
Interfaces and Free Boundaries 18 (2016), 75–90
DOI 10.4171/IFB/357

Fine numerical analysis of the crack-tip position

for a Mumford–Shah minimizer

ZHILIN LI

Center for Research in Scientific Computation, and Department of Mathematics, North Carolina

State University, Raleigh, NC 27695, USA

E-mail: zhilin@ncsu.edu

HAYK MIKAYELYAN

Mathematical Sciences, The University of Nottingham Ningbo, 199 Taikang East Road, Ningbo

315100, PR China

E-mail: hayk.mikayelyan@nottingham.edu.cn

[Received 30 January 2015 and in revised form 3 November 2015]

A new algorithm to determine the position of the crack (discontinuity set) of certain minimizers

of Mumford–Shah functional in situations when a crack-tip occurs is introduced. The conformal

mapping Qz D
p

z in the complex plane is used to transform the free discontinuity problem to a new

type of free boundary problem, where the symmetry of the free boundary is an additional constraint

of a non-local nature. Instead of traditional Jacobi or Newton iterative methods, we propose a simple

iteration method which does not need the Jacobian but is way fast than the Jacobi iteration. In each

iteration, a Laplace equation needs to be solved on an irregular domain with a Dirichlet boundary

condition on the fixed part of the boundary; and a Neumann type boundary condition along the free

boundary. The augmented immersed interface method is employed to solve the potential problem.

The numerical results agree with the analytic analysis and provide insight into some open questions

in free discontinuity problems.
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1. Introduction

There are several applications of Mumford–Shah functional introduced in [14], but the one which

is more relevant to our study is the fracture mechanics. This theory is of course much older and

still has many unanswered questions. It studies complex physical phenomena such as elasticity,

plasticity, stress and strain, friction and non-penetration of crack-faces, etc. The most challenging

problem though seems to be the simulation and analysis of the situation at the crack-front or, in two

dimensional models, crack-tip. This is where one expects the crack to grow further and this is where

one wants to predict crack’s behavior. The major breakthrough in this field was achieved by an

English aeronautical engineer Alan Arnold Griffith in [9], who was the first to describe rigorously

the stress of the fracture and to explain certain effects considered as contradicting the theory by his

time.

In 1998 Francfort and Marigo [8] proposed a quasi-static model based on variational approach.

In 2002 Dal Maso and Toader [5] obtained existence results based on time-discretization, i.e.
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for small time steps to obtain a sequence of crack configurations .un; �n/ by minimizing in the

following version of the Mumford–Shah functional

J.v; � / D
Z

B1n�

jrvj2dx C �2 �

2
H

1.� /; (1.1)

where v satisfies the Laplace equation on B1 n � and the given boundary data v
ˇ

ˇ

@B1
D u

D ;n at time

tn under additional condition

�n�1 � � (1.2)

of the new crack containing the old crack. Here for simplicity we consider the problem in a unit

ball B1 and in the formula (1.1), and H
1 denotes the one-dimensional Hausdorff measure (see [1]),

which for Lipschitz curves coincides with the length. In order to obtain regularity results for this

model one would need better regularity results for the minimizers of the Mumford–Shah functional

(without additional condition (1.2)) as those known at this moment, especially results at the crack-

tip. From now on we will discuss the minimizers of (1.1) without additional condition (1.2) and

with given boundary data u D uD . The authors would like to refer to the excellent monographs by

G. David [6] and by L. Ambrosio, N. Fusco and D. Pallara [1] for vast amount of knowledge about

this well studied problem, which still contains a lot of open questions.

John Andersson and the second author obtained some results about the asymptotics of the

Mumford–Shah minimizer at the crack-tip (see [2]). The aim of this paper is the numerical analysis

of the problem and precise qualitative and quantitative investigation of the behavior of minimizers

of the Mumford–Shah functional near the crack-tip. In particular the authors verify numerically the

conjecture stated in [2], that the curvature at the crack-tip vanishes (see Section 2.2).

Different aspects of the regularity theory of Mumford–Shah minimizers have been addressed in

several recent publications, such as [7], [3] and [10].

