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The porous media equation has played a prominent role in the current development of the
mathematical theory of interfaces and free boundaries. One occurs whenever the equation is solved
in an unbounded spatial domain with initial data that have bounded support, and its appearance
is of relevance to the physical and biological phenomena that the equation models. For a number
of commonly studied spatial domains, the large-time behaviour of a solution of the porous media
equation and of the solution’s free boundary is known. The present paper is concerned with this topic
for a class of spatial domains which includes an infinite and a semi-infinite strip in two-dimensional
space, an infinite and a semi-infinite cylinder of arbitrary cross-section in three-dimensional space,
certain subdomains of these domains, and, their higher dimensional analogues. The homogeneous
Cauchy–Dirichlet problem with initial data that are locally integrable is considered. Dependent upon
the dimensionality, it is shown that there is a universal pattern of convergence to a self-similar
solution. Moreover, the large-time behaviour of the free boundary in every solution mimics that
of the self-similar one. The results rely on the establishment of an invariance principle for solutions
of the problem.
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1. Introduction

If there is one mathematical equation that has been inexorably associated with the study of interfaces
and free boundaries during the past fifty or more years, then that equation is the porous media
equation. This equation arises in diverse areas of application in which the unknown represents a
density, concentration, thickness, or similar nonnegative quantity that is to be found as a function
of position and time; and, in such a setting, it is the occurrence of interfaces between that part of
the problem domain where a solution is positive and that part where it is zero that has been of so
much interest. Besides being of relevance for the application, such an interface is of mathematical
significance because a perfectly acceptable solution may fail to classically solve the equation on it.
Questions that have attracted attention and indeed continue to be the object of investigation are those
of the smoothness of these interfaces, their initial behaviour, their behaviour immediately prior to
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any instant at which they may disappear, and their behaviour for large time [19].
The typical question of large-time interfacial behaviour pertains to the solution of an initial-value

problem in an unbounded spatial domain with a smooth boundary, when the initial-data function is
positive just in a bounded set of positive measure. In such a situation, the positivity set of the
solution with respect to the spatial variable does not shrink as a function of time, and at some
moment becomes a connected set. Furthermore, given any bounded subset of the spatial domain,
there is a moment at which the positivity set will contain this subset. The question is then how
fast or slow the positivity set will expand into the remaining unbounded components of the spatial
domain as time becomes increasingly and increasingly larger. This question has been answered
when the spatial domain comprises the whole space, a half space with homogeneous Dirichlet
boundary conditions, and, the complement of a compact region with homogeneous or with time-
independent inhomogeneous Dirichlet boundary conditions [19]. In the present paper we consider
the problem with homogeneous Dirichlet boundary conditions with a spatial domain which, in terms
of the familiar three-dimensional real world, is an infinite cylinder, part of such a cylinder containing
a semi-infinite cylinder of the same cross-section, the void between two parallel plates of infinite
extent, or such a void with the exclusion of a bounded portion.

The Cauchy–Dirichlet problem for the porous media equation with homogeneous boundary
conditions reads 8̂<

:̂
@tu D �um for .x; t/ 2 ˝ � RC;
u.x; t/ D 0 for .x; t/ 2 @˝ � RC;
u.x; 0/ D u0.x/ for x 2 ˝;

(1.1)

in which u is the unknown, @t denotes partial differentiation with respect to time t , � denotes the
Laplace operator with respect to the spatial variable x D .x1; x2; : : : ; xN / 2 R

N for some natural
number N ,

m > 1;

˝ is a connected open subset of R
N with boundary @˝ , RC denotes the set of positive real

numbers, and, u0 is a given function. It is known that if @˝ is locally Lipschitz continuous and
u0 is nonnegative and integrable then this problem has a unique solution defined in some suitable
sense. This solution u is continuous in ˝ � RC. Moreover, if u0 is nontrivial and has bounded
support, then the positivity set

P.t/ D ˚
x 2 ˝ W u.x; t/ > 0�; (1.2)

is bounded for all t > 0. It has been further established that P.t/ is connected for large enough t ,
and will contain any given bounded subset of ˝ for sufficiently large t , when˝ satisfies a uniform
interior ball condition [19].

When the spatial domain ˝ is the whole space R
N , the half-space R

N �1 � RC, or the
complement of a compact subset of RN with the lateral boundary condition in (1.1) replaced by

u.x; t/ D '.x/ for .x; t/ 2 @˝ � RC

for a given nonnegative function ' 2 C.@˝/ which may be identically zero, the typical behaviour
as t ! 1 is that the solution u of problem (1.1) converges to a member of a family of self-similar
solutions of the generic type

U.x; t I a/ D t .2q�1/=.m�1/a2=.m�1/˚.x=atq/ (1.3)
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in which q and a are positive numbers. The number q is dictated by an invariance principle for
the problem under consideration. The value of a is determined subsidiarily by the given initial-data
functionu0. Simultaneously, the interface @P.t/ converges as t ! 1 to the corresponding interface
possessed by the self-similar solution.

For the problem where the spatial domain is the complement of a compact set and the lateral
boundary-data function ' 6� 0 [14, 15],

q D
(
1=2 for N 6 2;

m=
˚
.m� 1/N C 2

�
for N > 2;

subject to the caveat described below. For the Cauchy problem pur sang [8, 13, 16],

q D 1=f.m� 1/N C 2g:
For the problem where the spatial domain is the complement of a compact set and ' � 0 [5, 9],

q D
(
1=2m for N 6 2;

1=
˚
.m � 1/N C 2

�
for N > 2;

subject to the previously mentioned caveat. For the half-space problem [11],

q D 1=
˚
.m � 1/N CmC 1

�
:

The caveat to the first and third of these problems relates to the case N D 2. In this exceptional
case, the free boundary @P.t/ actually expands asymptotically proportionally to tq .ln t/.m�1/=2m

as t ! 1. Correspondingly, the convergence of the respective solution u to the self-similar
solution U is contingent upon a time-dependent logarithmic correction to the parameter a which
amounts to multiplying it by .ln t/.m�1/=2m [9, 15]. Note nevertheless how the magnitude of q
decreases successively from one problem to the next in reflection of the relative influence of the
imposed boundary condition. For further details, especially regarding the precise manner in which
the convergence of the solution and its free boundary is to be interpreted, we defer to the cited
references.

It is also known [4] that when ˝ D R
N �k � R

kC for some 2 6 k 6 N the variable supfjxj W
x 2 @P.t/g associated with the solution u of problem (1.1) grows at a rate tq where

q D 1=
˚
.m � 1/.N C k/C 2

�
:

We conjecture that in this situation too there is a self-similar solution of the form (1.3) to
which u converges, and consequently that asymptotically the whole free boundary @P.t/ expands
proportionally to tq as t ! 1.

The aforementioned power-law growth of the interface is drastically lost when the spatial
domain

˝ D D � R

and D is a bounded connected open subset of Rn with n D N � 1 > 1. This represents an infinite
strip in the case N D 2 and an infinite cylinder in the case N D 3. For such a domain, Vázquez
[18, 19] has shown that there is a self-similar solution of the type

U.x; t I a/ D t�1=.m�1/f .x1; x2; : : : ; xn; xnC1 � c ln t � a/ (1.4)
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for a unique number c > 0 which depends only on D andm, while the function f has the property
that

f .�/ > 0 if and only if �nC1 < �.�1; �2; : : : ; �n/ (1.5)

for some � 2 C.D/. Furthermore, the solution u of problem (1.1) satisfies

u.�; t/ 6 U.�; t IA/ for all t > T (1.6)

for some numbers A and T > 0, for every .x1; x2; : : : ; xn/ 2 D there is a T > 0 such that˚
xnC1 2 R W x 2 P.t/� D � � � �.t I x1; x2; : : : ; xn/; �

C.t I x1; x2; : : : ; xn/
�

for all t > T

for some functions �˙.�I x1; x2; : : : ; xn/ W .T;1/ ! RC, and,

�˙.t I �/ � c ln t D o.ln t/ as t ! 1
pointwise in D. If the initial-data function u0 vanishes in some set D � .`;1/ and u0 satisfies a
certain minimal growth criterion as xnC1 ! �1, then there exists a second number A such that
(1.6) holds with the inequality sign reversed, and hence

�C.t I �/� c ln t D O.1/ as t ! 1
uniformly in D.

We shall complete the above results, merely considering an initial-data function u0 satisfying a
mild integrability condition in ˝ with support contained in D � .�1; `/ for some `. Without any
minimal growth condition as xnC1 ! �1, we shall establish the following.
ı First, that the critical number

c D 1

.m� 1/
p
�
; (1.7)

where � is the first eigenvalue of the eigenvalue problem for the Laplacian with homogeneous
boundary conditions in D. (In terms of the nomenclature employed in [18, 19], this means that
the critical “wave speed” c� actually only depends on D and is independent of m.)

ı Second, the function f is unique modulo translation.
ı Third, identifying one member f of this translation class, there is a number a for which

t1=.m�1/u.x; t/ ! f .x1; x2; : : : ; xn; xnC1 � c ln t � a/ as t ! 1 (1.8)

uniformly with respect to x 2 D � RC in an appropriate reference frame.
ı Fourth, taking � to be the corresponding function in (1.5),

lim inf
t!1 �C.t I �/� c ln t > � C a (1.9)

at every point in D.
ı Fifth,

lim sup
t!1

�C.t I �/� c ln t 6 N� C a; (1.10)

where N� denotes the concave envelope of � , uniformly in D.
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ı Sixth, the results extend to any domain˝ such that

D � RC � ˝ � D � R: (1.11)

ı Finally, for all the domains considered, there is a formula to determine the appropriate number a
from the initial-data function u0.

By a symmetry argument, the results may be applied to the convergence of t1=.m�1/u.�; t/ in
D� .�1; 0/ and to the asymptotic behaviour of � � as t ! 1 when the support of u0 is contained
in D � .`;1/ for some `. Similarly, the results for domains of the type (1.11) may be transferred
to any domain˝ such that D � .�1; 0/ � ˝ � D � R.

The key to our results is an invariance principle for problem (1.1) in a domain of the form (1.11)
analogous to those known for the problem in R

N , in R
N �1 � RC, and in a domain˝ � R

N that is
the complement of a compact subset of RN .

