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1. Introduction

Small strain perfect elasto-plasticity is sometimes derided nowadays as over simplistic in its effort to

describe creep type behavior in solids and most engineering applications resort to complex models

that incorporate some kind of hardening, so as to follow more closely the evolution of the strain

in materials that are thought to behave plastically. However, the core elements of plastic behavior

should be shared by all models: a yield stress whose attainment signals the onset of plastic flow, and

the formation of highly localized shear strains, often called shear bands.

The choice of a proper yield criterion is an important step that has been largely the practitioner’s

prerogative for lack of a good understanding of the upscaling properties of the various dislocation

patterns of most crystalline materials.

On the contrary, the criteria that preside over the formation of shear bands or, more generally, of

plastic slips should be exacted from the equations themselves. Yet, to the best of our knowledge, the

only evidence of such discontinuities is numerical. Plastic slips are thought to appear as a putative

singular limit of numerically computed high strains. As a matter of fact, the abundant literature on

plasticity is almost universally silent when it comes to the relationship between plastic flow and

plastic slips. To our knowledge, the only acknowledgement of such an intimacy is to be found in

[13] (then reiterated in [14, p. 57–58]) where the author(s) derive necessary conditions on the stress

tensor on a jump by postulating an ad-hoc flow rule on the jumps through an analogy with the bulk

flow rule.
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Our goal in this contribution is to offer a more unified insight into that intimacy in the simplest

possible context, that of Prandtl–Reuss elasto-plasticity with a Von-Mises type yield criterion. To

that end, we will lean heavily on the modern mathematical treatment of plasticity which finds its

roots in the work of P.-M. Suquet (see, e.g., [17,18]), later completed by various works of R. Temam

(see, e.g., [19, 20]), R. V. Kohn and R. Temam [15], G. Anzellotti ([4, 5]) and G. Anzellotti and

S. Luckhaus [6]. That work was revisited, some 20 years later by G. Dal Maso, A. De Simone

and M. G. Mora [9] within the framework of the variational theory of rate independent evolutions

popularized by A. Mielke (see, e.g., [16]).

Those evolutions are quasi-static, that is inertialess. The basic tenet is that the evolution can

be viewed as a time-parameterized set of minimization problems for the sum of the elastic energy

and of the add-dissipation; see Section 3 for details. The minimizers should also be such that an

energy conservation statement, amounting to a kind of first principle in thermodynamics, is satisfied

throughout the evolution. Once such an evolution is secured, it remains to show that it satisfies the

classical system of equations of elasto-plastic evolution which we briefly recall now, for the reader’s

convenience.

We denote by ˝ the domain under consideration.

� Kinematic decomposition: The field u.t/ W ˝ ! R
3 is the displacement field; it is constrained by

a Dirichlet condition u.t/ D w.t/ on a part �d of @˝ . The associated linearized strain Eu.t/ WD
1=2.ru.t/C ruT .t// is additively decomposed into the elastic strain e.t/, a symmetric matrix,

and the plastic strain p.t/, a deviatoric (trace free) symmetric matrix, i.e.,

Eu.t/ D e.t/C p.t/; with trp.t/ D 0:

� Constitutive law: The Cauchy stress �.t/ is linearly related to e.t/ through Hooke’s law

�.t/ D Ce.t/;

where C has the usual symmetry and coercivity properties of elasticity (see (2.1) and (3.3) below).

� Equilibrium: The stress �.t/ is in quasi-static equilibrium with the body forces f .t/ and surface

forces g.t/ applied to �n WD @˝ n N�d , i.e.,

div �.t/C f .t/ D 0 in ˝; �.t/� D g.t/ on �n .� outer normal to �n/;

while its deviatoric part �D.t/ satisfies the Von Mises yield criterion,

j�D.t; x/j 6

p

2=3�c at every point x 2 ˝ .

� Flow rule: The deviatoric part of �.t/ and the plastic strain rate Pp.t/ are related at every point

x 2 ˝ through

Pp.t; x/ D ��D.t; x/; with � > 0 and � D 0 if j�D.t; x/j <
p

2=3�c :

In other words, whenever the (deviatoric part of the) stress reaches the boundary of its admissible

set, the plastic strain should flow in the direction normal to that set.

In the context of rate independent evolutions, the main hurdle is to recover that flow rule.

The issue at stake is that the plastic strain and its time derivative are measures which may have a

Lebesgue-singular part that will not interact well with the stresses because the latter are only defined

Lebesgue-almost everywhere. The task is accomplished through rather delicate duality arguments,
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as recounted in Section 3 below. In particular, the classical flow rule is recovered as recalled in

Theorem 3.10.

A boundary flow rule is also obtained in Theorem 3.11. That result, originally derived in [12,

Theorem 3.13] is not part and parcel of the classical formulation of elasto-plasticity.

In this paper, we propose to demonstrate that the existence of a variational evolution in the

elasto-plastic setting actually implies yet another flow rule, this time on the putative plastic slips. In

a Von-Mises setting, that flow rule severely constrains the possible stresses along the plastic slips,

as well as the directions of those slips. The ensuing constraints are precisely those that had been

postulated in [13]; they are now seen to be a natural outcome of the variational evolution.

As a main consequence, we derive a very simple criterion that, if satisfied on a subdomain and

for a time interval, will prevent the onset of additional slips on that subdomain and during that time

interval.

The paper is organized as follows.

After a short section (Section 2) devoted to notation and mathematical preliminaries, Section 3

recalls the variational approach to quasi-static elasto-plastic evolutions, specialized to a Von-Mises

setting. Details of the derivation of the bulk (and of the boundary) flow rule are also provided. Then,

following the approach developed in [9], a flow rule for the singular part of the plastic strain is

recovered. It involves a precise representative of the Cauchy stress obtained through an averaging

process.

