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We consider a moving interface that is coupled to an elliptic equation in a heterogeneous medium.
The problem is motivated by the study of displacive solid-solid phase transformations. We argue
that a nearly flat interface is given by the graph of the function g which evolves according to the
equation gt .x/ D �.��/1=2g.x/ C '.x; g.x// C F where �.��/1=2g describes the elasticity
of the interface, '.x; g.x// the heterogeneity of the media and F the external force driving the
interface. This equation also arises in the study of ferroelectric and ferromagnetic domain walls,
dislocations, fracture, peeling of adhesive tape and various other physical phenomena. We show in
the periodic setting that such interfaces exhibit a stick-slip behavior associated with pinning and
depinning. Specifically, there is a critical force F ? below which the interface is trapped, and beyond
which the interface propagates with a well-described effective velocity that depends onF . We present
numerical evidence that the effective velocity ranges from v � .� log jF � F ?j/�1 to .F � F ?/ˇ

for some 0 < ˇ 6 1 for F close to F ? depending on '. We obtain ˇ D 1=2 for the case of non-
degenerate smooth obstacles. We further present numerical evidence that F ? can depend on direction
and sense of propagation.
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1. Introduction

Hysteresis is ubiquitous in materials science, and is associated with nucleation and propagation of
interfaces and defects. This paper concerns the propagation of interfaces immersed in an elastic
medium. The paper is specifically motivated by phase boundaries in solids that undergo a displacive
phase transformation such as the martensitic phase transformation. Similar equations also arise in
the study of ferroelectric and ferromagnetic domain walls, dislocations, fracture, peeling of adhesive
tape and various other physical phenomena.

In displacive phase transformations, one has phase boundaries across which the crystal structure
changes without any diffusion or loss of compatibility. Many interesting properties of such
materials, like the shape-memory effect, are associated with the nucleation and evolution of these
phase boundaries. As the interface propagates, the change in crystal structure potentially gives rise
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to elastic fields. Thus, one has a moving interface problem that is coupled to an elasticity problem.
Further, every material contains defects like non-transforming precipitates which make the medium
inhomogeneous. These defects affect the state of stress, and thus the propagation of the phase
boundary. An understanding of the role of defects on interface propagation motivates the current
work.

There is a well-developed framework to study the evolution of martensitic phase boundaries,
and this is described in detail in the monograph of Abeyaratne and Knowles [3]. Briefly, one defines
a thermodynamic driving force either through the rate of dissipation or through the variation in
the total energy with respect to the position of the interface, and then postulates a kinetic relation
that relates the driving force to the normal velocity of the interface. Microscopic theories suggest
that the kinetic relation has viscous character passing smoothly through the origin [2, 22]. Such
a kinetic relation predicts that the hysteresis goes to zero as the rate of loading goes to zero.
However, experiments clearly show otherwise: the hysteresis does not go to zero with loading rate
and instead settles on a non-zero value independent of loading-rate for slow enough rates. Such
observations suggest a stick-slip behavior where the interface is stationary below a critical driving
force and moves freely above it. It is often suggested that pinning of the phase boundary by defects
is responsible for this transition from microscopic viscous to macroscopic stick-slip behavior.

A one-dimensional calculation, as found in [1, 5, 19] illustrates how a local wiggly potential
can pin a phase boundary and lead from a linear kinetic relation to a stick-slip behavior. Assume a
bar with a 1-periodic local driving force '.x/ (smooth and with non-degenerate global maximum
and minimum), and assume that the velocity of the interface is given as v D F C '.x/, where F is
the constant external applied force and �'.x/ is a local material back-stress impeding propagation.
The amount of time it takes for the interface to travel one period can now easily be calculated to be

T D

Z 1

0

dg
F C '.g/

; (1)

if F > �min' or F < �max'. Otherwise (i.e., if �min' > F > �max'/, the time is
infinite and the interface is stuck. Further, close to the critical F , say F � �max', the interface
is slow only in a few isolated points but propagates freely elsewhere. This implies, under some
non-degeneracy and regularity conditions, that the effective velocity scales as the square-root of the
excess force. Thus, the effective velocity Nv D 1

T
of the interface now exhibits a behavior of the form

shown in Figure 1. The question whether such a stick-slip behavior is also observed in models for
phase transformations in higher dimension motivates this work.

