t 2 Œt0; t0 C !.ı//, Mt does not go beyond x1. That is equivalent to say that u is 1=2-Hölder

continuous in time, with a constant independent of ".

The equation satisfied by u"i is usual. One just has to notice that with the definitions above,

div

 

ru"i
p

1C jru"i j2

!

D �H:

We now pass to the limit as " goes to zero. By Proposition 7, the family .u"i / is equi-Lipschitz

in space and equi-continuous in time on Bi � Œ0; T1/. Therefore, by Arzelà–Ascoli’s Theorem one

can find a sequence "n ! 0 and continuous functions ui such that, for every i , u
"n

i �!
n!1

ui locally

uniformly on Bi � Œ0; T1/.
PROPOSITION 8 The functions ui are viscosity solutions of (3) on Bi � Œ0; T1/, with obstacles

U \ Bi (see Appendix 5).

Proof. Thanks to Proposition 4, every x 2 Bi can be decomposed as x D x0 C z!i with z D
.x ; !i /. Then, there exists functions  ˙

i of class C 1;1 such that

U \ Bi D
˚

.x0; z/ 2 Bi W  �
i .x

0/ 6 z 6  C
i .x

0/
	

:

For simplicity we shall drop the explicit dependence on the index i . Since u".x; 0/ D u0.x/ for all

", and u"n converges uniformly to u as n ! C1, it is clear that u.x; 0/ D u0.x/:

Condition (A3) immediately follows from Proposition 3.

We now check that u is a subsolution of (3). Let .x0; t0/ 2 R
d � R and ' 2 C 2 such that

 �.x0; t0/ < u.x0; t0/ and

.u � '/.x0; t0/ D max
j.x;t/�.x0;t0/j6r

.u � '/.x; t/:

One can change ' so that .x0; t0/ is a strict maximum point, and u.x0; t0/ D '.x0; t0/. Let 2ı WD
u.x0; t0/ �  �.x0; t0/. Thanks to the definition of k", for all " 6 ı, we have k".x; '.x; t// > 0 in
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a small neighborhood V of .x0; t0/. Hence, for " sufficiently small u" � ' attains its maximum in

V at .x"; t"/, with .x"; t"/ ! .x0; t0/ as " ! 0. Since u" is a classical solution of (26), it is also a

viscosity solution, therefore

't �
p

1C jr'j2 div

 

r'
p

1C jr'j2

!

6 �
p

1C jr'j2 k".x; '/ 6 0 at.x"; t"/:

Letting " ! 0 we obtain that u is a subsolution of (3). A similar argument shows that u is also a

supersolution of (3), and this concludes the proof.

Conclusion of the proof of Theorem 1. The result in [21, Theorem 4.1] (see also Section A.4)

applies, showing that the functions ui are of class C 1;1: As the uniform convergence u
"n

i implies

the Hausdorff convergence of M
"n

t to a limit Mt such that Mt \ Bi D graph.ui .t//, we built a

C 1;1 evolution to the mean curvature motion with obstacles on the time interval Œ0; T1/: Thanks

to [1, Theorem 4.8 and Corollary 4.9] this evolution is also unique. This concludes the proof of

Theorem 1.

4. Proof of Theorem 2

Let  ˙
" be smooth functions such that  ˙

" !  ˙ as " ! 0, uniformly in C 1;1.Rd /, and let N > 0

be such that

N >







q

1C j ˙
" j2 div

 

 ˙
"

p

1C j ˙
" j2

!




L1.Rd /

for all " > 0: (27)

We proceed as in Section 3 and we approximate (3), (4) with the forced mean curvature equation

ut D
p

1C jruj2
"

div

 

ru
p

1C jruj2

!

C k".x; u/

#

; (28)

where

k".x; u/ D 2N

�

�

�
 �
" .x/ � u
"

�

� �
�
u �  C

" .x/

"

��

;

and � is a smooth increasing function such that �.s/ � 0 for all s 2 .�1; 0�, and �.s/ � 1 for all

s 2 Œ1;1/. In particular @uk".x; u/ 6 0 for all .x; u/.