It is challenging to develop high order method for open-ended interfaces like in the example

of crack problems. In particular it is very hard to work near the crack-tip/crack-front, where in the

bulk-term a high order singularity occurs. In fact the crack-tip is the only place where the two terms

of the functional (1.1), the Dirichlet energy and the length of the crack, scale of same order. In all

other points the crack-length term is dominant, which enables the proof of the known regularity

results.

The paper is organized as follows: in Section 2 we present the known results and give the

mathematical formulation of the problem, in Section 3 we describe the numerics and in Section 4

we present and discuss the results.

2. Mathematical formulation

Throughout the paper we are going to use the following function in different coordinate

representations (complex, Cartesian, polar)

=
p

z D sgn.y/p
2

q

p

x2 C y2 � x D r
1
2 sin �=2; (2.1)

where z D x C iy, x D r cos �, y D r sin � and the discontinuity in (2.1) is taken over the branch-

cut .�1; 0/ or, depending on the context, over the set � . In the latter case, the formula in Cartesian

coordinates will require slight modification, see (3.4) for the half-line � different from .�1; 0�.



FINE NUMERICAL ANALYSIS OF THE CRACK-TIP POSITION 77

It is proven in [4] that the pair

�

�r1=2 sin
�

2
I

˚

.x; 0/j � 1 < x 6 0
	

�

(2.2)

is a global minimizer of the Mumford–Shah functional (1.1) in the plane (� is the parameter

from (1.1)). This is understood as being the absolute minimizer in any bounded sub-domain, under

its own boundary conditions. In particular, in the unit disc B1 for the boundary value function

� sin
�

2
;

with discontinuity in the point .�1; 0/, the pair

�

�r1=2 sin
�

2
I �0

�

; with �0 D
˚

.x; 0/j � 1 6 x 6 0
	

; (2.3)

is the absolute minimizer of the functional (1.1), under its own boundary conditions.

In the paper we will discuss the minimizers of (1.1) in B1 with slightly perturbed boundary data

uD.x; y/ D � sin
�

2
C ��.� �

2 ; �
2 /.�/ cos � D �

sgn.y/p
2

q

p

x2 C y2 � x C � xC: (2.4)

We will assume the stability of the minimization problem under those perturbations, i.e. that for

small perturbations of uD the minimizing crack � is a curve connecting the point .�1; 0/ 2 @B1 \R

with an unknown point .x�; y�/ inside the ball B 1
2

WD B 1
2
.0/ and that this curve is a graph of a

function in certain coordinates.

For points .x�; y�/ in the neighborhood of the origin we will minimize the functional (1.1)

among cracks which start at .�1; 0/ and end at .x�; y�/, by solving relevant Euler–Lagrange

equations. Then we analyse how the position of the crack-tip .x�; y�/ affects the total energy, the

stress intensity factor and the asymptotics of the crack near the crack-tip.

2.1 Euler–Lagrange conditions

It is well-known (see [1, 6]) that a minimizer u of (1.1) together with the boundary condition

uj@B1
D uD ; on @B1 (2.5)

satisfies the following four Euler–Lagrange (first order) conditions

�u D 0 in B1 n �; (2.6)

@�u˙
ˇ

ˇ

ˇ

�
D 0 on �; (2.7)

�2 �

2
� D

h

ˇ

ˇruCˇ

ˇ

2 � jru�j2
i

ˇ

ˇ

ˇ

�
on �; (2.8)

jSIFu.x�; y�/j D �; (2.9)

where � is the normal to crack (discontinuity set) � , u˙ denotes the values of u on different sides

of � , � is the curvature of � and .x�; y�/ is the crack-tip. Further SIFu.x�; y�/ is the so-called
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FIG. 1. (a): A diagram of a crack � ; (b): Domain ˝ after the transformation
p

z.

stress-intensity factor at the crack-tip. It is known that the solutions of the mixed boundary value

problem (2.5)–(2.7) have the following asymptotics near the crack-tip

u.x; y/ D u.x�; y�/ C SIFu.x�; y�/r
1
2 sin �=2 C o.r

1
2 /;

where in this context .r; �/ are certain radial coordinates with the origin being set in .x�; y�/. Thus

the condition (2.9) says that the coefficient of the r
1
2 sin �=2-term, called stress intensity factor,

cannot be arbitrary.