In Section 4, we specialize the flow rule to the case of plastic slips, thereby obtaining the

above mentioned restrictions on the form of the precise representative of the deviatoric stress field

(Theorem 4.1). Consequently, we formulate in Theorem 4.3 a general result asserting the absence

of plastic slips during part of, or the whole evolution. To that effect, the set of Lebesgue points for

the Cauchy stress must be large enough.

Such is the case when the external loads and the initial conditions are sufficiently regular

as demonstrated in [7]. Under these additional regularity assumptions, we finally propose in

Theorem 4.7 a sufficient condition for the application of the general result.

It is remarked that the same arguments would allow one to conclude to the absence of any kind of

Lebesgue-singular plastic strain, provided that we knew that the possible diffuse Lebesgue-singular

(often called Cantor) part of those strains possesses a rank-one structure. Unfortunately, that result

is not available at present (see Remark 4.8) while its counterpart for full gradients is, thanks to a

result of G. Alberti [1].

2. Notation and preliminaries

General notation. For A � R3, the symbol bA stands for “restricted to A”.

We will denote by L3 the Lebesgue volume measure, and by H2 the two-dimensional Hausdorff

measure, which coincides with the usual area measure on sufficiently regular sets (see, e.g., [11,

Section 2.1] or [3, Section 2.8])

Matrices. We denote by M3
sym the set of 3� 3-symmetric matrices and by M3

D the set of trace-free

elements of M3
sym. If M is an element of M3

sym, then MD is its deviatoric part, i.e., its projection

onto M3
D with respect to the Frobenius inner product. The symbol � stands for that inner product, as

well as for the Euclidean product on R
3, and the symbol j � j for the Frobenius norm, as well as for

the Euclidean norm on R3. We say that an endomorphism C on M3
sym is symmetric (an element of
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Ls.M
3
sym/) if

CA � B D A � .CB/ (2.1)

for any A;B 2 M3
sym. For a; b 2 R3, a ˇ b stands for the symmetric matrix such that .a ˇ b/ij WD

.aibj C aj bi /=2.

Functional spaces. Given E � R3 Lebesgue measurable, 1 6 p < C1, and M a finite

dimensional normed space, Lp.EIM/ stands for the space of p-summable functions on E with

values in M , with associated norm denoted by k � kp. Given A � R3 open, H 1.AIM/ is the

Sobolev space of functions in L2.AIM/ with distributional derivatives in L2.

Throughout, by “a.e.”, we mean “a.e.” for the Lebesgue measure on R3. Otherwise, we will

specify the relevant measure.

Finally, let X be a normed space. We denote by BV.a; bIX/ and AC.a; bIX/ the space of

functions with bounded variation and the space of absolutely continuous functions from Œa; b� to X ,

respectively. We recall that the total variation of f 2 BV.a; bIX/ is defined as

VX .f I a; b/ WD sup
n

k
X

j D1

kf .tj / � f .tj �1/kX W a D t0 < t1 < � � � < tk D b
o

:

Measures. If E is a locally compact separable metric space, and X a finite dimensional normed

space, Mb.EIX/ will denote the space of finite Radon measures on E with values in X . For

� 2 Mb.EIX/, we denote by j�j its total variation and by �s its singular part with respect to

L3. The space Mb.EIX/ is the topological dual of C 0
0 .EIX�/, the set of continuous functions u

from E to the vector dual X� of X which “vanish at the boundary”, i.e., such that for every " > 0

there exists a compact set K � E with ju.x/j < " for x 62 K .

The (kinematic) spaceBD. In this paper as in previous works on elasto-plasticity the displacement

field u lies in the space of functions of bounded deformations

BD.˝/ WD
˚

u 2 L1.˝IR3/ W Eu 2 Mb.˝I M3
sym/

	

endowed with the norm

kukBD WD kuk1 C jEU.˝/j
Here and in the remainder of the paper ˝ � R3 is open, bounded, with Lipschitz boundary. We

refer the reader to, e.g., [19, Chapter 2], and [2] for background material.

Besides elementary properties of BD.˝/, we will only appeal to the structure of Eu as a

Radon measure: more precisely, as is the case for functions of bounded variation, the measure Eu

decomposes as

Eu D EauCEjuC Ecu: (2.2)

HereEau denotes the part of the measure which is absolutely continuous with respect to L3, so that

Eau D EuL
3; with Eu 2 L1.˝I M3

sym/:

The singular part is further decomposed into a jump part Eju and a Cantor part Ecu. Specifically,

Eju D Œu�ˇ �uH
2bJu;
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where Ju stands for the jump set of u (see [3, Definition 3.67]), Œu� being the jump of u across

Ju, while Ecu vanishes on Borel sets which are �-finite with respect to the area measure H2 (see

[2, Proposition 4.4]).

Finally, we say that

un

�
* u weakly� in BD.˝/

iff

un ! u; strongly in L1.˝IR3/ and Eun

�
* Eu weakly� in Mb.˝I M3

sym/:

The (static) space ˙ . It is defined as

˙ WD
˚

� 2 L2.˝I M3
sym/ W div � 2 L2.˝IR3/ and �D 2 L1.˝IR3/

	

:

It is classical that, if � 2 L2.˝I M3
sym/ with div � 2 L2.˝IR3/, �� is well defined as an element

of H�1=2.@˝IR3/, � being the outer normal to @˝ .

More generally, consider an arbitrary Lipschitz subdomain A � ˝ with outer normal �, and

� � @A open in the relative topology. We can define the restriction of �� “on�” by testing against

functions in H 1=2.@AIR3/ with compact support in �. This amounts to viewing �� as an element

of the dual to H
1=2
00 .�IR3/.