Note that the signs between (28) and (5) are reversed.

Notice that k" ! k as " ! 0, with

k.x; u/ D

8

<

:

2N if u <  �.x/

�2N if u >  C.x/

0 elsewhere

:

We denote by u" the solution of the approximate problem (28), which exists and is smooth for short

times.

PROPOSITION 9 The solution u" is defined for t 2 Œ0;C1/, and satisfies the estimates

ku".�; t /kW 1;1.Rd / 6 C for all t 2 Œ0;C1/; (29)

ku".�; t /kW 2;1.Rd / 6 C.T / for all t 2 Œ0; T �: (30)
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Proof. Estimate (29) follows from Proposition 5, choosing Bi D R
dC1, !i D edC1 and � � 1.

Estimate (30) follows from (29) and Proposition 6.

In what follows, we use intrinsic derivatives on the graph Mt WD f.x; u".x; t//g, which will be

denoted as above by an exponent S . The metric on Mt is

gij D ıij C @iu"@ju

with inverse

gij D ıij � @iu"@ju"

1C jru"j2
:

The tangential gradient of a function f defined on Mt is given by

.rSf /i D gij @jf D @if � @iu"@ju"

1C jru"j2
@jf ;

so that

�

rSf ; ru"
�

D .rf ; ru"/ � jru"j2
1C jru"j2

.rf ; ru"/ D 1

1C jru"j2
.rf ; ru"/ ; (31)

and

jrSf j2 D

0

@fi � .u"/i
X

j

.u"/jfj

1C jru"j2

1

A

2

D jrf j2 C .u"/
2
i

�
.ru" ; rf /
1C jru"j2

�2

� 2.u"/i .u"/jfifj
1C jru"j2

D jrf j2 C jru"j2
1C jru"j2

.ru" ; rf /2

1C jru"j2
� 2.ru" ; rf /2

1C jru"j2

D jrf j2 � .ru" ; rf /2

1C jru"j2
� .ru" ; rf /2

.1C jru"j2/2
:

(32)

In addition, the Laplace-Beltrami operator applied to f is

�Sf D gijfij D �f � @iu"@ju"

1C jru"j2
fij D �f �

�

ru"r2f ; ru"
�

1C jru"j2
:

PROPOSITION 10 The quantity k.u"/2t k1.t/ is nonincreasing in time. In particular,

k.u"/t .�; t /kL1.Rd / 6







p

1C jru0j2 div

 

ru0
p

1C jru0j2

!




L1.Rd /

:

Proof. We compute

d

dt

.u"/
2
t

2
D .u"/t

"

p

1C jru"j2
 

div

 

ru"
p

1C jru"j2

!

C k"

!#

t

:
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Expanding this expression, we get

d

dt

.u"/
2
t

2
D .u"/t

"

.r.u"/t ;ru"/
p

1C jru"j2

 

div

 

ru"
p

1C jru"j2

!

C k"

!

C
p

1C jru"j2
 

div

 

.ru"/t
p

1C jru"j2
� ..ru"/t ;ru"/ru"

.1C jru"j2/3=2

!

C .u"/t @uk"

!#

:

Let us compute more explicitly the three terms of the expression above:

.u"/t
..ru"/t ;ru"/
p

1C jru"j2

 

div

 

ru"
p

1C jru"j2

!

C k"

!

D

�

r. .u"/
2
t

2
/;ru"

�

p

1C jru"j2

 

�u
p

1C jru"j2
� .u"/i .ru" ; .ru"/i /

.1C jru"j2/3=2
C k"

!

D
�

r. .u"/
2
t

2
/;ru"

�
0

@
�u"

1C jru"j2
�

�

ru";r. jru"j2

2
/
�

.1C jru"j2/2
C k"

1

A ;

.u"/t div

 

r.u"/t
p

1C jru"j2

!

D .u"/t@i

 

.u"/ti
p

1C jru"j2

!