After completing the analysis for a domain of the type (1.11), we turn our attention to the
equivalent invariance principle for problem (1.1) with a domain

D � ˚
z 2 R

k W jzj > %� � ˝ � D � R
k for some % > 0; (1.12)

where D is as aforesaid (i.e. a bounded connected open subset of Rn for some n > 1), and k D
N �n > 2. In mundane three-dimensional space, this means that˝ is the void between two parallel
plates of infinite extent, possibly with a bounded portion removed.

We establish the generalization of the invariance principle for solutions of problem (1.1) in a
domain of the type (1.11) to that for a domain of the type (1.12). Formal calculations based on this
invariance principle lead to the conclusion that if the initial-data function is nontrivial and vanishes
outside a bounded set then the asymptotic behaviour of the solution u is given by

t1=.m�1/u.x; t/ ! f .x1; x2; : : : ; xn; r � c ln t C � ln jln t j � a/ as t ! 1; (1.13)

where f is as above,

r D
q
x2

nC1 C x2
nC2 C � � � C x2

nCk
;

c is as above, the number � is also invariant and quantifiable as

� D k � 1

2
p
�

(1.14)

with � as above denoting the first eigenvalue of the eigenvalue problem for the Laplacian with
homogeneous boundary conditions inD, and, the number a is dependent on the specific initial-data
function. Contemporaneously, setting

�i.x1; x2; : : : ; xn; t/ D min
˚
r > % W x 2 @P.t/�

and
�s.x1; x2; : : : ; xn; t/ D max

˚
r > % W x 2 @P.t/�;

there holds
lim inf
t!1 �i.�; t/ � c ln t C � ln jln t j > � C a (1.15)
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and
lim sup

t!1
�s.�; t/� c ln t C � ln jln t j 6 N� C a (1.16)

at every point in D.
In a sense, the paper has two mathematical flavours. The analysis for problem (1.1) with a

domain of the type (1.11) is entirely rigorous and thus can be considered ‘pure’. Contrastingly,
barring the derivation of the invariance principle itself, that for the solution of the problem with a
domain of the form (1.12) for k > 2 is intuitive, and may be viewed ‘applied’.

Just for the record, our results answer two of the open problems – one of which is starred –
in [19, Chapter 20], and broach a third.

The remainder of the paper comprises five sections. In the next, we review the requisite theory
of solutions of problem (1.1) and that of the self-similar solution U . In the section thereafter, we
establish the invariance principle (Theorem 3.1) for solutions of problem (1.1) with domains of the
form (1.11). Formula (1.7) is a consequence (Theorem 3.2). The subsequent section is devoted to
the proof of (1.8) and the accompanying formula to determine the number a from the initial data
(Theorems 4.1 and 4.2). From this, the uniqueness of the function f follows (Theorem 4.3). A
section is then devoted to the proof of (1.9) and (1.10) (Theorems 5.1 and 5.2 respectively). In the
final section, we present the corresponding invariance principle for a solution u of problem (1.1) in
a domain satisfying (1.12) for some k > 2 (Theorem 6.1), and use this to justify the proposition
that (1.13), (1.15) and (1.16) describe the large-time behaviour of u and its free boundary when the
initial data u0 have bounded support.

2. Preliminaries

Throughout the paper, we shall assume the following.

HYPOTHESIS 2.1 The domain D is a bounded connected open subset of R
n for some natural

number n whose boundary satisfies a uniform interior ball condition.

With N D nC k, let us introduce the notation

x D .y; z/ 2 R
N for y 2 R

n and z 2 R
k: (2.1)

We shall use ry , rz , and rx , and, �y , �z , and �x to denote the del and Laplace operators with
respect to y 2 R

n, z 2 R
k , and x 2 R

N respectively, as the need arises. Where there is no
confusion, we may drop the subscript. As an alternative to (2.1), we employ

� D .�; 	/ 2 R
N for � 2 R

n and 	 2 R
k: (2.2)

Because it appears frequently let us define

1

m � 1
D 
:

From [2, 6, 17] the porous media equation in the domainD � RC admits a self-similar solution
nicknamed the friendly giant,

t��F.y/;
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where F is the unique weak solution of(
�Fm C 
F D 0 in D;
F D 0 on @D:

In fact, F 2 C.D/ \ C1.D/ is a classical solution of this problem, and, F > 0 in D.
From Vázquez’s analysis [18] we also know that there is a further self-similar solution with

domainD � R � RC given by
t��f .y; z � c ln t/;

where c > 0, and, defining the constant vector c in R
nC1 by

c D h0; : : : ; 0; ci; (2.3)

f 2 C.D � R/ is a weak solution of the equation

r � .rf m C f c/C 
f D 0 in D � R (2.4)

satisfying the auxiliary conditions

f D 0 on @D � R; (2.5)
f .y; z/ ! F.y/ as z ! �1 for all y 2 D; (2.6)

and
f .y; z/ ! 0 as z ! 1 for all y 2 D: (2.7)

Moreover,
f D 0 in D � .L;1/ for some L 2 R; (2.8)

and there is a unique number c > 0 for which problem (2.4)–(2.7) has such a solution.
As it has not yet been proven that f is in any way unique, we shall take f to be that solution

of problem (2.4)–(2.7) constructed in [18] and c correspondingly. This particular solution has the
added properties that there is a function � 2 C.D/ \L1.D/ such that

f .y; z/ > 0 if and only if z < �.y/ for all y 2 DI (2.9)
z 7! f .y; z/ is non-increasing for every y 2 DI (2.10)

f .y; z/=F.y/ ! 1 as z ! �1 uniformly with respect to y 2 DI (2.11)

and f is infinitely continuously differentiable in its positivity set and a classical solution of (2.4)
there. Furthermore, if D is a ball with centre 0, then f is symmetric about the line y D 0, and
jyj 7! f .y; z/ is non-increasing for every z 2 R. It follows that in this particular case, jyj 7! �.y/

is non-increasing, and, hence, � 2 C.D/.
Regarding the whole problem domain, besides either (1.11) or (1.12) with k > 2, we shall

assume the following.

HYPOTHESIS 2.2 The domain ˝ is connected, open, and has a boundary that is locally Lipschitz
continuous.
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DEFINITION 2.1 A weak solution of the equation

@tu D r � .rum C uv/C �u for .x; t/ 2 Q; (2.12)

where v is a fixed vector in R
N , � is a fixed real number, and Q is an open subset of RN C1, is a

nonnegative function u 2 L1
loc.Q/ for which every component of rum exists as a weak derivative

in L1
loc.Q/, and

“
Q

˚
.rum C uv/ � r � �u � u@t 

�
dx dt D 0 for all  2 C 1

0 .Q/:

DEFINITION 2.2 A strong solution of equation (2.12) is a weak solution u possessing the property
that @tu 2 L1

loc.Q/.

DEFINITION 2.3 A solution of problem (1.1) is a strong solution u of (2.12) with v D 0, � D 0,
and Q D ˝ � RC, such that the trace of um.�; t/ on @˝ is defined and equal to zero for almost all
t 2 RC, and u.�; t/ ! u0 as t # 0 in L1

loc.˝/.

Lemma 2.1 For any nonnegative function u0 2 L1
loc.˝/, problem (1.1) has a unique solution u.

Furthermore, u 2 C.˝ � RC/, um 2 L2
loc.RCIW 1;2

loc .˝//,

u.x; t/ < t��F.y/ for all .x; t/ 2 ˝ � RC; (2.13)
t .@tu/.x; t/ > �
u.x; t/ for almost all .x; t/ 2 ˝ � RC; (2.14)

and u is infinitely continuously differentiable and solves the porous media equation classically in
that subset of ˝ � RC where it is positive. Moreover, if u0 2 L1.˝/ then u 2 L1.˝ � RC/,
if u0 2 C.˝/ then u 2 C.˝ � Œ0;1//, and, if u0 2 C.˝/ is such that u0 D 0 on @˝ then
u 2 C.˝ � Œ0;1//.

Proof. The existence of a unique solution u satisfying the a priori estimate (2.13) without strict
inequality is provided by extension of the development for the case ˝ D D � R in [19,
Subsection 12.8.2]. Moreover, this gives u 2 C.Œ0;1/IL1

loc.˝// and um 2 L2
loc.RCIW 1;2

loc .˝//.
Following the further general theory of the porous media equation in [19], the bound (2.13)
without its strictness is sufficient to establish the continuity of u in ˝ � RC. Whence it can be
deduced that u is infinitely continuously differentiable and a classical solution of @tu D �um in
f.x; t/ 2 ˝ � RC W u.x; t/ > 0g, and possesses the conditional properties mentioned at the end of
the statement of the lemma. Subsequently, recalling that F > 0 in D, the strict inequality in (2.13)
can be obtained from the strong maximum principle. The inequality (2.14) is deducible using either
of the arguments substantiating [19, Lemma 8.1].

Lemma 2.2 Let ui denote a solution of problem (1.1) with spatial domain˝i and initial data u0;i ,
for i D 1; 2. If u0;1 6 u0;2 almost everywhere in ˝1 � ˝2, then u1 6 u2 in ˝1 � RC.

Proof. This comparison principle follows from the arguments leading to Lemma 2.1 similarly to
the corresponding principle for other problems treated in the existent theory of the porous media
equation [19].

In the statement of each of the remaining lemmata of this section, u denotes the solution of
problem (1.1) given by Lemma 2.1.
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Lemma 2.3 Let Qu0 D u0 in ˝ , and Qu0 D 0 elsewhere in R
N . Suppose that

lim sup
R!1

R�2��N

Z
fx2˝Wjxj<Rg

u0.x/ dx < 1: (2.15)

Then there exists a T 2 RC such that the Cauchy problem for porous media equation with initial
data Qu0 has a suitably defined unique nonnegative solution Qu 2 C.RN � .0; T //, and, Qu > u in
˝ � .0; T /. Moreover, when the left-hand side of (2.15) is zero, one can take T D 1.

Proof. See [19, Chapter 12].

Lemma 2.4 Let ˝ D D � R, and v be a nonnegative, uniformly continuous, bounded function in
˝ � Œ0;1/ that vanishes on @˝ � RC, and is a classical solution of the porous media equation in
that subset of ˝ � RC where it is positive. Suppose that u0 2 C.˝/\L1.˝/, and u0 > v.�; 0/ in
˝ . Then u > v in ˝ � RC.