The conditions (2.6) and (2.7) are obtained by the standard variation and conditions (2.8) and

(2.9) by domain variation.

2.2 Asymptotics at the crack-tip

Before stating the result obtained in [2], we would like to emphasize that we use it in our paper only

when we numerically verify the conjecture stated in [2]. The numerical method itself does not rely

on this.

Theorem Assume that the minimizer of the functional (1.1) in B1 � R
2 is given by the pair .u; � /,

where � D f.�t; f .t//j0 6 t < 1g, f 2 C 1.Œ0; 1// \ C 3..0; 1//, f .0/ D f 0.0/ D 0 and

tf 00.t/ !t!0 0. Further assume that there exist a limit in C 1.Œ0; 1//

lim
�!0

f .�t/

max0<�<� jf .�/j 6D 0:

Then there exists a constant C 6D 0 such that

f .t/ D C t1=2C˛k C o.t1=2C˛k / (2.10)

and

u.x; y/ D u.0; 0/ C �=
p

z C Sk.x; y/ C C �bkr˛k cos.˛k�/ C o.r˛k /; (2.11)

where k < ˛k < k C 1=2 is one of the positive solutions of

tan.�˛/ D 2

�

˛

˛2 � 1=4
; (2.12)
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bk is some other absolute constant (k D 1; 2; : : : ), S1 � 0 and for k > 2 there are some constants

cj depending on u such that

Sk.x; y/ D
k�1
X

j D1

cj r
2j C1

2 sin

�

2j C 1

2
�

�

:

If

lim
�!0

f .�t/

max0<�<� jf .�/j D 0

then limt!0 t�M f .t/ D 0 for any M > 0.

Note that the first two values of ˛k are ˛1 � 1:1844 and ˛2 � 2:0989. The authors of [2] have

made a conjecture that the coefficient of the ˛1-term vanishes, and thus in asymptotic expansions

(2.10) and (2.11) k > 2. This in particular means that the curvature of the crack should tend to zero

when approaching the crack-tip. In Section 4.2 we present a numerical justification for this.

2.3 The Qz D
p

z transform

If we now translate the Figure 1 (a) and bring the crack-tip point .x�; y�/ into the origin and then use

the conformal mapping Qz D
p

z with the branch-cut � in the complex plane, we will obtain a new

half-ball like domain ˝ (Figure 1 (b)), with boundary consisting of two parts; .@˝/D originating

from @B1 and the symmetric .@˝/N originating from � .

The new function Qu. Qx; Qy/ D u.x; y/ will be defined in ˝ and will satisfy the following

conditions equivalent to (2.5)-(2.9),

Qu D QuD; on .@˝/D (2.13)

where QuD is the boundary data obtained from uD ,

� Qu D 0 in ˝ (2.14)

@� Qu
ˇ

ˇ

ˇ

@˝
D 0 on .@˝/N (2.15)

��2
�

. Qx2 C Qy2/
1
2 Q�. Qx; Qy/ C Qx Qy0 � Qx0 Qy

. Qx2 C Qy2/
1
2 . Qx02 C Qy02/

1
2

�

D j@� Quj2 . Qx; Qy/ � j@� Quj2 .� Qx; � Qy/

(2.16)

jr Qu.0; 0/j D �; (2.17)

where � and � are normal and tangential directions of the boundary .@˝/N , Q� is the curvature of

.@˝/N . Observe that the condition (2.16) together with the additional symmetry requirement with

respect to the origin imposed on .@˝/N have in a sense a non-local nature.

Let us also observe that the asymptotic behavior of the crack near the crack-tip after a rotation

will be given by (2.10). This means that after the transformation if the points . Qf .t/; t/ describe the

upper half of the boundary .@˝/N , then

Qf .t/ D ct C C

2
t2˛k C o.t2˛k /: (2.18)
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As we see for a fixed .x�; y�/ solving the Mumford–Shah minimization problem is equivalent

to solving the over-determined mixed (Dirichlet-Neumann) boundary value problem (2.13)–(2.16)

with and additional symmetry constraint imposed on .@˝/N .