D .u"/t .u"/ti i
p

1C jru"j2
� 1

.1C jru"j2/3=2
.u"/t .u"/ti .ru"; .ru"/i /

D .u"/t�.u"/t
p

1C ru2"
� 1

.1C jru"j2/3=2
.u"/t .u"/ti@i .

jru"j2
2

/

D .u"/t�.u"/t
p

1C ru2"
� 1

.1C jru"j2/3=2

�

r
�
.u"/

2
t

2

�

;r
� jru"j2

2

��

and

.u"/t div

�
..ru"/t ;ru"/ru"
.1C jru"j2/3=2

�

D �u"
.ru" ; .u"/tr.u"/t /
.1C jru"j2/3=2

C .u"/t .u"/tij .u"/j .u"/i

.1C jru"j2/3=2
C ..u"/ir.u"/i ; .u"/tr.u"/t /

.1C jru"j2/3=2

� 3.u"/i
..u"/tr.u"/t ; ru"/ .r.u"/i ; ru"/

.1C jru"j2/5=2

D �u"

�

ru" ; r. .u"/
2
t

2
/
�

.1C jru"j2/3=2
C .u"/t .u"/tij .u"/j .u"/i

.1C jru"j2/3=2
C

�

r. jru"j2

2
/ ; r. .u"/

2
t

2
/
�

.1C jru"j2/3=2

� 3

�

r. .u"/
2
t

2
/ ; ru"

� �

r. jru"j2

2
/ ; ru"

�

.1C jru"j2/5=2
:
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Notice that

�S
.u"/

2
t

2
D �

.u"/
2
t

2
�

�

ru" ; r2 .u"/
2
t

2
ru"

�

1C jru"j2

D .u"/t�.u"/t C j.ru"/t j2 � .u"/i .u"/j .u"/t .u"/tij C .u"/i .u"/j .u"/ti .u"/tj

1C jru"j2
:

We then get

d

dt

.u"/
2
t

2
D

�

r. .u"/
2
t

2
/ ; ru"

�

p

1C jru"j2
k" C�S

�
.u"/

2
t

2

�

� 2

�

r
�
.u"/

2
t

2

�

; r
�

jru"j2

2

��

1C jru"j2

C 2

�

r. .u"/
2
t

2
/ ; ru"

� �

r. jru"j2

2
/ ; ru"

�

.1C jru"j2/2
C .ru" ; .ru"/t /2

1C jru"j2
� j.ru"/t j2 C .u"/

2
t @uk":

Note that the last term is nonpositive by definition of k".

In order to apply Lemma 1, we have to show the inequality

� .ru" ; .ru"/t /
2

1C jru"j2
C j.ru"/t j2 > 0:

It is enough to note that, since the solution exists for all times and it is smooth, the term r. jru"j2

2
/

is bounded on each Œ0; T � (the bound depends on T and " but is enough to apply the lemma). In

addition, every factor containing r..u"/2t =2/ also contains ru", hence the assumptions of Lemma

1 are satisfied for every T > 0, and this concludes the proof.

From Propositions 9 and 10, we deduce the following result.

PROPOSITION 11 If u0 is C -Lipschitz in space for some C > 0, and has bounded mean curvature,

then the solution u" of the approximate problem (28) is C -Lipschitz in space and Lipschitz in time

with constant 





p

1C jru0j2 div

 

ru0
p

1C jru0j2

!




L1.Rd /

:

Moreover, the following inequalities hold

 �
" .x/ � " 6 u".x; t/ 6  C

" .x/C ": (33)

Proof. The Lipschitz bounds of the solution are clear (it is Proposition 9 and 10).

In order to prove the second assertion, let us notice that by (27) and the definition of k", we have

k".x;  
�
" � "/ D 2N >







q

1C j �
" j2 div

 

 �
"

p

1C j �
" j2

!




L1.Rd /

;

so that  �
" � " is a subsolution of (28). By the parabolic comparison principle (as in Proposition 3),

we deduce that

 �
" � " 6 u":

The same argument shows the other inequality in (33).
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Conclusion of the proof of Theorem 2. Since the solutions u" are equi-Lipschitz in space and time,

they converge uniformly, as " ! 0, to a limit function u which is also Lipschitz continuous on

R
d � Œ0;C1/.