Proof. If it were hypothesized that v was a strong solution of the porous media equation in˝�RC,
then the present lemma would be a restatement of Lemma 2.2. To obtain the lemma without this
hypothesis, we start at the foundation of comparison principles for solutions of the porous media
equation.

Let us first assume that u 2 C.˝ � Œ0;1// is a classical solution of the porous media equation
that is uniformly continuous and bounded away from zero in ˝ � RC, and u.�; 0/ > v.�; 0/ C �

on ˝ for some � > 0. In this case, there exists a ı > 0 such that u > v in
�
˝ � Œ0;1/

� n
.Dı � R � .ı;1//, where

Dı D ˚
y 2 D W j�� yj > ı for all � 2 @D�

: (2.16)

On the other hand, by estimates of classical solutions of the porous media equation written
as a linear equation [12, Theorems III.10.1 and III.12.1], there exists an ˛ 2 .0; 1/ such that
u 2 C 2C˛;1C˛=2.Dı � R � Œı;1//. Let

V D sup
˚
v.x; t/ W .x; t/ 2 ˝ � RC

�
;

b D .m � 1/

�Z 1

0

˚
!um C .1 � !/vm

��1=m
d!

�
@tu;

and
ˇ D sup

˚ jb.x; t/j W .x; t/ 2 Dı � R � .ı;1/
� C 1:

The nonnegativity of v and the assumptions on u ensure that ˇ is finite. Let T 2 .ı;1/ and " > 0

be arbitrary, and consider the function

w.x; t/ D
n
vm.x; t/ � um.x; t/

o
e�ˇt � "

n
mNV m�1t C �

1C jxj2 �1=2
o
:

It is such that w 6 �" on
�
Dı � R � fıg� [ .@Dı � R � Œı; T /, and w.x; t/ ! �1 as jzj ! 1

uniformly with respect to .y; t/ 2 Dı � Œı; T . Thus, if w is positive anywhere in Dı � R � .ı; T ,
it must have a positive maximum in this set. This places such a maximum in the positivity set of
v. So both u and v are classical solutions of the porous media equation there, and besides w > 0,
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necessarily rw D 0, �w 6 0, and @tw > 0 at this point. However, it can also be computed that

mvm�1�w � .ˇ � b/w � @tw

D "m
h
NV m�1 �

n
N C .N � 1/ jxj2

o �
1C jxj2

��3=2

vm�1
i

C "

	
mNV m�1t C

�
1C jxj2

�1=2


.ˇ � b/

at such a point. So, at a positive maximum of w, we have an identity for which the left-hand side is
negative and the right-hand side is positive. This absurdity rules out the positivity of w anywhere in
Dı � R � .ı; T . Hence, w 6 0 in ˝ � .0; T . Passing to the limits " # 0 and T ! 1, we obtain
u > v in ˝ � RC.

Now, we can find a sequence of functions fu0;j gj 2N � C.˝/ such that u0;j D 1=j on @˝ ,
u0;j > v.�; 0/C 1=j and u0;j > u0;j C1 > u0 in ˝ for each j 2 N, and u0;j ! u0 as j ! 1
in C.˝/. Let uj denote the classical solution of the porous media equation in ˝ � RC satisfying
uj > 1=j in˝�RC, uj .�; 0/ D u0;j on˝ , and uj D 1=j on @˝�RC, whose existence is given by
the arguments of [19, Theorem 5.5 and Proposition 7.21]. By the arguments of [19, Theorem 5.14],
uj > uj C1 in ˝ � RC. Subsequently, employing the continuity estimates in [19, Theorem 7.1],
we can ascertain that the sequence fuj gj 2N converges monotonically to u uniformly on compact
subsets of ˝ � RC.

The lemma follows from applying the argument for a classical solution of the porous media
equation that is bounded away from zero to uj and then letting j ! 1.

Lemma 2.5 Define P.t/ for t 2 RC by (1.2).
(i) There holds P.�/ � P.T / for all 0 < � < T .

(ii) Given any bounded open set ˝ 0 � ˝ that satisfies a uniform interior ball condition, there
exists a T > 0 such that ˝ 0 � P.T /.

Proof. The first assertion follows from the continuity of u in ˝ � RC and (2.14). The second can
be found in [19, Theorems 14.3 and 14.4].

Lemma 2.6 Let ˝ D D � R, Q D f.x; t/ 2 ˝ � .0; T  W z > � � y C �.t/g where

� � y D �1y1 C � � � C �nyn

for some � 2 R
n, � 2 C.Œ0; T /, and T 2 RC, and let v 2 C.Q/\L1.Q/ be a strong solution of

the porous media equation in Q. Suppose that u0 2 C.˝/ \ L1.˝/, u 6 v on f.x; t/ 2 Q W t D
0 or x 2 @˝g, and u < v on S D f.x; t/ 2 Q W z D � � y C �.t/g. Then u 6 v in Q.

Proof. When � is constant, so thatQ is a cylinder, this lemma can be proven like Lemma 2.2. The
result when � is not constant follows by replacingQ with the union of a finite number of cylinders
Qj D j̋ � .tj �1; tj  � Q for j D 1; : : : ;N, with t0 D 0 and tN D T , such that v � u is bounded

away from zero on Q n
�
[N

j D1Qj

�
. The smoothness of S, the continuity of u and v in Q, and the

condition u < v on S, provide the freedom to be able to do this. The previously established result
can then be applied in each of the cylindersQj by induction on j .
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Lemma 2.7 The solution u of problem (1.1) is such that t� ju.x; t/ � F .x/j ! 0 as t ! 1
uniformly with respect to x in compact subsets of ˝ , where F is the unique weak solution of(

�F m C 
F D 0 in ˝;
F D 0 on @˝:

This function F 2 C.˝/\C1.˝/, and is such that 0 < F .x/ 6 F.y/ for all x 2 ˝ with equality
on the right-hand side if ˝ D D � R

k .

Proof. Extension of the argument used to prove [17, Theorem 3.2] gives the result.

3. The invariance principle

In this and the coming two sections
N D nC 1

and ˝ is a domain of the type (1.11), exclusively.
Let � denote the first eigenvalue of the eigenvalue problem for the Laplacian with homogeneous

Dirichlet boundary conditions in D, and Y the corresponding eigenfunction. So,(
��Y D �Y in D;
Y D 0 on @D:

By standard theory, � > 0, and Y 2 C.D/ \ C1.D/ is unique modulo multiplication with a
constant. We shall normalize this constant, by henceforth assuming thatZ

D

Y.y/ dy D 1:

In this case Y > 0 in D. Consequently the function

G.x/ D Y.y/e
p

� z for x 2 D � R (3.1)

is a positive classical solution of the problem(
�G D 0 in D � R;

G D 0 on @D � R:
(3.2)

Let

h.x/ D
(

ln jxj if N D 2;

1 if N > 3:

Lemma 3.1 There exists a unique functionK 2 C 2.˝/\ C.˝/ such that8̂<
:̂
�K D 0 in ˝;
K D 0 on @˝;
K.x/ D G.x/C o.h.x// as jzj ! 1

(3.3)
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uniformly with respect to y 2 D. Moreover,

0 < K 6 G in ˝ (3.4)

with equality if and only if ˝ D D � R, and,

K.x/=G.x/ ! 1 as z ! 1 (3.5)

uniformly with respect to y 2 D.

Proof. Since @˝ is locally Lipschitz continuous, every point on @˝ satisfies the exterior segment
condition in the case N D 2 and the exterior cone condition in the case N > 3, and hence is a
regular boundary point [3, Examples 4.8 and 4.9, pages 337–338]. Furthermore, maxfG.x/=h.x/ W
x 2 @˝ and jxj D Rg ! 0 as R ! 1, since G D 0 on @D � RC D fx 2 @˝ W z > 0g and
G.x/ ! 0 as z ! �1 uniformly with respect to y 2 D. So, by [3, Theorem 4.2, pages 363–364],
the problem 8̂<

:̂
�J D 0 in ˝;
J D G on @˝;
J.x/=h.x/ ! 0 as jxj ! 1

admits a unique solution J 2 C 2.˝/ \ C.˝/. Subsequently, it is easily verified that K D G � J

is the unique solution of problem (3.3).
To prove the left-hand inequality in (3.4) for N > 3, consider the function v D K C "h for

" > 0. The boundary condition in (3.3) implies that v > 0 on @˝ , while the last condition implies
that lim infjxj!1 v.x/ > 0. Furthermore,�v D 0 in ˝ . Hence [3, Corollary 2.4, page 246], v > 0

in ˝ . In view of the arbitrariness of ", this gives K > 0 in ˝ . Strict inequality follows from the
strong maximum principle [3, Proposition 2.8, page 245]. The proof of the right-hand inequality in
(3.4) for N > 3 is analogous, using v D G �K C "h. In the case N D 2 the inequalities in (3.4)
may be proven similarly upon replacing h.x/ with ln.jy � y�j2 C z2/ for any fixed y� 2 R

n such
that jy� � �j > 1 for all � 2 D.

To obtain (3.5), we note that H.x/ D 2Y.y/ sinh.
p
�z/ is a solution of (3.3) with ˝ replaced

by D � RC. Furthermore, K D H on @D � RC and K > 0 D H on D � f0g. A repetition of the
preceding comparison principle argument leads to the conclusion that K > H in D � RC. Given
(3.4), (3.5) follows.

We are now in a position to formulate the following invariance principle, which is the key to all
our results.

