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E-mail: nardi@ceremade.dauphine.fr

Gabriel Peyré
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This paper introduces a novel steepest descent flow in Banach spaces. This extends previous works on
generalized gradient descent, notably the work of Charpiat et al. [15], to the setting of Finsler metrics.
Such a generalized gradient allows one to take into account a prior on deformations (e.g., piecewise
rigid) in order to favor some specific evolutions. We define a Finsler gradient descent method to
minimize a functional defined on a Banach space and we prove a convergence theorem for such a
method. In particular, we show that the use of non-Hilbertian norms on Banach spaces is useful to
study non-convex optimization problems where the geometry of the space might play a crucial role
to avoid poor local minima. We show some applications to the curve matching problem. In particular,
we characterize piecewise rigid deformations on the space of curves and we study several models to
perform piecewise rigid evolution of curves.
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1. Introduction

This paper introduces a new descent method to minimize energies defined over Banach spaces. This
descent makes use of a generalized gradient which corresponds to a descent direction for a Finsler
geometry. We show applications of this method to the optimization over the space of curves, where
this Finsler gradient allows one to construct piecewise regular curve evolutions.

1.1 Previous works

Energy minimization for curve evolution. The main motivation for this work is the design of
novel shape optimization methods, with an emphasis toward curves evolutions. Shape optimization
is a central topic in computer vision, and has been introduced to solve various problems such
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as image segmentation or shape matching. These problems are often solved by introducing an
energy which is minimized over the space of curves. The first variational method proposed to
perform image segmentation through curve evolution is the snake model [25]. This initial proposal
has been formalized using intrinsic energies depending only on the geometry of the curves. A
first class of energies corresponds to a weighted length of the curve, where the weight acts as
an edge detector [11, 28]. A second class of segmentation energies, pioneered by the Mumford-
Shah model [31], integrates a penalization both inside and outside the curve, see for instance [12].
Shape registration requires to compute a matching between curves, which in turn can be solved by
minimizing energies between pairs of curves. An elegant framework to design such energies uses
distances over a space of measures or currents, see [21] for a detailed description and applications
in medical imaging.

Curve evolution for image processing is an intense area of research, and we refer for instance to
the following recent works for applications in image segmentation [20, 23, 27, 32] and matching [7,
37, 46].

Shape spaces as Riemannian spaces. Minimizing these energies requires to define a suitable space
of shapes and a notion of gradient with respect to the geometry of this space. The mathematical
study of spaces of curves has been largely investigated in the last years, see for instance [29, 50].
The set of curves is naturally modeled over a Riemannian manifold [30]. This corresponds to using
a Hilbertian metric on each tangent plane of the space of curves, i.e. the set of vector fields which
deform infinitesimally a given curve. This Riemannian framework allows one to define geodesics
which are shortest paths between two shapes [22, 51]. Computing minimizing geodesics is useful to
perform shape registration [39, 43, 45], tracking [39] and shape deformation [26]. The theoretical
study of the existence of these geodesics depends on the Riemannian metric. For instance, a striking
result [30, 48, 49] is that the natural L2-metric on the space of curves, that has been largely used
in several applications in computer vision, is a degenerate Riemannian metric: any two curves have
distance equal to zero with respect to such a metric.

Beside the computation of minimizing geodesics, Riemannian metrics are also useful to define
descent directions for shape optimization. Several recent works [14, 30, 48, 49] point out that
the choice of the metric, which the gradient depends on, notably affects the results of a gradient
descent algorithm. Carefully designing the metric is thus crucial to reach better local minima of the
energy. Modifying the descent flow can also be important for shape matching applications. A typical
example of such Riemannian metrics are Sobolev-type metrics [38, 40–42] which lead to smooth
curve evolutions.

Shape spaces as Finslerian spaces. It is possible to extend the Riemannian framework by
considering more general metrics on the tangent planes of the space of curves. Finsler spaces make
use of Banach norms instead of Hilbertian norms [8]. A few recent works [29, 49] have studied the
theoretical properties of Finslerian spaces of curves. To the best of our knowledge, with the notable
exception of [15], which is discussed in detail in Section 1.4, no previous work has used Finslerian
metrics for curve evolution.

Generalized gradient flow. Beyond shape optimization, the use of non-Euclidean geometries is
linked to the study of generalized gradient flows. Optimization on manifolds requires the use of
Riemannian gradients and Riemannian Hessians, see for instance [1]. Second order schemes on
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manifolds can be used to accelerate shape optimization over Riemannian spaces of curves, see [34].
Optimization over Banach spaces requires the use of convex duality to define the associated gradient
flow [2, 5, 24]. It is possible to generalize these flows for metric spaces using implicit descent steps,
we refer to [4] for an overview of the theoretical properties of the resulting flows.

1.2 Motivation

The metrics defined over the tangent planes of the space of curves (e.g., an Hilbertian norm in the
Riemannian case and a Banach norm in the Finsler case) have a major impact on the trajectory of the
associated gradient descent. This choice thus allows one to favor specific evolutions. A first reason
for introducing a problem-dependent metric is to enhance the performances of the optimization
method. Energies minimized for shape optimization are non-convex, so a careful choice of the
metric is helpful to avoid being trapped in a poor local minimum. A typical example is the curve
registration problem, where reaching a non-global minimum makes the matching fail. A second
reason is that, in some applications, one is actually interested in the whole descent trajectory, and
not only in the local minimum computed by the algorithm. For the curve registration problem,
the matching between the curves is obtained by tracking the bijection between the curves during
the evolution. Taking into account desirable physical properties of the shapes, such as global or
piecewise rigidity, is crucial to achieve state of the art results, see for instance [13, 16, 36]. In this
article, we explore the use of Finsler gradient flows to encode piecewise rigid deformations of the
curves.

1.3 Contributions

Our first contribution is the definition of a novel generalized gradient flow, that we call Finsler
descent, and the study of the convergence properties of this flow. This Finsler gradient is obtained
from the W 1;2-gradient through the resolution of a constrained convex optimization problem.
Our second contribution is the instantiation of this general framework to define piecewise rigid
curve evolutions, without knowing in advance the location of the articulations. This contribution
includes the definition of novel Finsler penalties to encode piecewise rigid and piecewise similarity
evolutions. It also includes the theoretical analysis of the convergence of the flow for BV 2-regular
curves. Our last contribution is the application of these piecewise regular evolutions to the problem
of curve registration. This includes the definition of a discretized flow using finite elements, and a
comparison of the performances of Riemannian and Finsler flows for articulated shapes registration.
The Matlab code to reproduce the numerical results of this article is available online.1

1.4 Relationship with [15]

Our work is partly inspired by the generalized gradient flow originally defined in [15]. We use
a different formulation for our Finsler gradient, and in particular consider a convex constrained
formulation, which allows us to prove convergence results. An application to piecewise rigid
evolutions is also proposed in [15], but it differs significantly from our method. In [15], piecewise
rigid flows are obtained using a non-convex penalty, which poses both theoretical difficulties
(definition of a suitable functional space to make the descent method well-defined) and numerical

1 https://github.com/gpeyre/2013-IFB-FinslerGradient

https://github.com/gpeyre/2013-IFB-FinslerGradient
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difficulties (computation of descent direction as the global minimizer of a non-convex energy). In
our work we prove a characterization of piecewise rigid deformations that enables the definition of a
penalty depending on the deformation (instead of instantaneous parameters as done in [15]). Then,
we generalize this penalty to the BV 2-framework obtaining a convex penalty for BV 2-piecewise
rigid deformations.

1.5 Paper organization

Section 2 defines the Finsler gradient and the associated steepest descent in Banach spaces, for
which we prove a convergence theorem. Section 3 introduces the space of BV 2-curves and studies
its main properties, in particular its stability to reparametrization. Section 4 characterizes C 2-
piecewise rigid motions and defines a penalty in the case of BV 2-regular motions. We apply
this method in Section 5 to the curve registration problem. We minimize a matching energy using
the Finsler descent method for BV 2-piecewise rigid motions. Section 6 details the finite element
discretization of the method. Section 7 gives numerical illustrations of the Finsler descent method
for curve matching. Section 8 refines the model introduced in Section 4 to improve the matching
results by replacing piecewise rigid transforms with piecewise similarities.

2. Finsler descent method in Banach spaces

Let .H; h�; �iH / be a Hilbert space and let E be a Fréchet differentiable energy defined on H .
We consider a Banach space .B; k:kB/ which is dense in H and continuously embedded in H ,

and we consider the restriction of E to B (such a restriction will be also denoted by E).
We aim to solve the following minimization problem

inf
� 2B

E.� / (2.1)

using a steepest descent method. We treat B as a manifold modeled on itself and denote by T� B
the tangent space at � 2 B. In the following we suppose that at every point � 2 B, the space T� B
coincides with B, although our descent method can be adapted to more general settings.

For every � 2 B we define an inner product h�; �iH.� / that is continuous with respect to � 2 B,
and we suppose that the norms k � kH and k � kH.� / are uniformly equivalent for every � belonging
to a ball of B (with respect to the norm on B). This makes H complete with respect to the norm
k � kH.� /. Note that this inner product may be different from the inner product induced by h�; �iH

on T� B, and in particular it might depend on � . For instance in the case of Sobolev metrics for the
space of curves we usually consider H D W 1;2.Œ0; 1�;R2/ and set B D T� B D W 1;2.Œ0; 1�;R2/

equipped with the measure defined by the arclength of � (see Remark 2.4).
Since E is Fréchet differentiable and .H; h�; �iH.� // is a Hilbert space, by the Riesz

representation theorem, there exists a unique vector v 2 H such that

DE.� /.˚/ D hv; ˚iH.� / 8 ˚ 2 T� B :

The vector v represents the gradient of E at � with respect to the inner product h�; �iH.� /, and it is
denoted by v D rH.� /E.� /.
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2.1 Finsler gradient

The Finsler gradient determines a descent direction by modifying rH.� /E.� / with respect to a
penalty R� that depends on � . It is defined by minimizing R� under a constraint L� .

Definition 2.1 (Finsler gradient) For every � 2 B, let R� W T� B ! RC [ fC1g be a function
such that R� ¤ C1 and L� � T� B a set satisfying

L� �
n
˚ 2 T� B W ˝rH.� /E.� /; ˚

˛
H.� /

> .1 � �/krH.� /E.� /kH.� /k˚kH.� /

o
(2.2)

where � 2 .0; 1/ is a fixed parameter independent of � . This parameter is typically adapted to the
targeted applications (see Section 7), and in particular to the energy E . If R� admits a minimum on
L� then a Finsler gradient for E at � with respect to R� is defined as:

rR�
E.� / 2 argmin fR� .˚/ W ˚ 2 L� g : (2.3)

Note that if rH.� /E.� / D 0 then � is a critical point and any descent algorithm stops. Note that
R� is in general not equal to the Banach norm defined over the tangent space. This is important for
some applications, such as the one considered in Section 4 (piecewise rigid deformations).

The next theorem gives an existence result for the Finsler gradient which is proved by using the
standard direct method of calculus of variations.

Theorem 2.2 Let T� B be a Banach space equipped with a topology T .T� B/ such that every
bounded sequence in T� B converges (up to a subsequence) with respect to the topology T .T� B/.
Let R� be coercive (i.e., R� .˚/ ! C1 as k˚kT� B ! C1) and lower semi-continuous with
respect to the topology T .T� B/ and we suppose that L� is closed in T� B with respect to the
topology T .T� B/. Then Problem (2.3) admits at least a solution.

Proof. As R� is coercive, every minimizing sequence is bounded in T� B so it converges (up to a
subsequence) with respect to the topology T .T� B/ toward an element of L� . Now, because of the
lower semi-continuity of R� , the theorem ensues.

Such a result is the generalization of the usual existence theorem of calculus of variations on a
reflexive Banach space. In fact (see Corollary 3.23 p. 71 in [10]), if T� B is reflexive, the existence
of the Finsler gradient is guaranteed whenever L� is convex and closed with respect to the strong
topology of T� B, and R� is coercive, R� ¤ C1, convex, and lower semi-continuous with respect
to the strong topology of T� B. These hypotheses guarantee in particular an existence result if T� B
is a Hilbert space.

The previous theorem guarantees the existence of a minimum on non-reflexive Banach spaces.
The key point is the existence of a suitable topology which guarantees compactness of minimizing
sequences. We point out that, in general, such a topology is weaker than the strong topology of the
Banach space.

We point out that the applications studied in this work concern a minimization problem on
T� B D BV 2.S1;R2/. Such a space is not reflexive but the weak* topology of BV 2.S1;R2/

satisfies the hypotheses of the previous theorem (see Appendix). Then, for some suitable set L�

and penalty R� , the existence of the Finsler gradient is guaranteed.
The set L� imposes a constraint on the direction of the Finsler gradient and more precisely

on the angle between the Finsler and Hilbert gradient. It is crucial to guarantee the convergence
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of the descent method by the Zoutendijk theorem (see Theorem 2.5). The parameter � controls the
deviation of the Finsler gradient with respect to rH.� /E.� /. This parameter can be tuned by the
user to modify the geometry of the trajectory of the flow defined in Section 2.2. The impact of � is
studied by several numerical simulations in Section 7.1.

If the hypotheses of Theorem 2.2 are verified then the minimum in (2.3) exists, but in general it
is not unique. A Finsler gradient is any minimum of the functional minimized in (2.3).

