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On the regularity of stationary points of a nonlocal isoperimetric problem
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In this article we establish C 3;˛-regularity of the reduced boundary of stationary points of a nonlocal

isoperimetric problem in a domain˝ � R
n. In particular, stationary points satisfy the corresponding

Euler-Lagrange equation classically on the reduced boundary. Moreover, we show that the singular

set has zero .n � 1/-dimensional Hausdorff measure. This complements the results in [4] in which

the Euler-Lagrange equation was derived under the assumption of C 2-regularity of the topological

boundary and the results in [27] in which the authors assume local minimality. In case ˝ has non-

empty boundary, we show that stationary points meet the boundary of ˝ orthogonally in a weak

sense, unless they have positive distance to it.
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1. Introduction

The main goal of this work is to establish C 3;˛-regularity of the reduced boundary of stationary

points of a nonlocal isoperimetric problem, and estimate the size of its singular set. More precisely,

we consider the following functional

E
 .E/ WD P.E;˝/C 


Z

E

Z

E

G.x; y/ dy dx C
Z

E

f .x/ dx; (1)

where ˝ � R
n is a domain (open, connected) of class C 2, E � ˝ is a bounded set of finite

perimeter P.E;˝/ in ˝ , 
 > 0, f 2 C 2
loc
.˝/, and G denotes a symmetric “kernel” (see below

for precise assumptions on G). The reader should think of G as the Green’s function of the Laplace

operator with Neumann boundary condition in ˝ or the Newtonian potential in case ˝ D R
n.

Physically, the first term in (1) models surface tension an thus its minimization favors clustering,

whereas the second term can be used to model a competing repulsive term. The third term can be

used to model additional external forces, cf. [12]. The functional E
 is often referred to as the sharp-

interface Ohta–Kawasaki energy [23] in connection with di-block copolymer melts. Minimizers

of E
 under a volume constraint describe a number of polymer systems [6, 22, 24] as well as

many other physical systems [3, 7, 13, 18, 22] due to the fundamental nature of the Coulombic

term. Despite the abundance of physical systems for which (1) is applicable, rigorous mathematical
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analysis for the case 
 ¤ 0 is fairly recent. We refer to the introduction of [5] for more details and

an account of the results about this functional.

Regularity for (local) minimizers of E
 under a volume constraint was established by Sternberg

and Topaloglu [27]. Sternberg and Topaloglu showed that any local minimizer E of E
 in a ball

B�.x/ is a so called .K; "/-minimizer of perimeter in the sense that

P
�

E;B�.x/
�

6 P
�

F;B�.x/
�

CK�n�1C" for all F such that F�E �� B�.x/,

for some K < 1 some " 2 .0; 1�. Standard results (see for example [11, 19, 21]) imply that the

reduced boundary @�E \ B�.x/ is of class C 1; "
2 and that the singular set .@E n @�E/ \ B�.x/ has

Hausdorff dimension at most n�8. Standard elliptic regularity theory then implies higher regularity.

For stationary points of E
 , which are not a priori minimizing in any sense, these methods are

no longer available. To this end Röger and Tonegawa [25, Section 7.2] proved C 3;˛-regularity of

the reduced boundary of stationary points of E
 that arise as the limit of stationary points of the

(diffuse) Ohta–Kawasaki energy with parameter " going to zero. They also showed that in this case

the singular set has zero .n � 1/-dimensional Hausdorff measure.

Our main result (Theorem 1.2) removes this special assumption. In particular, we do not require

any minimality assumptions. As part of our proof we establish a weak measure theoretic form

of the Euler-Lagrange equation for arbitrary stationary points of E
 under very weak regularity

assumptions (we only require the set to have finite perimeter). The Euler-Lagrange equation for

stationary points of E
 has previously been derived by Choksi and Sternberg [4], however assuming

C 2-regularity of the topological boundary. An application of our main result is used in [14] which

studies the asymptotics of stationary points of the Ohta–Kawasaki energy and its diffuse interface

version.

In order to state our main result we need to introduce some notation and specify our hypotheses:

For a given domain˝ � R
n with C 2-boundary we consider two classes of sets.

A WD
˚

E � ˝ W E is bounded and P.E;˝/ < C1
	

and Am WD
˚

E 2 A W jEj D m
	

;

where m 2 .0; j˝j/. A stationary point of E
 in A or Am is then defined as follows.

DEFINITION 1.1 (stationary point of E
 ) A set E 2 A is said to be a stationary point of E
 (see

(1)) in A if for every vector field X 2 C 1
c .R

nIRn/ with X � �˝ D 0 on @˝ we have that

d

dt

ˇ

ˇ

ˇ

tD0
E
 .�t .E// D 0; (2)

where f�tg is the flow of X , i.e. @t�t D X ı �t , �0 D id. If (2) holds only for all X such that

�t .E/ 2 Am for all t 2 .�"; "/ and some small " > 0, then we call E a stationary point of E
 in

Am.

