
Interfaces and Free Boundaries 17 (2015), 427–464
DOI 10.4171/IFB/349
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A dual formulation and finite element method is proposed and analyzed for simulating the Stefan

problem with surface tension. The method uses a mixed form of the heat equation in the solid and

liquid (bulk) domains, and imposes a weak formulation of the interface motion law (on the solid-

liquid interface) as a constraint. The basic unknowns are the heat fluxes and temperatures in the bulk,

and the velocity and temperature on the interface. The formulation, as well as its discretization,

is viewed as a saddle point system. Well-posedness of the time semi-discrete and fully discrete

formulations is proved in three dimensions, as well as an a priori (stability) bound and conservation

law. Simulations of interface growth (in two dimensions) are presented to illustrate the method.
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1. Introduction

1.1 Background

The Stefan problem describes the geometric evolution of a solidifying (or melting) interface. It is

a classic problem in phase transitions. The model consists of time-dependent heat diffusion in the

solid and liquid phases, with an interfacial condition on the solid-liquid interface known as the

Gibbs-Thomson relation with kinetic undercooling [41, 42, 61]. A thermodynamic derivation of

the model can be found in [29]. Applications range from modeling the freezing (or melting) of

water to the solidification of crystals from a melt and dendritic growth [15, 30, 38, 51, 52, 59].

Mathematical theory for the Stefan problem with Gibbs-Thomson law is available for local and

global in time solutions [13, 25, 36, 39, 45–48]. Well-posedness results are also available if the heat

equation in the bulk phases is replaced by a quasi-static approximation (i.e. the Mullins–Sekerka

problem) [18, 20, 24, 40, 49].

Efficient numerical schemes for simulating these models is necessary to allow for design,

prediction, and optimization of these processes. Phase-field methods have been used for simulating

solidification and dendrite growth [6, 35, 55]. Level set methods have also been used to handle

the evolutions of the two phase interface [12, 23, 44, 54]. The method we present uses a front-

tracking approach where the interface parametrization conforms to a surrounding bulk mesh. Other

front-tracking methods for the Stefan problem have also been given [2, 4, 34, 35, 50–53].
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Our paper presents a completely mixed formulation of the Stefan problem, including the bulk

heat equations [8]. In other words, we formulate the problem in a saddle-point framework, where

the heat equations are in mixed form, and the interface motion law appears as a constraint in the

system of equations with a balancing Lagrange multiplier that represents the interface temperature.

To the best of our knowledge, this is a new method for the Stefan problem with surface tension.

Some highlights of our method are the following.

� We prove that both the time semi-discrete and fully discrete systems have a priori bounds (in time)

that mimic the continuous model. This assumes the interface velocity is reasonably regular and

that there are no topological changes. Moreover, we can prove that both the time semi-discrete

and fully discrete systems maintain conservation of thermal energy. In [5], they only achieve this

for their discrete in space, continuous in time, scheme.

� The interface is represented by a surface triangulation that conforms to the bulk mesh which

deforms with the interface. Hence, occasional re-meshing is needed, which is done by the method

in [63]. One advantage of this method is that all integrals in the finite element formulation

can be computed exactly. In addition, we do not need to compute the intersection of meshes

at adjacent time steps to transfer solution variables from one mesh to the next (e.g. for computing

L2 projections from one mesh to another).

� Our method can be modified to include anisotropic surface tension via [5], which is relevant to

crystal growth. The well-posedness of the method remains unchanged, as well as the a priori

bound and conservation law.

� Other variations of the Stefan problem (e.g. Mullins–Sekerka) can be formulated with our

approach by straightforward modifications. One can even include moving contact line effects

when the solid phase is attached to a rigid boundary [60, 64].

1.2 Summary

In Section 2, we describe the governing equations. Section 3 describes the fully continuous weak

formulation and derives a formal a priori bound and conservation law. Section 4 explains the time-

discretization and how the interface motion is handled. A variational formulation of the time semi-

discrete problem is given, its well-posedness is shown, and an a priori bound and conservation law

is proved. We then do the same for the fully-discrete formulation (Section 5). Section 6 concludes

with numerical simulations to demonstrate the method.

2. Model for the Stefan problem with surface tension

The particular mathematical model we consider can be found in [5, 29]. In this section, we present

the strong form of the Stefan problem.

2.1 Notation

Let ˝ be a fixed domain in Rd (for d D 2; 3), with outer boundary @˝ , that contains two phases,

liquid and solid, denoted respectively by the open sets ˝l and ˝s, i.e. ˝ D int.˝l [ ˝s/ and

˝l \˝s D ; (see Figure 1). Furthermore, @˝ partitions into two pieces: @˝ D @D˝ [ @N˝ such

that @D˝ \ @N˝ D ; and j@D˝j > 0 (set of positive measure).

The solid-liquid interface between the phases is � D ˝l \˝s (a closed surface). The domains

˝l, ˝s, and � are time-dependent, and we assume that � .t/ � ˝ for all t . Moreover, in order to
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write the strong form of the Stefan problem (Section 2.2), we assume � .t/ is smooth and let X.t/

denote a parametrization of � .t/:

X.�; t/ W M ! Rd ; where M � Rd is a given reference manifold; (2.1)

i.e. � .t/ D X.M; t/. Furthermore, we introduce fixed reference domains b̋ l, b̋s for the liquid and

solid domains such that ˝ D int.b̋ l [ b̋
s/ and M D b̋

l \ b̋
s. We can extend X to be defined on

all of ˝ and such that˝l.t/ D X.b̋ l; t/ and˝s.t/ D X.b̋s; t/ (slight abuse of notation here). This

is needed later when specifying the function spaces.

The surface � has a unit normal vector ν that is assumed to point into ˝l (see Figure 1).

For quantities q in ˝l (˝s), we append a subscript: ql (qs). The symbol � represents the summed

curvature of the interface � (sum of the principle curvatures), and we assume the convention that �

is positive when ˝s is convex (contrary to [5]).

Table 1 summarizes the notation we use for the physical domain and the physical variables (e.g.

temperature, etc.). The physical coefficient symbols that appear in the model, as well as their values,

are given in Table 2. The non-dimensional parameters are given in Table 3.
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FIG. 1: Left: Domains in the Stefan problem. The entire “box” is ˝ D int.˝l [˝s/ (containing two

phases ˝l, ˝s) with Dirichlet boundary @D˝ denoted by the dashed line. A Neumann condition

is applied on the remaining sides @N˝ . The interface between the phases is � D ˝l \ ˝s with

unit normal vector ν pointing into ˝l. Right: Simulation using the method developed in this paper

(isotropic surface tension). Several time-lapses are shown to illustrate the evolution with initial

interface having a “star” shape. See Section 6 for more simulations.
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TABLE 1: General notation and symbols

Symbol Name Units

˝, ˝l, ˝s Bulk Domains: Entire, Liquid, Solid —

@˝ Boundary of ˝ —

@D˝, @N˝ Partition of @˝ D @D˝ [ @N˝ —

� Interface between ˝l and ˝s phases —

X, V Interface (� ) Parametrization and Velocity m, m s�1

ul, us Temperature in ˝l and ˝s K (deg. Kelvin)

fl, fs Heat sources in ˝l and ˝s J m�3 s�1

r� , �� Surface Gradient and Laplace–Beltrami Opera-

tor

m�1, m�2

ν Unit Normal Vector of � —

r� X WD I � ν ˝ ν Projection onto Tangent Space of � —

�, �ν WD ��� X Summed Curvature and Curvature Vector of � m�1

TABLE 2: Physical parameters and values

Symbol Name Units

# Volumetric Heat Capacity J m�3K�1

Kl, Ks Thermal Conductivity in ˝l and ˝s J s�1m�1K�1

L Latent Heat Coefficient J m�3

˛ Surface Tension Coefficient of � J m�2

S Volumetric Entropy Coefficient J m�3K�1

� Kinetic Coefficient J s m�4

ˇ Mobility Coefficient —

D Length Scale m

U0 D TM Temperature Scale K

t0 Time Scale seconds (s)

F0 D #U0=t0 Heat Source Scale J m�3 s�1

TABLE 3: Nondimensional parameters

Symbol Name Value

bS D S=# entropy coefficient 2
b̌
0 D #U0t0=.�D/ mobility coefficient 0:01

b̌D b̌
0ˇ mobility function -

bKl D Klt0=.D
2#/ liquid conductivity 1

cKs D Kst0=.D
2#/ solid conductivity 1

b̨D ˛=.U0D#/ surface tension coefficient 0:0005
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2.2 Strong formulation

The Stefan problem is as follows. Find u W ˝ � Œ0; T � ! R and interface � .t/ � ˝ for all

t 2 .0; T �, such that uj˝l D ul, uj˝s D us, and the following bulk conditions hold:

#@tul �Kl�ul D fl; in ˝l.t/;

#@tus �Ks�us D fs; in ˝s.t/;

ν˝ � ru D 0; on @N˝;

u D uD; on @D˝;

u.�; 0/ D u0; in ˝;

(2.2)

where u0 is the initial temperature, and the following interface conditions hold:

ul � us D 0; on � .t/;

ν � .Klrul �Ksrus/C L@tX � ν D 0; on � .t/;

�

ˇ.ν/
@tX � ν C ˛� C Su D 0; on � .t/;

X.�; 0/� X0.�/ D 0; on M;

� .0/ D �0; in ˝;

(2.3)

where �0 is the initial interface (parameterized by X0) and X.�; t/ parameterizes � .t/. Note that

u D T � TM, where T is the temperature in degrees Kelvin and TM is the melting temperature at

the interface � , and that u is continuous across the interface. As noted in [5], we must have

S D L

TM

: (2.4)

2.3 Non-dimensionalization

We non-dimensionalize the variables, but use the same variable symbols for convenience. This gives

@tul � bKl�ul D fl; in ˝l.t/;

@tus � cKs�us D fs; in ˝s.t/;

ν˝ � ru D 0; on @N˝;

u D uD; on @D˝;

u.�; 0/ D u0; in ˝;

(2.5)

ul � us D 0; on � .t/;

ν � .bKlrul � cKsrus/CbS @tX � ν D 0; on � .t/;

1

b̌.ν/
@tX � ν C b̨� CbS u D 0; on � .t/;

X.�; 0/� X0.�/ D 0; on M;

� .0/ D �0; in ˝:

(2.6)
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Throughout the paper, we assume the non-dimensional coefficients satisfy

1 > bKl;cKs;b̨;bS > 0; 1 > b̌.ν/ > b̌
� > 0; where b̌� is a constant:

REMARK 2.1 The case of # D 0 (i.e. b̨, bS; bKl;cKs D 1) corresponds to the steady-state

heat equation in ˝l and ˝s and if � D 0 (i.e. b̌.ν/ � 1) then (2.5) and (2.6) becomes the

Mullins–Sekerka problem with Gibbs-Thomson law [41]. Our formulation can easily be modified

to implement this model. If bS � 1 only, then @tX � ν � 0, so (2.5) and (2.6) reduce to the

time-dependent heat equation on a stationary domain with ul D us D 0 on � .

3. Weak formulation

3.1 Function spaces

Since the domain and interface deform in time, we define the function spaces using a reference

domain [5]. For simplicity, we shall assume that @˝ \ @˝l D @˝ (see Figure 1); thus, ˝s � ˝ .

We use standard notation for denoting Sobolev spaces [1, 57], e.g. L2.˝/ is the space of square

integrable functions on ˝ . For any vector-valued function η, if we write η 2 L2.˝/, we mean

each component of η is in L2.˝/. Continuing, we have H 1.˝/ D fu 2 L2.˝/ W ru 2 L2.˝/g
and H.div;˝/ D fη 2 L2.˝/ W r � η 2 L2.˝/g. The norms on these spaces are defined in

the obvious way, i.e. kuk2
L2.˝/

D
R
˝

juj2, kuk2
H1.˝/

D kuk2
L2.˝/

C kruk2
L2.˝/

, kηk2
H.div;˝/

D
kηk2

L2.˝/
C kr � ηk2

L2.˝/
.

For a general function f W ˝ ! R, we denote its trace (or restriction) to a sub-domain˙ � ˝

(of co-dimension 1) by f j˙ . The trace of a function in H 1.˝/ is well-defined; for a function in

L2.˝/, the trace is not well-defined. Moreover, the trace of all functions (on ˙ � ˝) in H 1.˝/

spans a Hilbert space, denoted H 1=2.˙/, which is a proper dense subspace of L2.˙/. Referring

to [7, pg. 48], the norm for H 1=2.@˝/ is defined by

kvkH1=2.@˝/ WD inf
w2H1.˝/
w j@˝Dv

kwkH1.˝/ D kNvkH1.˝/; (3.1)

where Nv is the unique weak solution of �� Nv C Nv D 0 in ˝ , with Nv D v on @˝ . We also have

H�1=2.@˝/, i.e. the dual space of H 1=2.@˝/ with the dual norm,

k%kH�1=2.@˝/ WD sup
v2H1=2.@˝/

h%; vi@˝
kvkH1=2.@˝/

; (3.2)

where h�; �i@˝ denotes the duality pairing betweenH�1=2.@˝/ and H 1=2.@˝/.