Condition (2.2) implies� rH.� /E.� /

krH.� /E.� /kH.� /

;
rR�

E.� /

krR�
E.� /kH.� /

�
H.� /

> .1 � �/ > 0 8 � 2 B: (2.4)

This shows that the Finsler gradient is a valid descent direction, in the sense that

d
dt

E
�
� � trR�

E.� /
�ˇ̌̌

tD0
D � ˝rH.� /E.� /; rR�

E.� /
˛
H.� /

< 0 :

Remark 2.3 (Relationship with [15]) Our definition of Finsler gradient is partly inspired by the
generalized gradient introduced in Section 6.1 of [15]. An important difference is that we introduce
a constraint L� whereas [15] defines the gradient as a minimum of DE.� /.˚/ C R� .˚/ on
T� B. This is a crucial point because, as shown in the next section, this constraint guarantees the
convergence of the descent method associated with the Finsler gradient toward a stationary point of
E .

Remark 2.4 (Relationship with Sobolev gradient) We consider the spaces B D W 1;2.Œ0; 1�;R2/,
H D L2.Œ0; 1�;R2/. More precisely, for every � 2 B, we set T� B D W 1;2.Œ0; 1�;R2/ and we
denote by L2.� / the space L2.Œ0; 1�;R2/ equipped with the norm

k�k2
L2.� /

D
Z 1

0

j�.s/j2j� 0.s/jds:

In order to make such a norm well-defined we suppose that j� 0.s/j ¤ 0 for a.e. s 2 S1. This setting
models smooth parametric planar curves and their deformations � . Note that the space of curves is
further detailed in Section 3.

We introduce
R� .˚/ D kD˚k2

L2.� /
; 8 ˚ 2 T� B;

L� D ˚
˚ 2 T� B W krL2.� /E.� / � ˚kL2.� / 6 �krL2.� /E.� /kL2.� /

�
(2.5)

where we denote by D˚ the weak derivative of ˚ . Note that L� satisfies condition (2.2). For a
given differentiable energy E , (2.3) becomes

rR�
E.� / 2 argmin

˚2L�

kD˚k2
L2.� /

: (2.6)

We remark that, comparing with Proposition 4 p. 17 in [15], the Finsler gradient (2.6) represents a
constrained version of the Sobolev gradient. Note also that in Definition 2.1, the penalty R� need
not be quadratic so that the negative Finsler gradient can be understood as a generalization of the
Sobolev gradient.
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2.2 Finsler descent method

In this section we consider the minimization problem (2.1) of an energy E on B. Given some
initialization �0 2 B, the Finsler gradient descent is defined as

�kC1 D �k � �krR�k
E.�k/ (2.7)

where rR�k
E.�k/ is any minimizer of (2.3) and the step size � D �k > 0 is chosen in order to

satisfy the Wolfe constraints�
E.� C �v/ 6 E.� / C ˛� hrH E.� /; viH

hrH E.� C �v/; viH > ˇ hrH E.� /; viH

(2.8)

for some fixed 0 < ˛ < ˇ < 1 and with v D �rR�k
E.�k/, see for instance [33], p.37.

We have the following result.

Theorem 2.5 Let E 2 C 1.H;RC/ be a non-negative energy. We suppose that there exists a
constant L > 0 such that

krH E.�1/ � rH E.�2/kH 6 Lk�1 � �2kH 8 �1; �2 2 H : (2.9)

Then, for the sequence f�kgk (defined in (2.7)), krH E.�k/kH ! 0.

Proof. Since f�kg is the sequence defined by the gradient descent satisfying the assumption of the
Zoutendijk theorem (see [33]: Theorem 3.2 p.43) for the ambient norm on H , we have:

1X
kD0

*
rH E.�k/

krH E.�k/kH

;
rR�k

E.�k/

krR�k
E.�k/kH

+2

H

krH E.�k/k2
H < 1 :

As we have assumed that the norms k � kH and k � kH.� / are equivalent on every bounded ball of B,
for k large enough, the condition (2.4) implies:*

rH E.�k/

krH E.�k/kH

;
rR�k

E.�k/

krR�k
E.�k/kH

+
H

> .1 � �/M > 0

with M > 0. This follows by the fact that

hrH E.�k/; rR�k
EiH D DE.�k/.rR�k

E/ D hrH.� /E.�k/; rR�k
EiH.� /

and the equivalence of the norms applied to (2.2).
Therefore, we have in particular

1X
kD0

krH E.�k/k2
H < 1 ;

and the result ensues.

Remark 2.6 (On the Zoutendijk theorem) In the previous proof we applied the Zoutendijk theorem
in infinite dimensions which is not the case in [33]. However, their proof can be straightforwardly
generalized to the case of infinite dimensional Hilbert spaces.
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Note that the sequence defined by the Finsler descent method could diverge (for instance if
rH E.� / ! 0 as k� kB ! C1). However, if E is coercive, its level sets are compact with
respect to some weaker topology � of B, and the H -gradient is continuous with respect to such a
weak topology, then the previous theorem guarantees the convergence of the Finsler descent method
toward a stationary point of the energy. In fact, as E is coercive, we have that f�kg is uniformly
bounded in B. Then, as the level sets of E are �-weakly compact, f�kg �-weakly converges (up
to a subsequence) to an element of B. Because of the continuity property of E , such a point is a
stationary point of E .

Remark 2.7 An interesting problem would be to show that the Finsler gradient descent scheme
admits a limit flow when the step size tends to zero, or to show that the machinery of gradient flows
over metric spaces (see [4]) can be adapted to our setting. We believe this is however not trivial and
decided to leave this for future work.

3. Finsler gradient in the spaces of curves

This section specializes our method to a space of piecewise-regular curves. We target applications to
piecewise rigid evolutions to solve a curve matching problem (see Section 5). Note that, in order to
perform piecewise rigid evolutions, we are led to deal with curves whose first and second derivatives
are not continuous. This leads us to consider the setting of BV 2-functions. We refer the reader to
Appendix for the definition and the main properties of BV and BV 2 functions.

3.1 BV 2-curves

In this section we define the space of BV 2-curves and introduce its main properties. This models
closed, connected curves admitting a BV 2-parameterization.

In the following, for every � 2 BV 2.S1;R2/, we denote by d� the measure defined as

d� .A/ D
Z

A

j� 0.s/jds ; 8 A � S
1

where � 0 denotes the approximate derivative of � (see for instance [3]). In the following we identify
Œ0; 1� with the unit circle S1.

Definition 3.1 (BV 2-curves) We set B D BV 2.S1;R2/ equipped with the BV 2-norm. For any
� 2 B, we set T� B D BV 2.� /, the space BV 2.S1;R2/ equipped with the measure d� . In
BV 2.� /, differentiation and integration are done with respect to the measure d� . For every ˚ 2
T� B, we have in particular

d˚

d�
.s/ D lim

"!0

˚.s C "/ � ˚.s/

d� ..s � "; s C "//
; k˚kL1.� / D

Z
S1

j˚.s/jj� 0.s/j ds :

We also point out that d˚
d�

.s/ D ˚ 0.s/=j� 0.s/j for a.e. s 2 S
1, which implies that such a derivative is

Lebesgue-measurable. Remark that in order to make the previous derivation well defined we have to
make a hypothesis on the derivative. We refer to next section, in particular to (3.10), for a discussion
about the necessity of such a condition.

The first and second variation are defined as

T V� .˚/ D sup
�Z

S1

˚.s/ � dg

d�
.s/ d� .s/ W g 2 C1

c .S1;R2/; kgkL1.S1;R2/ 6 1

�
(3.1)
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and

T V 2
� .˚/ D sup

�Z
S1

˚ � d2g

d� 2
.s/ d� .s/ W g 2 C2

c.S1;R2/; kgkL1.S1;R2/ 6 1

�
(3.2)

for every ˚ 2 BV 2.S1;R2/. Now, as dg
d�

.s/ d� .s/ D g0.s/ ds we get T V� .˚/ D k˚ 0kL1.S1;R2/.
The BV 2-norm on the tangent space is defined by

k˚kBV 2.� / D k˚kW 1;1.� / C T V 2
� .˚/ :

In a similar way we define W 2;1.� /. Every ˚ 2 T� B operates on a curve � 2 B as

.� C ˚/.s/ D � .s/ C ˚.s/ ; 8 s 2 S
1:

Definition 3.2 (Tangent, normal, and curvature) For every � 2 B we define the following vector

�� .s/ D lim
r!0

D�
�
.s � r; s C r/

�
jD� j�.s � r; s C r/

�
where jD� j denotes the total variation of � and D� denotes the vector-valued measure associated
with the total variation. Note that, as � 2 W 1;1.S1;R2/, jD� j coincides with the measure d� (we
recall that the total variation of a W 1;1-function coincides with the L1-norm of its derivative) and
the limit defining �� exists for d� -a.e. s 2 S1. Moreover we have k�� k D 1 for d� -a.e. s 2 S1.

Now, � 2 W 1;1.S1;R2/, and we can suppose that j� 0.s/j ¤ 0 for almost every s 2 S1. This
implies in particular that a subset of S1 is d� -negligible if and only if it is Lebesgue-negligible.
Then, the tangent and normal vectors to the curve at d� -a.e. point � .s/ are defined as

t� .s/ D �� .s/

k�� .s/k n� .s/ D t� .s/? (3.3)

where .x; y/? D .�y; x/ ; 8 .x; y/ 2 R
2:

We point out that �� .s/ D � 0.s/=j� 0.s/j for a.e. s 2 S1 and t� 2 BV.S1;R2/ with t� � t� D 1 for
a.e. s 2 S

1. Thus, by differentiating with respect to d� , we get that the measure t� � D� t� is null
(D� denotes here the vector-valued measure associated with the total variation T V� ). Then, there
exists a real measure curv� such that

D� t� D n� curv� : (3.4)

By the definition of n� we also have

D� n� D �t� curv� : (3.5)

The measure curv� is called generalized curvature of � , and, in the case of a smooth curve, it
coincides with the measure �� ds where �� denotes the standard scalar curvature of � .

From the properties of the total variation (see for instance [3]) it follows that

jcurv� j.S1/ 6 jD2� j.S1/ (3.6)

where jcurv� j.S1/ denotes the total variation of the generalized curvature on the circle.
We remark that BV 2.S1;R2/ and BV 2.� / represent the same set of functions.



10 g. charpiat et al.

Let � the square with vertices f.0; 0/; .1; 0/; .1; 1/; .0; 1/g parameterized as

� .s/ D

8̂̂<
ˆ̂:

.4s; 0/ if s 2 .0; 1=4/

.1; 4.s � 1=4// if s 2 .1=4; 1=2/

.1 � 4.s � 1=2/; 1/ if s 2 .1=2; 3=4/

.0; 1 � 4.s � 3=4// if s 2 .3=4; 1/

Definition 3.3 (Projectors) We denote by ˘� the projection on the normal vector field n�

˘� .˚/.s/ D
	
˚.s/ � n� .s/



n� .s/; (3.7)

where � is the inner product in R
2. We denote by ˙� the projection on the tangent vector field t�

˙� .˚/.s/ D
	
˚.s/ � t� .s/



t� .s/ : (3.8)

Definition 3.4 (Hilbertian structure) The Banach space B D BV 2.S1;R2/ is continuously
embedded in the Hilbert space H D W 1;2.S1;R2/.

For every � 2 B, we define W 1;2.� / D W 1;2.S1;R2/, where integration is done with respect
to the measure d� . In particular, if � verifies essinf

s2S1
j� 0.s/j > 0, then the norms of W 1;2.S1;R2/

and W 1;2.� / are equivalent. This defines the following inner product on T� B

h˚; � iW 1;2.� / D
Z
S1

˚.s/ � �.s/ d� .s/ C
Z
S1

d˚

d�
.s/ � d�

d�
.s/ d� .s/ 8 ˚; � 2 T� B : (3.9)

Finally, recall that for a Fréchet-differentiable energy E on H , the W 1;2.� /-gradient of E at �

is defined as the unique deformation rW 1;2.� /E.� / satisfying :

DE.� /.˚/ D hrW 1;2.� /E.� /; ˚iW 1;2.� / ; 8 ˚ 2 T� B

where DE.� /.˚/ is the directional derivative.

3.2 Geometric curves and parameterizations

For applications in computer vision, it is important that the developed method (e.g., a gradient
descent flow to minimize an energy) only depends on the actual geometry of the planar curve, and
not on its particular parametrization. We denote Œ� � D � .S1/ the geometric realization of the curve,
i.e. the image of the parameterization in the plane.

If, for two curves �1; �2 2 B there exists a smooth invertible map ' W S1 ! S1 such that �2 D
�1 ı ', then �2 is a reparameterization of �1 and these parameterizations share the same image, i.e.
Œ�1� D Œ�2�. This section shows, in some sense, the converse implication in the BV 2 framework,
namely the existence of a reparameterization map between two curves sharing the same geometric
realization. This result is important since it shows the geometric invariance of the developed Finsler
gradient flow.

Note however that this is clearly not possible without any constraint on the considered curve.
For instance, there is no canonical parameterization of an eight-shaped curve in the plane. We will
only consider injective curves � 2 B satisfying the following additional property

0 … Conv
�
� 0.sC/; � 0.s�/

� 8 s 2 S
1 : (3.10)
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Here Conv denotes the closed convex envelope (a line segment) of the right and left limits � 0.sC/

and � 0.s�// of the derivative of � at s. We will show in the following that such a property gives a
generalized definition of immersion for BV 2-curves and implies that the support of the curve has
no cusp points.