We now specify the assumptions that we impose on the function G appearing in (1).

Firstly, we let � be the fundamental solution of the Laplace operator given by

� .x; y/ WD
(

1
!n.n�2/

1
jx�yjn�2 ; n > 3;

� 1
2�

log jx � yj; n D 2:
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Here !n D H
n.Sn/. We assume that

G.x; y/ D � .x; y/CR.x; y/;

where R is a symmetric corrector function. I.e.

(

�R.�; y/ D 1
j˝j

in ˝;
@R.�;y/

@�˝
D � @� .�;y/

@�˝
on @˝;

for all y 2 ˝ . Here we interpret j˝j�1 to be zero for domains ˝ of infinite measure. In case ˝ is

bounded G is a Neumann Green’s function of the Laplace operator. In case ˝ D R
2 we also allow

that G.x; y/ D �ˇ .x; y/ for ˇ 2 .0; 1/, where �ˇ .x; y/ WD jx � yj�ˇ .

For a bounded Borel set E � ˝ we define

�E .x/ WD
Z

E

G.x; y/ dy (3)

to be the potential of E associated to the kernel G. By standard elliptic theory we have �E 2
C

1;˛

loc
.˝/.

Our main result reads as follows.

THEOREM 1.2 LetE be a stationary point of the functional E
 in A or Am with f andG as above.

Then the reduced boundary @�
˝E D @�E \ ˝ is of class C 3;˛ for all ˛ 2 .0; 1/. In particular, the

equation

H C 2
�E C f D � (4)

holds classically on @�
˝E where H is the mean curvature1 of @�

˝E , � is a Lagrange multiplier, and

�E is the potential arising from E , given by (3). (When E is a stationary point in the class A, then

� D 0.) The measure �E D H
n�1

x@�
˝E is weakly orthogonal to @˝ in the sense that

Z

@�

˝
E

divEX dH
n�1 D �

Z

@�

˝
E

EH �X dH
n�1;

for all X 2 C 1
c .R

nIRn/ with X � �˝ D 0 on @˝ .

Moreover, the singular set .@E n@�E/\˝ is a relatively closed subset of @E\˝ which satisfies

H
s..@E n @�E/ \˝/ D 0 for all s > n � 1.

REMARK 1.3 The estimate on the singular set in Theorem 1.2 cannot be improved to s > n � 2.

This can already be seen in the case 
 D 0. E.g. let ˝ D B1.0/ � R
n and set E WD fx D

.x1; :::; xn/ 2 ˝ W x1 � x2 > 0g. Then E is a stationary point of the perimeter functional with

singular set .@E n @�E/ \˝ D fx 2 ˝ W x1 D x2 D 0g.

Our paper is organized as follows. In Section 2 we introduce our notation and review the basic theory

of rectifiable varifolds and sets of finite perimeter, and present Allard’s regularity theorem and De

1 By our convention the mean curvature is chosen such that the boundary of the unit ball in R
n has positive mean curvature

equal to n � 1.
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Giorgi’s structure theorem for the reader’s convenience. In Section 3 we prove some preliminary

results that are needed in order to prove Theorem 1.2. In Section 4 we prove Theorem 1.2. In

Section 5 we include, for convenience, the regularity for local minimizers of E
 near boundary

points x 2 @E \ @˝ . This has already been proven independently by Julin and Pisante [17,

Theorem 3.2].

2. Notation and preliminaries

Throughout this work we assume that ˝ � R
n, n > 2, is a domain (open, connected) of class C 2

(although the regularity assumption on the boundary is only needed when we consider vector fields

that do not have compact support inside˝). In this section we introduce our notation and summarize

basic results from geometric measure theory that are needed in the sequel. For more details on the

subject we refer the reader to [8, 11, 19, 26].

2.1 Varifolds and Allard’s regularity theorem

Here we collect basic definitions for varifolds and state Allard’s regularity theorem. An H
k-

measurable set M � R
n is called countably k-rectifiable if

M �
1
[

j D0

Nj ;

where Nj � R
n, 0 6 j 6 n � 1, are k-dimensional submanifolds of class C 1 and H

k.N0/ D 0.

For a vector field X 2 C 1
c .R

nIRn/ we can define the tangential divergence divMX of X by setting

divMX.x/ WD divNj
X.x/

for x 2 Nj , which is well-defined H
k-a.e. on M . Here divNj

X.x/ D Pk
iD1 �i � DX.x/�i , where

f�igiD1;:::;k is an orthonormal basis of the tangent plane TxNj of Nj at the point x.