Theorem 3.1 Let ˝ be a domain of the type (1.11) fulfilling Hypotheses 2.1 and 2.2, and, let
u0 2 L1

loc.˝/ be nonnegative. Then the solution u of problem (1.1) satisfiesZ
˝

K.x/u.x; t/ dx D
Z

˝

K.x/u0.x/ dx for all t > 0: (3.6)

Proof. Let us first assume that u0.x/ vanishes for large values of jzj uniformly with respect to y.
Define Qu0 as in Lemma 2.3, and then Nu0.x/ D Qu0.y; z/C Qu0.y;�z/ for all x 2 D�R. Let Nu denote
the solution of problem (1.1) with ˝ D D � R and initial data Nu0. By part (i) of Lemma 4.1 below,
given any T > 0 there exists an L > 0 such that Nu vanishes inD � ŒL;1/� .0; T . However, since
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Nu0 is symmetric about the hyperplane z D 0, the uniqueness of solutions of problem (1.1) implies
that Nu.�; t/ preserves this symmetry for t 2 RC. So Nu vanishes in fx 2 D � R W jzj > Lg � .0; T .
Since Nu0 > u0 in˝ , Lemma 2.2 subsequently implies that u vanishes in fx 2 ˝ W jzj > Lg�.0; T .
Now, let � 2 C 2

0 .R/ be such that � D 1 on Œ�L;L. Noting that @tu D �um almost everywhere
in ˝ � RC, multiplying this identity with K.x/�.z/, integrating over ˝ � .�; T / for � 2 .0; T /,
applying integration by parts, and passing to the limit � # 0, we obtain (3.6) with t D T .

Suppose next that u0 > u0 > 0 in ˝ for some u0 2 C.˝/. Let �i 2 C.R/ be a cutoff function
with maximum value �i .z/ D 1 for jzj 6 i , and minimum value �i .z/ D 0 for jzj > i C 1, for
i 2 N. Define u0;i .x/ D u0.x/�i .z/ and u0;i .x/ D u0.x/�i .z/ for x 2 ˝ . Denote the solution
of problem (1.1) with initial data u0;i by ui and that of the problem with initial data u0;i by ui . By
Lemma 2.2, fui gi2N is non-decreasing and bounded above by u in ˝ � RC. Consequently, it has
a limit function u1 such that 0 6 u1 6 u in this set. On the other hand, ui > uj for all i > j ,
while uj is positive and continuous in fx 2 ˝ W jzj 6 j g � RC. Thus, ui is a positive classical
solution of the porous media equation in fx 2 ˝ W jzj 6 j g � RC for every i > j . By estimates
of such solutions of the porous media equation written as a linear equation [12, Theorems III.10.1
and III.12.1], fui g1

iDj has a uniform bound in the norm of the space C 2C˛;1C˛=2.K � Œ�;�/ for
some ˛ 2 .0; 1/ for every compact set K � fx 2 ˝ W jzj 6 j g, 0 < � < � < 1, and j 2 N.
So, u1 belongs to this space too. We conclude that u1 is a positive classical solution of the porous
media equation in ˝ � RC. The fact that 0 6 u1 6 u in ˝ � RC subsequently implies that
u1 2 C.˝ � RC/ and u1 D 0 on @˝ � RC. Finally, we note thatZ˚

x2˝Wjzj<L
� ˇ̌
u1.x; t/ � u0.x/

ˇ̌
dx

6
Z˚

x2˝Wjzj<L
� max

˚ ju.x; t/ � u0.x/j ; jui .x; t/ � u0.x/j
�
dx

for all L > 0, t > 0 and i 2 N. Consequently,

lim sup
t#0

Z
fx2˝Wjzj<Lg

ju1.x; t/ � u0.x/j dx 6
Z

fx2˝Wjzj<Lg
ju0;i .x/ � u0.x/j dx:

Passing to the limit i ! 1, it follows that u1.�; t/ ! u0 as t # 0 in L1
loc.˝/. Altogether,

this confirms that u1 is a solution of problem (1.1). Hence, because solutions of this problem are
unique, u1 D u. Therefore, substituting ui in (3.6), passing to the limit i ! 1, and invoking the
Monotone Convergence Theorem, we obtain (3.6) as desired.

The proof for a general initial-data function u0 is now easily accomplished. It can be sandwiched
between an increasing sequence of functions fu0;i gi2N of the first type considered, and a decreasing
sequence f Nu0;igi2N of the second type considered, both of which converge to u0 in L1

loc.˝/.
Moreover, if Ku0 2 L1.˝/ then the latter sequence can be chosen so that K Nu0;i 2 L1.˝/ for
all i 2 N. Letting ui and Nui denote the corresponding solutions of problem (1.1) for i 2 N, by
Lemma 2.2 and what we have already proven,Z

˝

K.x/u.x; t/ dx >
Z

˝

K.x/ui .x; t/ dx D
Z

˝

K.x/u0;i .x/ dx

and Z
˝

K.x/u.x; t/ dx 6
Z

˝

K.x/ Nui .x; t/ dx D
Z

˝

K.x/ Nu0;i .x/ dx
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for all i 2 N and t 2 RC. Taking the limit i ! 1 completes the proof.

Now, recall the definition (1.4) of the self-similar solution

U.x; t I a/ D t��f .y; z � c ln t � a/: (3.7)

Lemma 3.2 Let a be any real number. For all t > 0 there holdsZ
D�R

G.x/U.x; t I a/ dx D �e
p

� a t
p

� c��; (3.8)

where

� D
Z

D�R

Y.y/e
p

� zf .x/ dx > 0: (3.9)

Proof. By a straightforward change of variables,Z
D�R

G.x/U.x; t I a/ dx D
Z

D

Z
R

Y.y/e
p

� zt��f .y; z � c ln t � a/ dz dy

D t��e
p

� .c ln tCa/

Z
D

Z
R

Y.y/e
p

� �f .y; 	/ d	 dy:

This gives (3.8). Noting that Y is bounded in D, f is bounded in D � R and vanishes uniformly
with respect to y 2 D for large z, while z 7! e

p
� z is integrable on any interval that is bounded

above, it can be verified that � is finite.

Since .x; t/ 7! U.x; t C 1I 0/ is a bona fide solution of problem (1.1) with initial data U.�; 1I 0/
and K D G when ˝ D D � R, combining Theorem 3.1 and Lemma 3.2 immediately gives the
following.

Theorem 3.2 The unique number c > 0 for which problem (2.4), (2.5), (2.6), (2.8) admits a solution
is given by (1.7) where � is the first eigenvalue of the eigenvalue problem for the Laplacian with
homogeneous Dirichlet boundary conditions in D.

With c given by (1.7), (3.8) can be reformulated asZ
D�R

G.x/U.x; t I a/ dx D �e
p

� a D �e�a=c for all t > 0: (3.10)

To close this section, we record the following consequence of the invariance principle for future
use.

Lemma 3.3 Let u be a solution of problem (1.1) with initial data satisfying Hypothesis 4.1 below,
and a be any real number. Then there is a number� for whichZ

˝

K.x/
ˇ̌
u.x; t/ � U.x; t I a/ˇ̌ dx ! � as t ! 1: (3.11)

Proof. Let us drop a from the notation of U , and define

wC D maxfu;U g and w� D minfu;U g
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in˝�RC. Because ju � U j D wC �w�, to verify (3.11) it suffices to show that there are numbers
�C > �� > 0 such that Z

˝

K.x/w˙.x; t/ dx ! �˙ as t ! 1: (3.12)

Fix " > 0, and let T > � > 0 be arbitrary. By (3.5) there exists anL > 0 such thatG 6 .1C"/K
in D � .L;1/. Hence,Z

˝

G.x/wC.x; �/ dx 6
Z

fx2˝Wz<Lg
G.x/wC.x; �/ dx C .1C "/

Z
D�.L;1/

K.x/wC.x; �/ dx

6 ���

Z
fx2˝Wz<Lg

G.x/F.y/ dx C .1C "/

Z
˝

K.x/wC.x; �/ dx; (3.13)

by (2.6), (2.10), (2.13), and (3.7). Now, define

v0.x/ D
(
wC.x; �/ for x 2 ˝;
U.x; �/ for x 2 .D � R/ n˝;

and consider the solution v of problem (1.1) with ˝ replaced by D � R and initial data v0. By
Theorem 3.1, Z

D�R

G.x/v.x; T � �/ dx D
Z

D�R

G.x/v0.x/ dx (3.14)

where Z
D�R

G.x/v0.x/ dx D
Z

˝

G.x/wC.x; �/ dx C
Z

.D�R/n˝

G.x/U.x; �/ dx (3.15)

and Z
.D�R/n˝

G.x/U.x; �/ dx 6 ���

Z
.D�R/n˝

G.x/F.y/ dx (3.16)

by (2.6), (2.10), and (3.7). However, by Lemma 2.2, U.�; T / 6 v.�; T � �/ in D � R and u.�; T / 6
v.�; T � �/ in ˝ . Hence,Z

˝

G.x/wC.x; T / dx 6
Z

˝

G.x/v.x; T � �/ dx 6
Z

D�R

G.x/v.x; T � �/ dx: (3.17)

Recalling (3.4), and combining (3.13)–(3.17), we deduce thatZ
˝

K.x/wC.x; T / dx 6 .1C "/

Z
˝

K.x/wC.x; �/ dx C 2���

Z
D�.�1;L/

G.x/F.y/ dx:

Taking the limit supremum as T ! 1, followed by the limit infimum as � ! 1, and finally the
limit " # 0, we obtain that part of (3.12) pertaining to wC for some finite �C > 0.

That part of (3.12) pertaining tow� is obtained in a similar but more direct fashion. Considering
the solution v of problem (1.1) with initial data w�.�; �/,Z

˝

K.x/v.x; T � �/ dx D
Z

˝

K.x/w�.x; �/ dx
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by Theorem 3.1. Simultaneously, Lemma 2.2 implies that v.�; T ��/ 6 U.�; T I a/ and v.�; T ��/ 6
u.�; T / in ˝ . So we deriveZ

˝

K.x/w�.x; T / dx >
Z

˝

K.x/w�.x; �/ dx

for all T > � > 0. This yields the desired conclusion with 0 6 �� 6 1. By the definition of w˙,
necessarily �� 6 �C.

4. Convergence of the solution

Supplementarily to ˝ being as in the previous section, in this section and the next we shall assume
the following.

HYPOTHESIS 4.1 The function u0 2 L1
loc.˝/ is nonnegative, positive on a subset of ˝ of positive

measure, and such that Ku0 2 L1.˝/.

Furthermore, on occasion, we shall invoke the next assumption as well.

HYPOTHESIS 4.2 The function u0 satisfies (2.15) and is such that u0 D 0 in fx 2 ˝ W z > `g for
some ` 2 R.