We define the set of curves

B0 D ˚
� 2 BV 2.S1;R2/ W � is injective and satisfies .3:10/

�
(3.11)

equipped with the BV 2-norm.
Note that it is difficult to ensure that the iterates f�kg defined by (2.7) stay in B0, since B0 is

not a linear space. As shown in Proposition 3.6 below, B0 is an open set, so that one might need to
use small step sizes �k to guarantee that �k 2 B0. This is however no acceptable, because it could
contradict the constraints (2.8) and prevent the convergence of �k to a stationary point of E . This
issue reflects the well known fact that during an evolution, a parametric curve can cross itself and
become non-injective.

We also note that, as pointed out in Definitions 3.4 and 3.1, condition (3.10) guarantees that
the norms on L2.S1;R2/ and L2.� / and on BV 2.S1;R2/ and BV 2.� / are equivalent, so that the
abstract setting described in Section 2 is adapted to our case.

We first show that property (3.10) implies local injectivity of the curve and that this local
injectivity remains true in a neighborhood of the curve.

Proposition 3.5 Let �0 2 BV 2.S1;R2/ and t 2 S1 such that condition (3.10) is satisfied. There
exists " > 0 ; 	 > 0 and n 2 R2 a unit vector such that, if k�0 � � kBV 2.S1;R2/ < 	 , then �0 and �

are injective on js � t j < ", and

jh� .s/ � � .t/; nij > 	 js � t j on js � t j < " :

Proof. As � 0
0 is a function of bounded variation, the left and right limits exist and are finite.

Moreover, �0 verifies (3.10) at t if and only if there exists a unit vector n such that h� 0
0.tC/; ni > 0

and h� 0
0.t�/; ni > 0. Let 	0 D 1

2
minfh� 0

0.t�/; ni; h� 0
0.tC/; nig. By the fact that lims!t� � 0

0.s/ D
� 0

0.t�/ and lims!tC � 0
0.s/ D � 0

0.tC/, there exists " > 0 such that

jh�0.s/ � �0.t/; nij > 	0js � t j if js � t j < " ;

which proves the local injectivity for �0.
Now, since BV.S1;R2/ is continuously embedded in L1.S1;R2/, if k�0 � � kBV 2.S1;R2/ <

	0=2, then h� 0.tC/; ni > 	0=2 and h� 0.t�/; ni > 	0=2 which proves that � verifies (3.10).
Moreover we get

jh� .s/ � � .t/; nij >
	0

2
js � t j on js � t j < " ;

which proves the local injectivity of � . The result ensues by setting 	 D 	0=2.

Proposition 3.6 B0 is an open set of B D BV 2.S1;R2/.

Proof. If 
 2 B0 then
m D essmin

s2S1
j
0.s/j > 0 :

Now, by Proposition 3.5, if
k� � 
kBV.S1;R2/ < m=4
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then � is locally injective and verifies (3.10). Moreover, as S1 is compact and (3.10) is satisfied on
S1, there exists "; ˛ > 0 such that

j
.s/ � 
.s0/j > ˛js � s0j; 8 s; s0 2 S
1 such that js � s0j 6 " : (3.12)

Then, as 
 is injective, if we take k� � 
kBV 2.S1;R2/ < ˇ.
/ where

ˇ.
/ D 1

2
min

�
˛; inf

s2S1
inf

js�s0j>"
k
.s/ � 
.s0/k

�

then � is also globally injective.
Then n

� 2 B0

ˇ̌ k� � 
kBV 2.S1;R2/ < min
nm

4
; ˇ.
/

oo
� B0

which proves that B0 is an open set of BV 2.S1;R2/.

The next proposition proves the existence of a reparameterization between two curves sharing
the same image.

Proposition 3.7 (Reparameterization) For every �1; �2 2 B0 such that Œ�1� D Œ�2�, there exists a
homeomorphism ' 2 BV 2.S1;S1/ such that

�1 D �2 ı ' :

2) (Local coordinates) For every � 2 B0 the set � .S1/ can be locally represented as the graph of
a BV 2-function.

Proof. For every �1; �2 2 B0 we consider the arc-length parameterizations defined by

'�1
; '�2

W S1 ! S
1

'�1
.s/ D 1

Length.�1/

Z s

s1

j� 0
1.t/j dt ; '�2

.s/ D 1

Length.�2/

Z s

s2

j� 0
2.t/j dt

with s1; s2 2 S1 such that �1.s1/ D �2.s2/.
Because of property (3.10) we can apply the inverse function theorem for Lipschitz functions

(see Theorem 1 in [17]) which allows to define '�1
�1

; '�1
�2

2 BV 2.S1;S1/. It follows that

.�1 ı '�1
�1

ı '�2
/.s/ D �2.s/ 8 s 2 S

1:

3.3 Geometric invariance

For BV 2 curves, the geometric invariance of the developed methods should be understood as an
invariance with respect to BV 2 reparameterizations.

Definition 3.8 Let GBV 2 denote the set of homeomorphisms ' 2 BV 2.S1;S1/ such that '�1 2
BV 2.S1;S1/. Note that for every � 2 BV 2.S1;R2/ we have � ı ' 2 BV.S1;R2/ for every
' 2 GBV 2 . In fact, as every BV 2-function is Lipschitz-continuous, by the chain-rule for BV -
function, we get � ı ' 2 BV.S1;R2/. Moreover, .� ı '/0 D � 0.'/' 0 2 BV.S1;R2/ because BV

is a Banach algebra (one can check that � 0.'/ 2 BV.S1;R2/ by performing the change of variables
t D '.s/ in the definition of total variation).
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To ensure this invariance, we consider energies E and penalties R� such that

E.� ı '/ D E.� / ; R� ı'.˚ ı '/ D R� .˚/ 8 � 2 B0; 8 ' 2 GBV 2 ; 8 ˚ 2 T� B :

This implies that
rR� ı'

E.� ı '/.˚ ı '/ D rR�
E.� /.˚/ ı '

so that the descent scheme (2.7) does not depend on the parameterization of � . Finally, as�
� � �rR�

E.� /
� ı ' D � ı ' � �rR� ı'

E.� ı '/;

for � D �k , the descent step in (2.7) is also invariant under reparameterization.
This shows that the Finsler gradient flow can actually be defined over the quotient space

B=GBV 2 . To avoid unnecessary technicalities, we decided not to use this framework and develop
our analysis in the setting of the vector space B.

Another consequence of this invariance is that, as long as the evolution (2.7) is in B0, the flow
does not depend on the choice of the parameterization. However, as already noted in Section 3.2, it
might happen that the sequence leaves B0, in which case different choices of parameterizations of
an initial geometric realization can lead to different evolutions.

4. Piecewise rigidity

This section defines a penalty R� that favors piecewise rigid BV 2 deformations of BV 2-curves.
For the sake of clarity we present the construction of this penalty in two steps. We first characterize
in Section 4.1 C 2-global rigid deformations for smooth curves. Then, in Section 4.2, we introduce
a penalty that favors piecewise rigid BV 2 deformations for curves belonging to B.

4.1 Rigid curve deformations

A smooth curve evolution �t 2 C 1.R; B/ reads

8 t 2 R;
@�t .s/

@t
D ˚t .s/ where ˚t 2 T� .t/B : (4.1)

We further assume in this section that �t is a C 2 curve. This evolution is said to be globally rigid if
it preserves the pairwise distances between points along the curves, i.e.

8 t 2 R; 8 .s; s0/ 2 S
1 � S

1; j�t .s/ � �t .s
0/j D j�0.s/ � �0.s0/j: (4.2)

The following proposition shows that the set of instantaneous motions ˚t giving rise to a rigid
evolution is, at each time, a linear sub-space of dimension 3 of T�t

B.

Proposition 4.1 The evolution (4.1) satisfies (4.2) if and only if ˚t 2 R�t
for all t 2 R, where

R� D
n
˚ 2 T� B W 9a 2 R; 9b 2 R

2; 8 s 2 S
1; ˚.s/ D a � .s/? C b

o
: (4.3)

Proof. Recall that the group of distance preserving transformations on R
d is the Euclidean group

E.d/ D Rd Ì Od .R/ and that any element of E.d/ is uniquely defined by the image of d C 1
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points in R
d which are affinely independent. Therefore, provided that the curve � has at least three

non-collinear points, ˚t is the restriction of gt 2 E.d/, a path on E.d/ which is uniquely defined.
In addition, gt and ˚t have the same smoothness. Thus the result follows from the fact that the Lie
algebra of Rd Ì Od .R/ is Rd Ì A.d/, where A.d/ denotes the set of antisymmetric matrices. The
degenerate cases such as when the curve is contained in a line or a point are similar.

Note that for numerical simulations, one replaces the continuous PDE (4.1) by a flow discretized
at times tk D k� for some step size � > 0 and k 2 N,

�kC1 D �k C �˚k where ˚k 2 T�k
B:

This is for instance the case of a gradient flow such as (2.7) where ˚k D �rR�k
E.�k/. In this

discretized setting, imposing ˚k 2 R�k
only guarantees that rigidity (4.2) holds approximately and

for small enough times tk .
The following proposition describes this set of tangent fields in an intrinsic manner (using only

derivatives along the curve � ), and is pivotal to extend R� to piecewise-rigid tangent fields.

Proposition 4.2 For a C 2-curve � , one has ˚ 2 R� if and only if ˚ is C 2 and satisfies L� .˚/ D
0 and H� .˚/ D 0, where L� and H� are the following linear operators

L� .˚/ D d˚

d�
� t� and H� .˚/ D d2˚

d� 2
� n� : (4.4)

From a geometric point of view, L� .˚/ takes into account the length changes and H� .˚/ the
curvature changes.

Proof. Using the parameterization of � , any such deformation ˚ satisfies

9 Š .a; b/ 2 R � R
2; 8 s 2 Œ0; 1�; ˚.s/ D a� .s/? C b : (4.5)

By differentiation with respect to s, this is equivalent to

9 Š a 2 R; 8 s 2 Œ0; 1�;
d˚

ds
.s/ D aj� 0.s/j n� .s/

which can be rewritten as d˚
d�

.s/ D an� .s/ by differentiating with respect to the length element
d� D k� 0.s/k ds, or simply as d˚

ds
.s/ D an� .s/ by considering an arc-length parameterization.

This is equivalent to

9 Š a 2 R; 8 s 2 Œ0; 1�;

8̂̂<
ˆ̂:

d˚

d�
� t� .s/ D 0;

d˚

d�
� n� .s/ D a

which is equivalent to 8̂̂
<
ˆ̂:

d˚

d�
� t� D 0;

d
d�

�
d˚

d�
� n�

�
D 0
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and, using that
d

d�

�
d˚

d�
� n�

�
D d2˚

d� 2
� n� � d˚

d�
� �� t� ;

where �� is the curvature of � , we obtain the desired characterization.

4.2 Piecewise rigid BV 2 deformations

This section extends the globally rigid evolution considered in the previous section to piecewise-
rigid evolution.

In the smooth case considered in the previous section, this corresponds to imposing that an
instantaneous deformation ˚ 2 T� B satisfies (4.4) piecewisely for possibly different pairs .a; b/

on each piece. To generate a piecewise-smooth Finsler gradient ˚ D rR�
E.� / (as defined in (2.3))

that is a piecewise rigid deformation, one should design a penalty R� that satisfies this property.
This is equivalent to imposing L� .˚/ D 0 and H� .˚/ D 0 for all s 2 Œ0; 1� except for a finite
number of points (the articulations between the pieces). In particular, note that L� .˚/ is undefined
at these points, while H� .˚/ is the sum of Dirac measures concentrated at the articulation points
(due to the variations of a). This suggests that, in the smooth case, we can favor piecewise rigidity
by minimizing kH� .˚/kL1.� / under the constraint L� .˚/ D 0 a:e:, so that we control the
jumps of the second derivative without setting in advance the articulation points. Note also that
the minimization of the L1-norm favors sparsity and, in contrast to the L2-norm, it enables the
emergence of Dirac measures.

In order to extend such an idea to the BV 2-framework we remind that

kH� .˚/kL1.� / D T V�

�
d˚

d�
� n�

�
8 ˚ 2 C 2.S1;R2/; � 2 C 2.S1;R2/

which defines a suitable penalty in the BV 2-setting. Moreover, since we are interested in piecewise
rigid motions, we deal with curves that could be not C 1 at some points s. It is useful to introduce
the following operators

LC
� .˚/.s/ D lim

t!s
t2.s;sC"/

d˚

d�
.t/ � t� .t/ ; (4.6)

L�
� .˚/.s/ D lim

t!s
t2.s�";s/

d˚

d�
.t/ � t� .t/ : (4.7)

Of course if � and ˚ are C 1 at s we have LC
� .˚/.s/ D L�

� .˚/.s/ D L� .˚/.s/. The next
definition introduces a penalty for piecewise rigid evolution in B.

Definition 4.3 (BV 2 Piecewise-rigid penalty) For � 2 B and ˚ 2 T� B D BV 2.� /, we define

R� .˚/ D T V�

�
d˚

d�
� n�

�
C �C�

.˚/ (4.8)

where �C�
is the indicator function of C�

�C�
.˚/ D

�
0 if ˚ 2 C�

C1 otherwise :



16 g. charpiat et al.