For the purpose of this article we use the following pragmatic definition of rectifiable k-

varifolds, which usually has to be deduced from the definition (we refer to [26] for details):

A rectifiable k-varifold � in ˝ is a Radon measure on˝ such that

� D �H
k
xM;

where M is a countably k-rectifiable set and where the multiplicity function � 2 L1
loc
.Hk

xM/ is

such that � > 0 H
k-a.e. on M .

The first variation ı� of � with respect to X 2 C 1
c .˝;R

n/ is given by

ı�.X/ WD
Z

M

divMX d�;

which by [26, ÷16] is equal to d
dt
.�t ]�/.˝/jtD0. Here �t ]� denotes the image varifold given by

�t ]� WD .� ı ��1
t /Hk

x�t .M/, and where f�tg denotes the flow of X .

We say that � has generalized mean curvature EH in ˝ if

ı�.X/ D
Z

M

divMX d� D �
Z

M

EH �X d� for all X 2 C 1
c .˝IRn/; (5)
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where EH is a locally �-integrable function on M \˝ with values in R
n. We remark that using the

Riesz representation theorem such an EH exists if the total variation kı�k is a Radon measure in ˝

and moreover kı�k is absolutely continuous with respect to � (see [26] for details).

We make the trivial but important remark that a rectifiable k-varifold � in˝ that has finite total

mass �.˝/ naturally defines a rectifiable k-varifold in R
n.

A fundamental result in the theory of varifolds is the following regularity theorem due to Allard

[1] (see also [26, Chapter 5] for a more accessible approach) that holds for rectifiable k-varifolds �

in ˝ � R
n. We use the following hypotheses.

1 6 � �-a.e. , 0 2 spt.�/ ; B�.0/ � ˝

˛�1
k ��k�.B�.0// 61C ı

 

Z

B�.0/

j EH jp d�
!

1
p

�1� k
p 6 ı:

9

>

>

>

>

>

=

>

>

>

>

>

;

(h)

Here ˛k denotes the k-dimensional volume of the unit ball in R
k . Note that ˛k D !k

k
.

THEOREM 2.1 (Allard’s Regularity Theorem) For p > k, there exist ı D ı.n; k; p/ and 
 D

.n; k; p/ 2 .0; 1/ such that if � is a rectifiable k-varifold in˝ that has generalized mean curvature

EH in˝ (see (5)) and satisfies hypotheses (h), then spt.�/\B
�.0/ is a graph of a C 1;1� k
p function

with scaling invariant C 1;1� k
p estimates depending only on n; k; p; ı.

REMARK 2.2 More precisely, there is a linear isometry q of R
n and a function u 2

C 1;1� k
p .Bk


r .0/IRn�k/ with u.0/ D 0, spt.�/ \ B
�.0/ D q.graph.u// \ B
�.0/, and

��1 sup
Bk


�.0/

juj C sup
Bk


�.0/

jDuj C �1� k
p sup

x;y2Bk

�.0/

x¤y

jx � yj�.1� k
p /jDu.x/�Du.y/j 6 c.n; k; p/ı1=4k :

(6)

2.2 Sets of finite perimeter

Let E � ˝ be a Borel set. We say that E has finite perimeter P.E;˝/ in ˝ if

P.E;˝/ WD sup
X2C 1

c .˝IRn/
jX j61

Z

E

divX dx < 1:

The Riesz representation theorem implies the existence of a Radon measure �E on ˝ and a �E -

measurable vector field �E W ˝ ! R
n with j�E j D 1 �E -a.e. such that

Z

E

divX dx D
Z

Rn

X � �E d�E for all X 2 C 1
c .˝IRn/:

The vector valued measure E�E WD �E �E is sometimes referred to as the Gauss-Green measure of

E (with respect to ˝). For the total perimeter of the set E in ˝ we have

P.E;˝/ D �E .˝/:



544 D. GOLDMAN AND A. VOLKMANN

In the case that @E \˝ is of class C 1, we have

E�E D �E H
n�1

x.@E \˝/ and P.E;˝/ D H
n�1.@E \˝/:

In particular, we have for every point x 2 @E \˝

�E .x/ D lim
r!0

�
Z

@E\Br .x/

�E dH
n�1 D lim

r!0

E�E

�

Br .x/
�

�E

�

Br .x/
� : (7)

For a generic set E of finite perimeter, the reduced boundary @�
˝E of E in ˝ is defined as

those x 2 @E \ ˝ such that the above limit on the right hand side exists and has norm 1. The

Lebesgue-Besicovitch differentiation theorem implies that �E .R
n n @�

˝E/ D 0. The vector field

�E 2 L1.�E IRn/ defined by the equation (7) on @�
˝E (and set to 0 elsewhere), is called the measure

theoretic outer unit normal of E . For more details on sets of finite perimeter we refer to [8, 11, 26].