After solving (2.13)–(2.16) for each .x�; y�/ we will compute the Mumford–Shah energy,

which will be a function depending on .x�; y�/. The optimal position of the crack-tip can now be

determined by minimization of that function. We will see that the condition (2.17) will be satisfied

for many values of .x�; y�/ lying on an interface, which contains the optimal crack-tip, but the

minimizer will be unique. This indicates that the known Euler–Lagrange conditions are not complete

and there is another first order condition missing. Moreover, we will verify numerically that for the

minimizer in the asymptotic expansion (2.18) the value k > 1, and thus the curvature converges to

zero when approaching the crack-tip.

3. The numerical method

As usual, the key to solve the minimization problem is to use some sort of steepest descent direction

plus some acceleration techniques. In each iteration, we need to solve the Laplacian equation with a

Dirichlet boundary condition along the fixed part and homogeneous Neumann boundary condition

along the free part of the boundary. Note that the Jacobian matrix is difficult and expensive to

get. Our numerical method is based on the augmented immersed interface method [12] for solving

Poisson equations on irregular domains so that a fast Fourier transform (FFT) based fast Poisson

solver can be utilized. A preconditioning technique is also developed to solve the related Schur

complement of the system of equations. To accelerate the convergence of the steepest descent

direction method, we use some analysis to obtain a good approximation of the boundary of the

minimizer; and a simple but efficient iterative method for the non-linear iteration. Below we explain

our algorithm in detail.

3.1 Set up the problem

We start with a rectangular domain Œxmin xmax � � Œymin ymax � that is large enough to possible

variations of the free boundary. The fixed boundary is described as part of the unit circle r D 1. In

discretization, for convenience, we assume that xmax � xmin D ymax � ymin. Given a parameter

n, we set up a uniform Cartesian grid with h D .xmax � xmin/=n,

xi D xmin C ihI yj D ymin C jh; i; j D 0; 1; : : : ; n: (3.1)

Start with an initial tip position .x�; y�/, we numerically find the function u with the discontinuity

set (crack) � , connecting the discontinuity point .�1; 0/ on the boundary with .x�; y�/, that

minimizes the MS energy. In order to set the crack-tip in the origin we translate the picture by

the vector .�x�; �y�/ and discretize the fixed boundary with a parameter Nb . We set �s D 2�=Nb

and a Lagrangian grid

Xk D �x� C r cos
�

.k � 1/�s � �
�

; Yk D �y� C r sin
�

.k � 1/�s � �
�

; k D 1; 2; : : : ; Nb;

(3.2)

where r D 1 in our simulation. Note that we use k�s � � instead of k�s so that the starting and

ending point is .�1 � x�; �y�/, the discontinuity point of the boundary data. In general we should

also choose Nb in such a way that �s � h.
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After the transformation Qx C i Qy D Qz D
p

z with a branch-cut over the ray starting in the origin

and going through .�1 � x�; �y�/ we obtain

QXk D sgn.Yk/ sgn� .Xk; Yk/p
2

r

q

X2
k

C Y 2
k

C Xk; (3.3)

QYk D sgn� .Xk; Yk/p
2

r

q

X2
k

C Y 2
k

� Xk; (3.4)

where the function

sgn� .x; y/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

sgn.y/ if x > 0;

1 if x < 0 and y >
y�

1 C x�
x;

�1 if x < 0 and y <
y�

1 C x�
x;

is needed because we have taken a branch-cut different from negative half-axis.

3.2 Set up an initial free boundary

From now on, we will use the transformed domain ˝ unless stated otherwise. By construction the

free boundary should be symmetric with respect to the origin .0; 0/. In our iterative process in

updating the free boundary, we just need to compute the upper half and get the lower half from the

symmetry. So now we need to make a good initial guess for .@˝/N . We start with a straight line

connecting . QXNb
; QYNb

/ and the origin .0; 0/ with the step size h1 D d=int.h=d/, where d is the

distance between the two points. The straight line can be written as

QXk D a1tk ; with t0 D 0; (3.5)

QYk D a2tk (3.6)

where .a1; a2/ is the direction connecting .0; 0/ and . QXNb
; QYNb

/.