Note that (3.1) is the total variation of f with respect to the measure d� . We remind that T V� .f / D
jDf j.S1/ for every f 2 L1.S1;R2/.

The set C� is defined as follows

C� D ˚
˚ 2 T� B W LC

� .˚/ D L�
� .˚/ D 0

�
: (4.9)

In order to define the Finsler gradient we consider a constraint on the normal component of the
deformation field.

Definition 4.4 (Deviation constraint) For � 2 B, we define

L� D
n
˚ 2 T� B W ˘� .rW 1;2.� /E.� / � ˚/


W 1;2.� /

6 �
˘� .rW 1;2.� /E.� //


W 1;2.� /

o
:

(4.10)

Here, � 2 .0; 1/ is called the rigidification parameter, and controls the deviation of the Finsler
gradient from the W 1;2 gradient. ˘� is the projector introduced in equation (3.7).

We point out that in the applications studied in this paper we consider an intrinsic energy E

(i.e., it does not depend on reparameterization). In this case the W 1;2-gradient of E is normal to the
curve, so that L� satisfies condition (2.2) in the case of an intrinsic energy, and it can be used to
define a valid Finsler gradient.

Using these specific instantiations for R� and L� , Definition 2.1 reads in this BV 2 framework
as follows.

Definition 4.5 (BV 2 Piecewise-rigid Finsler gradient) We define

rR�
E.� / 2 argmin

˚2L�

R� .˚/: (4.11)

The following result ensures the existence of a Finsler gradient. To prove it we consider the
space B equipped with the weak* topology.

Theorem 4.6 Problem (4.11) admits at least a solution.

In order to prove the theorem, we need the following lemmas. They guarantee in particular the
compactness of minimizing sequences with respect to the BV 2-weak* topology. The proof relies
on the evaluation of a bilinear form which is degenerate if the curve is a circle, so we treat the case
of the circle separately.

Lemma 4.7 Let � 2 B be an injective curve. We suppose that � is different from a circle. Then
there exists a constant C.� / depending on � such that

k˚kBV 2.� / 6 C.� /
�
.1 C �/k˘� .rW 1;2.� /E.� //kW 1;2.� / C R� .˚/

� 8 ˚ 2 L� \ C�

(4.12)
where ˘� is the operator defined in (3.7).

Proof. The proof is essentially based on estimation (4.14) giving a bound for the L1-norms of the
deformation ˚ and its first derivative. We also remark that, as ˚ 2 L� , we have

k˘� .˚/kL2.� / 6 .1 C �/
˘�

�rW 1;2.� /E.� /
�

W 1;2.� /
: (4.13)

In the following we denote by l.� / the length of the curve � .
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Bound on the first derivative. In this section we prove the following estimate for the L1-norms of
d˚
d�

� n� and ˚ :

max

(
k˚kL1.� / I

d˚

d�
� n�


L1.� /

)

6 C0.� /
�
.1 C �/k˘� .rW 1;2.� /E.� //kW 1;2.� / C R� .˚/

�
(4.14)

where C0.� / depends on � .
Let s0 2 S1, we can write

d˚

d�
� n� D u C a

where u 2 BV.� / such that u.s0/ D 0 and a D d˚
d�

.s0/ � n� .s0/ 2 R. As ˚ 2 C� we have
LC

� .˚/ D L�
� .˚/ D 0, which implies

d˚

d�
D
�

d˚

d�
� n�

�
n�

and

˚.s/ D ˚.s0/ C aŒ� .s/ � � .s0/�? C
Z s

s0

un� d� .s/ 8 s 2 S
1 : (4.15)

Now, by projecting on the normal to � , we can write

˘� .˚/ D ˘� .˚.s0/ C aŒ� .s/ � � .s0/�?/ C ˘�

�Z s

s0

un� d� .s/

�
: (4.16)

In particular, by the properties of good representatives for BV -functions of one variable (see [3,
p. 19]), we have

ju.s/j D ju.s/ � u.s0/j 6 T V� .u/ 8s 2 S
1

which implies that 
Z s

s0

un� d� .s/


L1.� /

6 l.� /T V� .u/ D l.� /R� .˚/ (4.17)

and 
Z s

s0

un� d� .s/


L2.� /

6 l.� /3=2R� .˚/ (4.18)

Thus, by (4.13), (4.18), and (4.16) it follows that

k˘� .˚.s0/ C aŒ� .s/ � � .s0/�?/kL2.� /

6 .1 C �/k˘� .rW 1;2.� /E.� //kW 1;2.� / C l.� /3=2R� .˚/ : (4.19)

We remark now that k˘� .˚.s0/ C aŒ� .s/ � � .s0/�?/k2
L2.� /

can be written as

k˘� .˚.s0/ C aŒ� .s/ � � .s0/�?/k2
L2.� /

D .j˚.s0/j; a/ � A

�
˚.s0/

j˚.s0/j ; s0

��j˚.s0/j
a

�
(4.20)
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where, for any e 2 S
1 � R

2 and s0 2 S
1, the matrix A.e; s0/ is defined by R

S1 .e � n� /2 d� .s/
R
S1

�
Œ� .s/ � � .s0/�? � n�

�
.e � n� / d� .s/R

S1

�
Œ� .s/ � � .s0/�? � n�

�
.e � n� / d� .s/

R
S1

�
Œ� .s/ � � .s0/�? � n�

�2 d� .s/

!
:

(4.21)
Note that the bilinear form defined by A.e; s0/ is degenerate if and only if the determinant of
A.e; s0/ is zero which means that there exists ˛ 2 R such that .e � ˛Œ� .s/ � � .s0/�?/ � n� D 0 for
every s 2 S1. Note that this implies that � is either a circle or a line. Now, as we work with closed
injective curves � is different from a line. Then, because of the hypothesis on � , we get that for
every s0 2 S

1 the bilinear form associated with A.e; s0/ is not degenerate.
In particular the determinant of A is positive which means that the bilinear form is positive-

definite. This implies that its smallest eigenvalue is positive and in particular, by a straightforward
calculation, it can be written as � .e; s0/ where � W S1 ! R is a positive continuous function. Then,
we have

inf
e;s02S1

�.e; s0/.j˚.s0/j2 C a2/ 6 �

�
˚.s0/

j˚.s0/j ; s0

�
.j˚.s0/j2 C a2/

6 k˘� .˚.s0/ C a� .s/?/k2
L2.� /

(4.22)

where the infimum of � on S1 � S1 is a positive constant depending only on � and denoted by �� .
The previous relationship and (4.19) prove that, for every s0 2 S1, we have

max fj˚.s0/j; ag 6 C0.� /
�
.1 C �/k˘�

�rW 1;2.� /E.� /
�kW 1;2.� / C R� .˚/

�
(4.23)

where C0.� / D maxf1=�� ; l.� /3=2=�� g depends only on � .
Then, because of the arbitrary choice of s0 and the definition of a (a D d˚

d�
.s0/ � n� .s0/), (4.23)

implies (4.14). In particular (4.14) gives a bound for the W 1;1.� /-norm of ˚ .

Bound on the second variation. We have

T V 2
� .˚/ D T V�

�
d˚

d�

�
:

Now, d˚
d�

D � d˚
d�

� n�

�
n� 2 BV.� / and, by the generalization of the product rule to BV -functions

(see Theorem 3.96, Example 3.97, and Remark 3.98 in [3]), we get

T V�

�
d˚

d�

�
6 2

 
T V�

�
d˚

d�
� n�

�
C
d˚

d�
� n�


L1.� /

T V� .n� /

!
:

The constant 2 in the previous inequality comes from the calculation of the total variation on
the intersection of the jump sets of

� d˚
d�

� n�

�
and n� (see Example 3.97 in [3]). Note also that

T V� .n� / D jDn� j.S1/.
Then, by (3.5) and (3.6), we get

T V�

�
d˚

d�

�
6 2

 
T V�

�
d˚

d�
� n�

�
C jcurv� j.S1/

d˚

d�
� n�


L1.� /

!

6 2

 
T V�

�
d˚

d�
� n�

�
C jD2� j.S1/

d˚

d�
� n�


L1.� /

!
(4.24)
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which implies that

T V 2
� .˚/ 6 C1.� /

 
R� .˚/ C

d˚

d�
� n�


L1.� /

!
: (4.25)

where C1.� / is a constant depending on � .
The Lemma follows from (4.14) and (4.25).

The next lemma gives a similar result in the case where � is a circle.

Lemma 4.8 Let � 2 B be a circle with radius r . Then there exists a constant C.r/ depending on r

such that

k˚kBV 2.� / 6 C.r/
�
.1 C �/k˘� .rW 1;2.� /E.� //kW 1;2.� / C R� .˚/

�
(4.26)

for every ˚ 2 L� \ C� such that ˚.s0/ � t� .s0/ D 0 for some s0 2 S1.

Proof. The proof is based on the same arguments used to prove the previous lemma. We denote by
r the radius of the circle.

As ˚.s0/ � t� .s0/ D 0, by the properties of good representatives for BV -functions of one
variable (see [3] p. 19), we have

j˚ � t� j D j˚.s/ � t� .s/ � ˚.s0/ � t� .s0/j 6 T V� .˚ � t� / 8s 2 S
1 : (4.27)

Now, as LC
� .˚/ D L�

� .˚/ D 0 and the curvature is equal to 1=r at each point, we get

d.˚ � t� /

d�
D ˚ � n�

r

and from (4.27) it follows

k˚ � t� kL1.� / 6
k˚ � n� kL1.� /

r
: (4.28)

Now, as ˚ 2 L� , we have

k˚ � n� kL2.� / 6 .1 C �/k˘�

�rW 1;2.� /E.� /
�kW 1;2.� / (4.29)

and, from (4.28) and (4.29), it follows

k˚kL1.� / 6
p

2r.2 C 1/.1 C �/k˘� .rW 1;2.� /E.� //kW 1;2.� / : (4.30)

Concerning the first derivative we remark that, as ˚ is periodic, the mean value of its first derivative
is equal to zero. Then, by Poincaré’s inequality (see Theorem 3.44 in [3]), we haved˚

d�


L1.� /

6 C0.r/T V�

�
d˚

d�

�
(4.31)

where C0.r/ is a constant depending on r . Moreover, by integrating by parts the integrals of the
definition of second variation, we get

T V 2
� .˚/ D T V�

�
d˚

d�

�
: (4.32)
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So, in order to prove the lemma it suffices to prove a bound for T V�

� d˚
d�

�
.

Now, as d˚
d�

D � d˚
d�

� n�

�
n� , by the generalization of the product rule to BV -functions (see

Theorem 3.96, Example 3.97, and Remark 3.98 in [3]), we get

T V�

�
d˚

d�

�
6
�

1 C 1

r

�
T V�

�
d˚

d�
� n�

�
D
�

1 C 1

r

�
R� .˚/ ; (4.33)

where we used the fact that n� has no jumps (see Example 3.97 in [3]).
The lemma follows from (4.30), (4.31), (4.32), and (4.33).

We can now prove Theorem 4.6.

Proof. The proof is based on Lemma 4.7 and Lemma 4.8, so we distinguish two cases: � is a circle
and it is not.

We suppose that � is different from a circle. Let f˚hg � L� \ C� be a minimizing sequence
of R� . We can also suppose sup

h

R� .˚h/ < C1. From Lemma 4.7 it follows that

sup
h

k˚hkBV 2.� / 6 C.� /
�
.1 C �/k˘�

�rW 1;2.� /E.� /
�kW 1;2.� / C sup

h

R� .˚h/
�

where C.� / depends only on � . This gives a uniform bound for the BV 2.� /-norms of ˚h and
implies that f˚hg converges (up to a subsequence) toward some ˚ 2 BV 2.� / with respect to the
BV 2.� /-weak* topology (see Theorem 3.23 in [3]).

In particular ˚h ! ˚ in W 1;1.� / which proves that ˚ 2 C� , and, by the lower semi-continuity
of the L2-norm, we also get ˚ 2 L� .

Now, as R� is lower semi-continuous with respect to the BV 2.� /-weak* topology, the theorem
ensues.

In the case where � is a circle with radius r , for every minimizing sequence f˚hg � L� \ C� ,
we consider the sequence

�h.s/ D ˚h.s/ � .˚h.s0/ � t� .s0//t� .s/ (4.34)

for some s0 2 S1. We remark that f�hg � L� . Moreover

d�h

d�
.s/ D d˚h

d�
.s/ �

�
˚h.s0/ � t� .s0/

r

�
n� .s/ (4.35)

which implies that, for every h, �h 2 C� and

R� .�h/ D R� .˚h/ : (4.36)

Then the sequence f�hg is a minimizing sequence of Problem (4.11) such that �.s0/ � t� .s0/ D 0.
We can also suppose sup

h

R� .�h/ < C1.

Then, by Lemma 4.8 we get

sup
h

k�hkBV 2.� / 6 C.r/
	
.1 C �/k˘�

�rW 1;2.� /E.� /
�kW 1;2.� / C sup

h

R� .�h/



where C.r/ depends only on r .
This proves a uniform bound for k�hkBV 2.� / which implies that the minimizing sequence f�hg

converges (up to a subsequence) with respect to the BV 2-weak* topology. Then we can conclude
as in the previous case.
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We point out that, as showed in the previous proof, when � is a circle the Finsler gradient
is defined up to a tangential translation. This was actually expected because such a tangential
translation is a rotation of the circle.