If � 2 ˙ , then, in the spirit of [15, Lemma 2.4], we can define a tangential component Œ���� of

�� on � such that

Œ���� 2 L1.�IR3/ with kŒ���� k1 6
1p
2

k�Dk1: (2.3)

That vector is often referred to in the mechanics literature as the “resolved shear stress”. Indeed,

consider any regularization �n 2 C1. NAI M3
sym/ of � on NA such that

8

ˆ

<

ˆ

:

�n ! � strongly in L2.AI M3
sym/

div�n ! div � strongly in L2.AIR3/

k.�n/Dk1 6 k�Dk1:

Define the tangential component Œ�n��� WD .�n/� � ..�n/� � �/�. It is readily seen that Œ�n��� D
Œ.�n/D��� (the tangential component of .�n/D is defined analogously). Since x 7! �.x/ is an

L1.�IR3/-mapping, there exists an L1.�IR3/-function Œ���� such that, up to a subsequence,

Œ�n���
�
*Œ���� weakly� in L1.�IR3/:

If �D � 0 then, clearly, Œ���� � 0, so that Œ���� is only a function of the sequence .�n/D which we

will denote henceforth by Œ�D��� . Notice that Œ�D��� may depend upon the approximation sequence

f�ngn (or at least upon f.�n/Dgn).

Further, according to Proposition A.2 in the appendix, jŒ�n��� j 6 1=
p
2j.�n/D j, hence the

inequality in (2.3).

Finally, if � is a C 2-hypersurface, then Œ�D��� is uniquely determined as an element of

L1.�IR3/. Indeed, for every ' 2 H 1=2.@AIR3/ with support compactly contained in � (that

is by density ' 2 H 1=2
00 .�IR3/),

Z

�

Œ�D��� � ' dH
2 D h��; 'i � h.��/�; 'i;
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where

h.��/� ; 'i WD h��; .' � �/�i:
Since the normal component .' � �/� of ' with respect to � belongs to H 1=2.@AIR3/ in view of

the regularity of � on �, the definition of .��/� is meaningful.

If � is a countably H2-rectifiable subset of ˝, it admits a well defined normal � at H2-a.e.

point, so that a construction identical to that detailed above would yield the analogue of (2.3) in that

extended setting, namely

Œ.�n/D���
�
*Œ�D��� weakly� in L1

H2.�IR3/ with kŒ�D���k1 6
1p
2

k�Dk1:

3. Energetic quasi-static evolutions

In this section we investigate the variational formulation of a quasi-static evolution in perfect

plasticity introduced in [9]. A first subsection is devoted to a review of the available existence,

uniqueness, and regularity results, rewritten in the only case of interest to us in this work namely,

three dimensional Von Mises plasticity. In a second subsection, we recall the bulk flow rule that

was recovered in [9, Equation (6.14)], as well as the boundary flow rule that was subsequently

established in [12, Equation (3.12)] and specialize them accordingly. We also recall the flow rule on

the singular part of the plastic strain derived in [9, Theorems 6.4 and 6.6] (see Theorem 3.12).

3.1 The setting and the existence result

The reference configuration. In all that follows ˝ � R3 is an open, bounded set with (at least)

Lipschitz boundary and exterior normal �. Further, the Dirichlet part �d of @˝ is a non empty

open set in the relative topology of @˝ with boundary @b@˝�d in @˝ and we set �n WD @˝ n N�d .

Reproducing the setting of [12, Section 6], we introduce the following

DEFINITION 3.1 We will say that @b@˝�d is admissible iff, for any � 2 L2.˝I M3
sym/ with

div� D f in ˝; �� D g on �n; �D 2 L1.˝I M3
D/;

where f 2 L3.˝IR3/ and g 2 L1.�nIR3/, and every p 2 Mb.˝ [ �d I M3
D/ and w 2

H 1.˝IR3/ such that there exists an associated pair .u; e/ 2 BD.˝/ �L2.˝I M3
sym/ with

Eu D e C p in ˝; p D .w � u/ˇ �H
2b�d on �d ;

the distribution, defined for all ' 2 C1
c .R3/ by

h�D; pi.'/ WD �
Z

˝

'� � .e � Ew/ dx �
Z

˝

'f � .u �w/ dx

�
Z

˝

� � Œ.u �w/ˇ r'� dx C
Z

�n

'g � .u� w/ dH
2 (3.1)

extends to a bounded Radon measure on R3 with jh�D; pij 6 k�Dk1jpj.
Definition 3.1 covers many “practical” settings like those of a hypercube with one of its faces

standing for the Dirichlet part �d ; see [12, Section 6] for that and other such settings.
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REMARK 3.2 Expression (3.1) defines a meaningful distribution on R
3. Indeed, according to [12,

Proposition 6.1] if � 2 L2.˝I M3
sym/ is such that div� 2 L3.˝IR3/ and �D 2 L1.˝I M3

D/, then

� 2 Lr .˝I M3
sym/ for every 1 6 r < 1 with

k�kr 6 Cr .k�k2 C kdiv�k3 C k�Dk1/

for some Cr > 0. On the other hand, u 2 L3=2.˝IR3/ in view of the embedding of BD.˝/ into

L3=2.˝IR3/. Further, u has a trace on @˝ which belongs to L1.@˝IR3/. Finally note that, if � is

the restriction to ˝ of a C 1-function and if H2.@b@˝�d / D 0, then, an integration by parts in BD

(see [19, Chapter 2, Theorem 2.1]) would demonstrate that the right-hand side of (3.1) coincides

with the integral of ' with respect to the (well defined) measure �D � p.

Following one of the referee’s suggestions, we realized that the arguments in [12, Section 6]

show that, for the distribution (3.1) to coincide on R
3 n @@˝�d with a bounded Radon measure,

it suffices that e 2 Lr.˝I MN
sym/ for some r > 1, this in view of the summability properties of �

recalled above. Note that, in [12], e 2 L3=2.˝I MN
sym/ is only used to localize the space of triplets

.u; e; p/.

REMARK 3.3 The same referee provided us with a proof that, for a class of domains˝ that certainly

contains domains with Lipschitz boundaries, � actually is in BMO.˝/. This is an improvement

over the Lr .˝I M3
sym/-regularity for � alluded to in Remark 3.2.