Recalling (3.9), the first of the above hypotheses allows us to define

a D 1p
�

ln
�
1

�

Z
˝

K.x/u0.x/ dx

�
: (4.1)

The second is sufficient for the existence of the free boundary whose large-time behaviour we wish
to investigate, in accordance with the lemma below.

Lemma 4.1 Under Hypothesis 4.2, the solution u of problem (1.1) has the following properties for
any T > # > 0.

(i) There exists an L > ` such that u D 0 in fx 2 ˝ W z > Lg � .0; T .
(ii) There exists an A such that u.x; t/ 6 .1 � #=t/�� U.x; t IA/ for all .x; t/ 2 ˝ � ŒT;1/.

Proof. Let us first assume that part (i) is true for some T > 0 and let # 2 .0; T / be arbitrary. By this
assumption, (2.11), and (2.13) with t D T , we can find an A� so large that f .y; z � c ln.T � #/ �
A�/ > .T � #/�u.x; T / for all x 2 ˝ . Hence, by Lemma 2.2, u.x; t/ 6 U.x; t � # IA�/ for all
.x; t/ 2 ˝ � ŒT;1/. Recalling (2.10) and (3.7), noting that ln.t �#/� ln t D ln.1�#=t/ > ln.1�
#=T / for all t > T , and setting A D A� � c ln.1�#=T /, there holds U.x; t �# IA�/ 6 U.x; t IA/
for all such T . Thus if part (i) is true, then part (ii) is true too.

Now, fix L > `, and, let Qu be the solution of the Cauchy problem for the porous media equation
in R

nC1 � .0; T / given by Lemma 2.3. By [19, Theorem 14.13] there exists a � 2 .0; T / such that
Qu D 0 in fx 2 R

N W z > Lg � .0; �. Since Qu > u in ˝ � .0; T /, this yields part (i) for T D � .
Consequently, the conclusion of part (ii) is true for # D �=2 and T D � . In turn, taken together with
part (i) for T D � , this deduction implies that part (i) actually holds for every T > 0. Hence, pulling
ourselves up by our bootstraps as it were, we have parts (i) and (ii) with the desired generality.

Let us next recall the conventions (2.1)–(2.3) and introduce the change of variables

� D y; 	 D z � c ln t; � D ln t; and Ou D t�u:
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Lemma 4.2 If u is a solution of problem (1.1) then

Ou.�; �/ D e��u.�; 	 C c�; e� / (4.2)

is a weak solution of the equation

@� Ou D r � .r Oum C Ouc/C 
 Ou (4.3)

in Q D f.�; �/ 2 D � R
2 W .�; 	 C c�/ 2 ˝g which is a classical solution of the equation at any

point in Q where it is positive, and continuous in Q. Conversely, if Ou denotes a solution of (4.3) in
D � R

2 in the sense of distributions that is continuous in D � R
2, then

u.x; t/ D t�� Ou.y; z � c ln t; ln t/: (4.4)

defines a solution of the porous media equation in D � R � RC in the sense of distributions which
is continuous in D � R � RC.

Note that if OU is to U what Ou is to u, then

OU.�; � I a/ D U.�; 1I a/ for all .�; �/ 2 D � R
2:

Now, let u be an arbitrary solution of problem (1.1) whose initial data satisfy Hypothesis 4.1.
Define a by (4.1), and Ou in f.�; �/ 2 D � R

2 W .�; 	 C c�/ 2 ˝g by (4.2). Next, for s > 0, set

Ous.�; �/ D Ou.�; s C �/ for .�; �/ 2 Qs; (4.5)

where
Qs D f.�; �/ 2 D � R

2 W 	 C c.s C �/ > 0g:
By (1.11) and Lemma 4.2, Ous 2 C.Qs/ is a weak solution of (4.3) in Qs and a classical solution of
that equation in f.�; �/ 2 Qs W Ous.�; �/ > 0g.

Lemma 4.3 (i) There holdsQs � Q& for all s > & > 0, and [s>0Qs D D � R
2.

(ii) There holds Ous.�; �/ 6 F.�/ for all .�; �/ 2 Qs and s > 0.
(iii) The family f Ousgs>& is equicontinuous in Q& for all & > 0.
(iv) Given any .��; ��/ 2 Q& such that Ous.�

�; ��/ > ı > 0 for all s > & > 0, there exists an
open set Q � Q& , a number ˛ 2 .0; 1/, and a number C > 0 such that .��; ��/ 2 Q and
k OuskC 2C˛.Q/ 6 C for all s > & .

(v) Hypothesis 4.2 implies that given any # 2 .0; 1/ there exists an A such that Ous.�; �/ 6
.1 � #e�s/��U.�; 1IA/ for all .�; �/ 2 Qs and s > �� .

Proof. Property (i) is given by the definition of Qs. Property (ii) is a corollary of (2.13).
Property (iii) subsequently follows from regularity estimates of DiBenedetto [7]. Note that to utilize
these, we have to write equation (4.3) in the form

@�v
1=m D r � a.v;rv/C 
b.v/

where
a.v;p/ D p C b.v/c
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and b 2 C.R/ \ L1.R/ is such that b.v/ D v1=m for 0 6 v 6 maxfFm.�/ W � 2 Dg. Then, using
Young’s inequality, we can satisfy the condition

a.v;p/ � p D jpj2 C b.v/c � p > .1 � "/ jpj2 � jcj2
4"

kbk2
L1.R/

for any " 2 .0; 1/. Property (iv) is a consequence of the classical theory of parabolic equations [12,
Theorems III.10.1 and III.12.1]. With regard to property (v), Lemma 4.1(ii) says that given any
T > # > 0 there exists an A such that each Ous.�; �/ 6

�
1 � #e�.sC�/

���
U.�; 1IA/ for all

.�; �/ 2 Qs with � > lnT � s. Choosing T D 1 gives the property.

From the above lemma, it follows that any unbounded increasing sequence fsigi2N � RC has
a like subsequence which we again denote by fsi gi2N such that Ousi

converges to a nonnegative
function Ou1 as i ! 1 uniformly on compact subsets of D � R

2. Furthermore, Ou1 is uniformly
continuous in D � R

2,

Ou1.�; �/ 6 F.�/ for all .�; �/ 2 D � R
2; (4.6)

Ou1 D 0 on @D�R
2, Ou1 is a solution of equation (4.3) inD�R

2 in the sense of distributions, and,
Ou1 2 C 2C˛.Q/ for some ˛ 2 .0; 1/ in some neighbourhood Q of any point in D � R

2 where it is
positive. Thus, Ou1 is a classical solution of equation (4.3) in f.�; �/ 2 D � R

2 W Ou1.�; �/ > 0g.
Moreover, under the additional Hypothesis 4.2, the convergence is uniform on all sets of the form
D � Œ˛;1/ � Œ�0; �1.

Our further considerations comprise the analysis of the Lyapunov function

I.�/ D
Z

D�R

G.�/
ˇ̌ Ou1.�; �/ � U.�; 1I a/ˇ̌ d�

for � 2 R. We split our argument into three lemmata.

Lemma 4.4 There holdsZ
D�R

G.�/ Ou1.�; �/ d� D �e�a=c for all � 2 R: (4.7)

Proof. Using (2.13), (3.1), and (3.4), it can be shown thatZ
fx2˝Wz<0g

K.x/u.x; t/ dx ! 0 as t ! 1:

Hence, by (3.6) and (4.1),Z
D�RC

K.x/u.x; t/ dx ! �e�a=c as t ! 1:

Substituting (4.4) and t D s C � for fixed � 2 R in the above, it follows thatZ
D�.�c.sC�/;1/

e��.sC�/K.�; 	 C c.s C �// Ous.�; �/ d� ! �e�a=c as s ! 1: (4.8)

Now, (3.1) and (3.5) imply that e��LK.�; 	 C cL/ ! G.�/ as L ! 1 for each � 2 D � R.
Thus, setting s D si in (4.8), passing to the limit i ! 1, and applying Fatou’s Lemma, we
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obtain (4.7) with “6” in lieu of “D”. Moreover when Hypothesis 4.2 holds, applying the Dominated
Convergence Theorem rather than Fatou’s Lemma, which is justified by Lemma 4.3 part (v), we
obtain (4.7) with the asserted equality.

It remains to establish (4.7) with “>” instead of “D” when Hypothesis 4.2 does not hold. For this
purpose, consider an auxiliary initial-data function u�

0 6 u0 that satisfies both Hypotheses 4.1 and
4.2. Denote the corresponding solution of problem (1.1) by u�, the corresponding number (4.1) by
a� 6 a, and the corresponding function defined via (4.2) and (4.5) by Ou�

s . By Lemma 2.2, u� 6 u in
˝�RC. The preceding analysis implies that fsigi2N contains a subsequence fsij gj 2N such that Ou�

sij

converges to a function Ou�1 analogous to Ou1 uniformly on all sets of the formD� Œ˛;1/� Œ�0; �1.
For this limit function, mutatis mutandis (4.7) does hold with equality. Moreover, Ou�1 6 Ou1 in
D � R

2. Thus, the actual left-hand side of (4.7) is bounded below by �e�a�=c . In view of the
arbitrariness of u�

0 and therewith a�, this yields (4.7) with “>” where we already had the reverse
inequality.

Lemma 4.5 Let � be the number in Lemma 3.3. Then I.�/ D � for all � 2 R.

Proof. Reapplying the argument employed in the proof of the previous lemma to (3.11) yields
I.�/ 6 � for every � 2 R, with equality if Hypothesis 4.2 holds. To deduce equality without
Hypothesis 4.2, let u�, a�, and Ou�1 be as in the proof of the previous lemma. Let �� be the number
given by Lemma 3.3 with u replaced by u� and a not replaced. For every .x; t/ 2 ˝ � RC,ˇ̌

u.x; t/ � U.x; t I a/ˇ̌ 6 u.x; t/ � u�.x; t/C ˇ̌
u�.x; t/ � U.x; t I a/ˇ̌:

Hence, multiplying by K.x/, integrating with respect to x over ˝ , recalling (3.6) and (4.1), and
letting t ! 1,

� 6 �.e�a=c � e�a�=c/C��: (4.9)

On the other hand, for every .�; �/ 2 D � R
2,ˇ̌ Ou�1.�; �/ � U.�; 1I a/ˇ̌ 6 Ou1.�; �/ � Ou�1.�; �/C ˇ̌ Ou1.�; �/ � U.�; 1I a/ˇ̌:

Therefore, multiplying by G.�/, integrating with respect to � overD � R, and recalling (4.7),

�� 6 �.e�a=c � e�a�=c/C I.�/: (4.10)

Together (4.9) and (4.10) imply that I.�/ > ��2�.e�a=c �e�a�=c/ whatever � 2 R. Consequently,
passing to the limit a� " a and noting that we have already established that I.�/ 6 �, we obtain
the desired result.