We have defined a penalty for piecewise rigid BV 2 deformations for curves belonging to B. In
the next section we use the Finsler descent method with respect to such a penalty to solve curve
matching problems.

5. Application to curve matching

This section shows an application of the Finsler descent method to the curve matching problem.

5.1 The curve matching problem

Given two curves �0 and 
 in B, the curve matching problem (also known as the registration
problem) seeks for an (exact or approximate) bijection between their geometric realizations Œ�0� and
Œ
� (as defined in Section 3.2). One thus looks for a matching (or correspondence) f W Œ�0� ! R2

such that f .Œ�0�/ is equal or close to Œ
�.
There exist a variety of algorithms to compute a matching with desirable properties, that are

reviewed in Section 1.1. A simple class of methods consists in minimizing an intrinsic energy E.� /

(i.e., E only depends on Œ� �), and to track the points of the curve, thus establishing a matching
during the minimization flow. We suppose that E.� / > 0 if Œ� � ¤ Œ
� and E.
/ D 0, so that
the set of global minimizers of E is exactly Œ
�. This is for instance the case if E.� / is a distance
between Œ� � and Œ
�. A gradient descent method (such as (2.7)) defines a set of iterates �k , so that
�0 is the curve to be matched to 
. The iterates �k (or at least a sub-sequence) converge to �1, and
the matching is simply defined as

8 s 2 S
1; f

�
�0.s/

� D �1.s/:

If the descent method succeeds in finding a global minimizer of E , then f is an exact matching,
i.e. f .Œ�0�/ D Œ
�. This is however not always the case, and the iterates �k can converge to a local
minimum. It is thus important to define a suitable notion of gradient to improve the performance of
the method. The next sections describe the use of the Finsler gradient to produce piecewise rigid
matching.

5.2 Matching energy

The matching accuracy depends on the energy and on the kind of descent used to define the flow.
In this paper we are interested in studying the Finsler descent method rather than designing novel
energies. For the numerical examples, we consider an energy based on reproducing kernel Hilbert
space (r.k.h.s.) theory [6, 47]. These energies have been introduced for curve matching in [21, 44].
For an overview on other types of energies we refer the reader to the bibliography presented in
Section 1.1.

We consider a positive-definite kernel k in the sense of the r.k.h.s theory [6, 47]. Following [44],
we define a distance between curves as

dist.�; 
/2 D Z.�; � / C Z.
; 
/ � 2Z.�; 
/ ; 8 �; 
 2 B (5.1)
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where
Z.�; 
/ D

Z
S1

Z
S1

n� .s/ � n�.t/ k
�
� .s/; 
.t/

�
d� .s/d
.t/ : (5.2)

As the kernel k is positive-definite in the sense of r.k.h.s. theory, it can be shown that dist defined
in (5.1) is a distance between the geometric realizations .Œ� �; Œ
�/ (up to change in orientation)
of the curves. In our numerical tests, we define k as a sum of two Gaussian kernels with standard
deviation � > 0 and ı > 0

k.v; w/ D e
� kv�wk2

2�2 C e
� kv�wk2

2ı2 ; 8 v; w 2 R
2; (5.3)

which can be shown to be a positive-definite kernel. We use a sum of Gaussian kernels to better
capture features at different scales in the curves to be matched. This has been shown to be quite
efficient in practice in a different context in [35]. This energy takes into account the orientation of
the normals along the shape in order to stress the difference between the interior and the exterior
of closed shapes. Remark that, to obtain interesting numerical results, both � and 
 have to be
parameterized with the same orientation (clockwise or counter-clockwise).

Given a target curve 
 2 B, we consider the following energy

E W B ! R; E.� / D 1

2
dist.�; 
/2 : (5.4)

Remark that, as dist is a distance then Œ
� is equal to the set of global minimizers of E .
We consider W 1;2.S1;R2/ as ambient space, so that we have

rW 1;2 E D KrL2E ; (5.5)

where K denotes the inverse of the isomorphism between W 1;2 and its dual. Then, it suffices to
compute the L2-gradient.

The gradient of E at � with respect to L2.� /-topology is given by the following proposition.

Proposition 5.1 The gradient of E at � with respect to the L2.� / scalar product is given by

rL2.� /E.� /.s/ D n� .s/
h Z

S1

n� .t/ � r1k.� .s/; � .t//d� .t/

�
Z
S1

n�.t/ � r1k.� .s/; 
.t//d
.t/
i

(5.6)

for every s 2 S1, where r1k represents the derivative with respect to the first variable.
For every deformation ˚ , the L2 gradient of E at � satisfies

hrL2.� /E.� /; ˚iL2.� / D
Z
S1

n� .s/ � ˚.s/

Z
S1

n� .t/ � r1k
�
� .s/; � .t/

�
d� .t/ d� .s/

�
Z
S1

n� .s/ � ˚.s/

Z
S1

n�.t/ � r1k
�
� .s/; 
.t/

�
d
.t/ d� .s/ :

Proof. In order to prove (5.6) we calculate the gradient for Z.�; 
/ with respect to � . We rewrite
Z as

Z.�; 
/ D
Z
S1

Z
S1

� 0.s/ � 
0.t/ k
�
� .s/; 
.t/

�
dt ds ;
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and we consider a smooth variation of the curve � , denoted by ı� . Then, for h small, we have

I.h/ D Z.� C hı�; 
/ � Z.�; 
/

h

D
Z
S1

Z
S1

�
� 0.s/ � 
0.t/

�
.r1k

�
� .s/; 
.t/

� � ı� .s// dt ds

C
Z
S1

Z
S1

ı� 0.s/ � 
0.t/ k
�
� .s/; 
.t/

�
dt ds C o.h/

and integrating by parts we obtain

I.h/ D
Z
S1

Z
S1

�
� 0.s/ � 
0.t/

�
.r1k.� .s/; 
.t// � ı� .s// dt ds

�
Z
S1

Z
S1

�
ı� .s/ � 
0.t/

�
.r1k

�
� .s/; 
.t/

� � � 0.s// dt ds C o.h/

which can be written as

I.h/ D
Z
S1

Z
S1

�r1k
�
� .s/; 
.t/

�t�
ı� .s/ ˝ � 0.s/ � � 0.s/ ˝ ı� .s/

�

0.t/

�
dt ds C o.h/

where v ˝ w D vwt ; 8 v; w 2 R
2: (5.7)

Now, writing ı� .s/ with respect to the basis ft� .s/; n� .s/g and reminding that � 0.s/ D
j� 0.s/jt� .s/, we can show that the matrix

M.s/ D ı� .s/ ˝ � 0.s/ � � 0.s/ ˝ ı� .s/

D j� 0.s/j�ı� .s/ � n� .s/
��

n� .s/ ˝ t� .s/ � t� ˝ n� .s/
�

acts as

M.s/.v/ D �j� 0.s/j�ı� .s/ � n� .s/
�
v?; 8 v 2 R

2: (5.8)

Then, by (5.7) and (5.8), we obtain

I.h/ D �
Z
S1

Z
S1

�
ı� .s/ � n� .s/

�
.r1k

�
� .s/; 
.t/

� � 
0.t/?
/ dt j� 0.s/jds C o.h/:

Finally, as h ! 0, we obtain the L2.� /-gradient of Z.�; 
/ which is given by

�n� .s/

Z
S1

n�.t/ � r1k
�
� .s/; 
.t/

�
d
.t/

that represents the second term in (5.6). For the first term we need to apply the same argument to
calculate the gradient of Z.�; � /.
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5.3 Matching flow

In this section, we use H D W 1;2.S1;R2/. In order to minimize E on B we consider the
scheme (2.7), that defines f�kg for k > 0 as

�kC1 D �k � �krR�k
E.�k/ (5.9)

where �0 is the input curve to be matched to 
, rR�k
E is defined by (4.11) (using H D

W 1;2.S1;R2/) and �k > 0 is a step size, that satisfies the Wolfe rule (2.8). According to Theorem
2.5, following proposition proves the convergence of the method:

Proposition 5.2 The W 1;2�gradient of the energy functional E is W 1;2� Lipschitz on every set of
curves of bounded length.

Proof. We remark that we choose W 1;2.S1;R2/ as ambient space and, moreover, we have

rW 1;2 E D KrL2E ; (5.10)

where we have denoted K the inverse of the isomorphism between W 1;2 and its dual. Then, it
suffices to prove the proposition for the L2-gradient. For the sake of clarity, we separate the proof
in several steps.

Continuity of the energy and the gradient. By the dominated convergence theorem, E is
continuous on W 1;2.S1;R2/. Note that

hrL2.� /E.� /; ˚iL2.� / D
Z
S1

� 0.s/
? � ˚.s/

Z
S1

� 0.t/? � r1k.� .s/; � .t//dt ds

�
Z
S1

� 0.s/
? � ˚.s/

Z
S1


0.t/? � r1k.� .s/; 
.t//dt ds

where .x; y/? D .�y; x/ for every .x; y/ 2 R2.
Then E is non-negative and C 1 with respect to the W 1;2.S1;R2/-ambient topology.

Condition (2.9). We detail the proof for the term of the gradient depending on both � and 
. For
the other term the proof is similar. For every couple of curves .�; 
/, we introduce the following
function

I.�; 
/.s/ D
Z
S1

n�.t/ � r1k
�
� .s/; 
.t/

�
d
.t/ D

Z
S1


0.t/? � r1k
�
� .s/; 
.t/

�
dt :

It suffices just to prove that there exists L > 0 such that

k� 0
1

?
I.�1; 
/ � � 0

2
?

I.�2; 
/kL2.S1;R2/ 6 Lk�1 � �2kW 1;2.S1;R2/

for every couple of curves .�1; �2/ 2 BV 2.S1;R2/. We have

k� 0
1

?
I.�1; 
/ � � 0

2
?

I.�2; 
/kL2.S1;R2/ D k� 0
1I.�1; 
/ � � 0

2I.�2; 
/kL2.S1;R2/
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and

k� 0
1I.�1; 
/ � � 0

2I.�2; 
/kL2.S1;R2/ 6 k� 0
1I.�1; 
/ � � 0

1I.�2; 
/kL2.S1;R2/

C k� 0
1I.�2; 
/ � � 0

2I.�2; 
/kL2.S1;R2/ : (5.11)

Note that
kI.�; 
/kL1.S1;R2/ 6 ˛k
0kL1.S1;R2/ ; (5.12)

where ˛ D supx;y2R2 jr1k.x; y/j. Now, we have

k� 0
1ŒI.�1;
/ � I.�2; 
/�k2

L2.S1;R2/

6 k� 0
1k2

L1.S1;R2/
kI.�1; 
/ � I.�2; 
/k2

L1.S1;R2/

6 k� 0
1k2

L1.S1;R2/
k
0k2

L1.S1;R2/
sup
s2S1

Z
S1

ˇ̌̌
r1k

�
�1.s/; 
.t/

� � r1k
�
�2.s/; 
.t/

�ˇ̌̌2
dt

6 k� 0
1k2

L1.S1;R2/
k
0k2

L1.S1;R2/

�2 C ı2

�2ı2
sup
s2S1

j�1.s/ � �2.s/j2 ;

where we used the fact that re�r2
is 1-Lipschitz continuous (given by a straightforward derivative

calculation). Then, as W 1;2.S1;R2/ is continuously embedded in L1.S1;R2/, we get

k� 0
1ŒI.�1; 
/ � I.�2; 
/�k2

L2.S1;R2/
6 C1k
0k2

L1.S1;R2/
k�1 � �2k2

W 1;2.S1;R2/
(5.13)

where C1 D k� 0
1k2

L1.S1;R2/
C 2

0 =�2 (C0 denotes here the constant of the embedding of W 1;2.S1;R2/

in L1.S1;R2/ so that k� kL1.S1;R2/ 6 C0k� kW 1;2.S1;R2/).
Moreover, by (5.12), we have

k� 0
1I.�2; 
/ � � 0

2I.�2; 
/k2
L2.S1;R2/

6 ˛2k
0k2
L1.S1;R2/

k� 0
1 � � 0

2k2
L2.S1;R2/

which implies

k� 0
1I.�2; 
/ � � 0

2I.�2; 
/k2
L2.S1;R2/

6 C2k�1 � �2k2
W 1;2.S1;R2/

(5.14)

where C2 D ˛2k
0k2
L1.S1;R2/

. Then, by (5.11), (5.13) and (5.14), the W 1;2-gradient of the energy
verifies (2.9) on every set of curves of bounded length. This guarantees actually that the constant C1

is uniformly bounded and we can define the Lipschitz constant.

Therefore, the application of Theorem 2.5 gives

Corollary 5.3 Under the assumption that the lengths of �k are bounded, every accumulation point
of f�kg in B D BV 2.S1;R2/ is a critical point of E .

Remark 5.4 We were not able to relax the boundedness assumption although this seems rather
plausible under the assumptions that the initial and target curves are in BV 2.S1;R2/. The result
of the corollary is however relatively weak in the sense that it is difficult to check numerically the
convergence in BV 2.S1;R2/.
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6. Discretization

This section discretizes Problem (4.11) using finite elements in order to calculate numerically the
Finsler gradient flow. We define a n-dimensional sub-space Bn � B of piecewise linear curves. The
embedding Bn � B defines a natural finite dimensional Riemannian and Finsler structure on Bn

inherited from the ones of B. This allows us to apply our Finsler gradient flow in finite dimension
to approximate the original infinite dimensional Finsler flow.