Kinematic admissibility. Given the boundary displacement w 2 H 1.˝IR3/, we adopt the

following

DEFINITION 3.4 (Admissible configurations) A.w/, the family of admissible configurations

relative to w, is the set of triplets .u; e; p/ with

u 2 BD.˝/; e 2 L2.˝I M3
sym/; p 2 Mb.˝ [ �d I M3

D/;

and such that

Eu D e C p in ˝; p D .w � u/ˇ �H
2b�d on �d : (3.2)

The function u denotes the displacement field on ˝ , while e and p are the associated elastic

and plastic strains. In view of the additive decomposition (3.2) of Eu and of the general properties

of BD functions recalled earlier, p does not charge H2-negligible sets. Moreover, given a Lipschitz

hypersurfaceD � ˝ dividing˝ locally into the subdomains˝C and ˝�,

pbD D .uC � u�/ˇ �H
2bD;

where � is the normal toD pointing from˝� to˝C, and u˙ are the traces onD of the restrictions

of u to ˝˙. Since p is assumed to take values in the space of deviatoric matrices M3
D , uC � u� is

perpendicular to �, so that only particular plastic strains are activated along D.

Elastic and plastic properties. The elasticity tensor: The Hooke’s law is given by an element

C 2 L1.˝I Ls.M
3
sym// such that

c1jM j2 6 C.x/M �M 6 c2jM j2 for everyM 2 M3
sym; (3.3)

with c1; c2 > 0.
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For every e 2 L2.˝I M3
sym/ we set

Q.e/ WD 1

2

Z

˝

C.x/e.x/ � e.x/ dx:

Von Mises dissipation potential. Given �c > 0, the deviatoric part of the stress is constrained to

belong to the region

Kvm WD B
�

0;

r

2

3
�c

�

� M3
D:

The so-called dissipation potentialH W M3
D ! Œ0;C1Œ given by

H.�/ WD supf� � � W � 2 Kvmg D
r

2

3
�c j�j:

For every admissible plastic strain p, we define the dissipation functional as

H.p/ WD
Z

˝[�d

H

�

p

jpj

�

d jpj D
r

2

3
�c jpj.˝ [ �d /;

where p=jpj denotes the Radon–Nikodym derivative of p with respect to its total variation jpj.
If t 7! p.t/ is a map from Œ0; T � to Mb.˝ [ �d I M3

D/, we define, for every Œa; b� � Œ0; T �,

D.a; bIp/ WD
r

2

3
�cV.a; bIp/:

to be the total dissipation over the time interval Œa; b�.

Body and traction forces. We consider external loads with associated potential

hL.t/; ui WD
Z

˝

f .t; x/ � u.x/ dx C
Z

�n

g.t; x/ � u.x/ dH
2.x/;

where the body forces f .t/ and traction forces g.t/ are such that

f 2 AC.0; T IL3.˝IR3//; g 2 AC.0; T IL1.�nIR3//: (3.4)

We set

h PL.t/; ui WD
Z

˝

Pf .t; x/ � u.x/ dx C
Z

�n

Pg.t; x/ � u.x/ dH
2.x/;

and assume the following uniform safe load condition:

There exists ˛ > 0 and � 2 AC.0; T IL2.˝I M3
sym// with �D 2 AC.0; T IL1.˝I MN

D // such that,

for all t 2 Œ0; T �,
( �div �.t/ D f .t/ in ˝; �.t/� D g.t/ on �n

�D.t; x/ 2 B
�

0;
p

2=3�c � ˛
�

; a.e. in ˝:
(3.5)
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Prescribed boundary displacements. The boundary displacement w on �d for the time interval

Œ0; T � is given by the trace on �d of some

w 2 AC
�

0; T IH 1.R3IR3/
�

: (3.6)

In what follows, the energetic formulation of the quasi-static evolution is detailed in the footstep of

[9]: the two ingredients of such evolutions are a stability statement at each time, together with an

energy conservation statement that relates the total energy of the system to the work of the loads

applied to that system.

DEFINITION 3.5 (Energetic quasi-static evolution) The mapping

t 7!
�

u.t/; e.t/; p.t/
�

2 A
�

w.t/
�

is an energetic quasi-static evolution relative to w iff the following conditions hold for every t 2
Œ0; T �:

(a) Global stability: for every .v; �; q/ 2 A.w.t//

Q
�

e.t/
�

� hL.t/; u.t/i 6 Q.�/ � hL.t/; vi C H
�

q � p.t/
�

: (3.7)

(b) Energy equality: p 2 BV
�

0; T I Mb.˝ [ �d I M3
D/

�

and

Q
�

e.t/
�

� hL.t/; u.t/i C D.0; t Ip/ D Q
�

e.0/
�

� hL.0/; u.0/i

C
Z t

0

�Z

˝

�.�/ �E Pw.�/ dx � hL.�/; Pw.�/i
�

d� �
Z t

0

h PL.�/; u.�/i d�;

where �.t/ WD Ce.t/.

The following result has been proved in [9, Theorem 4.5] (see also [12, Theorem 2.7] for an

existence theorem which only necessitates Lipschitz regularity for the boundary @˝).

THEOREM 3.6 (Existence of quasi-static evolutions) Assume that (3.3), (3.4), (3.5), (3.6) are

satisfied, and let .u0; e0; p0/ 2 A.w.0// satisfy the global stability condition (3.7).

Then there exists a quasi-static evolution ft 7! .u.t/; e.t/; p.t//; t 2 Œ0; T �g relative to the

boundary displacementw such that .u.0/; e.0/; p.0// D .u0; e0; p0/. Finally the Cauchy stress

t 7! �.t/ WD Ce.t/

is uniquely determined by the initial conditions.

The following regularity property holds true (see [9, Theorem 5.2]).