Lemma 4.6 There holds I.�/ D 0 for all � 2 R.

Proof. We adapt an argument previously used in [9, 11, 16]. Care is needed because we know less
about the function Ou1 than its counterpart in each of the cited papers.

Let u1 be the function defined from Ou1 through (4.4). By Lemma 4.2, it is a solution of the
porous media equation inD�R�RC in the sense of distributions, a classical solution of the equation
in a neighbourhood of any point where it is positive, and vanishes on @D � R � RC. Furthermore,
by (4.6) and the uniform continuity of Ou1 in D � R

2, u1 is bounded and uniformly continuous in
D � R � .�;1/ for all � 2 RC. Via the transformation (4.4), the identity (4.7) becomesZ

D�R

G.x/u1.x; t/ dx D �e�a=c for all t > 0; (4.11)
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while the outcome of Lemma 4.5 can be formulated asZ
D�R

G.x/
ˇ̌
u1.x; t/ � U.x; t I a/ˇ̌ dx D � for all t > 0: (4.12)

For .x; t/ 2 D � R � RC, we set

w.x; t/ D max
˚
u1.x; t/; U.x; t I a/

�
: (4.13)

Noting that maxf˛; ˇg D .˛CˇCj˛ � ˇj/=2 for any numbers ˛ and ˇ, and that (3.10), (4.11) and
(4.12) hold, Z

D�R

G.x/w.x; t/ dx D �e�a=c C�=2 for all t > 0: (4.14)

Now, suppose that there exist points .x˙; �/ 2 D � R � RC such that

u1.xC; �/ > U.xC; � I a/ and u1.x�; �/ < U.x�; � I a/: (4.15)

In such an event, let v denote the solution of problem (1.1) with˝ D D�R and initial dataw.�; �/.
By (4.13) and Lemma 2.2, v.x; t/ > U.x; t C � I a/ for all .x; t/ 2 D � R � RC, while by (4.13)
and Lemma 2.4, v.x; t/ > u1.x; t C �/ for all such .x; t/. Therefore,

v.x; t/ > w.x; t C �/ for all .x; t/ 2 D � R � RC: (4.16)

On the other hand, because of the invariance of solutions of problem (1.1) with ˝ D D � RC
dictated by Theorem 3.1, and, (4.14) for t D � ,Z

D�R

G.x/v.x; t/ dx D �e�a=c C�=2 for all t > 0: (4.17)

Taken together, (4.14), (4.16), and (4.17) imply that (4.16) holds with equality.
Next, recalling that D is connected, let K be a closed path in D � R with endpoints x˙. Since

K can be contained within a bounded open subset of D � R that satisfies a uniform interior ball
condition, part (ii) of Lemma 2.5 implies that there is a T > 0 such that v > 0 on K�fT g. Take P to
be the largest connected component of f.x; t/ 2 D�R� Œ0; T  W v.x; t/ > 0g that contains K�fT g.
Consequently, if v.x; T / D u1.x; T C �/ for some x 2 K then the Strong Maximum Principle
implies that v.x; t/ D u1.x; tC�/ for every .x; t/ 2 P . Likewise, if v.x; T / D U.x; T C� I a/ for
some x 2 K then v.x; t/ D U.x; tC� I a/ for every .x; t/ 2 P . Whichever, since fx˙g�Œ0; T  � P
by part (i) of Lemma 2.5, we have a contradiction of (4.15).

The exclusion of (4.15) for any � 2 RC implies that for every t 2 RC either u1.�; t/ > U.�; t I a/
everywhere in D � R or the reverse inequality holds. Either way, from (3.10), (4.11), (4.13), and
(4.14) it follows that � D 0; in the light of which, the present lemma is the ultimate restatement of
the previous one.

From the above lemma, we deduce that Ou1 D U.�; 1I a/ in D � R
2. We thus conclude that

the whole family f Ousgs>0 converges to U.�; 1I a/ as s ! 1 uniformly on compact subsets of
D � R

2. Therefore, Ou.�; �/ converges to U.�; 1I a/ as � ! 1 uniformly on all compact subsets
of D � R. Moreover, under Hypothesis 4.2, the convergence is uniform on all sets of the form
D� .˛;1/. In view of Lemma 4.3 parts (ii) and (v), the afore-stated uniform convergence converts
to Lp-convergence on the said sets for every p > 1.

Transposing the above conclusions to the original variables gives the first of the two theorems
below.
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Theorem 4.1 Let ˝ be a domain of the type (1.11) fulfilling Hypotheses 2.1 and 2.2, and u0 be a
function satisfying Hypothesis 4.1. Define a by (4.1). Then given any ˛ 2 R and 1 6 p 6 1, the
solution u of problem (1.1) is such that

t�
u.�; t/ � U.�; t I a/

Lp.D�.˛Cc ln t;ˇCc ln t//
! 0 as t ! 1

for every ˇ > ˛. Moreover, if Hypotheses 4.2 holds, then

t�
u.�; t/ � U.�; t I a/

Lp.D�.˛Cc ln t;1//
! 0 as t ! 1:

Theorem 4.2 Suppose that ˝ D D � R and further to the hypotheses in Theorem 4.1 that
lim infz!�1 u0.x/=F.y/ > 0 uniformly with respect to y 2 D. Then

t�
u.�; t/� U.�; t I a/

L1.D�.�1;ˇCc ln t//
! 0 as t ! 1

for all ˇ 2 R, and hence when Hypothesis 4.2 holds,

t�
u.�; t/ � U.�; t I a/

L1.˝/
! 0 as t ! 1:

Proof. Fix ˇ 2 R and " > 0. The extra assumption in this theorem implies that there exists
a ı > 0 and a z� 2 R such that u0.x/ > ıF.y/ for all x 2 D � .�1; z�/. In the
light of (2.8), (2.11), and (3.7), this in turn implies that there exist a � > 0 and an a < a

such that u0 > U.�; � I a/ in ˝ . Hence, by Lemma 2.2, u.x; t/ > U.x; t C � I a/ for all
.x; t/ 2 ˝ � RC. Recalling (2.10), this gives u.x; t/ > .1 C �=t/��U.x; t I a/, which converts
into Ou.�; �/ > .1 C �e�� /��U.�; 1I a/ for all .�; �/ 2 ˝ � R. So, j Ou.�; �/ � U.�; 1I a/j 6
maxfF.�/ � U.�; 1I a/; jU.�; 1I a/ � .1C �e�� /��U.�; 1I a/jg for all such .�; �/. Utilizing (2.11)
once more, we can subsequently find a � and ˛ < ˇ such that j Ou.�; �/ � U.�; 1I a/j 6 "F.�/ for
all .�; �/ 2 D � .�1; ˛� Œ�;1/. However, from the proof Theorem 4.1, we know that there then
exists a T > � such that j Ou.�; �/ � U.�; 1I a/j 6 " for all .�; �/ 2 D � .˛; ˇ/ � ŒT;1/. Thus,ˇ̌ Ou.�; �/ � U.�; 1I a/ˇ̌ 6 " f1C F.�/g for all .�; �/ 2 D � .�1; ˇ/ � ŒT;1/:

In view of the arbitrariness of " and the boundedness ofF , this yields Ou.�; �/ ! U.�; 1I a/ as � ! 1
uniformly onD�.�1; ˇ/. Transferring this deduction back to the original coordinate system gives
the primary conclusion of the theorem. The secondary one follows from the observation that under
Hypothesis 4.2 one may choose ˇ > AC supf�.y/ W y 2 Dg where A is prescribed by Lemma 4.1
part (ii).

We are now in a position to prove the uniqueness of the function f .

Theorem 4.3 Modulo translation with respect to z, problem (2.4)–(2.7) has at most one
nonnegative solution f such that Gf 2 L1.D � R/.

Proof. Suppose that next to the constructed solution f , that has been fixed in Section 2, there is
another nonnegative solution, g say. Define

v.x; t/ D .t C 1/��g
�
y; z � c ln.t C 1/

�
:

Then v is a strong solution of the porous media equation in D � R � RC that vanishes on @D �
R � RC. Define a� by (4.1) with D � R and Gv.�; 0/ in lieu of ˝ and Ku0. By Theorem 4.1,
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t� supfjv.x; t/ � U.x; t I a�/j W x 2 D � .˛ C c ln t; ˇ C c ln t/g ! 0 as t ! 1 for every ˛ < ˇ.
Hence, by the transformation of variables .x; t/ D .�; 	 C c�; e� � 1/,

.1 � e�� /
�
g.�/ � f .�; 	 � c ln.1 � e�� / � a�/ ! 0 as � ! 1

uniformly on compact subsets ofD � R. Thus, g.�/ D f .�; 	 � a�/ for every � 2 D � R.

Any ambiguity regarding the function f can now be avoided. The particular solution of problem
(2.4)–(2.7) constructed in [18] generates a one parameter family of solutions by translation with
respect to z. We can select a unique f by any criterion that isolates a single member of this
translation class. For instance, we could use (2.10) to select f to be that member for which
maxff .y; z/ W y 2 Dg < maxfF.y/=2 W y 2 Dg if and only if z 2 RC. Alternatively, we
could require inff�.y/ W y 2 Dg D 0 or

R
D
�.y/ dy D 0. A further option would be to choose f

so that (3.9) prescribes � D 1.

5. Interfacial behaviour

In this section, we study the large-time behaviour of the free boundary in the solution u of
problem (1.1).

Our first theorem gives a lower bound on the growth of the positivity set of u.�; t/ for large t ,
and is independent of any assumptions on the support of the initial data u0.

Theorem 5.1 Let ˝ , u0, and a be as in Theorem 4.1. Let � be defined by (2.9) and Dı by (2.16).
Then given any ı > 0 and " > 0 there exists a T > 0 such that u.x; t/ > 0 for all 0 < z 6
c ln t C �.y/C a � ", y 2 Dı , and t > T .