THEOREM 2.3 (De Giorgi’s structure theorem) Suppose E has finite perimeter in ˝ . Then @�
˝E is

countably .n � 1/-rectifiable. In addition for all x 2 @�
˝E

�.�E ; x/ WD lim
r!0

�E

�

Br .x/
�

˛n�1rn�1
D 1; (8)

where ˛n�1 is the volume of the unit ball in R
n�1. (i.e. the limit exists and is equal to 1.) Moreover,

�E D H
n�1

x@�
˝E .

REMARK 2.4 De Giorgi’s structure theorem in particular shows that every set E of finite perimeter

defines - through its generalized surface measure �E - a rectifiable .n � 1/-varifold of multiplicity

� � 1 on @�
˝E .

Let E � ˝ be of finite perimeter in ˝ . If ˝ is Lipschitz regular, one can define the (inner)

trace �C
E 2 L1.Hn�1

x@˝/ of �E on @˝ . For details we refer to [8, Chapter 5.3]. For every vector

field X 2 C 1
c .R

nIRn/ we have
Z

E

divX dx D
Z

@�

˝
E

X � �E dH
n�1 C

Z

@˝

X � �˝ �
C
E dH

n�1: (9)

This implies that E is also a set of finite perimeter as a subset of Rn with

P.E;Rn/ D P.E;˝/C
Z

@˝

j�C
E j dH

n�1:

As a finite perimeter set in R
n, E also has a Gauss-Green measure which we shall denote by E��

E .

Obviously E��
E x˝ D E�E and @�E \˝ D @�

˝E .

Since sets of finite perimeter are equivalence classes of sets, one needs to choose a good

representative in order to talk about their regularity properties. Without loss of generality (see [11,

Proposition 3.1] for details) we will always assume that any finite perimeter set E at hand satisfies

the following properties:

E is Borel (10a)

0 < jE \ B�.x/j < jB�.x/j for all x 2 @E and all � > 0 (10b)

@�
˝E D @E \˝ which implies that spt.�E / D @E \˝: (10c)
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2.3 The first variation of perimeter

Let X 2 C 1
c .˝IRn/ with corresponding flow f�t g. The first variation of perimeter is then easily

computed as (see [11, 19])

d

dt

ˇ

ˇ

ˇ

tD0
P.�t .E/;˝/ D

Z

@�

˝
E

divEX dH
n�1; (11)

where divEX is the tangential divergence of the vector field X with respect to E:

divEX D divX � �E �DX�E ;

which obviously agrees with the definition of tangential divergence with respect to @�
˝E . Hence,

the expression (11) equals the first variation ı�E .X/ of the varifold �E with respect to X .

In order to investigate the behavior of stationary points E of E
 at the boundary @˝ of ˝ we

need to allow for more general variations (as already appearing in Definition 1.1). By the regularity

assumption on @˝ it follows (cf. [16]) that �t .˝/ � ˝ (and �t .@˝/ � @˝) for the flow f�tg of

any vector fieldX 2 C 1
c .R

nIRn/ such thatX ��˝ D 0 on @˝ . Since P.�t .E/;˝/ � .�t ]�E /.R
n/

we see that the formula (11) still holds for such vector fields X .

3. Preliminary results

PROPOSITION 3.1 (First variation of nonlocal perimeter) Let E 2 A and let X 2 C 1
c .R

nIRn/ with

X � �˝ D 0 on @˝ be a vector field with corresponding flow f�t g. Then

d

dt
E


�

�t .E/
�

ˇ

ˇ

ˇ

tD0
D
Z

@�

˝
E

divEX dH
n�1 C 2


Z

@�

˝
E

�EX � �E dH
n�1

C
Z

@�

˝
E

fX � �E dH
n�1:

Proof. The first variation of perimeter is equation (11). It remains to compute the first variation of

the nonlocal term; the computation of the first variation of the third term is similar but easier. By the

change of variables formula it holds that
Z

�t .E/

Z

�t .E/

G.x; y/ dx dy D
Z

E

Z

E

G
�

�t .x/; �t .y/
�

j detD�t .x/jj detD�t .y/j dx dy: (12)