THEOREM 3.7 (Regularity in time) Let t 2 Œ0; T � 7! .u.t/; e.t/; p.t// be an energetic quasi-static

evolution according to Definition 3.5. Then

.u; e; p/ 2 AC
�

0; T IBD.˝/ � L2.˝I M3
sym/ � Mb.˝ [ �d I M3

D/
�



506 G. A. FRANCFORT, A. GIACOMINI AND J.-J. MARIGO

and for a.e. t 2 Œ0; T � the following limits exist

Pu.t/ WD lim
s!t

u.s/ � u.t/

s � t
weakly� in BD.˝/;

Pe.t/ WD lim
s!t

e.s/ � e.t/

s � t
strongly in L2.˝I M3

sym/;

Pp.t/ WD lim
s!t

p.s/ � p.t/
s � t strictly in Mb.˝ [ �d I M3

D/;

with . Pu.t/; Pe.t/; Pp.t// 2 A. Pw.t//. Moreover, the total dissipation D.0; t Ip/ is absolutely

continuous and

PD.0; t Ip/ D
r

2

3
�c j Pp.t/j.˝ [ �d / for a.e. t 2 Œ0; T �:

Finally there exists a constant C > 0 such that for a.e. t 2 Œ0; T �

kPe.t/k2 C j Pp.t/j.˝ [ �d I M3
D/ 6 C

�

k P�.t/k2 C k P�D.t/k1 C kE Pw.t/k2

�

: (3.8)

3.2 The flow rule

The extent to which the afore mentioned energetic quasi-static evolutions are also classical

evolutions is described in the following results.

The Cauchy stress satisfies the following properties; see [9, Theorem 6.1] or [12, Theorem 3.6].

THEOREM 3.8 (Cauchy stress) Let t 2 Œ0; T � 7! .u.t/; e.t/; p.t// be an energetic quasi-static

evolution according to Definition 3.5 and let �.t/ WD Ce.t/ be the associated Cauchy stress. Then

the following conditions hold:

(a) Balance equations: For every t 2 Œ0; T �,

�div �.t/ D f .t/ in ˝; �.t/� D g.t/ on �n: (3.9)

(b) Stress admissibility condition: For every t 2 Œ0; T �,

j�D.t; x/j 6

r

2

3
�c for a.e. x 2 ˝: (3.10)

As far as the evolution of the plastic deformations is concerned, the following result holds true

(see [12, Proposition 3.11]):

THEOREM 3.9 (Plastic flow) Let t 2 Œ0; T � 7! .u.t/; e.t/; p.t// be an energetic quasi-static

evolution according to Definition 3.5 and let �.t/ WD Ce.t/ be the associated Cauchy stress. Assume

that @b@˝�d is admissible according to Definition 3.1.

Then, for a.e. t 2 Œ0; T �, the dissipation rate and the plastic work rate coincide, i.e.,

r

2

3
�c j Pp.t/j D h�D.t/; Pp.t/i as measures on ˝ [ �d ; (3.11)

where h�D.t/; Pp.t/i denotes the duality between �D.t/ and Pp.t/ given through (3.1).



THE TAMING OF PLASTIC SLIPS IN VON MISES ELASTO-PLASTICITY 507

Equality (3.11) should contain all relevant information on the flow of the plastic strains.

However, the recovery of more classical Von Mises flow rules is hindered by the low regularity

of p.

A flow rule for the abolutely continuous part of the plastic strain can be easily derived.

THEOREM 3.10 (Flow rule for the “volumic” plastic deformation) Assume that @b@˝�d is

admissible according to Definition 3.1. Let t 2 Œ0; T � be such that equality (3.11) holds true. If

Ppa.t/ 2 L1.˝I MN
D / denotes the density of the absolutely continuous part of Pp.t/, then

j�D.t; x/j D
r

2

3
�c and

Ppa.t; x/

j Ppa.t; x/j D �D.t; x/

j�D.t; x/j
for L

3-a.e. x 2fj Ppa.t/j > 0g;

while

Ppa.t; x/ D 0 for L
3-a.e. x 2

(

j�D.t/j <
r

2

3
�c

)

:

Proof. Since, in view of [12, Theorem 6.2],

h�D.t/; Pp.t/ia D �D.t/ � Ppa.t/L
3;

we get that, for a.e. x 2 ˝ ,

�D.t; x/ � Ppa.t; x/ D
r

2

3
�c j Ppa.t; x/j and j�D.t; x/j 6

r

2

3
�c :

The conclusion easily follows.

Following [12], we also obtain a boundary flow rule.

THEOREM 3.11 (Boundary flow rule) Assume that @b@˝�d is admissible according to Defini-

tion 3.1. Let t 2 Œ0; T � be such that equality (3.11) holds true, and let Œ�D.t/��� 2 L1.�d IR3/ be

any tangential trace of �D.t/� on �d defined according to (2.3). Then,

jŒ�D.t/��� .x/j D
r

1

3
�c and

Œ�D.t/��� .x/

jŒ�D.t/��� .x/j
D Pw.t; x/ � Pu.t; x/

j Pw.t; x/ � Pu.t; x/j

for H
2-a.e. x 2 �d such that Pw.t; x/ 6D Pu.t; x/; (3.12)

while

Pw.t; x/ D Pu.t; x/ for H
2-a.e. x 2 �d \

(

ˇ

ˇŒ�D.t/���
ˇ

ˇ <

r

1

3
�c

)

:

Proof. The proof is similar to that of Theorem 3.10. It suffices to recall that

Pp.t/b�d D Œ Pw.t/ � Pu.t/�ˇ �H
2b�d

so that, heeding the choice of the Frobenius norm as matrix norm, we obtain

j Pp.t/jb�d D 1p
2

j Pw.t/ � Pu.t/j H
2b�d :
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Since, according to [12, Lemma 3.8],

h�D.t/; Pp.t/ib�d D Œ�D.t/��� � Œ Pw.t/ � Pu.t/�H2b�d :

equality (3.11) becomes

Œ�D.t/��� � Œ Pw.t/ � Pu.t/�H2b�d D
r

1

3
�c j Pw.t/ � Pu.t/j H

2b�d :

By construction of Œ�D.t/��� , we get, thanks to (2.3),

ˇ

ˇŒ�D.t/���
ˇ

ˇ 6

r

1

3
�c ;

so that the conclusion easily follows.