We present a sharp interface model for the quasistatic evolution of a martensitic phase boundary
in higher dimensions in Section 2. We limit ourselves to the scalar setting where the displacements
are scalars (anti-plane shear in two dimensions) though the ideas and results hold for the general
case. In this model, a free boundary separates two material phases. Each phase is characterized by
a distinct transformation or stress-free strain where the elastic energy density admits its minimum.
We also assume that the material contains a number of non-transforming precipitates. Importantly,
we assume that both the phases as well as the non-transforming precipitates have the same elastic
moduli. A similar model was studied by Craciun [6].

We then derive an approximate model for a nearly flat interface. We show, using methods of
� -convergence, that the elastic energy of a nearly flat interface is approximated by the H 1=2-norm
of a function whose graph describes the interface (Theorem 2.1). We also argue that at low volume
fraction, the precipitates give rise to a local forcing which scales similarly to the elastic energy. We
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FIG. 1. Pinning-depinning behavior as calculated from a one-dimensional model in [5]. The interface is stuck up to a critical
force F �, and breaks free above it with a particular scaling. For large F , the average velocity is linear in the applied force.

thus conclude that the interface is described by the graph of a function g which is governed by the
equation

gt D �.��/
1=2g C '

�
x1; : : : ; xn; g.x1; : : : ; xn/

�
C F (2)

for a given ' W RnC1 ! R with zero mean. In two dimensions, it can be written using an integral
representation

gt .x; t/ D c

Z
g.x0; t /

jx � x0j
dx0 C '.x; t/C F: (3)

On the periodic domain we consider, this equation may be compactly written by its Fourier series,

Ogt .k; t/ D � jkj Og.k; t/C5'.x; g.x; t/.k/C OF : (4)

From now on, Og indicates the Fourier series of the periodic function g. Note that the equation is still
nonlinear, since the driving force ' depends on g.

While we derive this model from phase transformations in the scalar shear setting, the same
model with some different coefficients hold in the vectorial setting when the two stress-free strains
are kinematically compatible. The model (2) has also been used to study dislocations [13, 14, 18,
20], fracture [15, 21, 23], peeling of adhesive film [25, 26] in the presence of heterogeneities. Similar
models can be derived for ferroelectric and ferromagnetic domains.

A closely related parabolic model,

gt D �g C ' C F (5)

has been used to study pinning of surface energy dominant interfaces by defects. The large physics
literature has concentrated on the situation where ' is random, and has shown using scaling
arguments and numerical simulation that these equations lead to a pinning/depinning transition with
a critical exponent which varies from situation to situation [4]. Dirr and Yip [9] presented a rigorous
analysis of the parabolic model (5) in the periodic setting (' is periodic). A rigorous analysis of the
random case remains the topic of ongoing research (see for example [7, 8]).

We study the behavior of the solutions of (2) in Section 3 where ' is (1�)periodic. We show
that there is a critical F � > 0 such that (2) admits a stationary solution for all F 6 F � (Theorem
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3.5). Further, for each F > F �, there exists an unique T such that (2) admits a space-time periodic
solution (Theorem 3.7 and Proposition 3.9). Thus, we may regard 1=T as the effective velocity
of the interface. These results are similar to those obtained by Dirr and Yip [9] for the parabolic
equation, and our methods closely follow theirs.

In Section 4, we discuss the behavior of the effective velocity near the depinning transition. We
show that wide range of behavior is possible depending on the nature of ' at the critical pinning
state. Specifically, the effective velocity can range from v � .� log jF � F ?j/�1 to .F � F ?/ˇ

for some 0 < ˇ 6 1 for F close to F ? depending on '. We obtain the logarithmic behavior if
the obstacles are sharp near the critical state while we obtain .F � F ?/1 for those that are flat. We
obtain v � .F � F ?/1=2 for non-degenerate smooth obstacles.