It is well known [26, Theorem 1.7], [7, Lemma 2.1.1] that η � νj@˝ is in H�1=2.@˝/ for all η

in H.div;˝/ (ν˝ is the unit normal vector on @˝). In fact, by [26, (1.44)], we have that

kη � νkH�1=2.@˝/ 6 kηkH.div;˝/; for all η 2 H.div;˝/: (3.3)

With this, one can show that kvkH1=2.@˝/ has a dual norm realization.

PROPOSITION 3.1

kvkH1=2.@˝/ D sup
η2H.div;˝/

hη � ν; vi@˝
kηkH.div;˝/

:
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Enforcing boundary conditions requires the trace. To this end, let H 1
0;D.˝/ D fu 2 H 1.˝/ W

uj@D˝ D 0g. On the reference domains b̋ l and b̋s, we introduce:

V D H.div;˝/; V.g/ D fη 2 V W hη � ν˝ � g; qi@˝ D 0; 8q 2 H 1
0;D.˝/g;

Vl D H.div; b̋ l/; Vl.g/ D fη 2 Vl W hη � ν˝ � g; qi@˝ D 0; 8q 2 H 1
0;D.˝/g;

Vs D H.div; b̋s/;

(3.4)

where g is in H�1=2.@˝/ (see [7, Remark 2.1.3]). We also have the spaces

Q D L2.˝/; Ql D L2.b̋ l/; Qs D L2.b̋ s/: (3.5)

On the reference manifold M, we define [1]

M D H 1=2.M;R/; Y D H 1.M;Rd /: (3.6)

The norm for Y is kVk2
H1.� /

D
R
�

jVj2 C
R
�

jr� Vj2 (see Section 3.2.1 for r� ).

We use the following abuse of notation, similar to [5]. We identify functions ηl in Vl with

ηl ıX�1 defined on˝l.t/ (recall˝l.t/ D X.b̋ l; t/), and denote both functions simply as ηl; similar

considerations are made for functions ηs in Vs. Likewise, we identify V in Y with V ı X�1 defined

on � .t/, and denote both functions as V; similar considerations are made for functions � in M.

Along these lines, we have Vl ' H.div;˝l/, Vs ' H.div;˝s/, Ql ' L2.˝l/, Qs ' L2.˝s/,

M ' H 1=2.� /, Y ' H 1.� /, provided the mapping X is not degenerate.

For technical reasons, we need two versions of the H 1=2.� / norm related to ˝l and˝s. Define

kvk
H

1=2
l .� /

WD sup
ηl2Vl.0/

hηl � ν; vi�
kηlkH.div;˝l/

; kvk
H

1=2
s .� /

WD sup
ηs2Vs

hηs � ν; vi�
kηskH.div;˝s/

: (3.7)

Basically, these norms are related to the “side” of � on which we take the trace. We also define the

H 1=2 and H�1=2 norm on � by

kvkH1=2.� / WD 1

2

�
kvk

H
1=2
l .� /

C kvk
H

1=2
s .� /

�
; k%kH�1=2.� / WD sup

v2H1=2.� /

h%; vi�
kvkH1=2.� /

:

(3.8)

To conclude this section, we define the dual norm forH�1.� /:

k%kH�1.� / WD sup
v2H1.� /

h%; vi�
kvkH1.� /

; (3.9)

where h%; vi� is understood to be the duality pairing between H�1.� / and H 1.� /.

3.2 Curvature

3.2.1 Differential geometry. First, we review some differential geometry [17, 37]. Let Ψ W U !
� be a local parameterization of � � R3 where U � R2 with local variables .s1; s2/. The first
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fundamental form g W U ! R2�2 is given by gij D @siΨ � @sj Ψ for 1 6 i; j 6 2. Then the

tangential gradient (or surface gradient) of ! W � ! R is defined as

.r� !/ ı Ψ WD
2X

i;jD1

gij @si .! ı Ψ /@sj Ψ ;

where Œgij �2i;jD1 D g�1 (matrix inverse). Given Y W � ! R3, we have r� Y D
.r� Y1;r� Y2;r� Y3/ (a 3 � 3 matrix). Moreover, we have the tangential divergence r� � Y WD
trace.r� Y/.

The Laplace–Beltrami operator is defined by ��! D r� � r� ! which expands out to

.�� !/ ı Ψ WD
2X

i;jD1

gij @si

0
@

2X

r;kD1

grk@sr .! ı Ψ /@skΨ

1
A � @sj Ψ :

Note: When � is a one-dimensional curve with oriented unit tangent vector τ , we have r� � τ@s
and �� � @2s , where @s is the derivative with respect to arc-length.

Therefore, taking X.�; t/ to be a local parameterization of � .t/, the vector curvature �ν of

� .t/ [17, 37] is given by ���X D �ν, where � is the sum of the principle curvatures.

3.2.2 Weak form. In the rest of the paper, we take advantage of a weak formulation of the vector

curvature [3, 19]. If � is a closed C 2 manifold, then the following integration by parts relation is

true: Z

�

�ν � Y D
Z

�

r� X W r� Y; for all Y in Y; (3.10)

where r� X is a symmetric matrix that represents the projection operator onto the tangent space of

� , i.e. r� X D I � ν ˝ ν. We use (3.10) to derive the weak form (3.12).

3.3 Fully continuous

We present a mixed formulation of (2.5), (2.6) that is partly related to [8] for the heat equation.

Define the flux variables σl D �bKlrul, σs D �cKsrus, and take uD.�; t/ in H 1
0;N .˝/ D fu 2

H 1.˝/ W uj@N˝ D 0g. Then, for given input data fl.�; t/, fs.�; t/ in H 1.˝/, and initial data

X.�; 0/ D X0, us.�; 0/ D us;0, ul.�; 0/ D ul;0, find time-dependent functions σl.�; t/ in Vl.0/, σs.�; t/
in Vs, X.�; t/ in Y, ul.�; t/ in Ql, us.�; t/ in Qs, �.�; t/ in M such that

1

bKl

Z

˝l.t/

σl � ηl �
Z

˝l.t/

ul r � ηl �
Z

� .t/

�ηl � ν D �
Z

@˝

uDηl � ν˝ ; for all ηl 2 Vl.0/;

�
Z

˝l.t/

qlr � σl �
Z

˝l.t/

ql @tul D �
Z

˝l.t/

qlfl; for all ql 2 Ql;

1

cKs

Z

˝s.t/

σs � ηs �
Z

˝s.t/

us r � ηs C
Z

� .t/

�ηs � ν D 0; for all ηs 2 Vs;

�
Z

˝s.t/

qsr � σs �
Z

˝s.t/

qs @tus D �
Z

˝s.t/

qsfs; for all qs 2 Qs;

(3.11)
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Z

� .t/

1

b̌.ν/
.@tX � ν/.Y � ν/C b̨

Z

� .t/

r� X W r� Y CbS
Z

� .t/

�.Y � ν/ D 0; for all Y 2 Y;

bS
Z

� .t/

�@tX � ν �
Z

� .t/

�σl � ν C
Z

� .t/

�σs � ν D 0; for all � 2 M;

(3.12)

where we have dropped the differential measure symbols dx, dS.x/, etc., for brevity. Note:

Integration by parts shows that � D ul D us on � .t/.

3.4 Formal estimates

Well-posedness of the fully continuous problem (3.11), (3.12) is challenging. One must handle

the parameterized deforming domain appropriately and be able to obtain a priori estimates of the

interface velocity, curvature, and improved regularity estimates of the variables [14, 31]. However,

one may formally derive a priori bounds by assuming existence and uniqueness of a solution as well

as sufficient regularity to allow for choosing test functions.

3.4.1 A priori bound. For simplicity, take uD D 0. In (3.11) and (3.12), chooseηl D σl, ηs D σs,

Y D @tX, ql D �ul, qs D �us, � D ��, and add the equations together to get:

1

bKl

Z

˝l.t/

jσlj2C
1

cKs

Z

˝s.t/

jσsj2 C
Z

� .t/

1

b̌.ν/
j@tX � νj2 C b̨

Z

� .t/

r� .@tX/ W r� X

C
Z

˝l.t/

ul@tul C
Z

˝s.t/

us@tus D
Z

˝l.t/

ulfl C
Z

˝s.t/

usfs:

(3.13)

Next, we make some preliminary calculations for some of the terms in (3.13). By standard shape

differentiation [16, 32, 56], we have

d

dt

�Z

˝l.t/

u2l

�
D
Z

˝l.t/

@t .u
2
l / �

Z

� .t/

u2l .@tX/ � ν;

d

dt

�Z

˝s.t/

u2s

�
D
Z

˝s.t/

@t .u
2
s /C

Z

� .t/

u2s .@tX/ � ν;
(3.14)

where we have accounted for the orientation of the normal vector ν of � .t/. Thus,

Z

˝l.t/

ul@tul C
Z

˝s.t/

us@tus D 1

2

�Z

˝l.t/

@t .u
2
l /C

Z

˝s.t/

@t .u
2
s /

�

D 1

2

d

dt

�Z

˝l.t/

u2l C
Z

˝s.t/

u2s

�
C 1

2

Z

� .t/

.u2l � u2s /@tX � ν

D 1

2

d

dt

�Z

˝l.t/

u2l C
Z

˝s.t/

u2s

�
;

(3.15)

where the last term is dropped because (formally) ul D us on � .t/.

Now note that shape differentiation also tells us that [16, 32, 56]

Z

� .t/

r� .@tX/ W r� X D d

dt
j� .t/j: (3.16)
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Therefore, we arrive at an identity

Z

� .t/

1

b̌.ν/
Œ.@tX/ � ν�2 C 1

bKl

kσlk2L2.˝l.t//
C 1

cKs

kσsk2L2.˝s.t//
C b̨ d

dt
j� .t/j

C 1

2

d

dt

�Z

˝l.t/

u2l C
Z

˝s.t/

u2s

�
D
Z

˝l.t/

ulfl C
Z

˝s.t/

usfs;

(3.17)

which is a variation of a result in [5, eqn. (2.13)].

To continue, we recall a variant of a Grönwall type inequality in [43, Lemma 3.1].

LEMMA 3.2 Let g; h; r; w W Œ0; T � ! R be measurable and positive functions such that

r2.t/C g.t/C
Z t

0

w.�/ d� 6 r2.0/C g.0/C
Z t

0

r.�/h.�/ d�; for all t 2 Œ0; T �: (3.18)

Then,

r2.t/C g.t/C
Z t

0

w.�/ d� 6 2.r2.0/C g.0//C t

Z t

0

h2.�/ d�; for all t 2 Œ0; T �: (3.19)

Now make the following identifications with the functions in Lemma 3.2:

h.t/ D
p
2
�
kfl.t/k2L2.˝l.t//

C kfs.t/k2L2.˝s.t//

�1=2
;

r.t/ D 1p
2

�
kul.t/k2L2.˝l.t//

C kus.t/k2L2.˝s.t//

�1=2
; g.t/ D b̨j� .t/j;

w.t/ D kb̌�1=2.ν/.@tX/ � νk2
L2.� .t//

C 1

bKl

kσl.t/k2L2.˝l.t//
C 1

cKs

kσs.t/k2L2.˝s.t//
:

Using Cauchy–Schwarz twice on the right-hand-side of (3.17) and integrating, we get

Z t

0

w.�/ d� C r2.t/C g.t/ 6 r2.0/C g.0/C
Z t

0

r.�/h.�/ d�:

Applying Lemma 3.2 delivers the a priori estimate:

1

2

�
kul.t/k2L2.˝l.t//

C kus.t/k2L2.˝s.t//

�
C b̨j� .t/j

C
Z t

0

�
kb̌�1=2.ν/.@tX/ � νk2

L2.� .�//
C 1

bKl

kσl.�/k2L2.˝l.�//
C 1

cKs

kσs.�/k2L2.˝s.�//

�
d�

6

�
kul.0/k2L2.˝l.0//

C kus.0/k2L2.˝s.0//

�
C 2b̨j� .0/j

C 2t

Z t

0

�
kfl.�/k2L2.˝l.�//

C kfs.�/k2L2.˝s.�//

�
d�; for all t 2 Œ0; T �:

(3.20)

See (4.27) for the semi-discrete version of (3.20).
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3.4.2 Conservation law. We also have a conservation law for the system which is simply a

thermal energy balance. Choosing ql D 1, qs D 1 in (3.11), and � D 1 in (3.12) gives

�
Z

@D˝

σl � ν˝ C
Z

� .t/

σl � ν D
Z

˝l.t/

@tul �
Z

˝l.t/

fl;

�
Z

� .t/

σs � ν D
Z

˝s.t/

@tus �
Z

˝s.t/

fs;

bS
Z

� .t/

.@tX/ � ν D
Z

� .t/

σl � ν �
Z

� .t/

σs � ν:

Adding them together gives the balance law:
Z

˝l.t/

fl C
Z

˝s.t/

fs �
Z

@D˝

σl � ν˝ D
Z

˝l.t/

@tul C
Z

˝s.t/

@tus �bS
Z

� .t/

.@tX/ � ν; (3.21)

where the left side is the thermal (power) input and the right side is the rate of change in the stored

thermal energy of the system. Note that energy is stored in the phase change associated with the

velocity @tX of � .t/. See (4.34) for the semi-discrete version of (3.21).