6.1 Finite elements spaces

Notations. In the following, to ease the notation, we identify R
2 with C and S

1 with Œ0; 1� using
periodic boundary conditions. The canonical inner produced on Cn is

D Qf ; Qg
E
Cn

D
nX

iD1

D Qfi ; Qgi

E
D

nX
iD1

Real. Qfi Qgi /; 8 Qf ; Qg 2 C
n ; (6.1)

where we denote by Qgi the conjugate of Qgi .

Piecewise affine finite elements. We consider the space P1;n of the finite elements on Œ0; 1� (with
periodic boundary conditions) of order one with n equispaced nodes. A basis of P1;n is defined as

�i .s/ D max
n
0; 1 � n

ˇ̌̌
s � i

n

ˇ̌̌o
s 2 Œ0; 1�; 8 i D 1; : : : ; n � 1

�n.s/ D max
˚
0; 1 � njsj�C max

˚
0; 1 � njs � 1j�; s 2 Œ0; 1�:

Every f 2 P1;n can be written as

f D
nX

iD1

Qfi �i ; Qfi 2 C (6.2)

with Qfi D f .i=n/ 2 C for every i . We denote by Qf D . Qf1; :::; Qfn/ 2 Cn the coordinates of f with
respect to the basis f�i giD1;:::;n. Remark that there exists a bijection between P1;n and Cn, defined
by the following operator

P1 W Qf D . Qf1; : : : ; Qfn/ 2 C
n 7! P1. Qf / D f 2 P1;n s.t. f D

nX
iD1

Qfi �i : (6.3)

The forward and backward finite differences operators are defined as

�C W Cn ! Cn ; �C. Qf /i D n. QfiC1 � Qfi / ;

�� W Cn ! Cn ; ��. Qf /i D n. Qfi � Qfi�1/ ;
(6.4)

Piecewise constant finite elements. For every f 2 P1;n, (6.2) implies that first derivative df
ds

belongs to P0;n � BV.Œ0; 1�;R2/, where P0;n is the class of the piecewise constant functions with
n equispaced nodes. A basis of P0;n is defined by

�i .s/ D I
Œ i

n ; iC1
n �

.s/ 8 i D 1; : : : ; n � 1 ; �n.s/ D IŒ0; 1
n

�.s/ ;
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where IA is the characteristic function of a set A, and with s 2 Œ0; 1�. Then, the first derivative of f

can be written as
df

ds
D

nX
iD1

�C. Qf /i �i : (6.5)

We finally define the following bijection between P0;n and Cn:

P0 W Qf D . Qf1; : : : ; Qfn/ 2 C
n 7! P0. Qf / D f 2 P0;n s.t. f D

nX
iD1

Qfi�i : (6.6)

6.2 Finite element spaces of curves

Discretized curves. The discrete space of curves is defined as Bn D P1;n � B and every curve
� 2 Bn can be written as

� D
nX

iD1

Q�i�i ; Q�i D � .i=n/ 2 C (6.7)

where the vector Q� D P �1
1 .� / D . Q�1; :::; Q�n/ 2 Cn contains the coefficients of � in the finite

element basis. By (6.5) the tangent and normal vectors (3.3) to � 2 Bn are computed as

t� D
nX

iD1

�C. Q� /i

j�C. Q� /i j
�i ; n� .i/ D t� .i/? ; (6.8)

where .x; y/? D .�y; x/ for all .x; y/ 2 R2. In particular we have

d�

ds
D

nX
iD1

�C. Q� /i �i : (6.9)

Discretized tangent spaces. For every � 2 Bn, the discrete tangent space to Bn at � is defined
as T� Bn D Bn equipped with the inner product h�; �iH 1.� /. Every vector field ˚ 2 T� Bn can be
written as

˚ D
nX

iD1

Q̊
i �i ; Q̊

i D ˚.i=n/ 2 C (6.10)

where Q̊ D . Q̊
1; : : : ; Q̊

n/ 2 Cn are the coordinates of ˚ with respect to the basis of P1;n.
By identifying every vector field ˚ 2 T� Bn with its coordinates Q̊ , the tangent space can be

identified with Cn. In particular we have

d˚

d�
D

nX
iD1

�C. Q̊ /i

j�C. Q� /i j
�i : (6.11)

Moreover, Cn can be equipped with the following Riemannian metric:

Definition 6.1 (Discrete inner product) We define `2. Q� / and h1. Q� / as the set Cn equipped with
the following inner products respectively˝ Q̊ ; Q� ˛

`2. Q� /
D ˝

P1. Q̊ /; P1. Q�/
˛
L2.� /

; (6.12)
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˝ Q̊ ; Q� ˛
h1. Q� /

D ˝
P1. Q̊ /; P1. Q�/

˛
H 1.� /

: (6.13)

We now give the explicit formulas for the products (6.12) and (6.13), which are useful for
computational purposes.

Proposition (6.2) details the relationship between the product (6.12) and the canonical inner
product on Cn defined by (6.1). For this purpose, we define the mass matrix M Q� 2 Rn�n as

M Q� D
nX

iD1

j�C. Q� /i jM i where M i
h;j D

Z .iC1/=n

i=n

�h�j : (6.14)

The elements of the matrices M i 2 Rn�n for i D 1; : : : ; n are equal to zero excepted for the
following block: �

M i
i;i M i

i;iC1

M i
iC1;i M i

iC1;iC1

�
D 1

6n

�
2 1

1 2

�
;

where the indices i � 1 and i C 1 should be understood modulo n.

Proposition 6.2 For all Q�; Q̊ in Cn, one has˝ Q̊ ; Q� ˛
`2. Q� /

D ˝ Q̊ ; M Q� Q� ˛
Cn ; (6.15)

where M Q� is the mass matrix defined in (6.14).

Proof. Denoting ˚ D P1. Q̊ / and � D P1. Q�/, (6.10) and (6.9) imply that

h˚; � iL2.� / D
Z 1

0

˚ � �d � .s/ D
nX

iD1

j�C. Q� /i j
Z .iC1/=n

i=n

0
@ nX

j D1

Q̊
j �j �

nX
hD1

Q�h�h

1
A ds :

Then, since (6.12), we have

˝ Q̊ ; Q� ˛
`2. Q� /

D
nX

iD1

j�C. Q� /i j
˝ Q̊ ; M i Q� ˛

Cn D ˝ Q̊ ; M Q� Q� ˛
Cn (6.16)

where M Q� is the mass matrix (6.14).

The next proposition details the relationship between the product (6.13) and the canonical inner
product on Cn. To this end, we introduce the matrix N Q� 2 Rn�n defined by

N Q� D
nX

iD1

j�C. Q� /i jN i where N i
h;j D 1

j�C. Q� /j jj�C. Q� /hj
Z .iC1/=n

i=n

d�h

ds
� d�j

ds
: (6.17)

The elements of the matrices N i 2 Rn�n for i D 1; : : : ; n are equal to zero except for the following
block:

�
N i

i;i N i
i;iC1

N i
iC1;i N i

iC1;iC1

�
D n

0
BBB@

1

j�C. Q� /i j2
� 1

j�C. Q� /i jj�C. Q� /iC1j
� 1

j�C. Q� /i jj�C. Q� /iC1j
1

j�C. Q� /iC1j2

1
CCCA :
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Proposition 6.3 For all Q�; Q̊ in C
n, one has˝ Q̊ ; Q� ˛

h1. Q� /
D ˝ Q̊ ; U Q� Q� ˛

Cn ; (6.18)

where U Q� is the matrix defined by
U Q� D M Q� C N Q� ; (6.19)

where M Q� , N Q� are the matrix (6.14) and (6.17) respectively. We point out that, since U Q� is a matrix
of an inner product in a basis, it is always invertible.

Proof. Denoting ˚ D P1. Q̊ / and � D P1. Q�/, (6.10) implies

h d˚

d�
;

d�

d�
iL2.� / D

nX
iD1

j�C. Q� /i j
Z .iC1/=n

i=n

0
@ nX

j D1

Q̊
j

j�C. Q� /j j
d�j

ds
�

nX
hD1

Q�h

j�C. Q� /hj
d�h

ds

1
A ds :

Then, by previous proposition, we have˝ Q̊ ; Q� ˛
h1. Q� /

D ˝ Q̊ ; M Q� Q� ˛
Cn C ˝ Q̊ ; N Q� Q� ˛

Cn

where M Q� , N Q� are the matrices (6.14) and (6.17) respectively.

6.3 Discrete finsler flow

The initial optimization (2.1) is discretized by restricting the minimization to the space Bn, which
corresponds to the following finite dimensional optimization

min
Q� 2Cn

QE. Q� / ; (6.20)

where QE. Q� / approximates E.P1. Q� //.
The discrete Finsler gradient is obtained in a similar way by restricting the optimization (2.3)

to Bn

r QR Q�

QE. Q� / 2 argmin
Q̊ 2 QL Q�

QR Q� . Q̊ / ; (6.21)

where the discrete penalty reads

QR Q� . Q̊ / D R
P1. Q� /

�
P1. Q̊ /

�
(6.22)

and, as discrete constraint, we set

QL Q� D
n Q̊ 2 C

n W  Q̆ Q� .r
h1. Q� /

QE. Q� / � Q̊ /


h1. Q� /
6 �

 Q̆ Q�
�r

h1. Q� /
QE. Q� /

�
h1. Q� /

o
: (6.23)

The Finsler flow discretizing the original one (2.2) reads

Q�kC1 D Q�k � �kr QR Q�k

QE. Q�k/: (6.24)

where �k > 0 is chosen following the Wolfe rule (2.8).
The following sections detail how to compute this flow for the particular case of the curve

matching energy introduced in Section 5.
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6.4 Discrete energy

Exact energy for piecewise affine curves. For curves � D P1. Q� / and 
 D P1. Q
/ in Bn, the
energy E.� / defined in (5.4) can be computed as

E.� / D 1

2
Z.�; � / � Z.�; 
/ C 1

2
Z.
; 
/

where

Z.�; 
/ D
nX

iD1

nX
j D1

˝
�C. Q� /i ; �C. Q
/j

˛
T . Q� ; Q
/i;j

where T . Q� ; Q
/i;j D
Z i

n

i�1
n

Z j
n

j �1
n

k
�
� .s/; 
.t/

�
d� .s/d
.t/ : (6.25)

Approximate energy for piecewise affine curves. In general there is no closed form expression for
the operator T , so that, to enable a direct computation of the energy and its gradient, we use a first
order approximation with a trapezoidal quadrature formula

QT . Q� ; Q
/i;j D 1

4

�
k. Q�i ; Q
j / C k. Q�iC1; Q
j / C k. Q�i ; Q
j C1/ C k. Q�iC1; Q
j C1/

�
:

One thus has the approximation

QT . Q� ; Q
/i;j D T . Q� ; Q
/i;j C O.1=n2/:

This defines the discrete energy QE on C
n as

QE. Q� / D 1

2
QZ. Q� ; Q� / � QZ. Q� ; Q
/ C 1

2
QZ. Q
; Q
/

where QZ. Q� ; Q
/ D
nX

iD1

nX
j D1

˝
�C. Q� /i ; �C. Q
/j

˛ QT . Q� ; Q
/i;j (6.26)

Discrete h1-gradient. The following proposition gives the formula to calculate the gradient of QE
with respect to inner product (6.13).

Proposition 6.4 The gradient of QE at Q� with respect to the metric defined by the inner
product (6.13) is

rh1. Q� /
QE. Q� / D U �1

Q� r QE. Q� /

where U Q� is the matrix (6.19) and r QE the gradient of QE for the canonical inner product of Cn (6.1),
which is given by

r QE. Q� /i D r QZ. Q� ; Q� /i � r QZ. Q� ; Q
/i (6.27)

where

r QZ. Q� ; Q
/i D 1

4

nX
j D1

. Q�iC1 � Q�i�1/. Q
j C1 � Q
j /
�r1k. Q�i ; Q
j / C r1k. Q�i ; Q
j C1/

�

C
nX

j D1

. Q
j C1 � Q
j /
�
T . Q� ; Q
/i�1;j � T . Q� ; Q
/i;j

�
:
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Proof. The gradient (6.27) of QE for the canonical inner product of C
n can be computed by a

straightforward calculation. For every Q̊ 2 Cn we have the following expression for the derivative
of QE

D QE. Q� /. Q̊ / D
D Q̊ ; rh1. Q� /

QE. Q� /
E
h1. Q� /

D ˝ Q̊ ; r QE. Q� /
˛
Cn

and, by (6.15), we get
r

h1. Q� /
QE. Q� / D U �1

Q� r QE. Q� / :

6.5 Discrete piecewise-rigid curve matching

This section first describes in a general setting the discrete Finsler gradient over finite-element
spaces, then specializes it to the piecewise rigid penalty for the matching problem, and lastly gives
the explicit formula of the corresponding functionals to be minimized numerically.

Discrete piecewise-rigid penalty. To re-write conveniently the discrete Finsler gradient optimiza-
tion (6.21), we introduce the following finite-dimensional operators.