Hence, we compute using (12) and the assumptions on G which allow us to differentiate under the

integral

d

dt

ˇ

ˇ

ˇ

tD0

Z

�t .E/

Z

�t .E/

G.x; y/ dx dy

D 2

Z

E

Z

E

.rxG/.x; y/ �X.x/dx dy C 2

Z

E

Z

E

G.x; y/ divX.x/ dx dy

D 2

Z

E

Z

E

div.G.�; y/X/.x/ dx dy

D 2

Z

E

Z

E

div.� .�; y/X/.x/ dx dy C 2

Z

E

Z

@�

˝
E

R.�; y/X � �E d�E dy; (13)
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where in the last line we used the trace formula (9) and the fact that �˝ �X D 0 on @˝ . We cannot

directly apply the divergence theorem to the first term of (13) since @�
˝E is only .n � 1/-rectifiable

andG.�; y/ is not of class C 1 near x D y. We can get around this technical obstacle by applying the

results of [2], but we present a simple argument which suffices in our case. Since ˝ is of class C 2

(for this argument Lipschitz is enough) we have (see Section 3) that E is a set of finite perimeter in

R
n. By [11, Theorem 1.24] we can approximateE in the support of X by smooth sets E i such that

�E i ! �E in L1
loc.R

n/ and

E��
E i ! E��

E weakly as Radon measures on R
n:

We may apply the Lebesgue dominated convergence theorem to conclude that
Z

E

Z

E

div
�

� .�; y/X
�

.x/ dx dy D lim
i!1

Z

E

Z

E i

div
�

� .�; y/X
�

.x/ dx dy: (14)

Moreover, we have
Z

E i

div
�

� .�; y/X
�

.x/ dx D lim
�!0

Z

E i nB�.y/

div
�

� .�; y/X
�

.x/ dx: (15)

We may now apply the divergence theorem and we have for a.e. 0 < � < 1

Z

E i nB�.y/

div
�

� .�; y/X
�

.x/ dx

D
Z

@E i nB�.y/

� .�; y/X � �E i dH
n�1 �

Z

@B�.y/\E i

� .�; y/X � �B�.y/ dH
n�1: (16)

The second term on the right hand side of (16) can be estimated by c.n/ sup jX j �1�" for some

" 2 Œ0; 1/, and hence goes to zero as � ! 0. On the other hand, we have

ˇ

ˇ

ˇ

ˇ

Z

@E i nB%.y/

� .�; y/X � �E i dH
n�1 �

Z

@E i

� .�; y/X � �E i dH
n�1

ˇ

ˇ

ˇ

ˇ

6 H
n�1

�

@E i \ B%.y/
�1� 1

p

�Z

@E i \spt.X/

j� .�; y/jp dH
n�1

�
1
p

sup jX j;

where p 2 .1; n�1
n�2

/, in case n > 3, and p 2 .1; ˇ�1/ in case G D �ˇ . Whence, upon combining

(15) and (16),
Z

E i

div
�

� .�; y/X
�

.x/ dx D
Z

@E i

� .�; y/X � �Ei
dH

n�1:

Using (13) and applying Fubini’s theorem we arrive at
Z

E

Z

E i

div
�

G.�; y/X
�

.x/ dx dy D
Z

@E i

�EX � �E i dH
n�1: (17)

Now let i ! 1, using the fact that �E is continuous and that X has compact support, and

combining (14) and (17) we obtain
Z

E

Z

E

div
�

G.�; y/X
�

.x/ dx dy D
Z

@�E

�EX � �E dH
n�1:

The claim now follows from the fact that X is tangential to @˝ .
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LEMMA 3.2 There exists a vector field Y 2 C 1
c .˝IRn/ such that

R

E divYdx D 1.

Proof. Assume by contradiction that for every vector field X 2 C 1
c .˝IRn/:

R

E
divXdx D 0. Then

by Du Bois-Reymond’s lemma [9] we conclude that

�E D 0 or �E D 1 L
n-a.e. on ˝;

where we used that ˝ is connected. Hence,

E D ˝ or E D ; in the measure theoretic sense:

This contradicts the assumption that 0 < jEj < j˝j, proving the claim.

PROPOSITION 3.3 (Euler-Lagrange equation of non-local perimeter) Let E be a stationary point of

E
 in Am or A. Then there exists a real number � such that �E has a generalized mean curvature

vector
EH D �.� � 2
�E � f /�E (18)

and such that �E is weakly orthogonal to @˝ . That is, for every vector field X 2 C 1
c .R

nIRn/ with

X � �˝ D 0 on @˝ the following variational equation is true:

Z

@�

˝
E

divEX dH
n�1 D �

Z

@�

˝
E

EH �X dH
n�1: (19)

For stationary points in A, we have � D 0.

Proof.