In order to obtain a flow rule for the singular part of the plastic deformation, we follow the

method introduced in [5], then in [9, Section 6.2].

For every r > 0 and x 2 ˝ we define the stress averages

�r .t; x/ WD 1

jBr.x/ \˝j

Z

Br .x/\˝

�.t; y/ dy:

The following result holds true (compare with [5, Theorems 3.4 and 3.7] and [9, Theorems 6.4 and

6.6]).

THEOREM 3.12 (Flow rule on the singular support of Pp.t/) Assume that @b@˝�d is admissible

according to Definition 3.1. Let t 2 Œ0; T � be such that equality (3.11) holds true, and let Pps.t/

denote the singular part of Pp.t/. Then for r ! 0C

�r
D.t/ ! O�D.t/ strongly in L1

j Pps.t/j.˝I M3
D/;

where

j O�D.t; x/j D
r

2

3
�c and

Pps.t/

j Pps.t/j .x/ D O�D.t; x/

j O�D.t; x/j
for j Pps.t/j-a.e. x 2 ˝: (3.13)

In (3.13), Pps.t/=j Pps.t/j denotes the Radon–Nikodym derivative of Pps.t/ with respect to its total

variation.

Proof. Let us consider A (open) �� ˝ . Since for r small enough, �r .t/ is continuous with a

continuous divergence on A (thanks to the equilibrium condition (3.9)), we have that

h�r
D.t/; Pp.t/i D �r

D.t/ � Pp.t/
j Pp.t/j j Pp.t/j on A; (3.14)

as can be easily established through a C 1-approximation of �r .t/. Moreover, since

�r .t/ ! �.t/ strongly in L2.AI M3
sym/

and

div �r .t/ ! div �.t/ strongly in L3.AIR3/
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we deduce that

h�r
D.t/; Pp.t/i �

* h�D.t/; Pp.t/i weakly* in Mb.A/:

In view of the stress admissibility condition (3.10),

j�r
D.t/j 6

r

2

3
�c on A; (3.15)

so that, up to a subsequence in r ,

�r
D.t/

�
* O�D.t/ weakly* in L1

j Pps .t/j.AI M3
D/: (3.16)

In the light of (3.14) and (3.11) we deduce the equality

O�D.t/ � Pps.t/

j Pps.t/j D
r

2

3
�c j Pps.t/j-a.e. on A:

The previous equality and (3.15) entail (3.13) on A: in particular, O�D.t/ is uniquely determined and

there is no need to pass to a subsequence. Moreover, (3.15) and the fact that j O�D.t; x/j D
p

2=3 �c

j Pps.t/j-a.e. onA, imply that the weak* convergence in (3.16) can be improved to strong convergence

in L1
j Pps.t/j

.A/. Indeed it suffices to remark that

lim sup
r

Z

A

j�r
D.t/ � O�D.t/j2 d j Pps.t/j6 4=3�2

c j Pps.t/j.A/ � 2 lim
r

Z

A

�r
D.t/ � O�D.t/ d j Pps.t/jD0:

Since A is arbitrary, and �r
D is uniformly bounded on˝ , the previous results can be extended to ˝ ,

which completes the proof.

4. Prohibiting plastic slips

4.1 Flow rule for plastic slips

Let

t 7!
�

u.t/; e.t/; p.t/
�

2 A
�

w.t/
�

be a quasi-static evolution according to Definition 3.5 with associated Cauchy stress �.t/ WD Ce.t/:

THEOREM 4.1 (Flow rule on a slip) Assume that @b@˝�d is admissible according to Definition 3.1.

Let t 2 Œ0; T � be such that equality (3.11) holds true. Then O�D.t/ defined in Theorem 3.12 satisfies

j O�D.t; x/j D
r

2

3
�c and

Œ Pu.t; x/�ˇ � Pu.t/

jŒ Pu.t; x/�ˇ � Pu.t/j
D O�D.t; x/

j O�D.t; x/j
for H

2-a.e. x 2 J Pu.t/: (4.1)

In particular for H2-a.e. x 2 J Pu.t/, there exists a basis .e0
1; e

0
2; e

0
3/ such that

O�D.t; x/ D diag

�

� �cp
3
; 0;

�cp
3

�

: (4.2)

Moreover the orthogonal lines determined by Œ Pu.t; x/� and � Pu.t/.x/ are bisected by e0
1 and ˙e0

3 (and

viceversa).
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Proof. Because Pps.t/bJ Pu.t/ D Œ Pu.t/�ˇ� Pu.t/ H2bJ Pu.t/, (4.1) is a direct consequence of the flow rule

(3.13) for the singular part of the plastic deformation. Finally, property (4.2) follows by Proposition

A.1 in the Appendix.

REMARK 4.2 The previous result shows that the part of yield surface @slipKvm for which plastic

slips can be activated is a three dimensional sub-manifold of the four dimensional manifold @Kvm. If

the normal to the slip plane is given, then the admissible stresses form a one dimensional manifold

(parameterized by the direction of the slip in the plane).

4.2 On the formation of plastic slips

We now have at our disposal the various ingredients for the formulation of a condition which will

prevent the formation of plastic slips. Defining S�.t/ to be the complement of the set of Lebesgue

points for �.t/, we obtain the following

THEOREM 4.3 (Absence of plastic slips) Assume that @b@˝�d is admissible according to Definition

3.1. Let A � ˝ be open, and let the Cauchy stress satisfies the following assumptions for a.e.

t 2 Œt1; t2� � Œ0; T �:

(a) H2.S�.t/ \ A/ D 0;

(b) The Lebesgue values Q�.t; x/ for x 2 A do not satisfy (4.2).