4. Time semi-discrete formulation

We now partition the time interval .0; T / into subintervals of size �t . We use a superscript i to

denote a time dependent quantity at time ti . Furthermore, let .�; �/˙ denote the L2 inner product on

the generic domain˙ . For a general domain˙ , let h�; �i˙ denote the duality pairing on ˙ between

H�1=2.˙/ and H 1=2.˙/ or between H�1.˙/ and H 1.˙/ (the context will make it clear).

4.1 Domain velocity

4.1.1 Map � i to � iC1. We introduce the interface velocity V WD @tX as a new variable. Thus,

we approximate the interface position at time tiC1 by a backward Euler scheme:

XiC1 D Xi C�t ViC1; where ViC1 W � i ! R3: (4.1)

Thus, knowing ViC1 and Xi we can update the parametrization of the interface and obtain the

interface � iC1 at tiC1. Note that Xi .�/ � id� i .�/ (the identity map) on � i .

REMARK 4.1 We shall assume throughout this paper that ViC1 (for all i ) is at least in W 1;1.� i /

in order for the update (4.1) to make sense.

4.1.2 Map ˝ i
l , ˝ i

s to ˝ iC1
l , ˝ iC1

s . Clearly, the bulk domains ˝l, ˝s follow the interface � .

Given ViC1 on � i , it can be extended to the entire domain˝ by a harmonic extension [22, 65], i.e.

if ViC1E denotes the extension, then

ViC1E 2 H 1.˝/ W ��ViC1E D 0; in ˝ i
l [˝ i

s ; ViC1E D ViC1; on � i ; ViC1E D 0; on @˝;

(4.2)

In the following, we drop the E subscript and use ViC1 to denote the extension. This induces a map

˚iC1 W ˝ i ! ˝ iC1 for “updating” the domain:

˚iC1.x/ D id˝i .x/C�tViC1.x/; for all x 2 ˝ i : (4.3)
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See [27, 28] for similar constructions in an ALE (Arbitrary-Lagrangian-Eulerian) context.

Note that ˚iC1 is defined over both ˝ i
l and ˝ i

s , and ˝ iC1
l WD ˚iC1.˝

i
l /, ˝

iC1
s WD ˚iC1.˝

i
s /

conform to � iC1. Similarly as for (4.1), we assume ViC1 (on ˝ i ) is at least in W 1;1.˝ i /.

Furthermore, we assume ˚iC1 is a bijective map and det.Œrx˚iC1.x/�/ > 0. We note the following

properties satisfied by ˚iC1 [33, 58].

� If y D ˚iC1.x/, then .ry˚
�1
iC1 ı ˚iC1/.x/ D Œrx˚iC1.x/�

�1.

� If f W ˝ iC1 ! R, then
R
˝iC1 f .y/ dy D

R
˝i f .˚iC1.x// det.Œrx˚iC1.x/�/ dx.

We use the map ˚iC1 to transform the functions uiC1l , uiC1s on ˝ i to new functions on ˝ iC1 in

order to advance the solution to the next time step (see (4.7)).

REMARK 4.2 (Time Step Restriction) In order for (4.3) to remain bijective,�t cannot be too large.

In fact, it depends on krViC1kL1.˝/ because det.r˚iC1/ depends on rViC1. There is also a

similar restriction on the time step in Theorem 4.14 (a priori bound).

4.1.3 Time derivative: Eulerian vs. Lagrangian. Similar to (4.1), we use a backward Euler

method to discretize the temperature time derivatives at each time step:

.@tul/
iC1 � uiC1l � uil

�t
; .@tus/

iC1 � uiC1s � uis
�t

:

But, because the domain is changing, uiC1j , uij (j D l; s) are defined on different domains (˝ i
j ,

˝ i�1
j , respectively; see next section). This means uij must be transferred to the new domain in

order to compute the (discrete) Eulerian time derivative. The transference can be accomplished by

an L2 projection, for instance, but is not so convenient for a numerical method.

Therefore, we make use of the material derivative [58]. Using the standard formula Puj D @tuj C
V � ruj , and introducing the flux variables, we have Puj D @tuj � bKl

�1V �σj for j D l; s. Thus, we

adopt the following discretization of @tul and @tus:

.@tuj /
iC1 �

uiC1j � uij ı ˚�1
i

�t
C 1

bKj
�
σij � Vi

�
ı ˚�1

i ; for j D l; s: (4.4)

Note that we have treated the convective term explicitly, and (formally) taking�t ! 0 recovers the

standard material derivative formula. The advantage here is that computinguij ı˚�1
i and

�
σij � Vi

�
ı

˚�1
i (j D l; s), in the fully discrete method, is straightforward (see (5.3) and Remark 5.8).

4.2 Weak formulation

We now present the semi-discrete formulation of equations (3.11) and (3.12). The main idea is to

write all integrals over the current domain ˝ i , � i but set all of the solution variables at the next

time step tiC1 (i.e. a semi-implicit method). Moreover, we apply (4.1) and (4.4) and set uiC1D D
uD.�; tiC1/, f iC1l D fl.�; tiC1/, and f iC1s D fs.�; tiC1/. Thus, we arrive at the following weak

formulation. At time ti , find σiC1l in Vil .0/, σ
iC1
s in Vis , ViC1 in Yi , uiC1l in Qil , u

iC1
s in Qis , �

iC1



A MIXED FORMULATION OF THE STEFAN PROBLEM WITH SURFACE TENSION 439

in Mi such that

1

bKl

.σiC1l ;ηl/˝i
l

� .uiC1l ;r � ηl/˝i
l

� hηl � ν i ; �iC1i� i D �hηl � ν˝ ; uiC1D i@˝ ;

for all ηl 2 Vil .0/;

�.r � σiC1l ; ql/˝i
l

� 1

�t
.uiC1l ; ql/˝i

l
C 1

�t
.ul

i ; ql/˝i
l

D �.f iC1l ; ql/˝i
l
; for all ql 2 Qil ;

1

cKs

.σiC1s ;ηs/˝i
s

� .uiC1s ;r � ηs/˝i
s

C hηs � ν i ; �iC1i� i D 0; for all ηs 2 Vis ;

�.r � σiC1s ; qs/˝i
s

� 1

�t
.uiC1s ; qs/˝i

s
C 1

�t
.us

i ; qs/˝i
s

D �.f iC1s ; qs/˝i
s
; for all qs 2 Qis;

(4.5)

.b̌�1.ν i /ViC1 � ν i ;Y � ν i /� i C�tb̨.r� i ViC1;r� i Y/� i

CbS.Y � ν i ; �iC1/� i D �b̨.r� i Xi ;r� i Y/� i ;

for all Y 2 Yi ;

bS.ViC1 � ν i ; �/� i � hσiC1l � ν i ; �i� i C hσiC1s � ν i ; �i� i D 0; for all � 2 Mi ;

(4.6)

where the function spaces are defined over the current (known) domain ˝ i , � i . Then we use (4.1)

to obtain the new interface position, which induces a map ˚iC1 W ˝ i ! ˝ iC1. Because of (4.4),

the temperature from the previous time index, uij W ˝ i�1
j ! R, is mapped onto˝ i

j by

uj
i WD uij ı ˚�1

i ��t
1

bKj
�
σij � Vi

�
ı ˚�1

i ; for j D l; s: (4.7)

Iterating this procedure gives a time semi-discrete approximation of the fully continuous problem

(3.11), (3.12).

REMARK 4.3 (How To Start The Method) From (4.7), it is clear we need V0 to compute ul
0, us

0.

However, we start solving (4.5), (4.6) at i D 0, which only gives V1. Hence, we must do one of the

following. (i) specify V0, σ0l , σ0s ; (ii) set V0 D σ0l = σ0s D 0 (i.e. choose ul
0, us

0 directly); (iii) or

apply (ii) with a small time step to obtain an approximation of V0, σ0l , σ0s . Either way, the error in

approximating ul
0, us

0 is onlyO.�t/.

4.3 Abstract formulation

In order to simplify notation, we shall drop the time index notation and remember that we are solving

for all variables on the current known domain ˝ � ˝ i , � � � i with the current known normal

vector ν � ν i . In particular, we take

σiC1l � σl; σiC1s � σs; ViC1 � V; uiC1l � ul; u
iC1
s � us; �

iC1 � �;

f iC1l � fl; f
iC1

s � fs; u
iC1
D � uD; ul

i � ul; us
i � us; Xi � X; r� i � r� :
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4.3.1 Bilinear and linear forms. For notational convenience, we introduce the following bilinear

forms. The primal form is

a
�
.ηl;ηs;Y/; .σl;σs;V/

�
D 1

bKl

.ηl;σl/˝l C 1

cKs

.ηs;σs/˝s

C .b̌�1.ν/Y � ν;V � ν/� C�tb̨.r� Y;r� V/� ;

(4.8)

the constraint form is

b
�
.ηl;ηs;Y/; .ql; qs; �/

�
D �.r � ηl; ql/˝l � .r � ηs; qs/˝s

� hηl � ν; �i� C hηs � ν; �i� CbS .Y � ν; �/� ;
(4.9)

and the lower diagonal form is

c
�
.ql; qs; �/; .ul; us; �/

�
D 1

�t
.ql; ul/˝l C 1

�t
.qs; us/˝s : (4.10)

The linear forms are defined by

�.ηl;ηs;Y/ D �
�
hηl � ν˝ ; uDi@˝ C b̨.r� X;r� Y/�

�
;

 .ql; qs; �/ D �
�
.fl; ql/˝l C .fs; qs/˝s C 1

�t
.ul; ql/˝l C 1

�t
.us; qs/˝s

�
:

(4.11)

4.3.2 Saddle-point formulation. Define the primal space by

Z D Vl.0/ � Vs � Y; (4.12)

and the multiplier space by

T D Ql � Qs � M: (4.13)

With the above notation, the formulation (4.5), (4.6) can be written as a saddle-point problem.

VARIATIONAL FORMULATION 4.4 Find .σl;σs;V/ in Vl.0/�Vs �Y and .ul; us; �/ in Ql �Qs �M

such that

a
�
.ηl;ηs;Y/; .σl;σs;V/

�
C b

�
.ηl;ηs;Y/; .ul; us; �/

�
D �.ηl;ηs;Y/;

b
�
.σl;σs;V/; .ql; qs; �/

�
� c

�
.ql; qs; �/; .ul; us; �/

�
D  .ql; qs; �/;

(4.14)

for all .ηl;ηs;Y/ in Vl.0/ � Vs � Y, and .ql; qs; �/ in Ql � Qs � M. The temperatures ul, us are

Lagrange multipliers as well as the interface temperature �.

4.4 Norms

4.4.1 Non-degenerate interface. The purpose of the following assumption is to avoid a case

where � is closed and very flat (e.g. the surface of a pancake). It is necessary to ensure the

equivalence of the norms in Proposition 4.6.

ASSUMPTION 4.5 Assume that � is a Lipschitz or polyhedral manifold. In addition, for any non-

zero constant vector a 2 R3, assume there exists an open neighborhood N � � such that jNj >

c0 > 0 and

a � ν.x/ > 0; 8x 2 N; or a � ν.x/ < 0; 8x 2 N:
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4.4.2 Primal norm. Clearly, k.ηl;ηs;Y/k2Z˘ WD kηlk2H.div;˝l/
C kηsk2H.div;˝s/

C kYk2
H1.� /

is a

norm on Z. But because of the form of the equations, we shall use a different norm. First, we note an

equivalent norm to the standardH 1 norm on � (recall that kYk2
H1.� /

D kYk2
L2.� /

Ckr� Yk2
L2.� /

).