Step 1: Construction of the local variation. The case of variations in A is an immediate consequence

of Proposition 3.1. For the case of Am let Y 2 C 1
c .˝IRn/ be a vector field such that

R

E
divYdx D

1. The existence of such a vector field is guaranteed by Lemma 3.2. Let f�tg be the flow of X and

f sg the flow of Y . For .t; s/ 2 R
2 set

A.t; s/ WD P
�

 s

�

�t .E/
�

;˝
�

and

V.t; s/ WD j s

�

�t .E/
�

j � jEj:
Then V 2 C 1.R2/, V.0; 0/ D 0 and @sV.0; 0/ D

R

E
divYdx D 1. The implicit function theorem

ensures the existence of an open interval I containing 0 and a function � 2 C 1.I / such that

V
�

t; �.t/
�

D 0 for all t 2 I and � 0.0/ D �@t V.0; 0/

@sV.0; 0/
:

Hence,

t 7!  �.t/ ı �t

is a 1-parameter family of C 1-diffeomorphisms of ˝ and thus defines a volume preserving

variation of E in ˝ .
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Step 2: Computing the first variation. The fact that E is a stationary point in the class Am then

implies from Proposition 3.1

d

dt

ˇ

ˇ

ˇ

tD0
A.t; �.t// D

Z

@�

˝
E

divEX D �2

Z

@�

˝
E

�EX � �E dH
n�1 �

Z

@�

˝
E

fX � �E dH
n�1:

On the other hand, we have

d

dt

ˇ

ˇ

ˇ

tD0
A
�

t; �.t/
�

D @t A.0; 0/C � 0.0/@sA.0; 0/

D
Z

@�

˝
E

divEX dH
n�1 C � 0.0/

Z

@�

˝
E

divEY dH
n�1

D
Z

@�

˝
E

divEX dH
n�1 �

R

E
divXdx

R

E
divYdx

Z

@�

˝
E

divEY dH
n�1

D
Z

@�

˝
E

divEX dH
n�1 � �

Z

@�

˝
E

X � �E dH
n�1;

where � WD
R

@�

˝
E

divEY dH
n�1, and where we used the divergence theorem on the last line.

Therefore, setting EH WD .2
�E C f � �/�E , we have

Z

@�

˝
E

divEX dH
n�1 D �

Z

@�

˝
E

EH �X dH
n�1

for every vector field X 2 C 1
c .R

nIRn/ with X � �˝ D 0 on @˝ .

4. Proof of the Theorem 1.2

Firstly, notice that the weak orthogonality of �E and˝ is included in Proposition 3.3.

We want to apply Allard’s regularity theorem (here Theorem 2.1) to establish the regularity of

the reduced boundary @�
˝E . We verify the necessary hypotheses:

By De Giorgi’s structure theorem (here Theorem 2.3) and Remark 2.4 we have that �E is

a multiplicity-1 rectifiable .n � 1/-varifold. Moreover, for each point x 2 @�
˝E we have that

�.�E ; x/ D 1. Now, we choose any point x0 2 @�
˝E . Without loss of generality, after possibly

translating and rotating the set E , we may assume that x0 D 0 and �E .0/ D �en. We fix any

p > n � 1 and pick ı 2 .0; 1/ to be as in the statement of Theorem 2.1. Since �.�E ; 0/ D 1 we

can find a small radius � > 0 such that

B�.0/ �� ˝ and ˛�1
n�1�

�n�1�E

�

B�.0/
�

6 1C ı: (20)

Proposition 3.3 implies that �E has generalized mean curvature EH in ˝ , given by

EH D �.� � 2
�E � f /�E

for some constant � 2 R. We have

k EHkL1.�ExB�.0// 6 j�j C 2
 sup
B�.0/

j�E j C sup
B�.0/

jf j DW c0:
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With Hölder’s inequality and (20) we get

 

Z

B�.0/

j EH jp d�E

!
1
p

�1� n�1
p 6 c0 .1C ı/

1
p ˛

1
p

n�1 �;

which is less that ı provided � 6 ıc�1
0 2� 1

p ˛
� 1

p

n�1. Thus the hypotheses (h) are satisfied and Theorem

2.1 implies the existence of a function u W B 0.WD Bn�1

� .0// ! R of class C 1;˛, ˛ D 1� .n� 1/=p,

such that u.0/ D 0, Du.0/ D 0, and spt.�E / \ B
�.0/ D graph.u/ \ B
�.0/. Moreover, our

orientation assumption on E implies that E \ .B 0 � I / D epigraph.u/ \ .B 0 � I / for some open

interval 0 2 I .

Now let X.x0; z/ D �.z/�.x0/en, where � 2 C 1
c .B

0/, x0 2 B 0, en D .0; : : : ; 0; 1/ is the n-th-

standard basis vector, and where � 2 C1
c .R/ is a cut-off function such that .� ıu/.x/ D 1 for every

x 2 B 0.