Proof. Fix ı > 0 and " > 0. Without loss of generality we may suppose that ı is so small that Dı

is not empty. Following the notation introduced in (4.2), define K D f.�; �.�/C a � "/ W � 2 Dıg
and � D minfU.�; 1I a/ W � 2 Kg > 0. In the course of the analysis in the previous section, we
proved that Ou.�; �/ converges to U.�; 1I a/ as � ! 1 uniformly on all sets of the form D � .˛; ˇ/
with ˛ < ˇ. Hence, there exists a � > 0 so large that j Ou.�; �/ � U.�; 1I a/j 6 �=2 for all � 2 K
and � > ln�. In terms of the solution of problem (1.1), this means that u.x; t/ > �=2 for all
z D c ln t C �.y/ C a � ", y 2 Dı , and t > �. Thus, by Lemma 2.5(i), given any t > � and
y 2 Dı we have u.x; t/ > 0 for all z 2 Œc ln� C �.y/C a � "; c ln t C �.y/C a � ".

Now, without loss of generality, we may suppose that � is so large that c ln� C � C a � " > ı
in Dı . Subsequently defining˝ 0 as the set of x0 2 ˝ for which jx0 � xj < ı for some y 2 Dı and
z 2 Œı; c ln� C �.y/ C a � ", Lemma 2.5(ii) says that ˝ 0 � P.T / for large enough T > �. In
the light of Lemma 2.5(i), this gives u.x; t/ > 0 for all z 2 .0; c ln� C �.y/ C a � ", y 2 Dı ,
and t > T . Combining this conclusion with that ending the preceding paragraph, the proof of the
theorem is complete.

We turn next to an upper bound on the growth of the positivity set of u.�; t/ for large t . We
deduce a counterpart to the preceding theorem in two steps. First, we obtain a pointwise upper
bound of fz 2 R W x 2 P.t/g for fixed y 2 D. This is the content of the lemma below. Thereafter,
we convert the pointwise bound into a uniform one.

Lemma 5.1 Suppose that Hypothesis 4.2 holds. Then given any y 2 D and � > 0 there exists a
T > 0 such that u.x; t/ D 0 for all z > c ln t C N�.y/C a C � and t > T , where N� is the concave
envelope of � .
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Proof. Fix y 2 D. Let H be any hyperplane in R
nC1 with the property that .y; N�.y// 2 H and

the intersection of H with the positivity set of f is empty. Let � be the unique point in R
n, for

which, with the notation introduced in the statement of Lemma 2.6, the hyperplane H is given by
	 D N�.y/C � � .� � y/. Define

N D � j�j2 C 1
�1=2

:

We shall use a comparison argument involving the function Ou defined by (4.2) and a suitably
constructed travelling-wave solution of equation (4.3) on a setQ � D�R

2. Let us fix ! 2 .0; c=N/.
From the analysis of travelling-wave solutions of reaction-diffusion equations in [10, Theorem 7.1],
there exists a ı > 0 such that the ordinary differential equation

.�m/00 C !�0 C 
� D 0

has a weak solution � in .�ı;1/ for some ı > 0 with the properties that �m 2 C 1.�ı;1/ \
C1.�ı; 0/, .�m/0 < 0 on .�ı; 0/, and � D 0 on Œ0;1/. This corresponds to a travelling-wave
solution of the equation @�u D @2

�
um C 
u of the self-similar form u D �.	 � !�/. Consequently

for any number b the nonnegative function

w.�; � I b/ D �
� f	 � � � �C .c � !N/ � � bg =N�

(5.1)

is a travelling-wave solution of equation (4.3) in the domain f.�; �/ 2 R
nC2 W 	 > � � � �

.c � !N/ � C b � Nıg. Moreover, w.�; �I b/ is of class L1 \ W
1;1

loc in this domain, of class C1
everywhere except on the hypersurface 	 D � � �� .c � !N/ � C b, while wm.�; �I b/ is of class C 1

throughout. Let us now fix 0 < � < ı and

0 < � < �.��=N/: (5.2)

In view of the choice of H and the uniform convergence of Ou.�; �/ ! U.�; 1I a/ on sets of the form
D � Œ˛;1/, there exists a T0 2 RC such that Ou is defined and

Ou 6 � in Q0 D ˚
� 2 D � R W 	 > � � .� � y/C N�.y/C a

� � .T0;1/: (5.3)

Subsequently, Lemma 4.1(ii) says that there is an A > a such that

Ou D 0 in
˚
� 2 D � R W 	 > � � .�� y/C N�.y/C A

� � ŒT0;1/: (5.4)

Define
� D .A � a/ = .c � !N/ ; (5.5)

let T1 > T0 be arbitrary, and set

b D �� � y C .c � !N/ T1 C N�.y/C A (5.6)

and
Q D ˚

.�; �/ 2 D � R � .T1; T1 C � W 	 > � � � � .c � !N/ � C b
�
: (5.7)

The functionw.�; �I bC�/ is defined inQ, andQ � Q0 by (5.3) and (5.5)–(5.7). There holds Ou D 0

on f.�; �/ 2 Q W � D T1g by (5.4), (5.6), and (5.7), and, Ou D 0 on f.�; �/ 2 Q W � 2 @Dg by virtue
of the boundary condition in problem (1.1). Moreover, Ou 6 � < w.�; �I b C �/ on f.�; �/ 2 Q W
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	 D � � � � .c � !N/ � C bg by (5.1)–(5.3) and (5.5)–(5.7). Applying the transfer of variables in
Lemma 4.2 to Q, Ou, and w, in cognizance of the regularity of the latter, and then the comparison
principle Lemma 2.6 to the outcome, we deduce that Ou 6 w.�; �I b C �/ in Q. Hence, Ou D 0 in
f.�; �/ 2 Q W 	 > � � � � .c � !N/ � C b C �g. In particular, recalling (5.5) and (5.6), this implies
that Ou.y; 	; T1 C �/ D 0 for all 	 > N�.y/ C a C �. Thus, in view of the arbitrariness of T1 > T0,
Ou.y; �; �/ D 0 in Œ N�.y/CaC�;1/� ŒT0 C�;1/. Transforming back to the original variables yields
the desired conclusion with T D exp.T0 C �/.

Theorem 5.2 Let ˝ , u0, and a be as in Theorem 4.1, and u0 satisfy Hypothesis 4.2. Let � be
defined by (2.9), and N� denote the concave envelope of � in D. Then given any " > 0 there exists a
T > 0 such that u.x; t/ D 0 for all z > c ln t C N�.y/C a C ", y 2 D, and t > T .

Proof. We begin with an approximation of N� by a greater smooth concave function. Fix " > 0. With
no loss of generality we may take N� to be defined and concave in D, where D is the convex hull of
D in R

n. Since � is bounded, N� 2 C.D/. By a standard mollifying procedure, we can subsequently
construct a function �" 2 C1.Rn/ such that N� 6 �" 6 N� C "=2 in D. Set N" D .supfjr��j2 .y/ W
y 2 Dg C 1/1=2, and, let N�" be the concave envelope of �� in D. From the concavity of N� and the
bounds on �", it follows that N� 6 N�" 6 N� C "=2 in D.

Let us now retrace the proof of Lemma 5.1 for arbitrary y 2 D, with N�" instead of N� . The point
� 2 R

n will depend on y. Hence, so too will N. However, N is necessarily bounded above by N".
So ! 2 .0; c=N"/ can be chosen independently of y, and therefore ı likewise. Consequently, given
any � 2 .0; ı/ we can fix � in (5.2), T0 in (5.3), and A in (5.4) independently of y. The remainder of
the argument then leads to the conclusion that u.x; t/ D 0 for all z > c ln tC N�".y/CaC� and t >
expfT0 C .A � a/ = .c � !N/g. Hence, taking � 6 "=2 and T D expfT0 C .A � a/ = .c � !N"/g,
we have u.x; t/ D 0 for all .x; t/ 2 ˝ � ŒT;1/ such that z > c ln t C N�".y/C aC "=2. This yields
u.x; t/ D 0 for all .x; t/ 2 ˝ � ŒT;1/ such that z > c ln t C N�.y/ C a C ", where T does not
depend on y 2 D.

Theorem 5.1 corroborates (1.9). In fact, it establishes that (1.9) holds uniformly on compact
subsets of D. Theorem 5.2 correspondingly confirms (1.10) uniformly on D. It is to be noted that
(1.9) and (1.10) are complementary at those points in D where � D N� . Consequently, at such
points, the inequalities become equality, and the limit infimum and the limit supremum necessarily
coincide.

6. The higher dimensional problem

In this section
N D nC k where k > 2;

and ˝ is a domain of the type (1.12). We use the shorthand

r D jzj :

For � > 0, let I� denote the Modified Bessel Function of the First Kind of order �. Define

�.s/ D
(
s�.k�2/=2I.k�2/=2.s/ for s > 0;
2�.k�2/=2=� .k=2/ for s D 0;

(6.1)
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where � denotes the Gamma Function. Next, set

Z.z/ D !k
�1.2�/1=2�.k�1/=2�.�1=2r/ (6.2)

and
G.x/ D Y.y/Z.z/; (6.3)

where !k D 2�k=2=� .k=2/ is the surface area of the sphere of radius 1 in R
k , and, � and Y

are as in Section 3. Utilizing the properties of the Modified Bessel Functions of the First Kind [1,
Section 9.6], it can be verified that � 2 C 2.Œ0;1//, �00.s/ C .k � 1/s�1�0.s/ D �.s/ for s > 0,
and, �0.0/ D 0. Hence, �Z D �Z in R

k . It follows that G is a classical solution of problem (3.2)
with R

k in lieu of R.

Lemma 6.1 There exists a unique functionK 2 C 2.˝/\ C.˝/ such that8̂<
:̂
�K D 0 in ˝;
K D 0 on @˝;
K.x/ D G.x/C o.1/ as r ! 1

(6.4)

uniformly with respect to y 2 D. Moreover, (3.4) holds with equality if and only if ˝ D D � R
k ,

and,
K.x/=G.x/ ! 1 as r ! 1 (6.5)

uniformly with respect to y 2 D.