2. A model of phase transformations

2.1 Phase transformations in the presence of defects

We consider a model proposed by Craciun [6]. Since we are interested in the overall propagation,
we consider the domain to be a strip, ˝ D T n � R where T n is an n-dimensional torus as shown
in Figure 2. The domain ˝ is divided into two parts, E and ˝ n E occupied by two phases, and
separated by the phase boundary � of codimension 1. The domain also contains a number of non-
transforming precipitates, occupying the set

S
i Ai . The two phases are characterized by two stress-

free strains �˙ 2 RnC1, and the non-transforming precipitates are characterized by the stress-free
strain �0. We further assume that all phases and precipitates have equal elastic modulus (which we
take to be identity without loss of generality). Thus the elastic energy of domain subjected to the

T n

R�

E

˝ nE

Ai

FIG. 2. A phase boundary in a strip containing non-transforming precipitates
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displacement u W ˝ ! R is given by

Felastic D

Z
˝

1

2
jjru � �E jj

2 dxdy: (6)

where

�E .x; y/ D

8<: �C .x; y/ 2 E n
S
i Ai ;

�� .x; y/ 2 .˝ nE/ n
S
i Ai ;

�0 .x; y/ 2
S
i Ai :

(7)

and r denotes gradient with respect to .x; y/ for x 2 T n; y 2 R.
For a given interface � , we obtain the displacement by minimizing the energy subject to

appropriate boundary conditions. This displacement satisfies the Euler-Lagrange equation

�u D div �E : (8)

We then say that the interface � evolves in a specified manner that reduces the (optimal) elastic
energy [3].

Due to the linearity of the Euler-Lagrange equation (8), one can split the transformation strain
and the displacement into components depending only on the interface and on the precipitates,
respectively. Take

u D u� C uP I �E D �� C �P (9)

and fix

�� .x/ D

�
�C x 2 E;

�� x 2 .˝ nE/;
(10)

and

�P .x/ D

�
�0 � �C x 2

S
i Ai \E;

�0 � �� x 2
S
i Ai \ .˝ nE/:

(11)

The displacements uP ; u� solve the Euler-Lagrange equations associated with �� ; �P ,

�u� D div �� I �uP D div �P : (12)

This fixes the functions u� and uP up to an affine component.
Substituting this decomposition back into the elastic energy, we can expand it as follows:Z

˝

1

2
jjru � �E jj

2 dxdy D
Z
˝

1

2
jjru� � �� jj

2 dxdy (13)

C

Z
˝

.ruP � �P / � ru� dxdy

�

Z
˝

.ruP � �P / � �� dxdy

C

Z
˝

1

2
jjruP � �P jj

2 dxdy

The first term in (13) is the energy associated with the interface � in the absence of any precipitates.
We shall call this the self-energy of the interface and denote it by Fself. Integrating by parts once and
using the Euler-Lagrange equation (12), the second term becomes a boundary integral. Assuming
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that ruP � �P remains finite, this term vanishes as long as u� vanishes as y ! ˙1. Given a
smooth interface � and using the freedom of adding a piecewise affine function as below, such a
choice of u� is possible. The last two terms describes the interaction of the precipitates with the
interface, and we denote it Fint.

2.2 Small volume fraction of precipitates

We seek to find an approximation for this particular model when the volume fraction of precipitates
is small and the phase boundary is disjoint from the precipitates. To motivate the approximation,
consider the situation where one does not have any non-transforming precipitates and the interface
that minimizes the total energy. It is easy to show in the current scalar setting that the interface is a
plane with normal n D .�C � ��/=j�C � ��j1. Therefore, we expect that an arbitrary interface will
soon become almost planar with this normal and then evolve in an almost planar manner. Further, in
the presence of defects, we expect the interface to be distorted close to them due to the elastic fields
created by the defects but be largely planar away from them. Thus, if the concentration of defects is
small, the interface remains largely planar. This is consistent with numerical observations [10]. All
of this motivates us to seek an approximation for the model in the case that the interface is almost
planar. We find a rigorous approximation for the self energy in Section 2.3, and a heuristic one for
the interaction energy in Section 2.4. The final approximate model is described in Section 2.5.

By a change of variables, we obtain the special case

�˙ D .0; : : : ; 0;˙1=2/T (14)

and the preferred normal is n D .0; : : : ; 0; 1/T without any loss of generality. We assume that the
phase boundary is the graph of a H 1 and essentially bounded function g, i.e.,

� D
˚
.x1; x2; : : : ; xn; y/ such that y D g.x1; : : : ; xn/

	
; (15)

and the transformed domain E D f.x; y/ W y < g.x/g.
Now, let us assume that the precipitates occupy a small volume fraction ":

A"i D .x
"
i ; y

"
i /C "

1=nAi ; (16)

where x"i ; y
"
i are chosen such that the barycenter of each obstacle remains fixed under the rescaling.