Then, no plastic slip can occur on A in the time interval Œt1; t2�, i.e., for every t 2 Œt1; t2�,

Œu.t/�ˇ �u.t/ H
2b.Ju.t/ \ A/ D Œu.t1/�ˇ �u.t1/ H

2b.Ju.t1/ \ A/: (4.3)

In particular, if H2.Ju.t1/ \ A/ D 0, then, for t 2 Œt1; t2�,

p.t/ D pa.t; x/L
3 C Ecu.t/ on A; pa.t/ 2 L1.˝I M3

D/: (4.4)

Proof. Thanks to Theorem 4.1, we get

H
2.J Pu.t/ \ A/ D 0 for a.e. t 2 Œt1; t2�: (4.5)

Indeed, the representation (4.2) cannot hold true in view of the assumptions on the stress, since

O�D.t; x/ D Q�D.t; x/ for H
2-a.e. x 2 J Pu.t/.

Recall that t 7! u.t/ is absolutely continuous in BD.˝/. However, since BD.˝/ is not reflexive,

we cannot in general express the measureEu.t/ as a Bochner integral of its derivative. Nevertheless,

for every ' 2 Cc.˝I M3
sym/, and for t 2 Œt1; t2�, we may write

hEu.t/; 'i � hEu.t1/; 'i D
Z t

t1

hE Pu.�/; 'i d�:

Let K � A be compact and contained in a C 1-hypersurface, and let  2 C.KI M3
D/. Consider a

sequence .'n/n2N converging pointwise to  1K with k'nk1 6 k k1. In view of (3.8) we deduce

by dominated convergence that

hEu.t/;  1Ki � hEu.t1/;  1Ki D
Z t

t1

hE Pu.�/;  1Ki d� D 0;
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where the last equality is obtained in view of (4.5). Since K is arbitrary, the countably H2-

rectifiability of Ju.t/, together with the basic decomposition (2.2) for Eu.t/, yields that

Eju.t/ D Eju.t1/ on A;

which entails (4.3). Finally (4.4) is a consequence of (4.3) and of the admissibility condition

Eu.t/ D e.t/C p.t/.

REMARK 4.4 Let A � ˝ [ �d be open in the relative topology. Require additionally that any

tangential trace Œ�D.t/��� on �d be such that

ˇ

ˇŒ�D.t/���
ˇ

ˇ <

r

1

3
�c ; H

2-a.e. on A \ �d :

In view of the flow rule (3.12) on the boundary, we conclude that no plastic slips occur on A

(boundary included) in the time interval Œt1; t2�.

Item (a) in Theorem 4.3 will be implied by suitable regularity on the Cauchy stress. Assume

that, besides (3.4), the external body force f satisfies

(

Df 2 L1
�

0; T IL3
loc
.˝IM 3�3/

�

�f 2 L1
�

0; T IL3
loc
.˝IR3/

�

;
(4.6)

while the initial configuration .u0; e0; p0/ 2 A.w.0// satisfies

�0 WD Ce0 2 H 1
loc.˝I M3

sym/: (4.7)

Then the following result holds true.

PROPOSITION 4.5 (Higher regularity for the stress) Assume that @b@˝�d is admissible according

to Definition 3.1 and that the additional smoothness assumptions (4.6) and (4.7) hold true. Then,

� 2 L1
�

0; T IH 1
loc.˝I M3

sym/
�

: (4.8)

In particular, the Lebesgue points of �.t/ for a.e. t 2 Œ0; T � have full H2-measure in ˝ .

Proof. With the assumptions of Theorem 3.6, together with (4.6)–(4.7), at our disposal, the

regularity (4.8) for the stress has been proved in, e.g., [10, Theorem 2.1], provided that the boundary

@˝ is C 2 and that @b@˝�d is also C 2. See also similar results in [7]. The seemingly more stringent

assumption on the regularity of the boundary found in [10] is only there to ensure existence of a

quasistatic evolution in the sense of Theorem 3.6. Since we appeal to more recent results which

only require Lipschitz regularity of the boundary @˝ [12, Theorem 2], the regularity result extends

verbatim to that setting.

Finally, because �.t/ 2 H 1
loc
.˝I M3

sym/ for a.e. t 2 Œ0; T �, it admits a precise representative

cap2-a.e., hence H˛-a.e. in ˝ for ˛ > 1 (see, e.g., [11, Sections 4.7, 4.8]). In particular, H2-a.e.

point in ˝ is a Lebesgue point for �.t/.

REMARK 4.6 For general Lipschitz domains, any additional regularity of �.t/ up to the boundary

is unclear. Even for smooth domains, the H 1-regularity up to the boundary is unknown: we refer

the reader to [8, Section 1.3] for a short survey of currently available results.
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Using the regularity properties of the stress, we can formulate the following result.

THEOREM 4.7 (A sufficient condition for the absence of plastic slips) Let @b@˝�d be admissible

according to Definition 3.1 and assume that the additional smoothness assumptions (4.6) and (4.7)

hold true. Let A � ˝ be open, and let Œt1; t2� � Œ0; T � be such that there exists � > 0 with

ˇ

ˇ

ˇ

ˇ

�1
D.t; x/C �cp

3

ˇ

ˇ

ˇ

ˇ

Cj�2
D.t; x/jC

ˇ

ˇ

ˇ

ˇ

�3
D.t; x/�

�cp
3

ˇ

ˇ

ˇ

ˇ

> � for a.e. x 2 A and a.e. t 2 Œt1; t2�; (4.9)

where �1
D.t; x/ 6 �2

D.t; x/ 6 �3
D.t; x/ are the eigenstresses of �D.t; x/.

Then, the conclusion of Theorem 4.3 still holds true, i.e., no plastic slip can occur on A in the

time interval Œt1; t2�.