Then recalling that divEX D divX � �E �DX�E , we have divEX D �.r 0�; 0/ � �E�
n
E where

�n
E is the n-th component of the normal vector, and where r 0 is the gradient in R

n�1. Since @�E \
.B 0 � I / D @E \ .B 0 � I / is the graph of u, and by our orientation assumption, we have that

�n
E D �1p

1Cjr0uj2
. Using the area formula, equation (19) becomes

�
Z

B0

r 0� � r 0u
p

1C jr 0uj2
dx0 D

Z

B0

�

� � 2
 vE .x
0; u/ � f .x0; u/

�

� dx0: (21)

Equation (21) is the weak form of the prescribed mean curvature equation. Since by Theorem 2.1

the gradient of u is locally uniformly bounded in C 0;˛ and since the right hand side of (21) is of

class C 1;˛, interior Schauder estimates (see [10]) and bootstrapping imply local C 3;˛ regularity of

the function u. Thus (21) holds pointwise, and since x0 2 @�
˝E was arbitrary we have

H C 2
�E C f D � on @�
˝E;

where H is the classical mean curvature of the surface @�
˝E .

4.1 On the size of the singular set

By a direct consequence of the monotonicity formula, see [26, Corollary 17.8], we have that

�.�E ; x/ exists and that �.�E ; x/ > 1 for every point x 2 spt.�E / D @E \˝ . This allows

us to estimate the size of the singular set .@E n @�E/ \˝ .

PROPOSITION 4.1 We have the following estimate

H
n�1

�

.@E n @�E/ \˝
�

D 0:

Proof. The proof is exactly the same as the proof of [21, Theorem 2 of Section 2.5.4], but now

using the monotonicity formula [26, Theorem 17.7] to obtain the required lower bound on area.

More precisely, the monotonicity formula [26, Theorem 17.7] implies that

�E

�

B�j
.xj /

�

>
˛n�1

2
�n�1

j ;
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if ı is small enough as to guarantee that

˛
n�1

p

n�1

�

1 � 2� 1
p
�

>
k EHkLp

p � .n � 1/ı
1� n�1

p ;

for some p > n � 1.

5. Boundary regularity of local minimizers

In this section we outline how Theorem 1.2 can be used to prove boundary regularity, that is

regularity near points x 2 @˝ \ @E , for local minimizers E of E
 in A or Am. This has already

been established in [17] but we include it for convenience of the reader.

As mentioned earlier, the interior regularity for local minimizers of E
 was proved by Sternberg

and Topaloglu [27, Propostion 2.1]. The authors prove that local minimizers of E
 are .K; "/-

minimal and can thus appeal to the standard methods (cf. [20]). We include a slightly different

proof.

DEFINITION 5.1 We say that E 2 A or Am is a local minimizer of E
 in A or Am (at scale R) if

for all balls BR.x/ � R
n we have that

E
 .E/ 6 E
 .F / for all F 2 A or Am with E�F �� BR.x/: (22)

REMARK 5.2 Theorem 1.2 implies that for any ball B�.x/ � R
n with 0 < jE \ B�.x/j < j˝ \

B�.x/j we can find exterior and interior points, i.e. there exist two balls Br .a/; Br .b/ �� ˝ \
B�.x/ with

S

t2Œ0;1�Br .ta C .1 � t/b/ �� ˝ such that

jBr .a/ nEj D jE \ Br .a/j D 0:

We are now ready to prove the following.

PROPOSITION 5.3 (cf. [27, Propostion 2.1] ) Let E 2 A or Am be a local minimizer of E
 in A or

Am at scale 2R0 > 0, and let 0 < jE \ BR0
.x0/j < j˝ \ BR0

.x0/j for some ball BR0
.x0/ � R

n.

Then E is .K; "/-minimal in BR.x0/ for some R 6 R0, that is for every B� �� BR.x0/

P.E;˝/ 6 P.F;˝/CK�n for all F such that F�E �� B�.

Proof. Let B� �� BR.x0/ and let F be such that F�E �� B�. We only give a proof for local

minimizers in A. (For the case with a volume constraint one may use Remark 5.2 to adjust the

volume of the competitor F which gives us the additional term
c.n/

r
�n on the right hand side of

equation (23) below. We refer to [15, Proposition 1] for details. Alternatively, one can proceed as

in [27] and use a result of Giusti [12, Lemma 2.1] to balance out the volume constraint.)