PROPOSITION 4.6 Let � be a Lipschitz or polyhedral manifold. Define:

jjjYjjj2 D kY � νk2
H�1=2.� /

C kr� Yk2
L2.� /

:

Then, jjjYjjj � kYkH1.� /, with constants that only depend on the domain.

Proof. First, verify that jjjYjjj is a norm onH 1.� /. We just need to check that jjjYjjj D 0 , Y D 0

since the other norm properties are trivial to verify. If jjjYjjj D 0, then kr� YkL2.� / D 0, so

Y D a 2 R3 (constant vector). If a ¤ 0, then by Assumption 4.5, a � ν > 0 (or < 0) on a set

of positive measure. Thus, kY � νk2
H�1=2.� /

¤ 0, but this is a contradiction, so then a D 0. Since

jjj � jjj is a norm on H 1.� /, the equivalence with k � kH1.� / follows by a classical compactness

argument [1, 21].

In light of the above, we define the following primal norm:

k.ηl;ηs;Y/k2Z D 1

bKl

kηlk2H.div;˝l/
C 1

cKs

kηsk2H.div;˝s/
C kb̌�1=2Y � νk2

L2.� /

C kY � νk2
H�1=2.� /

C�tb̨kr� Yk2
L2.� /

: (4.15)

The choice ofH�1=2.� / is the most convenient for our formulation.

4.4.3 Multiplier norm. The obvious multiplier norm is k.ql; qs; �/k2T˘ WD kqlk2L2.˝l/
C

kqsk2L2.˝s/
C k�k2

H1=2.� /
. However, because of the form of the bilinear form b (4.9), it is more

advantageous to use the following equivalent norm:

k.ql; qs; �/k2T D k Qqlk2L2.˝l/
C k Qqsk2L2.˝s/

C k� � Oqlk2
H

1=2
l .� /

C k� � Oqsk2
H

1=2
s .� /

CbSk�νk2
H�1.� /

; (4.16)

where we introduced the mean value: Oqi WD 1
j˝i j

R
˝i
qi , and Qqi WD qi � Oqi (for i D l; s). We also

define the mean value on � : O� WD 1
j� j

R
�
�, and Q� WD �� O�.

PROPOSITION 4.7 (Equivalence of Multiplier Norms) Let � be a Lipschitz or polyhedral manifold.

Then, k.ql; qs; �/kT˘ � k.ql; qs; �/kT, with constants that only depend on the domain and bS .

Proof. Again, use a compactness argument.

4.5 Well-posedness

This section verifies the conditions needed for well-posedness of (4.14) [9, 11].
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4.5.1 Main conditions.

LEMMA 4.8 (Continuity of Forms) For all .ηl;ηs;Y/; .σl;σs;V/ in Z and .ql; qs; �/; .ul; us; �/ in

T,
ˇ̌
a
�
.ηl;ηs;Y/; .σl;σs;V/

�ˇ̌
6 Cak.ηl;ηs;Y/kZk.σl;σs;V/kZ;ˇ̌

b
�
.ηl;ηs;Y/; .ql; qs; �/

�ˇ̌
6 Cb



.ηl;ηs;Y/



Z



.ql; qs; �/



T
;

ˇ̌
c
�
.ql; qs; �/; .ul; us; �/

�ˇ̌
6 �t�1

�
kqlkL2.˝l/

kulkL2.˝l/
C kqskL2.˝s/

kuskL2.˝s/

�
;

ˇ̌
�.ηl;ηs;Y/

ˇ̌
6 C�



.ηl;ηs;Y/



Z
;

ˇ̌
 .ql; qs; �/

ˇ̌
6 C 



.ql; qs; �/



T
;

where Ca; Cb; C�; C > 0 are constants that depend on physical parameters and domain geometry.

In addition, C� depends on uD, �t�1=2, and C depends on fl; fs, ul; us and �t�1.

Proof. The first result comes from two uses of the Schwarz inequality. The second estimate follows

by noting

�.r � ηl; ql/˝l � hηl � ν; �i� 6
�
kqlkL2.˝l/

C k�k
H

1=2
l .� /

�
kηlkH.div;˝l/;

�.r � ηs; qs/˝s C hηs � ν; �i� 6
�
kqskL2.˝s/

C k�k
H

1=2
s .� /

�
kηskH.div;˝s/;

where we used Cauchy–Schwarz and (3.7). In addition, by (3.8), we have

bS
Z

�

�.Y � ν/ D bShY � ν; �i� 6 bSkY � νkH�1=2.� /k�kH1=2.� /:

The bound on b then follows by combining these results and using Proposition 4.7. The bound on c

is obvious. Next, we have

�.ηl;ηs;Y/ 6 kuDkH1=2.@˝/kηl � ν˝kH�1=2.@˝/ C C1b̨kr� YkL2.� / 6 Ck.ηl;ηs;Y/kZ;

where C depends on �t�1=2 and the data uD. The last inequality follows from (4.11) where the

constant depends on�t�1 and the problem data.

LEMMA 4.9 (Coercivity) Let .ηl;ηs;Y/ 2 Z with b..ηl;ηs;Y/; .ql; qs; �// D 0 for all .ql; qs; �/ 2
T. Then,

ja..ηl;ηs;Y/; .ηl;ηs;Y//j > Ck.ηl;ηs;Y/k2Z;

where C > 0 is a constant depending on bS , bKl, cKs, and the domain. This is true even if b̌! 1.

Proof. From (4.8), we get

a
�
.ηl;ηs;Y/; .ηl;ηs;Y/

�
>

1

bKl

kηlk2L2.˝l/
C 1

cKs

kηsk2L2.˝s/
C kb̌�1=2Y � νk2

L2.� /

C�tb̨kr� Yk2
L2.� /

D 1

bKl

kηlk2H.div;˝l/
C 1

cKs

kηsk2H.div;˝s/

C kb̌�1=2Y � νk2
L2.� /

C�tb̨kr� Yk2
L2.� /

;
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where the last step follows from the hypothesis r � ηl D r � ηs D 0. Also by hypothesis, we have

bS .Y � ν; �/� D hηl � ν; �i� � hηs � ν; �i� ; for all � 2 H 1=2.� /:

Hence, using (3.7) and (3.8), we have

bSkY � νkH�1=2.� / D sup
�2H1=2.� /

bS.Y � ν; �/�
k�kH1=2.� /

6 2
�
kηlkH.div;˝l/ C kηskH.div;˝s/

�
:

Combining these inequalities yields the assertion.

LEMMA 4.10 (Inf-Sup) For all .ql; qs; �/ 2 T, the following “inf-sup” condition holds

sup
.ηl;ηs;Y/2Z

b..ηl;ηs;Y/; .ql; qs; �//

k.ηl;ηs;Y/kZ˘

> Ck.ql; qs; �/kT;

where C > 0 depends on the domain and bS . If k.ηl;ηs;Y/kZ˘ is replaced by k.ηl;ηs;Y/kZ in the

denominator, then the inf-sup still holds, except C also depends on bKl, cKs, b̨, and b̌�. Furthermore,

C does not depend on the time step �t , as long as �t 6 1.

Proof. Setting ηl �ν˝ D 0 on @˝ , and accounting for the orientation of the normal vector and using

the divergence theorem, we have

b
�
.ηl;ηs;Y/;.ql; qs; �/

�

D �.r � ηl; ql/˝l � .r � ηs; qs/˝s � hηl � ν; �i� C hηs � ν; �i� CbS .Y � ν; �/�
D �.r � ηl; Qql/˝l � .r � ηs; Qqs/˝s � hηl � ν; � � Oqli� C hηs � ν; �� Oqsi�

CbS .Y � ν; �/� :

By definition of the H
1=2
l .� / norm (3.7), there exists a ξ 2 Vl.0/ such that �hξ � ν; � � Oqli� D

k�� OqlkH1=2
l .� /

and kξkH.div;˝l/ D 1. With this, we construct the vector field ηl 2 H.div;˝l/. Let

�1, �2 in H 1.˝l/ (with zero mean value) be weak solutions of the following elliptic problems,

���1 D Qql

k QqlkL2.˝l/

; in ˝l; ν � r�1 D 0; on @˝l � � [ @˝;

���2 D 1

j˝lj

Z

@˝l

ξ � ν; in ˝l; ν � r�2 D ξ � ν; on @˝l;

and define ηl D r�1 C r�2 (note that r�1 and r�2 are in Vl.0/). This gives

�.r � ηl; Qql/˝l � hηl � ν; �� Oqli� D .���1; Qql/˝l C .���2; Qql/˝l � hν � r�2; � � Oqli�
D k QqlkL2.˝l/

C k� � OqlkH1=2
l .� /

:

Now bound kηlkH.div;˝l/. Since (3.2) and (3.3) hold with˝ replaced by˝l, we get k��2kL2.˝l/
6

C0jhξ � ν; 1i@˝l
j 6 C1kξ � νkH�1=2.@˝l/

6 C1kξkH.div;˝l/ D C1. Moreover, a standard a priori

bound gives k�2kH1.˝l/
6 C2

�
k��2kL2.˝l/

C kξ � νkH�1=2.@˝l/

�
6 C2.C1 C 1/. Similarly, we

deduce that k��1kL2.˝l/
D 1 and k�1kH1.˝l/

6 C3. Hence, we arrive at the following result

kηlkH.div;˝l/ 6 k��1kL2.˝l/
C k��2kL2.˝l/

C k�1kH1.˝l/
C k�2kH1.˝l/

6 C4;
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where C4 > 0 depends on ˝l and � . Analogous results show there exists an ηs in Vs such that

�.r � ηs; Qqs/˝l C hηs � ν; �� Oqsi� D k QqskL2.˝s/
C k� � OqskH1=2

s .� /
; kηskH.div;˝s/ 6 C5;

where C5 > 0 depends on ˝s and � .

By the definition of the H�1.� / norm (3.9), there exists a Y in H 1.� / such that

.Y � ν; �/� D hY; �νi� D k�νkH�1.� /; kYkH1.� / D 1:

Taking all this together gives the result.

4.5.2 Summary. For saddle-point problems, one usually needs to only check the continuity,

coercivity, and inf-sup conditions to verify well-posedness. However, there is the third bilinear form

c.�; �/, whose continuity constant depends on�t�1 (see Lemma 4.8). As long as�t > 0, the system

(4.14) is well-posed with a bounded solution [9, 11]. But it is important to know how the time step

affects the well-posedness, especially as �t ! 0.

The following lemma is a modification of a result in [9, Lemma 4.14], applied to our

formulation, which illustrates the effect of �t .

LEMMA 4.11 Let .ηl;ηs;Y/ in Z such that b..ηl;ηs;Y/; .0; 0; �// D 0 for all � 2 M. Then, the

bilinear forms a and b in (4.8), (4.9) satisfy

a
�
.ηl;ηs;Y/; .ηl;ηs;Y/

�

k.ηl;ηs;Y/kZ�

C sup
.ql;qs/2Ql�Qs

b
�
.ηl;ηs;Y/; .ql; qs; 0/

�

�t�1=2
�
kqlk2L2.˝l/

C kqsk2L2.˝s/

�1=2

> Ck.ηl;ηs;Y/kZ� ;

where C > 0 depends on the physical parameters and the domain, with norm defined by

k.ηl;ηs;Y/k2Z� WD 1

bKl

�
kηlk2L2.˝l/

C�tkr � ηlk2L2.˝l/

�

C 1

cKs

�
kηsk2L2.˝s/

C�tkr � ηsk2L2.˝s/

�

C kb̌�1=2Y � νk2
L2.� /

C�tkY � νk2
H�1=2.� /

C�tb̨kr� Yk2
L2.� /

:

Lemma 4.11, and [9, Theorem 4.11, 4.13], yields the well-posedness of (4.14), but one can see

more clearly how the norm is affected. An extra factor of�t multiplies kr�ηlk2L2.˝l/
, kr�ηsk2L2.˝s/

,

and kY � νk2
H�1=2.� /

. This is reasonable given the parabolic nature of the problem. In particular,

from (4.5), one can see that r � ηl and r � ηs depends on the discrete time derivative of ul and us.

4.6 Estimates

The semi-discrete system (4.5), (4.6) satisfies both an a priori stability bound in time and a

conservation law (see the following sections). First, we note some basic results we will need.
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PROPOSITION 4.12 Let A be a constant 3 � 3 matrix and define G.
/ D I C 
A for all 
 in R.

Then

det G.
/ D 1C 
 trace.A/C 1

2

2
��

trace.A/
�2 � trace.A2/

�
„ ƒ‚ …

DW�1.A/

C1

6

3�2.A/;

where�1.A/ and�2.A/ are functions of A that satisfy j�1.A/j 6 C jAj2, j�2.A/j 6 C jAj3, where

j � j is any matrix norm and C > 0 is a constant that only depends on the norm.