Proof. Thanks to Proposition 4.5, H2-a.e. point in A is a Lebesgue point for �.t/. We claim that

condition (4.9) is satisfied at every Lebesgue point of �.t/ in A, i.e., if Q�.t; x/ denotes the Lebesgue

value of �.t/ at x, that

ˇ

ˇ

ˇ

ˇ

Q�1
D.t; x/C �cp

3

ˇ

ˇ

ˇ

ˇ

C j Q�2
D.t; x/j C

ˇ

ˇ

ˇ

ˇ

Q�3
D.t; x/ � �cp

3

ˇ

ˇ

ˇ

ˇ

> �: (4.10)

Then Q�D.t; x/ cannot have the critical structure (4.2), and the conclusion follows by Theorem 4.3.

In order to prove (4.10), let x 2 A be a Lebesgue point for �.t/. Recall that Lebesgue point are

points of approximate continuity (see e.g [11, Section 1.7]), so that, for every " > 0,

lim
r!0C

1

r3
L

3
�

fy 2 Br .x/ W j�.t; y/ � Q�.t; x/j > "g
�

D 0:

Since a.e. y 2 Br .x/ satisfies (4.9), a diagonal argument (in r and ") yields a sequence xn ! x

satisfying (4.9) and such that

�.t; xn/ ! Q�.t; x/:

A continuity argument on the eigenvalues of a matrix entails in turn that

� i
D.t; xn/ ! Q� i

D.t; x/ i D 1; 2; 3

so that (4.10) follows.

REMARK 4.8 (On the Cantor part of the plastic strain) The structure for �D.t/ at a plastic slip is

a consequence of the symmetrized rank-one structure of Pp.t/=j Pp.t/j on J Pu.t/. If such a structure

was also available for the Cantor part of Pp.t/, then the analogue of (4.5) would hold true for the

whole L3-singular part of E Pu.t/. In turn, this would entail that plasticity can only develop in an

absolutely continuous way, i.e., that the measure Pp.t/ would be absolutely continuous w.r.t. L3.

Since Ppc.t/ D Ec Pu.t/, the symmetrized rank-one structure would be implied by an extension of

Alberti’s rank one theorem [1] from the BV to the BD setting.

Similarly, such an extension would also permit to obtain the precise representation (4.2) j Pps.t/j-
a.e. on ˝ [ �d .
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A. Appendix

The following two results in linear algebra prove useful for our work.

PROPOSITION A.1 Let a; b 2 R3 be non zero vectors with a � b D 0. There exists an orthonormal

basis .e0
1; e

0
2; e

0
3/ such that

a ˇ b D diag

�

�jajjbj
2

; 0;
jajjbj
2

�

:

Moreover, the orthogonal lines with directors a; b are bisected by e0
1 and ˙e0

3 (and viceversa).

Proof. Note that 0 is an eigenvalue with eigenvector a � b. We can thus choose a basis .e0
1; e

0
2; e

0
3/

of eigenvectors for aˇ b such that e0
2 is parallel to a � b, so that in particular

spanfa; bg D spanfe0
1; e

0
3g: (A.1)

Since a ˇ b has zero trace,

a ˇ b D diag.��; 0; �/
for some � > 0 in the basis .e0

1; e
0
2; e

0
3/ (upon possible permutation of the vectors e0

1 and e0
3). Taking

into account that

jaˇ bj D jajjbjp
2
;

the diagonal representation easily follows.

Thanks to (A.1), the orthogonality of the vectors a and b leads to

8

ˆ

<

ˆ

:

ea WD a

jaj D ˛e0
1 C ˇe0

3

eb WD b

jbj D �ˇe0
1 ˙ ˛e0

3:

Since

.ea ˇ eb/ea D 1

2
eb and .ea ˇ eb/eb D 1

2
ea;

while

ea ˇ eb D diag

�

�1
2
; 0;

1

2

�

we get

j˛j D jˇj D 1p
2
;

and the geometric property thus follows.

PROPOSITION A.2 Let � 2 M3
sym. Then, for all unit vectors n,

j.�n/� j 6
j�Djp
2
:

Further, if, for some unit vector n 2 R
3,

j.�n/� j D j�D jp
2
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then there exists an orthonormal frame .e0
1; e

0
2; e

0
3/ with n bisecting e0

1 and e0
3 such that

� D diag

�

�1;
�1 C �3

2
; �3

�

; �3 � �1 D
p
2j�Dj:

In particular

�D D diag

�

�j�D jp
2
; 0;

j�D jp
2

�

:

Proof. Let us write � in the basis of its eigendirections .e0
1; e

0
2; e

0
3/ as

� D diag.�1; �2; �3/; �1 6 �2 6 �3:

Then

j�Dj2 WD 1

3

˚

.�1 � �2/
2 C .�1 � �3/

2 C .�2 � �3/
2
	

:

It is well known, although not completely trivial, that

max
jnjD1

jŒ�n�� j2 D .�3 � �1/
2

4
; (A.2)

and that such a maximum is achieved for n bisecting "0
1 and "0

3 (see, e.g., [21, Section 79]).

Since

x 2 R 7! .�1 � x/2 C .x � �3/
2

achieves its minimum at a single point, namely

x D ��
2 WD �1 C �3

2
;

we obtain that, for a given value of j�D j2 (that is of 1=3f.�1 � �2/
2 C .�1 � �3/

2 C .�2 � �3/
2g),

the value of .�1 � �3/
2 is at most 2j�Dj2, hence that of maxjnjD1 jŒ�n�� j2 is at most j�Dj2=2. The

first inequality is proved.

Assume now that the equality holds. We immediately conclude from (A.2) that n bisects "0
1 and

"0
3 and that

�3 � �1 D
p
2j�D j:

Assume by contradiction that

�2 6D �1 C �3

2
:

Then,

3j�Dj2 D 3

2
.�1 � �3/

2 D .�1 � ��
2 /

2 C .�1 � �3/
2 C .��

2 � �3/
2

< .�1 � �2/
2 C .�1 � �3/

2 C .�2 � �3/
2 D 3j�Dj2;

a contradiction.

In terms of the deviatoric part �D of the stress, the previous constraints amount to

�D D diag

�

�j�D jp
2
; 0;

j�D jp
2

�

:
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