By (22) we have that

P.E;˝/ 6 P.F;˝/C 


Z

F

Z

F

G.x; y/ dx dy � 


Z

E

Z

E

G.x; y/ dx dy

C
Z

F

f dx �
Z

E

f dx: (23)
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The last two terms can be estimated by
R

˝\B�
f dx 6 c.n/kf kL1�n, cf. [20]. In remains to

estimate the difference of the nonlocal terms. Setting A WD ˝\BR.x0/, we estimate for any p > n

Z

F

Z

F

G.x; y/ dx dy �
Z

E

Z

E

G.x; y/ dx dy

6

Z

F

 

Z

F \B�

G.x; y/ dx �
Z

E\B�

G.x; y/ dx

!

dy C
Z

E�F

j�E j dx

6

Z

E[.˝\B�/

 

Z

˝\B�

j�F \B�
.x/ � �E\B�

.x/jjG.x; y/j dx
!

dy C
Z

B�

j�E j dx

6 kGkL1..E[A/�A/jB�j C
�Z

A

j�E jp dx
�

1
p

jB�j1� 1
p

6 c.n; p;G;E/�n�1C.1� n
p

/:

The claim follows with " D 1 � n
p

for any p > n and K D c.n; p;G;E/ (orK D c.n; p;G;E; r/

in case of a volume constraint with r as in Remark 5.2).

DEFINITION 5.4 (cf. [16]) Here reg.�E / is defined as the set of all points in @E \ ˝ D spt.�E /

such that one of the following alternatives holds.

1. If x 2 reg.�E /\˝ there exits an oriented C 1-hypersurfaceMx such that �E D H
n�1

xMx and

�E D �Mx
in a neighborhood of x.

2. If x 2 reg.�E /\@˝ there exits an orientedC 1-hypersurfaceM 0
x with boundary inside @˝ such

that �E D H
n�1

xM 0
x and �E D �M 0

x
in a neighborhood of x.

And sing.�E / WD @E \˝ n reg.�E /.

Theorem 1.2 and Proposition 5.3 in conjunction with the results of Grüter [16] in which

boundary regularity of .K; "/-minimizers with weakly orthogonal surface measure was shown,

immediately imply the following

THEOREM 5.5 (cf. [17, Theorem 3.2]) Let E 2 A or Am be a local minimizer of E
 in A or Am.

Then

1. reg.�E / is of class C 1;˛ for all ˛ 2 .0; 1/, reg.�E / \˝ is of class C 3;˛ for all ˛ 2 .0; 1/ and

has mean curvature H D � � 2
�E � f for some constant � 2 R. If x 2 reg.�E / \ @˝ then

reg.�E / and @˝ intersect orthogonally in a neighborhood of x.

2. H
s.sing.�E // D 0 for all s > n � 8:

REMARK 5.6 In case ˝ is of class C k;˛ for k D 2; 3 we get that reg.�E / is of class C k;˛ (up to

the boundary).
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25. RÖGER, M., & TONEGAWA, Y. Convergence of phase-field approximations to the Gibbs-Thomson law.

Calc. Var. Partial Differential Equations 32 (2008), 111–136. Zbl1159.49046 MR2377408

26. SIMON, L. Lectures on geometric measure theory, vol. 3 of Proceedings of the Centre for Mathematical

Analysis, Australian National University. Australian National University, Centre for Mathematical

Analysis, Canberra, 1983. Zbl0546.49019 MR0756417

27. STERNBERG, P., & TOPALOGLU, I. On the global minimizers of a nonlocal isoperimetric problem in two

dimensions. Interfaces Free Bound. 13 (2011), 155–169. Zbl1216.35019 MR2793856

28. VOLKMANN, A., Regularity of isoperimetric hypersurfaces with obstacles in Riemannian manifolds.

Diplomarbeit, Albert-Ludwigs-Universität Freiburg (2010).

Zbl 0973.49007
http://www.emis.de/MATH-item?0973.49007
MR 1752422
http://www.ams.org/mathscinet-getitem?mr=1752422
Zbl 1159.49046
http://www.emis.de/MATH-item?1159.49046
MR 2377408
http://www.ams.org/mathscinet-getitem?mr=2377408
Zbl 0546.49019
http://www.emis.de/MATH-item?0546.49019
MR 0756417
http://www.ams.org/mathscinet-getitem?mr=0756417
Zbl 1216.35019
http://www.emis.de/MATH-item?1216.35019
MR 2793856
http://www.ams.org/mathscinet-getitem?mr=2793856

	Introduction
	Notation and preliminaries
	Varifolds and Allard's regularity theorem
	Sets of finite perimeter
	The first variation of perimeter

	Preliminary results
	Proof of the Theorem 1.2
	On the size of the singular set

	Boundary regularity of local minimizers