LEMMA 4.13 (Discrete Grönwall Inequality) Let c > 0 and suppose frigi>0 and fgi gi>0 are non-

negative sequences. Then the following is true:

rn 6 c C
n�1X

kD0

gkrk; for all n > 0; ) rn 6 c exp

 
n�1X

kD0

gk

!
; for all n > 0;

where the sum is zero when n D 0.

4.6.1 A priori bound. We begin as we did in Section 3.4.1. Again, take uiC1D D 0 for i > 0. In

(4.5) and (4.6), choose ηl D σiC1l , ηs D σiC1s , Y D ViC1, ql D �uiC1l , qs D �uiC1s , � D ��iC1,
and add the equations together to get

1

bKl

kσiC1l k2
L2.˝i

l /
C 1

cKs

kσiC1s k2
L2.˝i

s /
C kb̌�1=2.ν i /ViC1 � ν ik2

L2.� i /

Cb̨
�
.r� i .�tV

iC1/;r� i ViC1/� i C .r� i Xi ;r� i ViC1/� i

�

C 1

�t
.uiC1l ; .uiC1l � ul

i //
˝i

l
C 1

�t
.uiC1s ; .uiC1s � us

i //˝i
s

D .uiC1l ; f iC1l /
˝i

l
C .uiC1s ; f iC1s /˝i

s
:

(4.17)

Next, focus on the discrete time derivative terms. Using 2a.a� b/ D a2� b2C .a� b/2, we obtain

.uiC1l ; .uiC1l � ul
i //˝i

l
D 1

2

 Z

˝i
l

.uiC1l /2 �
Z

˝i
l

.ul
i /2 C

Z

˝i
l

.uiC1l � ul
i /2

!
: (4.18)

Now use (4.7) and a change of variables to show

Z

˝i
l

.ul
i /2 D

Z

˝i�1
l

�
ul
i ı ˚i .x/

�2
det
�
Œrx˚i .x/�

�
dx

D
Z

˝i�1
l

�
uil ��t bKl

�1σil � Vi
�2

det
�
Œr˚i �

�
:

(4.19)
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Combining (4.3) and Proposition 4.12 with (4.19), and expanding, gives

Z

˝i
l

.ul
i /2 6

Z

˝i�1
l

�
.uil /

2 C 2�t bKl
�1juil jjσil jjVi j C�t2bKl

�2jσil j2jVi j2
�

�

� .1C�t jr � Vi j C .�t2=2/j�1.rVi /j C .�t3=6/j�2.rVi /j/ dx

6 kuil k2L2.˝i�1
l /

CMl;i�t

�
2

bKl

kuil kL2.˝i�1
l /kσ

i
l kL2.˝i�1

l / C kuil k2L2.˝i�1
l /

�

C .M 2
l;i�t

2 CM 3
l;i�t

3/

�
�
1

bKl
2

kσil k2
L2.˝i�1

l /
C 2C

bKl

kuil kL2.˝i�1
l /kσ

i
l kL2.˝i�1

l / C Ckuil k2L2.˝i�1
l /

�

C CM 4
l;i�t

4
� 1

bKl
2

kσil k2
L2.˝i�1

l /
C 2

bKl

kuil kL2.˝i�1
l /

kσil k
L2.˝i�1

l /

�

C CM 5
l;i�t

5 1

bKl
2

kσil k2
L2.˝i�1

l /

6 kuil k2L2.˝i�1
l /

C 2�t
Ml;i

bKl

kuil kL2.˝i�1
l /kσil kL2.˝i�1

l /.1C CMl;i�t C CM 2
l;i�t

2 C CM 3
l;i�t

3/

C�tMl;ikuil k2L2.˝i�1
l /

.1C CMl;i�t C CM 2
l;i�t

2/

C�t2
M 2

l;i

bKl
2

kσil k2
L2.˝i�1

l /
.1CMl;i�t C CM 2

l;i�t
2 C CM 3

l;i�t
3/;

(4.20)

where Ml;i D kVik
W 1;1.˝i�1

l /
and C > 0 is an independent constant. Next, choose�t such that

Ml;i�t; CMl;i�t; CM
2
l;i�t

2; CM 3
l;i�t

3
6 1=3; �tM 2

l;i=
bKl 6 1=4; (4.21)

and note the following weighted Young’s inequality:

�t

bKl

Ml;i2kuil kL2.˝i�1
l /kσil kL2.˝i�1

l / 6
�t

bKl

�
4M 2

l;ikuil k2L2.˝i�1
l /

C 1

4
kσil k2

L2.˝i�1
l /

�
:

Hence, (4.20) implies

Z

˝i
l

.ul
i /2 6 kuil k2L2.˝i�1

l /
C�t

 
8M 2

l;i

bKl

C 2Ml;i

!

„ ƒ‚ …
DWeMl;i

kuil k2L2.˝i�1
l /

C �t

bKl

kσil k2
L2.˝i�1

l /
;

for all i > 0: (4.22)

A similar result holds for uis , with constant eMs;i D .8M 2
s;i=
cKs/ C 2Ms;i where Ms;i D

kVikW 1;1.˝i�1
s /.
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Next, we note a result from [3, Lemma 1] which says that

Z

� i

r� XiC1 � r� .XiC1 � Xi / > jXiC1.� i /j � j� i j D j� iC1j � j� i j;

where � iC1 WD XiC1.� i /. Hence,

.r� i .�tV
iC1/;r� i ViC1/� i C .r� i Xi ;r� i ViC1/� i D �t�1.r� i XiC1;r� i .X

iC1 � Xi //� i

>
j� iC1j � j� i j

�t
:

(4.23)

Now combine (4.22) with (4.18) and plug into (4.17) (and do the same for uis). Using (4.23) then

yields

1

bKl

kσiC1l k2
L2.˝i

l /
� 1

2

1

bKl

kσil k2
L2.˝i�1

l /
C 1

cKs

kσiC1s k2
L2.˝i

s /
� 1

2

1

cKs

kσis k2
L2.˝i�1

s /

C kb̌�1=2.ν i /ViC1 � ν ik2
L2.� i /

C b̨j� iC1j � j� i j
�t

C 1

�t

1

2

�
kuiC1l k2

L2.˝i
l /

� kuil k2L2.˝i�1
l /

�

C 1

�t

1

2

�
kuiC1s k2

L2.˝i
s /

� kuisk2L2.˝i�1
s /

�

6 .uiC1l ; f iC1l /
˝i

l
C 1

2
eMl;ikuil k2L2.˝i�1

l /
C .uiC1s ; f iC1s /˝i

s
C 1

2
eMs;ikuisk2L2.˝i�1

s /
: (4.24)

Applying a weighted Young’s inequality to the right-hand-side, multiplying by �t , summing over

i , and cancelling similar terms, we get

�t

2

N�1X

iD0

�
1

bKl

kσiC1l k2
L2.˝i

l /
C 1

cKs

kσiC1s k2
L2.˝i

s /

�
C�t

N�1X

iD0

kb̌�1=2.ν i /ViC1 � ν ik2
L2.� i /

C b̨j� N j C 1

2
kuNl k2

L2.˝N �1
l /

C 1

2
kuNs k2

L2.˝N �1
s /

6 b̨j� 0j C 1

2

�
�t

bKl

kσ0l k2
L2.˝�1

l /
C �t

cKs

kσ0s k2
L2.˝�1

s /
C ku0l k2

L2.˝�1
l /

C ku0s k2
L2.˝�1

s /

�

C�t

N�1X

iD0

h
kf iC1l k2

L2.˝i
l /

C kf iC1s k2
L2.˝i

s /

i

C �t

2

N�1X

iD0

�
1

2
kuiC1l k2

L2.˝i
l /

C eMl;ikuil k2L2.˝i�1
l /

C 1

2
kuiC1s k2

L2.˝i
s /

C eMs;ikuisk2L2.˝i�1
s /

�
;

where N is the last time index to compute. Making further simplifications, and assuming �t 6 1,



448 C. B. DAVIS AND S. W. WALKER

we arrive at

�t

2

N�1X

iD0

�
1

bKl

kσiC1l k2
L2.˝i

l /
C 1

cKs

kσiC1s k2
L2.˝i

s /

�
C�t

N�1X

iD0

kb̌�1=2.ν i /ViC1 � ν ik2
L2.� i /

C b̨j� N j C 1

4
kuNl k2

L2.˝N �1
l /

C 1

4
kuNs k2

L2.˝N �1
s /

6 b̨j� 0j C 1

2

�
�t

bKl

kσ0l k2
L2.˝�1

l /
C �t

cKs

kσ0s k2
L2.˝�1

s /
C ku0l k2

L2.˝�1
l /

C ku0s k2
L2.˝�1

s /

�

C�t

N�1X

iD0

h
kf iC1l k2

L2.˝i
l /

C kf iC1s k2
L2.˝i

s /

i

C �t

2

N�1X

iD0

Vi

h
kuil k2L2.˝i�1

l /
C kuisk2L2.˝i�1

s /

i
;

(4.25)

where Vi > 0 is a constant that depends on kVikW 1;1.˝/. Note that u0l (u0s ) is the initial

temperature on the initial domain˝�1
l (˝�1

s ); similar for the flux σ0l (σ0s ).

Applying Lemma 4.13 to (4.25) yields

1

4

h
kukl k2

L2.˝k�1
l /

C kuks k2
L2.˝k�1

s /

i
6 A0 exp

�
2�t

k�1X

pD0

Vp

�
; for all k > 0; (4.26)

where A0 is given in Theorem 4.14, which we have now proved.

THEOREM 4.14 Suppose (4.5), (4.6), (4.7) is solved on ˝ i at time index i , with uiC1D D 0, and

assume ViC1 is inW 1;1.˝ i / and that˚iC1 is a bijective map inW 1;1.˝ i/ with bounded inverse.

Suppose this holds for i D 0; :::; N � 1. If �t 6 1 also satisfies

�t 6
B0

max06i6N kVikW 1;1.˝/

and �t 6 B0
max.bKl;cKs/

max06i6N kVik2
W 1;1.˝/

;

for some independent constant B0 > 0, then

�t

2

N�1X

iD0

�
1

bKl

kσiC1l k2
L2.˝i

l /
C 1

cKs

kσiC1s k2
L2.˝i

s /

�
C�t

N�1X

iD0

kb̌�1=2.ν i /ViC1 � ν ik2
L2.� i /

C b̨j� N j C 1

4
kuNl k2

L2.˝N �1
l /

C 1

4
kuNs k2

L2.˝N �1
s /

6 A0 C A02�t

N�1X

iD0

Vi exp
�
2�t

i�1X

pD0

Vp

�
; (4.27)
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where

A0 D b̨j� 0j C 1

2

�
�t

bKl

kσ0l k2
L2.˝�1

l /
C �t

cKs

kσ0s k2
L2.˝�1

s /
C ku0l k2

L2.˝�1
l /

C ku0s k2
L2.˝�1

s /

�

C�t

N�1X

iD0

h
kf iC1l k2

L2.˝i
l /

C kf iC1s k2
L2.˝i

s /

i
;

where Vi > 0 is a constant that depends on kVikW 1;1.˝/. Note: the final time for the semi-discrete

evolution is T D �tN .

REMARK 4.15 Using an L2 projection for the temperatures from one time step to the next would

give a better estimate (i.e. more in-line with the fully continuous result (3.20)). The approach taken

here is more complicated because we introduced the material derivative with an explicit treatment

of the convective term (recall (4.4) and (4.7)); see Remark 5.8 for the reason. Theorem 4.14 can be

easily modified to allow uiC1D ¤ 0.