Proof. The proof of this result is entirely analogous to that of Lemma 3.1. The only part that requires
special attention is identifying the counterpart to the functionH in a suitable subdomain of˝ . This
is H D G � CGc in D � fz 2 R

k W r > %g, where the number % > 0 is provided by (1.12), Gc

denotes the function defined via (6.1)–(6.3) with the Modified Bessel Function of the Second Kind
K.k�2/=2 instead of I.k�2/=2, and the number C D .I.k�2/=2=K.k�2/=2/.�

1=2%/.

Given the above solution K of problem (6.4), the following can be proven similarly to
Theorem 3.1. This is the invariance principle, which will hopefully lead to the determination of
the asymptotic behaviour of the solution of problem (1.1).

Theorem 6.1 Let ˝ be a domain of the type (1.12) for some k > 2 fulfilling Hypotheses 2.1 and
2.2, and, let u0 2 L1

loc.˝/ be nonnegative. Then the solution u of problem (1.1) satisfies (3.6).

The following is a corollary of Theorem 6.1, which will be of benefit in due course.

Lemma 6.2 Let u be a solution of problem (1.1) with initial data satisfying Hypothesis 6.1 below,
and let Qu be any extension of u to D � R

k � RC satisfying 0 6 Qu.x; t/ 6 t��F.y/ for all .x; t/ 2
D � R

k � RC. ThenZ
D�Rk

G.x/ Qu.x; t/ dx !
Z

˝

K.x/u0.x/ dx as t ! 1:

Proof. By (3.4) and (6.5), given any " > 0 there exists an R > % such that .1 � "/G 6 K 6 G in
˝ 0 D D�fz 2 R

k W r > Rg. Simultaneously, by (2.13), u.�; t/ tends to 0 as t ! 1 uniformly with
respect to x 2 ˝ n˝ 0, while Qu.�; t/ does likewise with respect to x 2 .D � R

k/ n˝ 0. Combining
these estimates with the conclusion of Theorem 6.1 leads to the result.
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Let us henceforth suppose the following.

HYPOTHESIS 6.1 The function u0 2 L1.˝/ is nonnegative, positive on a subset of ˝ of positive
measure, and such that u0 D 0 in fx 2 ˝ W r > `g for some ` > %.

Lemma 6.3 Under Hypothesis 6.1, the solution u of problem (1.1) has the following properties for
any T > # > 0.

(i) There exists an R > ` such that u D 0 in fx 2 ˝ W r > Rg � .0; T .
(ii) There exists an A such that u.x; t/ 6 .1 � #=t/�� U.y; r; t IA/ for all .x; t/ 2 ˝ � ŒT;1/.

Proof. Part (i) is a corollary of Lemma 2.3, since the solution Qu of the Cauchy problem for the
porous media equation in R

N � RC given by said lemma is such that fx 2 R
N W Qu.x; t/ > 0g is

bounded for every t 2 RC [19, Proposition 9.18]. To verify part (ii), let us first define u�.x; t/ D
u.x; t C T / for .x; t/ 2 ˝ � Œ0;1/, next, Qu0 D u�.�; 0/ in ˝ and Qu0 D 0 elsewhere in D � R

k ,
and, thereafter Nu0.y; s/ D maxf Qu0.y; z/ W z 2 R

k and jzj D jsjg for every .y; s/ 2 D � R. As
in the proof of Lemma 4.1(ii), we can find an A� so large that Nu0 6 U.�; T � # IA�/ in D � R.
We subsequently take an arbitrary e 2 R

k with jej D 1, and set v.x; t/ D U.y; z1e1 C z2e2 C
� � � C zkek; t C T � # IA�/ for .x; t/ 2 D � R

k � Œ0;1/. By construction, u�.�; 0/ 6 v.�; 0/ in
˝ . Furthermore, u� is a solution of problem (1.1) with initial data u�.�; 0/, while v is a solution of
problem (1.1) with ˝ replaced byD � R

k and initial data v.�; 0/ in this set. Hence, by Lemma 2.2,
u� 6 v in ˝ � RC. In view of the arbitrariness of e, this implies that u.x; t/ 6 U.y; r; t � # IA�/
for all .x; t/ 2 ˝ � ŒT;1/. Setting A D A� � c ln.1 � #=T /, the proof of part (ii) of the present
lemma can be completed along the lines of the proof of Lemma 4.1 part (ii).

With P.t/ given by (1.2), it follows from Lemma 6.3(i) that we can define

�i.y; t/ D inf
˚
r > ` W x 62 P.t/� and �s.y; t/ D sup

˚
r > ` W x 2 P.t/� (6.6)

with the convention that each of these is equal to ` should the respective set be empty, as functions
D �RC ! Œ`;1/. By definition, �i 6 �s onD�RC. Furthermore, by Lemma 2.5, �i.y; t/ ! 1
as t ! 1 uniformly with respect to y 2 D.

Let us now endeavour to determine the large-time behaviour of u, �i, and �s in the prototypical
spatial domain ˝ D D � R

k . From Lemma 2.7 we know that the pointwise asymptotic behaviour
of u is given by t�u.x; t/ ! F.y/ as t ! 1, as in the case k D 1.

Given that as t increases, it is to be expected that the free boundary of u becomes more and
more symmetric about the line z D 0, it makes sense that the large-time behaviour of u is described
by a solution of the porous media equation with symmetry about this line, i.e.

@tu D �yu
m C @2

ru
m C .k � 1/r�1@ru

m: (6.7)

Moreover, given the estimate in Lemma 6.3(ii), and the fact that pointwise t�u.x; t/ ! F.y/ as
t ! 1, one could anticipate that the large-time behaviour be represented by t��˚.y; r � g.t// for
some functions ˚ and g in analogy to t��f .y; z � c ln t � a/ in the case k D 1. Let us therefore
look at the analogue to (4.4) and substitute

u.x; t/ D t�� Ou�
y; r � g.t/; ln t�

in (6.7). Setting � D y, r � g.t/ D �, and t D e� , we obtain

@� Ou D �� Oum C @2
	 Oum C e�g0.e� /@	 OuC .k � 1/˚� C g.e� /

��1
@	 Oum C 
 Ou:



THE POROUS MEDIA EQUATION 71

Thus formally assuming that g.t/ ! 1 and tg0.t/ ! c as t ! 1 for some as yet unspecified
number c, we arrive at equation (4.3) with N D n C 1. The stationary solutions of this equation
satisfy (2.4). At the same time, the pointwise behaviour of u.�; t/ as t ! 1 would indicate that
(2.6) should apply to such a stationary solution f , while Lemma 6.3(ii) would indicate that (2.7)
should apply likewise. Naturally, (2.5) should hold too. However, we know that in this case the
unspecified number c can only have one value, namely (1.7). Moreover, modulo translation, there
is then only one possibility for the stationary solution of (4.3), viz. the unique solution of problem
(2.4)–(2.7). Thus we are led to the conclusion that g.t/ D c ln t C h.t/ for some function h such
that h0.t/ D o.t�1/ as t ! 1, and the large-time behaviour of u is given by

w.x; t/ D t��f
�
y; r � c ln t � h.t/� (6.8)

where c and f are as in the preceding sections of this paper.
It remains to find h. To do this, we computeZ
Rk

Z.z/w.x; t/ dz D t��

Z
Rk

Z.z/f
�
y; r � c ln t � h.t/

�
dz

D .2�/1=2�k=4t��

Z
RC

rk=2I.k�2/=2.�
1=2r/f

�
y; r � c ln t � h.t/� dr

with the aid of (6.1) and (6.2). Hence,Z
Rk

Z.z/w.x; t/ dz D �.k�1/=4t��

Z
RC

r .k�1/=2 .�1=2r/e
p

� rf
�
y; r � c ln t � h.t/� dr;

where
 .s/ D .2�s/1=2e�sI.k�2/=2.s/:

Substituting
r D � C c ln t C h.t/

and simplifying yields Z
Rk

Z.z/w.x; t/ dz D .
 ln t/.k�1/=2 e
p

� h.t/J.y; t/

where

J.y; t/ D
Z 
.y/

�c ln t�h.t/

	
1C � C h.t/

c ln t


.k�1/=2

 
�
�1=2

˚
�C c ln t C h.t/

��
e

p
� 	f .y; �/ d�:

Now, � 7! e
p

� 	 is integrable on .�1; �.y//; the above expression in large curly parentheses
is uniformly bounded with respect to the limits of integration for large t , and converges to unity
pointwise as t ! 1; while by the properties of I.k�2/=2, the function  is bounded on RC,
and,  .s/ ! 1 as s ! 1. Consequently, the Dominated Convergence Theorem may be applied,
yielding

J.y; t/ !
Z 
.y/

�1
e

p
� 	f .y; �/ d� as t ! 1:
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Replacing Z by G and integration with respect to z over Rk by integration with respect to x over
D � R

k , and noting that � 2 L1.D/, extension of the above argument deliversZ
D�Rk

G.x/w.x; t/ dx D .
 ln t/.k�1/=2 e
p

� h.t/ NJ.t/;

where
NJ ! � as t ! 1

and � is defined by (3.9). It subsequently follows from Theorem 6.1 that if the asymptotic behaviour
of u is described by w then necessarily

h.t/ D �� ln jln t j � � ln
C 1p
�

ln
�
1

�

Z
D�Rk

G.x/u0.x/ dx

�
C o.1/ as t ! 1 (6.9)

where � is given by (1.14).
Thus, our expectation is that the large-time behaviour of a solution of problem (1.1) with ˝ D

D � R
k is described by (6.8) with h satisfying (6.9). Seeing that we also expect that for large

times the discrepancy between the solution u in an arbitrary domain ˝ satisfying (1.12) and one
with similar initial values in D � R

k will disappear – as it were, the solution away from the line
z D 0 will be oblivious to the circumstances near that line – we can couple Lemma 6.2 with this
observation to formulate the following.

Proposition 6.1 Let u be the solution of problem (1.1) in which ˝ is of the form (1.12) for some
k > 2, u0 satisfies Hypothesis 6.1, and, �i and �s are given by (1.2) and (6.6). Then, in some sense
yet to be made more precise, (1.13), (1.15), and (1.16) all hold for

a D � ln.m � 1/C 1p
�

ln
�
1

�

Z
˝

K.x/u0.x/ dx

�
:
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