Equation (33) yields

 �
6 u 6  C;

and Proposition 8 gives that u is a viscosity solution of (A1).

Concerning the regularity of u, we proved that .u"/t and ru" are bounded on Œ0; T �; for any T

in the approximate problem. This gives a bound on the mean curvature of the approximate solution.

This bound does not depend on " and remains true for the viscosity solution. As a result, the exact

solution has bounded mean curvature and bounded gradient, which shows that �u is L1 and, by

elliptic regularity theory, u is also inW 2;p for any p > 1, and so C 1;˛ for every ˛ < 1 (see [19] for

details).

We can also directly apply to the solution u a regularity result by Shahgholian (see [21, 23]

and Theorem 4 below), which implies that u is in fact of class C1;1. This concludes the proof of

Theorem 2.

5. Proof of Theorem 3

We compute the evolution of the area of the graph of u:

d

dt

Z

Q

p

1C jruj2 D
Z

Q

.rut ; ru/
p

1C jruj2
D �

Z

Q

ut div

 

ru
p

1C jruj2

!

: (34)

Notice that, for almost every t > 0, ut .t; x/ D 0 almost everywhere on the contact set. Indeed, for

almost every t , ut exists for almost every x 2 Q. If u.x; t/ D  ˙.x/, then u �  ˙ reaches an

extremum in .x; t/, which gives, ut .x; t/ D 0: In particular, from (34) we get

d

dt

Z

Q

p

1C jruj2 D �
Z

Q

ut

 

ut
p

1C jruj2

!

:

Integrating this equality in time, we obtain

Z

Q

p

1C jruj2
ˇ
ˇ
ˇ
ˇ

T

0

D
Z T

0

Z

Q

� u2t
p

1C jruj2
:

which shows that
Z T

0

Z

Q

u2t

is uniformly bounded in T . As a result ut 2 L2.RC;Q/ so u is in H 1.Q;BR/:

Since kutkL2.Q/ is L2.RC/, there exists a sequence tn ! 1 such that

kutkL2.Q/.tn/ �!
n!1

0:

In addition, u.tn/ is equi Lipschitz and converges uniformly on compact sets to some u1 which

therefore satisfies in the viscosity sense

p

1C jruj2 div

� rup
1C ru2

�

D 0
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with obstacles  ˙ (see Appendix 5).

REMARK By [17], umin is analytic out of the (closed) contact set fumin D  ˙g.

Appendix A. Viscosity solutions with obstacles

A.1 Definition of viscosity solution

Given an open subset B of Rd , let u0,  C and  � be three Lipschitz functions B ! R such that

 �.x; 0/ 6 u0.x/ 6  C.x; 0/:

We are interested in the viscosity solutions of the equation

ut D
p

1C jruj2 div

 

ru
p

1C jruj2

!

; u.x; 0/ D u0.x/; (A1)

with the constraint

 �.x/ 6 u.x; t/ 6  C.x/: (A2)

DEFINITION 1 (see [5, 20]) We say that a function u W B � Œ0; T / ! R is a viscosity subsolution
of (A1) if u satisfies the following conditions:

� u is upper semicontinuous;

� u.x; 0/ 6 u0.x/;

�
 �.x/ 6 u.x; t/ 6  C.x/I (A3)

� for any .x0; t0/ 2 R
d � R

C and ' 2 C 2 such that u � ' has a maximum at .x0; t0/ and

u.x0; t0/ >  
�.x0/,

ut 6

p

1C jruj2 div

 

ru
p

1C jruj2

!

: (A4)

Similarly, u is a viscosity supersolution of (A1) if:

� u is lower semicontinuous;

� u.x; 0/ > u0.x/;

� (A3) holds;

� for any .x0; t0/ 2 R
d � R

C and ' 2 C 2 such that u � ' has a minimum at .x0; t0/ and

u.x0; t0/ <  
C.x0/,

ut >

p

1C jruj2 div

 

ru
p

1C jruj2

!

:

We say that u is a viscosity solution of (A1) if it is both a super and a subsolution.
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A.2 Comparison principle

In order to prove uniqueness of continuous viscosity solutions of (A1), we shall prove a comparison

principle between solutions following [13, Theorem 4] (see also [4]).