4.6.2 Conservation law. Analogous to Section 3.4.2, choose ql D 1, qs D 1 in (4.5), and � D 1

in (4.6) to get

�
Z

@D˝

σiC1l � ν˝ C
Z

� i

σiC1l � ν i D 1

�t

 Z

˝i
l

uiC1l �
Z

˝i
l

ul
i

!
�
Z

˝i
l

f iC1l ;

�
Z

� i

σiC1s � ν i D 1

�t

 Z

˝i
s

uiC1s �
Z

˝i
s

us
i

!
�
Z

˝i
s

f iC1s ;

bS
Z

� i

ViC1 � ν i D
Z

� i

σiC1l � ν i �
Z

� i

σiC1s � ν i :

(4.28)

Just as in (4.19), we have
Z

˝i
l

ul
i D

Z

˝i�1
l

ul
i ı ˚i .x/ det.Œrx˚i .x/�/ dx D

Z

˝i�1
l

�
uil ��t bKl

�1σil � Vi
�

det.Œr˚i �/:

(4.29)

Combining (4.3) and Proposition 4.12 with (4.29), and expanding, gives

Z

˝i
l

ul
i D

Z

˝i�1
l

�
uil ��t bKl

�1σil � Vi
�

�
�
1C�tr � Vi C .�t2=2/�1.rVi /C .�t3=6/�2.rVi /

�

D
Z

˝i�1
l

uil C�t

Z

˝i�1
l

�
uil r � Vi � bKl

�1σil � Vi
�

C�t2Il;

(4.30)

where Il contains the higher order terms (c.f. (4.20)):

Il D
Z

˝i�1
l

n
.uil =2/�1.rVi / � bKl

�1σil � Vi .r � Vi /

C�t
h
.uil =6/�2.rVi / � .1=2/bKl

�1σil � Vi�1.rVi /
i

��t2.1=6/bKl
�1σil � Vi�2.rVi /

o
:
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Next, by making judicious use of the weak formulation (4.5), we can simplify the O.�t/ term in

(4.30). Choose ηl D Vi j˝l 2 Vi�1l .0/ in (4.5) on˝ i�1
l for any i > 1, and note (4.2):

Z

˝i�1
l

bKl
�1σil � Vi �

Z

˝i�1
l

uil r � Vi D
Z

� i�1

�iVi � ν i�1: (4.31)

Thus, we arrive at
Z

˝i
l

ul
i D

Z

˝i�1
l

uil ��t
Z

� i�1

�iVi � ν i�1 C�t2Il; for all i > 1;

jIlj 6 C0M
2
l;i

h
kuil kL1.˝i�1

l /.1C�tMl;i /C bKl
�1kσil kL1.˝i�1

l /.1C�tMl;i C�t2M 2
l;i /
i
;

(4.32)

where Ml;i D kVikW 1;1.˝i�1
l / and C0 > 0 is an independent constant. Note that setting the initial

velocity V0 D 0 gives
R
˝0

l
ul
0 �

R
˝�1

l
u0l . Similar results hold for uis :

Z

˝i
s

us
i D

Z

˝i�1
s

uis C�t

Z

� i�1

�iVi � ν i�1 C�t2Is; for all i > 1;

jIsj 6 C0M
2
s;i

h
kuiskL1.˝i�1

s /.1C�tMs;i /C cKs
�1kσis kL1.˝i�1

s /.1C�tMs;i C�t2M 2
s;i /
i
;

(4.33)

where Ms;i D kVikW 1;1.˝i�1
s /.

Therefore, adding the equations in (4.28), and using (4.32) and (4.33), gives a time-discrete

thermal power balance for each i D 0; : : : ; N � 1:

Z

˝i
l

f iC1l C
Z

˝i
s

f iC1s �
Z

@D˝

σiC1l � ν˝ D 1

�t

 Z

˝i
l

uiC1l �
Z

˝i�1
l

uil

!

C 1

�t

 Z

˝i
s

uiC1s �
Z

˝i�1
s

uis

!
�bS

Z

� i

ViC1 � ν i ��t.Il C Is/:

(4.34)

Finally, summing (4.34) over the time steps, and bounding Il and Is, yields the following theorem.

THEOREM 4.16 Assume the hypothesis of Theorem 4.14 and suppose V0 � 0 on ˝ . Then,

ˇ̌
ˇ̌
ˇ�t

N�1X

iD0

 Z

˝i
l

f iC1l C
Z

˝i
s

f iC1s �
Z

@D˝

σiC1l � ν˝

!
C
Z

˝�1
l

u0l C
Z

˝�1
s

u0s

�
Z

˝N �1
l

uNl �
Z

˝N �1
s

uNs C�tbS
N�1X

iD0

Z

� i

ViC1 � ν i
ˇ̌
ˇ̌
ˇ 6 �tB1;

(4.35)

where

B1 D �t

N�1X

iD0

Vi

�
1

bKl

kσil kL1.˝i�1
l / C 1

cKs

kσis kL1.˝i�1
s / C kuil kL1.˝i�1

l / C kuiskL1.˝i�1
s /

�
;
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and Vi > 0 is a constant that depends on kVikW 1;1.˝/. Note that B1 is uniformly bounded (with

respect to �t) by Theorem 4.14.

REMARK 4.17 Theorem 4.16 is a discrete time integral version of (3.21), except with an O.�t/

error. The conservation property in [5, Remark 3.5] is exact but only applies to a time-continuous

version of their numerical scheme. We note that Theorem 4.16 can be modified to allow uiC1D ¤ 0

and V0 ¤ 0.

5. Fully discrete formulation

5.1 Discretization

5.1.1 Non-degenerate interface. Let νh denote the unit normal vector on �h and @˝h. The

following assumption is the space discrete version of Assumption 4.5 in Section 4.4.1. It is necessary

to ensure the equivalence of the norms in the space discrete version of Proposition 4.6 when

k � kH�1=2 is replaced by a discrete norm k � k
H

�1=2

h

.

ASSUMPTION 5.1 Assume that �h is a polyhedral manifold (i.e. a surface triangulation). For any

vertex v, let Star.v/ be the set of triangle faces in �h that contain v as a vertex. For any non-zero

constant vector a 2 R3, assume there exists a vertex v in �h such that jStar.v/j > c0 > 0 and

a � νh.x/ > 0; 8x 2 Star.v/; or a � νh.x/ < 0; 8x 2 Star.v/:

5.1.2 Formulation. We begin by approximating the domains ˝ i
l , ˝ i

s by three dimensional

triangulations˝ i
l;h

, ˝ i
s;h

such that � i
h

D ˝ i
l;h

\˝ i
s;h

is an embedded polyhedral surface contained

in the faces of the mesh. A standard Galerkin approximation of equations (4.5), (4.6) takes the form:

find σiC1
l;h

in Vi
l;h
.0/ � Vil .0/, σ

iC1
s;h

in Vi
s;h

� Vis , ViC1
h

in Yi
h

� Yi , uiC1
l;h

in Qi
l;h

� Qil , u
iC1
s;h

in Qi
s;h

� Qis , �iC1
h

in Mi
h

� Mi such that for all ηl 2 Vi
l;h
.0/, ηs 2 Vi

s;h
, ql 2 Qi

l;h
, qs 2 Qi

s;h
,

Y 2 Yi
h
, � 2 Mi

h
,

1

bKl

.σiC1
l;h

;ηl/˝i
l;h

� .uiC1
l;h

;r � ηl/˝i
l;h

� hηl � ν ih; �iC1h
i� i

h
D �hηl � ν ih; uiC1D i@˝h

;

�.r � σiC1
l;h

; ql/˝i
l;h

� 1

�t
.uiC1

l;h
; ql/˝i

l;h
C 1

�t
.ul;h

i ; ql/˝i
l;h

D �.f iC1l ; ql/˝i
l;h
;

1

cKs

.σiC1
s;h

;ηs/˝i
s;h

� .uiC1
s;h

;r � ηs/˝i
s;h

C hηs � ν ih; �iC1h
i� i

h
D 0;

�.r � σiC1
s;h

; qs/˝i
s;h

� 1

�t
.uiC1

s;h
; qs/˝i

s;h
C 1

�t
.us;h

i ; qs/˝i
s;h

D �.f iC1s ; qs/˝i
s;h
;

(5.1)

.b̌�1.ν ih/V
iC1
h

� ν ih;Y � ν ih/� i
h

C�tb̨.r� ViC1
h

;r� Y/� i
h

CbS.Y � ν ih; �iC1h
/� i

h
D �b̨.r� Xi ;r� Y/� i

h
;

bS.ViC1
h

� ν ih; �/� i
h

� hσiC1
l;h

� ν ih; �i
� i

h
C hσiC1

s;h
� ν ih; �i

� i
h

D 0;

(5.2)

where the discrete spaces are defined over the current (known) domain ˝ i
h
, � i

h
. We then use the

space discrete version of (4.1) to compute the new interface � iC1
h

, followed by the space discrete

version of (4.2), (4.3) to compute the map ˚iC1;h W ˝ i
h

! ˝ iC1
h

.
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REMARK 5.2 (Finite Element Space For Domain Velocity) The extension (4.2) of ViC1
h

to all of˝ i
h

is computed by solving a discrete Laplace equation using a finite element space Li
h

on ˝ i
h

whose

restriction to � i
h

contains Yi
h
. Because of (4.1), (4.3), the shape of the tetrahedral elements T in ˝ i

h

must be representable by functions in Li
h
, i.e. the parametrization of T must be expressed as a linear

combination of basis functions in the local finite element space of Li
h
. For example, this is achieved

when Li
h

is piecewise linear and˝ i
h

consists of affine tetrahedra.

The space discrete version of the temperature update formula (4.7) is then given by

uj;h
i WD

"
uij;h ��t 1bKj

˘
Qi

j;h

�
σij;h � I

V̊i
h

Vih

�#
ı ˚�1

i;h ; for j D l; s; (5.3)

where ˘
Qi

j;h
W L2.˝ i

j;h
/ ! Qi

j;h
is the standard L2 projection onto Qi

j;h
and I

V̊i
h

W H 1
0 .˝

i
h
/ ! V̊i

h

is a suitable interpolant; see Section 5.2 for a description of these operators and Section 5.4 for

the reasons we need them. Iterating this procedure gives the fully discrete approximation of (3.11),

(3.12).

Just as in Section 4.3, we drop the time index notation when considering (5.1), (5.2) at a single

time step. This leads to a fully discrete version of (4.14).

VARIATIONAL FORMULATION 5.3 Find .σl;h;σs;h;Vh/ in Zh and .ul;h; us;h; �h/ in Th such that

ah
�
.ηl;ηs;Y/; .σl;h;σs;h;Vh/

�
C bh

�
.ηl;ηs;Y/; .ul;h; us;h; �h/

�
D �h.ηl;ηs;Y/;

Cbh
�
.σl;h;σs;h;Vh/; .ql; qs; �/

�
� ch

�
.ql; qs; �/; .ul;h; us;h; �h/

�
D  h.ql; qs; �/;

(5.4)

for all .ηl;ηs;Y/ in Zh, and .ql; qs; �/ in Th.

The discrete version of the forms in Section 4.3.1 are defined in the obvious way. The discrete

product spaces are defined similar to (4.12), (4.13):Zh D Vl;h.0/�Vs;h�Yh, Th D Ql;h�Qs;h�Mh.

5.1.3 Discrete norms. The discrete multiplier norm is slightly different. We first introduce a

discrete version of theH 1=2.�h/ norm. For any � 2 H 1=2.�h/, define the discrete version of (3.7):

k�k
H

1=2

l;h
.�h/

WD sup
ηl2Vl;h.0/

hηl � νh; �i�h

kηlkH.div;˝l;h/

; k�k
H

1=2

s;h
.�h/

WD sup
ηs2Vs;h

hηs � νh; �i�h

kηskH.div;˝s;h/

: (5.5)

Clearly, for j D l; s, k�k
H

1=2

j;h
.�h/

6 k�k
H

1=2

j
.�h/

and hη � νh; �i�h
6 kηkH.div; j̋;h/k�k

H
1=2

j;h
.�h/

(discrete Schwarz inequality). We shall also use a discrete version of the H�1.�h/ norm to control

the mean value of � 2 Mh. For all v in H�1.�h/, define

kvkH�1
h
.�h/

WD sup
Y2Yh

hv;Yi�h

kYkH1.�h/

; (5.6)

which also satisfies kvkH�1
h
.�h/

6 kvkH�1.�h/
and hv;Yi�h

6 kvkH�1
h
.�h/

kYkH1.�h/
(discrete

Schwarz inequality). Then the discrete version of k.ql; qs; �/k2T˘ is k.ql; qs; �/k2T˘
h

D kqlk2L2.˝l;h/
C

kqsk2L2.˝s;h/
C k�k2

H
1=2

h
.�h/

, where

k�k
H

1=2

h
.�h/

WD 1

2

�
k�k

H
1=2

l;h
.�h/

C k�k
H

1=2

s;h
.�h/

�
: (5.7)
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and the discrete version of (4.16) is

k.ql; qs; �/k2Th
D k Qqlk2L2.˝l;h/

C k Qqsk2L2.˝s;h/

C k� � Oqlk2
H

1=2

l;h
.�h/

C k� � Oqsk2
H

1=2

s;h
.�h/

CbSk�νhk2
H�1

h
.�h/

:
(5.8)

A discrete version of Proposition 4.7 also holds, i.e. k.ql; qs; �/kT˘
h

� k.ql; qs; �/kTh
.

The discrete version of the primal norm (4.15) is also slightly different. It requires a discrete

version of the H�1=2.�h/ norm to control the mean value of Y � νh for Y 2 Yh. For any Y � νh 2
H�1=2.�h/, define

kY � νhk
H

�1=2

h
.�h/

WD sup
�h2Mh

hY � νh; �hi�h

k�hk
H

1=2

h
.�h/

; (5.9)

Clearly, hY � νh; �hi�h
6 kY � νhkH�1=2

h
.�h/

k�hk
H

1=2

h
.�h/

(discrete Schwarz inequality). Then the

discrete version of k.ηl;ηs;Y/k2Z is obtained by replacing kY �νkH�1=2.� / with kY �νhkH�1=2

h
.�h/

.