From the theoretical analysis we know that if the angle between the free boundary .@˝/N and

the fixed boundary .@˝/D is not 90 degrees then in the Dirichlet-Neumann mixed boundary value

problem we can have a singularity in the corner. Thus we make a better initial guess by taking a

parabola connecting the two points . QXNb
; QYNb

/ and the origin .0; 0/ such that the angle between

free and fixed boundaries is 90 degree. We define

g.t/ D ct.t � d/; c D y�
d.1 C x�/

: (3.7)

The initial free boundary is then determined by

QXk DW QXk C a1g.tk/; with t0 D 0; (3.8)

QYk DW QYk � a2g.tk/; (3.9)

here the notation DW stands for overwriting. The bottom part is determined using the symmetry. We

show an initial domain with x� D �0:1, y� D 0:1 in Figure 2. Note that the angle of the free

boundary and the “half-circle” is �=2.
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3.3 Solve the Laplace equation on an irregular domain

The bulk of computational cost is to solve the Laplace equation on an irregular domain similar to

the one in Fig. 2 (a) at each iteration. We use the augmented immersed interface method (AIIM)

[12] to solve the Laplace equation with Dirichlet boundary condition along the fixed boundary and

homogeneous Neumann boundary condition along the free boundary. The consideration to use the

AIIM are two folds. The first one is that we can utilize a FFT based fast Poisson solver. The second

one is our experiences using the IIM to solve PDEs on irregular domains with second order accuracy.

The difficulty here is the different boundary conditions on different parts of boundaries. We use the

closed cubic spline package [11] to represent the boundary, see Fig. 2 (a) for an illustration. First of

all, we imbed the domain ˝ into the rectangular box R D Œxmin xmax �� Œymin ymax �. The Laplace

equation is extended to the entire domain to form an augmented interface problem

�U D 0 .x; y/ 2 R; UR D 0I (3.10)

ŒU �.@˝/D
D 0I

�

@U

@�

�

.@˝/D

D qD ; .X; Y / 2 .@˝/D; (3.11)

ŒU �.@˝/N
D 0I

�

@U

@�

�

.@˝/N

D qN ; .X; Y / 2 .@˝/N ; (3.12)

U j.@˝/D
D UD; UD is known;

@U

@�

ˇ

ˇ

ˇ

ˇ

.@˝/N

D 0; (3.13)

where � is the unit normal direction of the domain ˝ , Œv� stands for the jump of a quantity of v across

the boundary, thus ŒU �D means the jump of the solution U across the boundary where the Dirichlet

boundary condition is defined. In the system of above, the Dirichlet boundary condition UD , the

domain ˝ , and the free boundary .@˝/N , are known; while U , qN , and qD are unknowns. In the

AIIM, the augmented variables qN and qD should be chosen such that the boundary conditions
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FIG. 2. (a): An initial set-up of the free boundary with one choice .x�; y�/. The little circles ‘o’ are discrete points of the

boundary called the control points. (b): The final boundary that minimizes the Mumford–Shah energy corresponding to the

initial configuration of the left plot with � D 10�2.
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U jD D UD and @U
@n

jN D 0 are satisfied along with the Laplace equation on ˝ . The value of U in

R n ˝ is of no interest. We set homogeneous Dirichlet boundary condition along the boundary of

the rectangle. Note that to our best knowledge, this is the first time that the augmented IIM has been

applied to Laplace equations on irregular domain with different boundary conditions on different

parts of the boundary. The boundary conditions, the augmented variables qN and qD , are defined at

the discrete points as explain above.

We use the standard centered five point finite difference stencil to discretize the Laplace equation

with IIM correction terms at the right hand side given the discrete values of the augmented variable

qN and qD . The discretization in the matrix-vector form can be written as

AU C BQ D F1; (3.14)

where A is the matrix corresponding to the discrete 5-point Laplacian, U is the approximate solution

defined at all grid points .xi ; yj /, Q is the vector formed from the discrete augmented variable qN

and qD defined at all boundary points .Xk; Yk/. The solution U should also satisfy the internal

boundary condition (3.13) at the internal boundary points .Xk; Yk/. In the AIIM, least squares

interpolation schemes are used to approximate the internal boundary condition (3.13) at .Xk; Yk/.