PROPOSITION 12 If u is a viscosity subsolution of (A1) on Œ0; T /, v is a viscosity supersolution,

if  ˙ are Lipschitz in space and if u.x; 0/ 6 v.x; 0/, then u.x; t/ 6 v.x; t/ for all .x; t/ 2
R
n � Œ0; T /:

Proof. We will check that the proof of [13, Theorem 2.1] can be extended to the obstacle case.

Notice first that the assumptions .A:1/ � .A:3/ of [13, Theorem 2.1] are satisfied also in our case.

Indeed, .A:1/ comes directly from the Lipschitz bound on  ˙ and the constraint  �
6 u; v 6  C

whereas .A:2/ and .A:3/ result from the assumed time zero comparison.

Let us show that [13, Proposition 2.3] also holds. Indeed, up to Equation (2.9) nothing changes.

To continue the proof, using the same notation of [13, Proposition 2.3], we have to check that if

sup
V

.w � 	/ > 0;

then the supremum is reached in the complementary of the contact set fu D  �g [ fv D  Cg.

Indeed, notice that if u.x; t/ D  �.x/, then, for all x; y; t; s,

u.x; t/ � v.y; s/ D  �.x/ � v.y; s/ 6  �.y/C L.jx � yj/ � v.y; s/ 6 L.jx � yj/

since v >  �: Hence, if u.x; t/ D  �.x/, with K 0 > L, we must have w � 	 6 0, so the

supremum of w � 	 is attained in the complementary of fu D  �g. One can show similarly that

the supremum is reached in the complementary of fv D  Cg. Hence Proposition 2.3 of [13] holds.

From Proposition 2.4 to Lemma 2.7 of [13], every result holds without changes.

Concerning the proof of Theorem 2.1 of [13], the first assumption is

˛ D lim sup
�!0

fw.t; x; y/; j jx � yj 6 �g > 0:

Then, Proposition 2.4 gives constants ı0 and 0 such that for all ı 6 ı0;  6 0 and " > 0, there

holds

˚. Ox; Oy; Ot / WD sup
Rd �Rd �Œ0;T /

˚.x; y; t/ >
˛

2

with

˚.t; x; y/ D u.x; t/ � v.y; t/ � jx � yj4
4"

� ı.jxj2 C jyj2/ � 

T � t
To conclude the proof, we only have to show that the maximum of ˚ is once again attained on the

complementary of fu D  �g [ fv D  Cg: In the same way as for Proposition 2.3, if u.x; t/ D
 �.x/, we can write

˚.t; x; y/ D u.x; t/ � v.y; t/ � jx � yj4
4"

� ı.jxj2 C jyj2/ � 

T � t
6  �.y/C Ljx � yj � v.y; t/ 6 Ljx � yj:

Thanks to Proposition 2.5, j Ox � Oyj �!
"!0

0. So, with " sufficiently small (one can reduce the quantity

"0 given by Proposition 2.6),˚ has its maximum out of fu D  �g (and similarly out of fv D  Cg),

which enables the application of Lemma 2:7 and gives a contradiction as in [13].
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A.3 Existence

In this subsection, we prove the following result:

PROPOSITION 13 There exists a continuous viscosity solution to (A1).

We follow [5] to build a solution by means of the Perron’s method. Let us state an obvious but

useful proposition and a key lemma for applying Perron’s method.

PROPOSITION 14 Let u be a subsolution of the mean curvature motion for graphs (without

obstacles) which satisfies u 6 uC. Then, uob WD u_u� is a subsolution of (A1) with obstacles (the

same happens for v supersolution and vob D v ^ uC).

In the sequel, we shall denote by u� (resp. u�) the upper (resp. lower) semicontinuous envelope

of a function u.

LEMMA 6 Let F be a family of subsolutions of (A1). We define

U.x; t/ D sup
˚

u.x; t/ j u 2 F
	

:

Then, U � is a subsolution of (A1).

The proof of the proposition and the lemma can be found in [5], Lemma 4.2 (with obvious

changes due to the parabolic situation and obstacles).