A discrete version of Proposition 4.6 also holds.

5.2 Space assumptions

To prove well-posedness of the discrete system, we must prove the discrete version of Lemmas

4.8, 4.9, and 4.10. In addition, we want to obtain discrete versions of Theorems 4.14 and 4.16.

To facilitate this, we make the following general assumptions on the choice of finite dimensional

subspaces (see Section 5.5 for the specific spaces used).

Let Vh be a conforming finite dimensional subspace, i.e. Vh � V � H.div;˝/, and define

V̊h WD fη 2 Vh W η � νh D 0; on @˝hg �
˚
η 2 V W hη � νh; qi@˝h

D 0; 8q 2 H 1.˝h/
	
:

Furthermore, assume that for any η in V̊h, we have ηj˝l;h
2 Vl;h.0/ and ηj˝s;h

2 Vs;h.

Next, take V̊l;h D fηl 2 Vl;h W ηl � νh D 0; on @˝l;hg and OQl;h D fq 2 Ql;h W
R
˝l;h

q dx D 0g,

and assume that r � Vl;h D Ql;h, r � V̊l;h D OQl;h, and Vl;h contains continuous piecewise linear

functions on �h. Analogous definitions are made for Vs;h and Qs;h. Moreover, assume .Vl;h;Ql;h/

and .Vs;h;Qs;h/ satisfy

sup
ηl2Vl;h

�.r � ηl; ql/˝l;h

kηlkH.div;˝l;h//

> ckqlkL2.˝l;h/
; sup

ηs2Vs;h

�.r � ηs; qs/˝s;h

kηskH.div;˝s;h//

> ckqskL2.˝s;h/
; (5.10)

for all ql 2 Ql;h, qs 2 Qs;h, with c independent of h and that an analogous condition is satisfied for

.V̊l;h; OQl;h/ and .V̊s;h; OQs;h/. This implies that we can solve the discrete mixed form of Laplace’s

equation. As for Yh and Mh, assume they are spaces of continuous functions.

Regarding (5.3), we have a “Fortin interpolant” [9, 11] IV̊h
W H 1

0 .˝h/ ! V̊h that satisfies for

any V 2 H 1
0 .˝h/:

kIV̊h
VkL2.˝h/

6 CkVkH1.˝h/
; and .q;r � V � r � IV̊h

V/
j̋;h

D 0; 8 q 2 Qj;h; for j D l; s:

(5.11)

And the L2 projections˘Qj;h
W L2. j̋;h/ ! Qj;h (for j D l; s) satisfy for any v 2 L2. j̋;h/:

k˘Qj;h
vkL2. j̋;h/

6 kvkL2. j̋;h/
; and .q; v �˘Qj;h

v/
j̋;h

D 0; 8 q 2 Qj;h; for j D l; s: (5.12)
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5.3 Well-posedness

We follow a similar outline as Section 4.5.

5.3.1 Main conditions.

LEMMA 5.4 (Continuity of Forms)

jah..ηl;ηs;Y/; .σl;σs;V//j 6 Cah
k.ηl;ηs;Y/kZh

k.σl;σs;V/kZh
; 8.ηl;ηs;Y/; .σl;σs;V/ 2 Zh;

jbh..ηl;ηs;Y/; .ql; qs; �//j 6 Cbh
k.ηl;ηs;Y/kZh

k.ql; qs; �/kTh
;

8.ηl;ηs;Y/ 2 Zh; .ql; qs; �/ 2 Th;

jch..ql; qs; �/; .ul; us; �//j 6 �t�1.kqlkL2.˝l;h/
kulkL2.˝l;h/

C kqskL2.˝s;h/
kuskL2.˝s;h/

/;

8 .ql; qs; �/; .ul; us; �/ 2 Th;

j�h.ηl;ηs;Y/j 6 C�h
k.ηl;ηs;Y/kZh

; 8.ηl;ηs;Y/ 2 Zh;

j h.ql; qs; �/j 6 C h
k.ql; qs; �/kTh

; 8.ql; qs; �/ 2 Th;

where Cah
; Cbh

; C�h
; C h

> 0 are constants that depend on physical parameters and domain

geometry. In addition, C�h
depends on uD, �t�1=2, and C h

depends on fl; fs, ul; us and �t�1.

Proof. The proof is analogous to the proof of Lemma 4.8. Minor modifications are: one must use

the discrete Schwarz inequalities associated with the discrete H
1=2

l;h
, H

1=2

s;h
, and H

�1=2

h
norms, and

use the discrete versions of Propositions 4.6 and 4.7.

LEMMA 5.5 (Coercivity) Let .ηl;ηs;Y/ 2 Zh with bh..ηl;ηs;Y/; .ql; qs; �// D 0 for all

.ql; qs; �/ 2 Th. Then,

ˇ̌
ah
�
.ηl;ηs;Y/; .ηl;ηs;Y/

�ˇ̌
> C



.ηl;ηs;Y/


2
Zh
;

where C > 0 is a constant depending on bS , bKl, cKs, and the domain. This is true even if b̌! 1.

Proof. Follows the same argument as in Lemma 4.9, except the discrete H
�1=2

h
norm (5.9) is used.

LEMMA 5.6 (Inf-Sup) For all .ql; qs; �/ 2 Th, the following “inf-sup” condition holds

sup
.ηl;ηs;Y/2Zh

bh
�
.ηl;ηs;Y/; .ql; qs; �/

�

k.ηl;ηs;Y/kZ˘
h

> Ck.ql; qs; �/kTh
;

where C > 0 depends on the domain andbS . If k.ηl;ηs;Y/kZ˘
h

is replaced by k.ηl;ηs;Y/kZh
in the

denominator, then the inf-sup still holds, except C also depends on bKl, cKs, b̨, and b̌�. Furthermore,

C does not depend on the time step �t , as long as �t 6 1.

Proof. Starting as we did in the proof of Lemma 4.10, we have

bh
�
.ηl;ηs;Y/; .ql; qs; �/

�
D �.r � ηl; Qql/˝l;h

� .r � ηs; Qqs/˝s;h
� hηl � νh; � � Oqli�h

C hηs � νh; � � Oqsi�h
CbS .Y � νh; �/�h

:
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Next, let us focus on �.r � ηs; Qqs/˝s;h
C hηs � νh; � � Oqsi�h

only. By (5.10), there exists a unique

.w; !/ in .V̊s;h; OQs;h/ such that

.w; v/˝s;h
� .!;r � v/˝s;h

D 0; 8v 2 V̊s;h;

�.r � w; r/˝s;h
D . Qqs; r/˝s;h

; 8r 2 OQs;h;
(5.13)

and kwkH.div;˝s;h/ 6 C0k QqskL2.˝s;h/
. By (5.5), there exists ξ 2 Vs;h such that

hξ � νh; � � Oqsi�h
D k� � Oqsk2

H
1=2

s;h
.�h/

; kξkH.div;˝s;h/ D k� � OqskH1=2

s;h
.�h/

:

Similar to (5.13), there exists a z in V̊s;h such that

�r � z D r � ξ � 1

j˝s;hj

�Z

�h

ξ � νh
�
; on˝s;h; kzkH.div;˝s;h/ 6 C1kξkH.div;˝s;h/: (5.14)

Now let d D z C ξ. Then,

r � d D 1

j˝s;hj

�Z

�h

ξ � νh
�
; on ˝s;h; d � νh D ξ � νh; on �h;

where kdkH.div;˝s;h/ 6 .1C C1/kξkH.div;˝s;h/ D .1C C1/k� � OqskH1=2

s;h
.�h/

.

Next, define y WD w C d 2 Vs;h and note kykH.div;˝s;h/ 6 C0k QqskL2.˝s;h/
C .1 C C1/k� �

OqskH1=2

s;h
.�h/

. Thus, setting ηs WD y=kykH.div;˝s;h/ gives

�.r � ηs; Qqs/˝s;h
C hηs � νh; �� Oqsi�h

D 1

kykH.div;˝s;h/

�
k Qqsk2L2.˝s;h/

C hd � νh; � � Oqsi�h

�

> C2
�
k QqskL2.˝s;h/

C k� � OqskH1=2

s;h
.�h/

�
;

with kηskH.div;˝s;h/ D 1. Similarly, there exists ηl 2 Vl;h.0/ such that

�.r � ηl; Qql/˝l;h
� hηl � νh; � � Oqli�h

> C3
�
k QqlkL2.˝l;h/

C k� � OqlkH1=2

l;h
.�h/

�
;

with kηlkH.div;˝l;h/ D 1.

By the definition of the discrete H�1.�h/ norm (5.6), there exists a Y in Yh such that

.Y � νh; �/�h
D hY; �νhi�h

D k�νhkH�1
h
.�h/

; kYkH1.�h/
D 1:

Combining the above results gives the assertion.

5.3.2 Summary. A discussion analogous to the one in Section 4.5.2 applies to the fully discrete

problem also. Hence, the discrete problem is well-posed, but one must modify the norm k � k2Zh
to

include an extra factor of�t multiplying kr � ηlk2L2.˝l;h/
, kr � ηsk2L2.˝s;h/

, and kY � νhk2
H

�1=2

h
.�h/

.
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5.4 Discrete estimates

Applying the same arguments in Section 4.6.1 to the fully discrete problem (5.1), (5.2), (5.3), and

using the stability properties in (5.11), (5.12), we get the fully discrete version of Theorem 4.14.

For the conservation law, the argument in Section 4.6.2 changes slightly. Recalling (5.3), the

discrete counterpart of (4.30) is

Z

˝i
l;h

ul;h
i D

Z

˝i�1
l;h

uil;h C�t

Z

˝i�1
l;h

�
uil;hr � Vih � bKl

�1˘
Qi

l;h

�
σil;h � I

V̊i
h

Vih
��

„ ƒ‚ …
DWR1

CO.�t2/:
(5.15)

Using the properties of I
V̊i

h
and˘

Qi
l;h

(5.11), (5.12), we see that

R1 D
Z

˝i�1
l;h

uil;hr � I
V̊i

h
Vih �

Z

˝i�1
l;h

bKl
�1σil;h � I

V̊i
h

Vih D �
Z

� i�1
h

�ih.IV̊i
h

Vih/ � ν i�1h ;

where the last equality follows by choosing ηl D I
V̊i

h
Vi
h
j˝l;h

2 Vi�1
l;h
.0/ in (5.1) on ˝ i�1

l;h
for any

i > 1. Thus, we arrive at

Z

˝i
l;h

ul;h
i D

Z

˝i�1
l;h

uil;h ��t
Z

� i�1
h

�ih.IV̊i
h

Vih/ � ν i�1h CO.�t2/; for all i > 1:

A similar relation holds forui
s;h

, except with C�t . The rest of the derivation in Section 4.6.2 remains

the same (note that I
V̊i

h
Vi
h

is continuous across � i�1
h

), which delivers the fully discrete version of

Theorem 4.16.

We summarize these results in the following theorem.

THEOREM 5.7 (A Priori Bound and Conservation Law) Suppose (5.1), (5.2), (5.3) is solved on ˝ i
h

at time index i , with uiC1D D 0, and that ˚iC1;h is a bijective map with bounded inverse. Suppose

this holds for i D 0; :::; N � 1. If �t 6 1 also satisfies

�t 6
B0

max06i6N kVi
h
kW 1;1.˝/

and �t 6 B0
max.bKl;cKs/

max06i6N kVi
h
k2
W 1;1.˝/

;

for some independent constantB0 > 0, then the fully discrete version of the a priori bound (4.27) is

true, i.e. replace all pertinent variables in (4.27) by their discrete counterparts. Moreover, if V0
h

� 0

on ˝h, then the fully discrete version of the conservation law (4.35) is also true.

We emphasize that the time step �t does not depend on the mesh size h to guarantee stability

or the conservation law; it only depends on kViC1
h

kW 1;1.˝/ (see Remark 4.2).

REMARK 5.8 (Reason For The Lagrangian Update) Using a Lagrangian approach to update the

temperatures (5.3) avoids having to compute the intersection of the mesh from one time step to the

next (i.e. the L2 projections (5.12) are only computed on the previous domains ˝ i�1
l;h

, ˝ i�1
s;h

). The

alternative would have been to compute the L2 projection (for j D l; s) of ui
j;h

from˝ i�1
j;h

to ˝ i
j;h

,

which would require computing the intersection of the meshes representing˝ i�1
j;h

and ˝ i
j;h

.