In the matrix-vector equation, the discretization can be written as

CU C DQ D F2: (3.15)

In equation (3.14) and (3.15), the matrix A is fixed, while the sparse matrix B , C , and D are

changing with the free boundary. The Schur complement for Q is

�

D � CA�1B
�

Q D F2 � CA�1F1; or S Q D F : (3.16)

It is time and memory consuming to form those matrices and the Schur complement at each iteration.

Instead, we use the GMRES iterative method to solve for Q so that a fast Poisson solver can be

utilized. Those sparse matrices A, B , C , and D correspond to finite difference discretization, and

interpolation schemes and do not formed explicitly. We refer the readers to [12] for the detailed

implementation. The GMRES iterative method only requires the matrix-vector multiplication which

contains the two steps: (1) solve for U from AU D F1 � BQ; (2) compute the residual of the

boundary condition R.Q/ D CU C DQ � F2. We skip the details here since they can be found

in [12].

3.4 A preconditioning strategy

Since both Dirichlet and Neumann boundary conditions are prescribed, in general, we do not have

the fast convergence of the GMRES method. The number of GMRES iterations depends on the

geometry and the mesh size. In [13], a sophisticated precondition technique is developed for the

augmented IIM. In this paper we use a simplified version of the preconditioning strategy based on

the idea from [13].

Let the dimension of the Schur complement matrix be N3. In the simple preconditioning

strategy, we take a parameter L, an integer between 10 � 30 such that N3=L is close to an integer.

Let ILbe the matrix of L rows and N3 columns whose entries are number one. Define P D SIL.

The preconditioning matrix is defined as

Pc D
�

P �1
1 ; P �1

2 ; � � �
�T

; (3.17)
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where P �1
1 is the inverse of the matrix formed by the first L rows, P �1

2 is the inverse of the matrix

formed by the next L rows, and so on. The new system of equations is PcS Q D PcF . In Table 2,

we list a comparison of the number of GMRES iterations from one of examples. We can see the

number of GMRES iterations is significantly reduced with suitable choice of L.

3.5 A new iterative scheme for the free boundary problem

In order to find the correct crack � for the fixed crack-tip .x�; y�/ we need to solve the non-linear

boundary value problem (2.13)-(2.16). For a given boundary .@˝/N the problem (2.13)-(2.15) is

well-posed and can be solved as a mixed type boundary value problem. But there is no guarantee that

the condition (2.16) will be satisfied. We will find the correct .@˝/N satisfying (2.16) iteratively.

After rotation the part of the curve .@˝/N in the upper half space can be modeled by .t; g.t//,

where t 2 .0; d/, d D ..1 C x�/2 C y2
�/1=4 is the distance between the origin and the contact point

of .@˝/D and .@˝/N , and g.0/ D g.d/ D 0. Note that here the power 1
4

is a result of the
p

z

transform. Thus the condition (2.16) can be written as

�

t2 C g2.t/
�

g00.t/
�

1 C g02.t/
�

3
2

C tg0.t/ � g.t/

.t2 C g2/
1
2

�

1 C g02.t/
�

1
2

D G.t/; (3.18)

where t 2 .0; d/ and

G.t/ D 1

��2

�

j@� Quj2
�

t; g.t/
�

� j@� Quj2
�

� t; �g.t/
�

:
�

;

with boundary conditions

g.0/ D g.d/ D 0:

We propose the following iterative scheme to solve (3.18):

�

t2 C g2
n.t/

�

�

1 C g02
n .t/

�
3
2

g00
nC1.t/ C tg0

n.t/ � gn.t/

.t2 C g2
n/

1
2

�

1 C g02
n .t/

�
1
2

D Gn.t/; (3.19)

where

gnC1.0/ D gnC1.d/ D 0;

Gn.t/ D 1

��2

�

j@� Qunj2
�

t; gn.t/
�

� j@� Qunj2
�

� t; �gn.t/
�

�

;

and Qun is the solution to the mixed boundary value problem (2.13)-(2.15) in the domain with

boundary determined by .t; gn.t//.