A.3.1 Construction of barriers.. In the sequel, to claim that the initial condition is taken by the

viscosity solution, we need to build barriers around the solution u. More precisely, we want to build

a subsolution w� such that .w�/�.x; 0/ D u0.x/ and a supersolution wC such that .wC/�.x; 0/ D
u0.x/: To show this claim, let us begin by a simple fact.

Let

ga˛;b.x/ D �
X

˛i
.x � a/2i

q

1C .x � a/2i
C b (A5)

for some .a; b/ 2 R
d � R and ˛i > 0 such that g.x/ 6 u0.x/. Note in particular that

ga˛;b.x/ > �
X

˛i .x � a/2i C b and H.ga˛;b/ > H.ga˛;b/jtD0 D �2
X

˛i : (A6)

Then, it is easy to show (using Proposition 14) that the function

v.x; t/ D
 

ga˛;b.x/C
�

2

n
X

iD1

˛i C 3M
�

t

!

_  �

is a subsolution of (A1). Indeed, the curvature of ga
˛;b

is smaller than 2
P

i ˛i and its gradient is

bounded by 2 (so
p

1C jrgj2 6 3).

Thanks to Lemma 6, the function

w�.x; t/ D
 

sup
.˛i /;c
gc

˛;b
6u0

�

ga˛;b.x/ � 2
n
X

iD1

˛i t � 3Mt
�

_  �

!�
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is a subsolution of (A1) (with obstacles).

It remains to show that .w�/�.x; 0/ D u0.x/: To see this, notice that since u0 is Lipschitz and

u0 >  �, u0.x/ D w�.x; 0/, yielding u0.x/ 6 .w�/�.x; 0/. But for all t > 0, v.x; t/ 6 u0.x/

so w�.x; t/ 6 u0.x/: By continuity of u0, .w�/�.x; t/ 6 u0.x/, which shows that .w�/�.x; 0/ D
u0.x/, and w� is a low barrier for solutions of (A1).

We build wC in the same way.

A.3.2 Perron’s method.. We use the classical Perron’s method to build a solution of (A1) on

Œ0; T / for every t > 0: Let us define

W.x; t/ D supfu.x/ W u is a subsolution of (A1) on Œ0; T /g:

Since  � is a subsolution, this set in non empty and W is well defined. Every subsolution is less

that  C, so is W .

Thanks to Lemma 6, W � is a subsolution of (A1) regardless the initial conditions. Applying the

comparison principle (Proposition 12) to every subsolution u and wC gives

8x; t; W.x; t/ 6 wC.x; t/:

Considering the upper-semi-continuous envelopes, we get

8x; t; W �.x; t/ 6 .wC/�.x; t/

which immediately yields to

W �.x; 0/ D u0.x/:

Then, W � is a subsolution of (A1), hence W � D W which shows the upper semi-continuity of W .

We want to prove that W is actually a solution of (A1). In order to do this, let us prove the

following

LEMMA 7 Let u be a subsolution of (A1). If u� fails to be a supersolution (regardless initial

conditions) at some point . Ox; Ot / then there exists a subsolution u� (regardless initial conditions)

satisfying u� > u and supu� � u > 0 and such that u.x; t/ D u�.x; t/ for jx � Oxj; jt � Ot j 6 �.

Proof. Let us assume that u� fails to be a supersolution at .0; 1/. Then there exists .a; p;X/ 2
J2;�u�.0; 1/ with

aC F.p;X/C k.0/
p

1C p2 < 0:

Let us then define

uı; .x; t/ D u�.0; 1/C ı C .p ; x/C a.t � 1/C 1

2
.Xx ; x/ � .jxj2 C t � 1/:

Thanks to the continuity of F and k, uı; is a classical subsolution on Br .0; 1/ of ut C
F.Du;D2u/C k.x/

p

1C jruj2 D 0 for ı; ; r sufficiently small. By assumption,

u.x; t/ > u�.x; t/ > u�.0; 1/C a.t � 1/C .p ; x/C 1

2
.Xx; x ; C/ o.jxj2 C jt � 1j/:
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With ı D  r
2Cr
8

, we get u.x; t/ > uı; .x; t/ for small r and jxj; jt � 1j 2 Œ r
2
; r�: Reducing again

r , we can assume that uı; <  
C on Br . Thanks to Lemma 6,

Qu.x; t/ D
�

max.u.x; t/; uı; .x; t// if jx; t � 1j < r
u.x/ otherwise

is a subsolution of (A1) (with no initial conditions).