A MIXED FORMULATION OF THE STEFAN PROBLEM WITH SURFACE TENSION 457

5.5 Specific realization

The particulars of our implementation are as follows. Let Th denote a quasi-uniform, shape regular

triangulation of ˝h D ˝l;h [ ˝s;h consisting of affine tetrahedra T of maximum size h � hT
[10]. We choose the finite element spaces in the bulk to be Vl;h D BDM1 � H.div;˝l;h/,

Vs;h D BDM1 � H.div;˝s;h/, i.e. the lowest order Brezzi-Douglas-Marini space of piecewise

linear vector functions [7, 26], and Ql;h, Qs;h to be the set of piecewise constants.

Next, assume that �h is represented by a conforming set of faces Fh in the triangulation Th, i.e.

Fh is the surface triangulation obtained by restricting Th to �h. Then choose Mh to be the space of

continuous piecewise linear functions over Fh and each of the three components of the space Yh to

be continuous piecewise linear functions over Fh. Recalling Remark 5.2, we choose Lh to be the

space of continuous piecewise linear functions over˝h.

REMARK 5.9 (Choice Of Finite Element Spaces) It is well-known that these spaces satisfy the

assumptions in Section 5.2. Indeed, it is possible to enforce zero boundary values point-wise

with BDM1. If different spaces were chosen that did not allow this, then one needs a reasonable

compatibility condition between V̊l;h, V̊s;h and Mh in order to prove Lemma 5.6.

Moreover, we take IV̊h
in (5.11) to be the classic BDM1 interpolant [7, 11]; the L2 projections

˘Ql;h
, ˘Qs;h

are standard [10]. Note that this allows (5.3) to be computed locally (i.e. element-by-

element).

6. Numerical results

We present two dimensional simulations to illustrate our method (2-D for simplicity). All

simulations were implemented in the package FELICITY [62]. The linear systems are solved

by MATLAB’s “backslash” command. Alternatively, one can use an iterative procedure such as

Uzawa’s algorithm; see [22, Section 7] for an example in a related problem.

For all simulations, the Dirichlet boundary is the entire outer boundary, i.e. @D˝ � @˝ with

uD D �0:5. The initial temperature is u0s WD 0 in ˝s and u0l is a smooth function between 0 and

�0:5 in ˝l. For updating the temperatures, we initialized V0 D 0. We verified the conservation law

by computing the left-hand-side of (4.35). The error was less than 10�3, which is consistent with

the O.�t/ error estimate in Theorem 4.16. During the course of a simulation, the mesh topology

was regenerated between three and five times which did not impact the computational time.

Error estimates for the spatial discretization will be discussed in a future publication.

6.1 Isotropic surface energy

The model in Section 2 assumes the surface tension coefficient b̨ is constant (isotropic). In Figure 2,

we show a simulation of our method with a non-trivial initial shape. Also see Figure 1 for another

example with a different initial shape.
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FIG. 2: Simulation with isotropic surface tension. Several time-lapses are shown to illustrate the

evolution with initial interface having a “clover” shape.

6.2 Anisotropic surface energy

The model can be generalized to have an anisotropic surface tension coefficient, i.e. b̨ � b̨.ν/. In

particular, we consider anisotropies of the form:

b̨D b̨.ν/ WD b̨0
KX

jD1

.νTGjν/
1=2; (6.1)

where b̨0 D 0:0005 is a material constant, K is the number of anisotropies, and Gj is a

symmetric positive definite matrix in Rd�d . We consider a class of matrices that have the structure

Gj D RTj DjRj , where Rj is a rotation matrix that determines the “directions” of the anisotropy,

and Dj is a diagonal matrix consisting of ones and small numbers, which controls the strength of

the anisotropy. For our simulations, we set b̌ D b̌
0b̨.ν/, although this is not required. Note that

isotropic surface tension is modeled by this as well with K D 1 and G1 D I2�2 so that b̨.ν/ D b̨0.
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FIG. 3: Simulation with anisotropic surface tension. Several time-lapses are shown to illustrate the

evolution with initial interface shape being a circle. A one-fold anisotropy is used which breaks the

initial radial symmetry.

With the above, we can derive the modified form of (4.6) by standard shape differentiation

[16, 32, 56]. Indeed,

d

dt

Z

� .t/

b̨.ν/ D
Z

� .t/

b̨.ν/r� X W r� V �
Z

� .t/

νŒb̨ 0.ν/�T W r� V; (6.2)

where V is the velocity of � , and for p 2 Rd , b̨ 0.p/ is the gradient of b̨with respect to p. We now

obtain a semi-discrete formulation for the anisotropic case by combining (4.5), (4.6), and (6.2):

.b̌�1.ν i /ViC1 � ν i ;Y � ν i /� i C�t.b̨.ν i /r� i ViC1;r� i Y/� i CbS.Y � ν i ; �iC1/� i

D �.b̨.ν i /r� i Xi ;r� i Y/� i C .ν i Œb̨ 0.ν i /�T ;r� i Y/� i for all Y 2 Yi :

(6.3)
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The fully discrete formulation follows straightforwardly. This type of anisotropy is studied in [5]

where they handle the anisotropic surface energy by defining the local finite element basis functions

to capture the anisotropic energy. Their approach allows for obtaining an energy law, which can also

be combined with our method. But (6.3) is easier to implement. In fact, it allows us to consider more

general coefficients b̨.ν/ other than (6.1). The main drawback of (6.3) is it makes the numerical

scheme slightly explicit, which puts a constraint on the time step. From our experience, we need

�t 6 Ch for some uniform constant C . Using the anisotropic approach in [5] would circumvent

this.

In Figure 3, we present a simulation using (6.1) withK D 1 (i.e. a one-fold anisotropy). Figure 4

shows a simulation with K D 3 (i.e. a three-fold anisotropy).
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FIG. 4: Simulation with anisotropic surface tension. Several time-lapses are shown to illustrate the

evolution with initial interface shape being a circle. A three-fold anisotropy is used which breaks

the initial radial symmetry.
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49. RÖGER, M., Existence of weak solutions for the mullins–sekerka flow. SIAM Journal on Mathematical

Analysis 37 (2005), 291–301. Zbl1088.49031 MR2176933

50. ROOSEN, A. R. & TAYLOR, J. E., Modeling crystal growth in a diffusion field using fully faceted

interfaces. Journal of Computational Physics 114 (1994), 113–128. Zbl0805.65128 MR1286190

51. SCHMIDT, A., Computation of three dimensional dendrites with finite elements. Journal of Computational

Physics 125 (1996), 293–312. Zbl0844.65096

52. SCHMIDT, A., Approximation of crystalline dendrite growth in two space dimensions. Acta Math. Univ.

Comenianae 67 (1998), 57–68. Zbl0930.65107 MR1660815

53. SCHMIDT, A. & SIEBERT, K. G., Design of Adaptive Finite Element Software: The Finite Element

Toolbox ALBERTA, 1st ed. Springer, Heidelberg, Germany, 2005. Zbl1068.65138 MR2127659

54. SETHIAN, S. A., Level Set Methods and Fast Marching Methods, 2nd Edition. Cambridge University

Press, New York, NY, 1999. Zbl0973.76003 MR1700751

55. SINGER-LOGINOVA, I. & SINGER, H. M., The phase field technique for modeling multiphase materials.

Reports on Progress in Physics 71 (2008), 106501.
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Birkhäuser, Boston, 1996. Zbl0882.35004 MR1423808

60. VOLKOV, O. & PROTAS, B., An inverse model for a free-boundary problem with a contact line: Steady

case. Journal of Computational Physics 228 (July 2009), 4893–4910. Zbl1166.76056 MR2533162

61. VORONKOV, V. V., Conditions for formation of mosaic structure on a crystallization front. Sov. Phys.

Solid State 6 (1965), 2378–2381.

62. WALKER, S. W., FELICITY: Finite ELement Implementation and Computational Interface Tool for You.

http://www.mathworks.com/matlabcentral/fileexchange/31141-felicity.

Zbl 0821.35003
http://www.emis.de/MATH-item?0821.35003
MR 1386964
http://www.ams.org/mathscinet-getitem?mr=1386964
Zbl 1026.76001
http://www.emis.de/MATH-item?1026.76001
MR 1939127
http://www.ams.org/mathscinet-getitem?mr=1939127
Zbl 1130.35136
http://www.emis.de/MATH-item?1130.35136
MR 2317935
http://www.ams.org/mathscinet-getitem?mr=2317935
Zbl 1157.35502
http://www.emis.de/MATH-item?1157.35502
MR 2438781
http://www.ams.org/mathscinet-getitem?mr=2438781
Zbl 1269.80004
http://www.emis.de/MATH-item?1269.80004
MR 3005325
http://www.ams.org/mathscinet-getitem?mr=3005325
Zbl 1088.49031
http://www.emis.de/MATH-item?1088.49031
MR 2176933
http://www.ams.org/mathscinet-getitem?mr=2176933
Zbl 0805.65128
http://www.emis.de/MATH-item?0805.65128
MR 1286190
http://www.ams.org/mathscinet-getitem?mr=1286190
Zbl 0844.65096
http://www.emis.de/MATH-item?0844.65096
Zbl 0930.65107
http://www.emis.de/MATH-item?0930.65107
MR 1660815
http://www.ams.org/mathscinet-getitem?mr=1660815
Zbl 1068.65138
http://www.emis.de/MATH-item?1068.65138
MR 2127659
http://www.ams.org/mathscinet-getitem?mr=2127659
Zbl 0973.76003
http://www.emis.de/MATH-item?0973.76003
MR 1700751
http://www.ams.org/mathscinet-getitem?mr=1700751
Zbl 0761.73003
http://www.emis.de/MATH-item?0761.73003
MR 1215733
http://www.ams.org/mathscinet-getitem?mr=1215733
Zbl 1126.46001
http://www.emis.de/MATH-item?1126.46001
MR 2328004
http://www.ams.org/mathscinet-getitem?mr=2328004
MR 2169020
http://www.ams.org/mathscinet-getitem?mr=2169020
Zbl 0882.35004
http://www.emis.de/MATH-item?0882.35004
MR 1423808
http://www.ams.org/mathscinet-getitem?mr=1423808
Zbl 1166.76056
http://www.emis.de/MATH-item?1166.76056
MR 2533162
http://www.ams.org/mathscinet-getitem?mr=2533162
http://www.mathworks.com/matlabcentral/fileexchange/31141-felicity


464 C. B. DAVIS AND S. W. WALKER

63. WALKER, S. W., Tetrahedralization of isosurfaces with guaranteed-quality by edge rearrangement

(TIGER). SIAM Journal on Scientific Computing 35 (2013), A294–A326. Zbl1264.65026 MR3033050

64. WALKER, S. W., A mixed formulation of a sharp interface model of stokes flow with moving contact

lines. ESAIM: Mathematical Modelling and Numerical Analysis 48 (July 2014), 969–1009. Zbl1299.

76064 MR3264343

65. WALKER, S. W., BONITO, A. & NOCHETTO, R. H., Mixed finite element method for electrowetting on

dielectric with contact line pinning. Interfaces and Free Boundaries 12 (March 2010), 85–119. Zbl1189.

78056 MR2595379

Zbl 1264.65026
http://www.emis.de/MATH-item?1264.65026
MR 3033050
http://www.ams.org/mathscinet-getitem?mr=3033050
Zbl 1299.76064
Zbl 1299.76064
http://www.emis.de/MATH-item?1299.76064
MR 3264343
http://www.ams.org/mathscinet-getitem?mr=3264343
Zbl 1189.78056
Zbl 1189.78056
http://www.emis.de/MATH-item?1189.78056
MR 2595379
http://www.ams.org/mathscinet-getitem?mr=2595379

	Introduction
	Background
	Summary

	Model for the Stefan problem with surface tension
	Notation
	Strong formulation
	Non-dimensionalization

	Weak formulation
	Function spaces
	Curvature
	Differential geometry
	Weak form

	Fully continuous
	Formal estimates
	A priori bound
	Conservation law


	Time semi-discrete formulation
	Domain velocity
	Map i to i+1
	Map _li, _si to _li+1, _si+1
	Time derivative: Eulerian vs. Lagrangian

	Weak formulation
	Abstract formulation
	Bilinear and linear forms
	Saddle-point formulation

	Norms
	Non-degenerate interface
	Primal norm
	Multiplier norm

	Well-posedness
	Main conditions
	Summary

	Estimates
	A priori bound
	Conservation law


	Fully discrete formulation
	Discretization
	Non-degenerate interface
	Formulation
	Discrete norms

	Space assumptions
	Well-posedness
	Main conditions
	Summary

	Discrete estimates
	Specific realization

	Numerical results
	Isotropic surface energy
	Anisotropic surface energy