Definition 6.5 (Discrete operators) For all � D P1. Q� /; ˚ D P1. Q̊ / we define

QV Q� . Q̊ / D T V�

�
d˚

d�
� n�

�
; QV Q� W Cn ! R

QL Q� . Q̊ / D P �1
0 .LC

� .˚//; QL Q� W Cn ! R
n

Q̆ Q� . Q̊ / D P �1
0 .˘� .˚//; Q̆ Q� W Cn ! C

n

The following proposition uses these discrete operators to compute the discrete Finsler penalty
and constraint defined in (6.22).

Proposition 6.6 We set QR Q� . Q̊ / D RP1.� /.P1.˚//. One has

QR Q� . Q̊ / D QV Q� . Q̊ / C � QC Q�
. Q̊ / where QC Q� D ˚ Q̊ 2 C

n W QL Q� . Q̊ / D 0
�

: (6.28)

Proof. Denoting � D P1. Q� /; ˚ D P1. Q̊ /, by (6.22), we have

QR Q� . Q̊ / D R� .˚/ D T V�

�
d˚

d�
� n�

�
C �C�

.˚/ D QV Q� . Q̊ / C � QC Q�
. Q̊ /

where
QC Q� D ˚ Q̊ 2 C

n W QL Q� . Q̊ / D 0
�

:

The following proposition gives explicit formulae for the discrete operators introduced in
Definition 6.5.
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Proposition 6.7 For every Q� ; Q̊ 2 C
n, we consider � D P1. Q� / 2 Bn, ˚ D P1. Q̊ / 2 T� Bn. One

has

QL Q� . Q̊ /i D
*

�C. Q̊ /i

j�C. Q� /i j
;

�C. Q� /i

j�C. Q� /i j

+
; (6.29)

Q̆ Q� . Q̊ /.s/ D
nX

iD1

h Q̊
i�i .s/ C Q̊

iC1�iC1.s/; . Qn� /i i. Qn� /i �i .s/ ; (6.30)

QV Q� . Q̊ / D k��� QH Q� . Q̊ /
�k`1 D

nX
iD1

ˇ̌ QH Q� . Q̊ /i � QH Q� . Q̊ /i�1

ˇ̌
; (6.31)

where QH Q� . Q̊ /i WD
*

�C. Q̊ /i

j�C. Q� /i j
; . Qn� /i

+
(6.32)

and where Qn� denotes the vector of the coordinates of n� with respect to the basis of P0.

Proof. (Proof of (6.29)) Using (6.5) the first derivative of ˚ can be written (with respect to the
basis of P0;n) as

d˚

d�
D

nX
iD1

�C. Q̊ /i

j�C. Q� /i j
�i

which implies that

LC
� .˚/ D d˚

d�
� t� D

nX
iD1

*
�C. Q̊ /i

j�C. Q� /i j
;

�C. Q� /i

j�C. Q� /i j

+
�i :

Then, by the definitions of L
C.�/
� , conditions L

C.�/
� .˚/ D 0 become

*
�C. Q̊ /i

j�C. Q� /i j
;

�C. Q� /i

j�C. Q� /i j

+
D 0 8 i D 1; : : : ; n;

which is equivalent to QL Q� . Q̊ / D 0.

(Proof of (6.30)) By (6.10) and (6.8), we get

˘� .˚/.s/ D
*

nX
iD1

Q̊
i�i .s/;

nX
iD1

. Qn� /i�i .s/

+
nX

iD1

. Qn� /i �i .s/

D
nX

iD1

h Q̊
i�i .s/ C Q̊

iC1�iC1.s/; . Qn� /ii. Qn� /i�i .s/

which proves the result.
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(Proof of (6.31)) By (6.5) and (6.8), we get

T V�

�
d˚

d�
� n�

�
D T V�

 
nX

iD1

h �C. Q̊ /i

j�C. Q� /i j
; . Qn� /ii�i

!

D
nX

iD1

ˇ̌ QH Q� . Q̊ /i � QH Q� . Q̊ /i�1

ˇ̌

where we used the fact that the total variation for piecewise constant functions coincides with the
sum of jumps sizes.

6.6 Calculation of the discrete Finsler gradient

One can minimize the matching energy QE defined in (6.26) using the Finsler flow f Q�kg of (6.24).
This requires computing at each step k the Finsler gradient (6.21) for the piecewise-rigid penalty QR Q�
defined in (6.28). Solving (6.21) at each step in turn requires the resolution of a finite dimensional
convex problem, and the functional to be minimized is explicitly given with closed form formula in
Proposition 6.7.

Several convex optimization algorithms can be used to solve (6.21). A convenient method
consists in recasting the problem into a second order cone program by introducing additional
auxiliary variables . Q̊ ; QS; QY ; QT / as follow

Min
. Q̊ ; QS; QY ; QT /2C2n�R2n

˝ QY ; 1
˛
Cn where 1 D .1; : : : ; 1/ 2 R

n

where the minimum is taken under the following set of affine and conic constraints

� QYi 6 ��� QH Q� . Q̊ /
�

i
6 QYi ; 8 i D 1; : : : ; n

QL Q� . Q̊ / D 0

QS D U
1=2

Q�
	 Q̆ Q� . Q̊ / � Q̆ Q�

�r
h1. Q� /

QE. Q� /
�


h QT ; 1iCn 6 �2
 Q̆ Q�

�rh1. Q� /
QE. Q� /

�2

h1. Q� /

. QSi ; QTi / 2 ˚.s; t/ 2 C � R W jsj2 6 t
�

; 8 i D 1; : : : ; n:

We point out that the variable QS is defined by the mass matrix U Q� (6.19) because of the relationship
(6.18). For the numerical simulation, we use an interior point solver, see [9]. These interior points
algorithms are powerful methods to solve medium scale SOCP problems and work remarkably well
for n up to several thousands, which is typically the case for the curve matching problem.

7. Numerical examples

In this section we give some numerical examples to point out the properties of the piecewise rigid
Finsler evolution.

It should be noted that the resulting sequence f�kg depends on the choice of the step sizes f�kg,
which is left to the user and should only comply with the Wolfe conditions (2.8).
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Numerically, we observe in practice that choosing small enough (according to the Wolfe
condition) step sizes �k always provides consistent evolutions. This phenomenon is related to the
existence of a limiting gradient flow (as highlighted in Remark 2.7), and the depicted evolutions are
intended to show an approximation of this flow.

For the numerical examples shown in this section and in Section 8.3, we used a fixed finite
element discretization as detailed in Section 6 (with n D 1280). This corresponds to imposing a
fixed common parameterization of the discretized curves generated by the iterations. Note however
that applications to more complicated imaging problems might require re-parameterizing the curves
from time to time during the iterations of the gradient descent (2.7). This is important when
dealing with complicated shapes since the parameterization might become ill-conditioned, which
can deteriorate the numerical accuracy of the scheme.

7.1 Influence of �

To exemplify the main properties of the piecewise rigid Finsler flow, we introduce a synthetic
example where we replace in the definition (4.11) of the Finsler gradient rR�

E.� / (more precisely
in the definition (4.10) of the constraint L� ) the gradient rW 1;2.� /E.� / by the vector field
F.� / 2 T� B defined as

F.� / W s 2 S
1 7! � �5�1.s/; 1000.�2.s/ � 1=2/2

� 2 R
2 (7.1)

where � .s/ D .�1.s/; �2.s// 2 R
2:

The initial flow associated to this vector field reads

�kC1 D �k � �kF.�k/ (7.2)

for some small enough time steps �k > 0. Such a flow is represented in Figure 1 where �k D 0:0005

for every k.
Figure 2 shows the impact of the parameter � on this evolution. As � increases, the evolution

becomes increasingly piecewise rigid. For � large enough, it is globally rigid, i.e. satisfies (4.2) and
rR�k

E.�k/ 2 R�k
for all k, where R� is defined in (4.3).
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Fig. 1. Evolution generated by �F
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Fig. 2. Evolution for different values of �

7.2 Curve registration

We now give an example of application of the Finsler flow to the curve matching problem described
in Section 5. Figure 3 compares the results of the piecewise-rigid Finsler gradient with the Sobolev
Riemannian gradient detailed in Remark (2.4) which is very similar to the one introduced in [15, 40].

In order to obtain good matching results, it is important to select the parameters .�; �; ı/

(see (5.3) and (7.2)) in accordance to the typical size of the features of the curves to be matched. For
each method, we have manually tuned the parameters .�; �; ı/ in order to achieve the best matching
results. Choosing a large value of � and a smaller value for ı is useful to capture shapes with features
at different scales, which is the case in our examples.

The piecewise rigid gradient is particularly efficient in this setting where the curves to
be matched are naturally obtained by approximate articulations, which are well approximated
by piecewise rigid deformations. Note however that our method does not necessitate a prior
segmentation of the shape into disjoint areas undergoing rigid motions, i.e. the location of the
articulations does not need to be known beforehand. The piecewise rigid matching is obtained solely
by minimizing the distance energy E.� / to the target curve 
.

The Finsler gradient thus allows to avoid poor local minima and perform an overall good global
matching. In contrast the Sobolev gradient flow is trapped in a poor local minimum and the matching
has failed. Note, however, that the matching achieved by the Finsler gradient is not perfect. Some
local defects near corners are mostly due to the strong constraint L� .˚/ D 0 which enforces
the exact conservation of the length of the curve. This constraint is alleviated in Section 8, which
presents a piecewise similarity Finsler gradient which leads to better matching results.
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Fig. 3. Finsler evolution (top) with � D 0:8 and Sobolev evolution (bottom) for different step k of the flow. Each image
displays the target curve � (dash line) and the current curve �k (solid line). The energy is computed using � D 0:8,
ı D 0:04.

8. BV 2-piecewise similarity motions

In order to improve the matching results we augment our model by allowing the curve to shrink or
to lengthen during the evolution. The idea consists in considering evolution by piecewise similarity
motions instead of the rigid deformations considered in Section 4.

8.1 Similarity curve deformations

We extend the rigid deformations considered in Section 4.1 to smooth evolutions t 7! �t following
a PDE (4.1) that includes also a global scaling of the space. This evolution is said to obey a similarity
transform if there exists a smooth function � W R ! RC such that

8 .s; s0/ 2 S
1 � S

1; k�t .s/ � �t .s
0/k D �.t/k�0.s/ � �0.s0/k: (8.1)

The following proposition states that the set of instantaneous motions ˚t giving rise to a similarity
evolution is, at each time, a linear sub-space of dimension 4 of T�t

B.

Proposition 8.1 The evolution (4.1) satisfies (8.1) if and only if, for all t 2 R, ˚t 2 S�t
where

S� D ˚
˚ 2 T� B W 8 s 2 S

1; ˚.s/ D A� .s/ C b W for A 2 S2�2; b 2 R
2
�

where S2�2 D
��

˛ �ˇ

ˇ ˛

�
2 R

2�2 W .˛; ˇ/ 2 R
2

�
: (8.2)
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Proof. Using the fact that the Lie algebra of the group of similarities is R2 Ì S2�2, we obtain the
desired result following the proof of Proposition 4.1.

Conversely, if ˚t 2 S�t
, we have�

˚t .s/ � ˚t .s
0/
� � ��t .s/ � �t .s

0/
� D ˛.t/k�t .s/ � �t .s

0/k2 ; 8 .s; s0/ 2 S
1 � S

1

for some ˛.t/ 2 R. This means that

@

@t
k�t .s/ � �t .s

0/k2 D ˛.t/

2
k�t .s/ � �t .s

0/k2 ; 8 .s; s0/ 2 S
1 � S

1

which implies that

k�t .s/ � �t .s
0/k2 D e

R t
0 ˛.�/=2d� k�0.s/ � �0.s0/k2 ; 8 .s; s0/ 2 S

1 � S
1

and this proves that the ˚t verifies (8.1) with �.t/ D e
R t

0 ˛.�/=2d� .

Analogously to Proposition 4.2, the next proposition characterizes in an intrinsic manner the
set S� .

Proposition 8.2 For a C 2-curve � , one has ˚ 2 S� if and only if ˚ is C 2 and satisfies

dK� .˚/

d�
D 0 (8.3)

where we have introduced the following linear operator

K� .˚/ D
�

d˚

d�
� t� ;

d˚

d�
� n�

�
; 8 ˚ 2 T� B :

Proof. Given a curve � 2 C 2.S1;R2/, every deformation ˚ of � which is the restriction, to the
curve � , of an instantaneous similarity motion, can be written as

˚.s/ D A� .s/ C b; 8 s 2 S
1

for some matrix A D
�

˛ �ˇ

ˇ ˛

�
and a vector b. Now, differentiating with respect to d� we obtain

d˚

d�
.s/ D At�

which is equivalent to
d˚

d�
� t� D ˛ and

d˚

d�
� n� D ˇ (8.4)

for every s 2 S1. Remark that similarity is the only affine motion verifying (8.4) and this is due to
the form of the matrix A. In fact, if d˚

d�
verifies d˚

d�
� t� D ˛ and d˚

d�
� n� D ˇ then

d˚

d�
D ˛t� C ˇn� D ˛t� C ˇt?

� D At� :

In particular, if ˛ D 0 then ˚ is a rigid motion and (8.4) coincides with the characterization proved
in Proposition 4.2.

Then, differentiating again with respect to d� .s/, we have

d
d�

�
d˚

d�
� t�

�
D 0 and

d
d�

�
d˚

d�
� n�

�
D 0

which is equivalent to (8.3).
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8.2 Piecewise similarity deformations

Similarly to the Finsler penalty introduced in 4.2, we define a penalty that favors piecewise similarity
transformations by minimizing the L1-norm of the first derivative of K� . To control the piecewise
rigid transformation part, we relax the equality constraint L� .˚/ D 0 defined as C� in (4.9) to a
constraint C�

� on the L1 norm of L� .˚/.