Finally, this lemma combined with the definition of W proves that W is in fact a solution of

(A1) (the initial conditions were already checked).

A.4 Regularity

PROPOSITION 15 The unique solution u of (A1) is Lipschitz in space, with the same constant as

u0;  
˙:

Proof. We will prove that uz.x; t/ D u.x C z; t/ � Ljzj is in fact a subsolution of (A1). The

Lipschitz bound is then straightforward (using the comparison principle).

To begin, we notice that u.xC z; t/�L.jzj/ 6 uC.x; t/ and u.xC z; 0/�Ljzj 6 u0.xC z/�
Ljzj 6 u0.x/:

Assume now that ' is any smooth function which is greater than uz with equality at . Ox; Ot /:
Then, either, uz. Ox; Ot / D  �. Ox; Ot / and nothing has to be done, or uz. Ox; Ot / >  �. Ox; Ot /. In the

second alternative, one can write

u. Ox C t; Ot / >  �. Ox/ D  �. Ox C z/C . �. Ox/ �  �. Ox C z/;

so

u. Ox C z; Ot / >  �. Ox C z/C  �. Ox/ �  �. Ox C z/C Ljzj
„ ƒ‚ …

>0

> u�. Ox C z; Ot /:

As u is a subsolution at . OxC z; Ot / and u.xC z; t/ 6 '.x; t/CLjzj with equality at . OxC z; Ot /, one

can write with y D x C z, s D t ,

u.y; t/ 6 '.y � z; s/C Ljzj WD �.y; s/;

with equality at . Oy; Os/ which gives

�t C F
�

D�. Ox; Ot /;D2�. Ox; Ot /
�

6 0:

Since the derivatives of � and ' are the same, we deduce

't C F.D';D2'/ 6 0;

what was expected.

REMARK With the same arguments, one can prove that

8ı > 0; 8x; t; ju.x; t C ı/ � u.x; t/j 6 sup
x

ju.x; ı/ � u.x; 0/j:
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We now present a general regularity result by Shahgholian [23] which applies to viscosity

solutions for parabolic equations with obstacles.

THEOREM 4 ( [21], Th. 4.1) Let QC WD f.x; t/ 2 R
d � R W jxj < 1; t 2 Œ0; 1/g and H.u/ D

F.D2u;Du/ � ut where F is uniformly elliptic. Let u be a continuous viscosity solution of

.u �  /H.u/ D 0;

H.u/ 6 0;

u >  ;

(A7)

in QC, with boundary data

u.x; t/ D g.x; t/ >  .x; t/ on fjxj D 1g [ ft D 0g: (A8)

Assume that  2 C 1;1.QC/ and g is continuous. Then, u 2 C 1;1 on every compact subset ofQC:

It has to be noticedH D F �@t where F.D2u;Du/ D �
p

1C jruj2 div
�

rup
1Cjruj2

�

satisfies

all the assumptions of [23], 1.3. Indeed, the uniform ellipticity is provided by the Lipschitz bound

obtained in previous subsection.

Moreover, the viscosity solution u of (A1) satisfies (A7) and (A8) on every cylinderQC
r .x0/ WD

fjx � x0j 6 r; t 2 Œt0; t0 C r/g such that r is chosen sufficiently small in order to have either

QC
r .x0/ \ fu D  Cg D ; or QC

r .x0/ \ fu D  �g D ;. In the second alternative, change every

sign in the equations.

Applying Theorem 4 we get a C 1;1 bound for u on every compact subset of QC
r .x0/. To show

that u is C 1;1 in the whole space, just cover Rd � R
C with such QC

r .xi /.
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