As already indicated in Section 3.2 we start the iteration with initial guess g1.t/ D g.t/ as

in (3.7).

3.6 A summary of the algorithm

The proposed algorithm is to find the variation of g.t/ in (3.19) such that (3.18) is satisfied. The

algorithm can be outlined below.
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ı Step 1: Set-up the problem. Define a rectangular domain Œxmin xmax � � Œymin ymax �. Define

.x�; y�/, �, and other parameters.

ı Step 2: Determine an initial g0.tk/ as explained in Section 3.2. For l D 1; � � � until converges,

1. Solve the Laplace equation with the free boundary fixed.

2. Solve the ODE (3.5).

3. Update the new glC1 and compare maxk kglC1.tk/ � gl .tk/k for the convergence.

ı Step 3: Data and visualization analysis.

4. Numerical experiments

There are two purposes for the simulations. The first one is to compare to the theoretical analysis.

The second purpose is to test the capability of the algorithm to find the crack location that minimizes

the Mumford–Shah energy.

4.1 Accuracy check of the Laplacian solver on irregular domains with both Dirichlet and

Neumann boundary conditions

We first want to make sure that the Poisson solver for the Laplace equation with an irregular domain

and with both Dirichlet and Neumann boundary conditions works properly and accurately. We use

an example for which we know the exact solution to check the method. The boundary is the half

circle x2 C y2
6 1 and x > 0 which is imbedded in a large rectangle R D Œ�2; 2� � Œ�2; 2�. The

analytic solution is

u.x; y/ D e�y cos x (4.1)

which satisfies Laplace equation and the homogeneous Neumann boundary condition along the y-

axis. The Dirichlet boundary condition is applied according to the exact solution. In Table 1, we list

the result of a grid refinement analysis. We can see that the method is second order accurate in the

infinity norm. In the table, the error is defined as

kEkL1 D max
xij 2˝

ˇ

ˇu.xi ; yj / � Uij

ˇ

ˇ ; (4.2)

where Uij is the computed solution at the grid point .xi ; yj / inside the domain ˝ . The order of

convergence is measured as usual

r D log .EN = log E2N / = log 2; (4.3)

where N is the number of grid lines in each coordinate direction. Thus the mesh size is hx D hy D
4=N . The number of unknowns of Uij is O.N 2/ while the number of augmented variables Qi is

O.N /.

In Table 2, we list number of GMRES iterations with a preconditioning parameter L for the

case when N D 640. The condition number for the Schur complement is 5:0619 � 105. We use

L D 0 for the case with no preconditioning. The restart parameter is RESTART D 320 and the

tolerance is takes as 10�7. We can see the simple preconditioning technique does reduce the number

of GMRES iterations significantly.
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TABLE 1. A grid refinement analysis to check the convergence of the Laplace solver. On average second order accuracy in

the L1 norm is observed.

N EN r

40 7:8049e � 002

80 2:9358e � 002 1:4106

160 3:9157e � 003 2:9064

320 1:5625e � 004 4:6473

640 3:8137e � 005 2:0346

TABLE 2. The number of GMRES with and without (L D 0) the preconditioning technique

L 0 5 10 15 20 25 30

No: 1901 152 86 62 55 48 46

4.2 Crack simulations, measurements at .x�; y�/ and observations

We start with a point .x�; y�/, and an initial guess of the crack location as described in Section 3.5,

see also Figure 1. We run our algorithm until k� mC1 � � mk 6 tol , where tol D 10�6. The final

� m is consider the crack location that minimizes the Mumford–Shah energy among all curves with

crack-tip at .x�; y�/. First we validate our method for parameters � D 1, � D 0 and the boundary

data (2.4). For .x�; y�/ D .0; 0/ the final free boundary is the line segment Œ�1; 1� on the y-axis.

This numerically confirms the result in [4].