Definition 8.3 (Piecewise-similarity penalty) For � > 0 and � 2 B, we define for all ˚ 2 T� B

R�
� .˚/ D T V� .K� .˚// C �C�

�
where C�

� D ˚
˚ 2 T� B W kL� .˚/kL1.� / 6 �

�
(8.5)

where L� is either LC
� or L�

� as defined in (4.6) and T V� is defined in (3.1).

The piecewise similarity Finsler gradient r
R�

�
E.� / is defined by minimizing (2.3) with the

penalty R�
� defined in (8.5) with the constraint set L� defined in (4.10). The following proposition

shows that, as � tends to 0, the set of piecewise similarity Finsler gradients tends to the set of
piecewise-rigid Finsler gradients.

Proposition 8.4 One has R0
� D R� where R� is defined in (4.8).

Proof. One has C0
� D C� . If R0

� .˚/ ¤ C1, one has LC
� .˚/ D L�

� .˚/ D 0 a.e., so that in this
case

T V�

�
K� .˚/

� D T V�

�
d˚

d� .s/
� n�

�
:

The following theorem extends Theorem 4.6 to the piecewise similarity penalty and ensures
existence of the corresponding Finsler gradient.

Theorem 8.5 The function R�
� defined in (8.5) admits at least a minimum on L� .

Proof. It suffices to adapt the proof of Theorem 4.6 by using the new constraint on the L1-norm of
L� .˚/.

8.3 Numerical examples

We now show some numerical examples for the piecewise similarity Finsler gradient. The
computation is performed with the discretization detailed in Section (6), which is extended in a
straightforward manner to handle the piecewise similarity model.

Influence of �. We first re-use the synthetic example introduced in Section 7.1 to illustrate the
influence of the parameter �. We thus use an evolution driven by the flow F.� / 2 T� B defined
in (7.1). Figure 4 shows how � allows one to interpolate between the piecewise rigid model (when
� D 0) to a piecewise similarity model when � increases. For large value of �, one clearly sees the
global scaling introduced by the model which is helpful to better follow the flow of F .

Figure 5 compares the evolution obtained with the initial flow (7.2) (corresponding to .�; �/ D
.0; 0/, i.e. the Finsler gradient is equal to F.� /), the piecewise rigid flow (corresponding to � > 0

and � D 0) and the piecewise similarity flow (corresponding to � > 0 and � > 0).
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Application to the matching problem. We now show an application of the Finsler descent method
to the curve matching problem, by minimizing the energy E defined in (5.4). Figure 6 shows the
results obtained with the piecewise similarity penalty for well chosen parameters .�; ı; �; �/. These
evolutions should be compared with the ones reported in Section 7.2. Allowing the length of the
curve to vary using a parameter � > 0 allows the evolutions to better capture the geometry of the
target shape and thus leads to better matchings.

Conclusion

This paper has presented a novel way to encode piecewise regular constraints for curve evolutions.
This is achieved by designing Finsler penalties in the tangent space of curves. This method offers
a unifying treatment of this class of evolutions. A distinctive feature of this approach is that it
uses a convex modeling of the geometric constraints. For the particular case of piecewise rigid and
piecewise similarity transforms, this avoids the need to specify the location of the articular points,
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Fig. 4. Piecewise similarity Finsler flow evolutions for � D 0:3 and for different values of �

L2 .�; �/ D .0:5; 0/ .�; �/ D .0:5; 200/

Fig. 5. From left to right: evolutions by using the L2 gradient, piecewise rigid Finsler gradient, piecewise similarity Finsler
gradient
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Fig. 6. Curve matching by piecewise similarity motions. Each image displays the target curve � (dash line) and the current
curve �k (solid line). We used the following parameters: top row: � D 0:8, ı D 0:04, � D 2000, � D 0:85 ; middle
row: � D 0:8, ı D 0:08, � D 2000, � D 0:95 ; bottom row: � D 0:9, ı D 0:03, � D 2000, � D 0:87.

which is a difficult problem. Instead, these articulations are obtained, at each iteration, through the
resolution of a convex program. This novel method opens the doors to many fascinating theoretical
questions, such as the definition of a continuous flow when letting �k ! 0, and the properties of
Finslerian spaces of curves.

Acknowledgment. This work has been supported by the European Research Council (ERC project
SIGMA-Vision).

9. Appendix: BV and BV 2 functions

In this section we remind the definition of BV and BV 2 functions in dimension one.

Definition 9.1 Let u 2 L1.Œ0; 1�;R/. We say that u is a function of bounded variation in Œ0; 1� if

jDuj.Œ0; 1�/ D sup
�Z 1

0

u g0 dx W g 2 C1
c .Œ0; 1�;R/; kgkL1.Œ0;1�;R/ 6 1

�
< 1 : (9.1)

By Riesz’s representation theorem this is equivalent to state that there exists a unique finite Radon
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measure, denoted by Du, such thatZ 1

0

u g0 dx D �
Z 1

0

g dDu 8 g 2 C1
c.Œ0; 1�/ :

Clearly the total variation of the measure Du on Œ0; 1�, i.e., jDuj.Œ0; 1�/, coincides with the quantity
defined in (9.1) and this justifies our notations. We denote the space of functions of bounded
variation in Œ0; 1� by BV.Œ0; 1�;R/. The space BV.Œ0; 1�;R/ equipped with the norm

kukBV D kukL1 C jDuj.Œ0; 1�/

is a Banach space. We say that fuhg weakly* converges in BV.Œ0; 1�;R/ to u if

uh

L1

�! u and Duh

�
* Du ; as h ! 1 :

We now define the set of BV 2-functions as the functions whose second derivative are Radon
measures:

Definition 9.2 Let u 2 W 1;1.Œ0; 1�;R/. We say that u belongs to BV 2.Œ0; 1�;R/ if

jD2uj.Œ0; 1�/ WD sup
�Z 1

0

u g00 dx W g 2 C1
c .Œ0; 1�;R/; kgkL1.Œ0;1�;R/ 6 1

�
< 1 : (9.2)

As for the first variation, the functional considered in (9.2) can be represented by a measure D2u

whose total variation coincides with the quantity jD2uj.Œ0; 1�/ previously defined.
BV 2.Œ0; 1�;R/ equipped with the norm

kukBV 2 D kukBV C jD2uj.Œ0; 1�/ (9.3)

is a Banach space. In particular we have W 2;1.Œ0; 1�;R/ � BV 2.Œ0; 1�;R/. We say that fuhg
weakly* converges in BV 2.Œ0; 1�;R/ to u if

uh

W 1;1

�! u and D2uh

�
* D2u ; as h ! 1 :

We remind that if fuhg � BV 2.Œ0; 1�;R/ is such that sup
h

kuhkBV 2 < M then there exists u 2
BV 2.Œ0; 1�;R/ and a subsequence (not relabeled) fuhg that weakly* converges in BV 2.Œ0; 1�;R/

toward u and
jD2uj.Œ0; 1�/ 6 lim inf

h!1
jD2uhj.Œ0; 1�/ :

Moreover we have the following proposition showing the link between BV and BV 2 functions.

Proposition 9.3 A function u belongs to BV 2.Œ0; 1�;R/ if and only if u 2 W 1;1.Œ0; 1�;R/ and
u0 2 BV.Œ0; 1�;R/, for every i D 1; : : : ; n. Moreover

jD2uj.Œ0; 1�/ D ˇ̌
Du0 ˇ̌ .Œ0; 1�/ :

We also remind that BV 2.Œ0; 1�;R/ is embedded in W 1;1.Œ0; 1�;R/ so BV 2 functions are
Lipschitz continuous (see Theorem 5, [19]: p 131). Then, as Œ0; 1� � R is bounded, BV 2.Œ0; 1�;R/

is embedded W 1;p.Œ0; 1�;R/, for every p > 1. In particular this implies that BV 2.Œ0; 1�;R/ is dense
in W 1;p.Œ0; 1�;R/, for every p > 1.

A vector field u belongs to BV.Œ0; 1�;R2/ (BV 2.Œ0; 1�;R2/ respectively) if every component
of u belongs to BV.Œ0; 1�;R/ (BV 2.Œ0; 1�;R/ respectively). We refer to [3] and [18] for more
properties of these spaces.



42 g. charpiat et al.

References

1. Absil, P.-A., Mahony, R. & Sepulchre, R., Optimization on manifolds: Methods and applications.
Recent Advances in Optimization and its Applications in Engineering. The 14th Belgian-French-German
Conference on Optimization. Springer (2010), 125–144.

2. Alber, Y. I., Burachik, R. S. & Iusem, A. N., A proximal point method for nonsmooth convex optimization
problems in banach spaces. Abstract and Applied Analysis 2 (1997), 97–120. Zbl0947.90091 MR1604165

3. Ambrosio, L., Fusco, N. & Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems.
Oxford Science Publications (2000). Zbl0957.49001 MR1857292
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45. Vaillant, M., Miller, M. I., Younes, L. & Trouvé, A., Statistics on diffeomorphisms via tangent space

MR 2283613
http://www.ams.org/mathscinet-getitem?mr=2283613
Zbl 1167.49001
http://www.emis.de/MATH-item?1167.49001
MR 2516528
http://www.ams.org/mathscinet-getitem?mr=2516528
MR 2483313
http://www.ams.org/mathscinet-getitem?mr=2483313
Zbl 1277.94002
http://www.emis.de/MATH-item?1277.94002
MR 3202544
http://www.ams.org/mathscinet-getitem?mr=3202544
Zbl 1101.58005
http://www.emis.de/MATH-item?1101.58005
MR 2201275
http://www.ams.org/mathscinet-getitem?mr=2201275
Zbl 0691.49036
Zbl 0691.49036
http://www.emis.de/MATH-item?0691.49036
MR 0997568
http://www.ams.org/mathscinet-getitem?mr=0997568
Zbl 0930.65067
http://www.emis.de/MATH-item?0930.65067
MR 1713114
http://www.ams.org/mathscinet-getitem?mr=1713114
Zbl 1250.90111
http://www.emis.de/MATH-item?1250.90111
MR 2968868
http://www.ams.org/mathscinet-getitem?mr=2968868
Zbl 1012.68684
http://www.emis.de/MATH-item?1012.68684
Zbl 1214.93033
http://www.emis.de/MATH-item?1214.93033
MR 2792407
http://www.ams.org/mathscinet-getitem?mr=2792407
MR 2465268
http://www.ams.org/mathscinet-getitem?mr=2465268
MR 2465268
http://www.ams.org/mathscinet-getitem?mr=2465268
Zbl 1259.65104
http://www.emis.de/MATH-item?1259.65104
MR 2953101
http://www.ams.org/mathscinet-getitem?mr=2953101


44 g. charpiat et al.

representations. NeuroImage 23 (2004), 161–169.
46. Vercauteren, T., Pennec, X., Perchant, A. & Ayache, N., Diffeomorphic demons: Efficient non-parametric

image registration. NeuroImage 45 (2009), S61–S72.
47. Wahba, G., Spline models for observational data. CBMS-NSF Regional conference series. SIAM (1990).

Zbl0813.62001 MR1045442

48. Yezzi, A. & Mennucci, A., Conformal metrics and true “gradient flows” for curves. Proc. ICCV 1 (2005),
913–919.

49. Yezzi, A. & Mennucci, A., Metrics in the space of curves. arXiv:math/0412454v2 (2005).
50. Younes, L., Computable elastic distances between shapes. SIAM Journal of Applied Mathematics 58(2)

(1998), 565–586. Zbl0907.68158 MR1617630

51. Younes, L., Michor, P., Shah, J. & Mumford, D., A metric on shape space with explicit geodesics. Rend.
Lincei Mat. Appl. 19 (2008), 25–57. Zbl1142.58013 MR2383560

Zbl 0813.62001
http://www.emis.de/MATH-item?0813.62001
MR 1045442
http://www.ams.org/mathscinet-getitem?mr=1045442
Zbl 0907.68158
http://www.emis.de/MATH-item?0907.68158
MR 1617630
http://www.ams.org/mathscinet-getitem?mr=1617630
Zbl 1142.58013
http://www.emis.de/MATH-item?1142.58013
MR 2383560
http://www.ams.org/mathscinet-getitem?mr=2383560

	Introduction
	Previous works
	Motivation
	Contributions
	Relationship with charpiat-generalized-gradient
	Paper organization

	Finsler descent method in Banach spaces
	Finsler gradient
	Finsler descent method

	Finsler gradient in the spaces of curves
	BV2-curves
	Geometric curves and parameterizations
	Geometric invariance

	Piecewise rigidity
	Rigid curve deformations
	Piecewise rigid BV2 deformations

	Application to curve matching
	The curve matching problem
	Matching energy
	Matching flow

	Discretization
	Finite elements spaces
	Finite element spaces of curves
	Discrete finsler flow
	Discrete energy
	Discrete piecewise-rigid curve matching
	Calculation of the discrete Finsler gradient

	Numerical examples
	Influence of 
	Curve registration

	BV2-piecewise similarity motions
	Similarity curve deformations
	Piecewise similarity deformations
	Numerical examples

	Appendix: BV and BV2 functions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