Then for the boundary data (2.4) with � D 1 and � D 0:01 we vary .x�; y�/ D .�0:2 C
i1 Qh; �0:2 C j1

Qh/, where Qh D 0:02 and i1; j1 D 0; 1; : : : ; 20, and determine iteratively the correct

free boundary.

In Fig. 3, we plot the initial and final boundary of two different .x�; y�/s. One corresponds to

.x�; y�/ D .0:1; 0:1/; the other .x�; y�/ D .�0:1; �0:1/. In the right plot of Fig. 3, we zoom out

the final free boundary. Note that the right part of the boundary is the “half-circle” .@˝/D which is

fixed.

As soon as we have the correct solution we compute following quantities as functions depending

on .x�; y�/:

(a) MS.x�; y�/ – the Mumford–Shah energy, which consists of Dirichlet energy of u and the

length of the set � . We observe that the Dirichlet energy of the function Qu equals the Dirichlet

energy of the function u in the original picture (before applying
p

z transform), and can be

computed with very high accuracy, since r Qu has no singularity. The length of the discontinuity

set � connecting the point .�1; 0/ with .x�; y�/ can be easily computed after transforming the

optimal free boundary .@˝/N by the inverse transform z D Qz2.

(b) SIFu.x�; y�/ – the stress intensity factor. As indicated in Section 2.1 SIFu.x�; y�/ D
jr Qu.0; 0/j, which we can measure numerically. Obviously it is easier and more accurate

to compute the gradient of a non-degenerate function Qu, rather than the coefficient of the

asymptotic term =
p

z of a discontinuous function u with exploding gradient.

(c) the value u.x�; y�/ D Qu.0; 0/.
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.0:1; 0:1/; the other .x�; y�/ D .�0:1; �0:1/. Right plot: Zoom-out plot of the free boundary. Note that the right part of
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(d) From (2.18) we know that

g.t/ D c1t C c t2˛k :

In order to answer the question whether k > 1 or not, we apply the non-linear least square

fitting to approximate the solution g.t/ by functions of the form

c1t C c2t2˛1 C c3t2˛2

in the interval .0; 1=2/, and obtain the coefficients c1; c2; c3 as functions of .x�; y�/. The crack-

tips .x�; y�/, where the value of the c2 vanishes should correspond to the configurations with

k > 1 in the asymptotic expansions (2.10) and (2.11), and thus vanishing curvature at the

crack-tip.

We observe the following results:

(i) The total energy MS.x�; y�/ is a convex function with minimum at .�0:02; �0:02/.

(ii) The function SIF.x�; y�/ is nearly linear and the set SIF.x�; y�/ D 1 is a vertical interface

corresponding to crack-tips with optimal stress intensity factor. This means that there is

a continuous family of crack-configurations, with crack-tips on the mentioned interface,

which satisfy all known Euler–Lagrange conditions (2.6)–(2.9), but only one those crack-

configurations corresponds to an energy minimizer. This is a numerical observation for

existence of another first order condition for Mumford–Shah minimizers.

(iii) Among functions ci , i D 1; 2; 3 depending on .x�; y�/ the function c2.x�; y�/ corresponds to

the coefficient of ˛1 in the asymptotics and vanishes on a horizontal interface.

(iv) We observe the following values for Mumford–Shah energy MS.x�; y�/ and c2.x�; y�/ in

the minimum point .�0:02; �0:02/ and in the point .0:000145; �0:01060/ of intersection of

the vertical interface fSIF.x�; y�/ D 1g and horizontal interface fc2.x�; y�/ D 0g.

.�0:02; �0:02/ .0:000145; �0:01060/

MS.�; �/ 3:2523 3:2531

c2.�; �/ 0:001689686245 0
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The small difference of the values and the deviation of the both points from the origin in the

same direction, due to the perturbation of the boundary data with � D 0:01, indicates that the

conjecture stated in [2] that in the asymptotic expansions (2.10) and (2.11) one should have

k > 1, could be the missing Euler–Lagrange condition.

(v) We also notice that the value of the minimizer function u on the crack-tip is changing linearly

when it moves away from the minimizing point (see Figure 5, left). This is an important

observation, which might explain why all attempts to detect a missing first order condition by

traditional domain variation techniques have not yet led to any result.
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