It is easy to show that the resulting elastic displacements u"P that solve (12) scales as u"P D "UP .
Therefore, we seek a scaling for the interface so that the corresponding displacements u"� has the
same scaling. This motives the following scaling for the interface:

� " D
˚
.x; y/ D y0 C "g

	
: (17)

We assume that y0 ¤ yi for any i so that the interface is disjoint from the precipitates for small
enough ".

We now see that

F "elastic D "
2

Z
˝

1

2

ˇ̌ˇ̌
rU � �"E

ˇ̌ˇ̌2 dxdy (18)

1 In the vectorial setting of linearized elasticity, there are two possible normals [17]. We can proceed with either of these.
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where

�"E .x; y/ D

8̂<̂
:

1
"
�C .x; y/ 2 E" n

S
i A

"
i ;

1
"
�� .x; y/ 2 .˝ nE"/ n

S
i A

"
i ;

1
"
�0 .x; y/ 2

S
i A

"
i :

(19)

Therefore, we seek approximations to 1
"2

Fself and 1
"2

Fint.
In order to do so, it is convenient to subtract the piecewise constant, curl-free, function

1
2
.y0 � H.y//

2 from the transformation strain �"E , in order to make it supported in a bounded
region around y D 0. This does not change the energy of minimizers of the energy functional, since
one can simply subtract the respective integral from u. From now on, we thus assume that, for a
given function QgWT n ! R,

�n
Qg .x; y/ D

8̂̂<̂
:̂
0 for y 6 y0 and y 6 Qg;
�1 for y 6 y0 and y > Qg;
1 for y > y0 and y 6 Qg;
0 for y > y0 and y > Qg

(20)

and � Qg.x; y/ D

0BBB@
0
:::

0

�n
Qg
.x; y/

1CCCA. With this change, the scaled self energy of the interface is the

minimum of the functional

F".u/ D

Z
˝

1

2

ˇ̌̌̌ˇ̌̌̌
ru �

1

"
�"g

ˇ̌̌̌ˇ̌̌̌2
; (21)

while the scaled interaction energy is

F "int D �

Z
Enfy6y0g

.ruP � �P / � �� dxdy C
Z
fy6y0g

.ruP � �P / � �� dxdy

C

Z
˝

1

2

ˇ̌̌̌ˇ̌̌̌
ruP �

1

"
�"1=nP

ˇ̌̌̌ˇ̌̌̌2
dxdy (22)

2.3 Approximation of the self-energy

Let g 2 H 1.T n/ \ L1.T n/. Consider the scaled self energy functional

F".u/ D

Z
˝

1

2

ˇ̌̌̌ˇ̌̌̌
ru �

1

"
�"g

ˇ̌̌̌ˇ̌̌̌2
; (23)

for " small. We show that this functional converges in the sense of � -convergence with respect to
the usual L1loc metric, to the limit functional

F .u/ D

8<:
R
˝nfyD0g

1
2
jjrujj2 if ŒŒu�� D g a.e.

1 otherwise:
(24)

2 H.y/ denotes the Heaviside step function.
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Both functionals are assumed to be infinite if u … H 1
loc. The expression ŒŒu�� denotes the jump of u

across fy D 0g (i.e., the difference of the respective traces). We write

uC" .x; y/ D u".x; y C "/;

u�" .x; y/ D u".x;�y � "/:

Without loss of generality, we assume here that jjgjjL1 6 1, otherwise the definition of u˙" .x; y/
needs to be adapted so that the interface does not penetrate outside the cutout region.

Theorem 2.1 (Approximation of the energy) Let ."j /j2N be a decreasing sequence of positive real
numbers converging to zero. The following assertions hold.

(i) Consider functions u"j such that F"j .u"j / is uniformly bounded. Then there exists a
subsequence (which we relabel and also index by j ) and functions u˙ 2 H 1

loc.T
n � .0;1// ,

such that

uC"j * uC;

u�"j * u�

weakly in H 1
loc.T

n � .0;1// (and thus strongly in L1loc), modulo a constant function.
(ii) Given a sequence u"j , such that u˙"j ! u˙ in L1loc.T

n � .0;1//, we have

lim inf F"j .u"j / > F .u/; (25)

where u.x; y/ D u˙.x;˙y/ for y > 0 .C/ or y < 0 .�/, respectively.
(iii) Given u 2 H 1.˝nfy D 0g/, there exists a sequence u"j so that uC"j ! u inL1loc.T

n�.0;1//,
u�"j ! u.x;�y/ in L1loc.T

n � .0;1//, and

lim sup F"j .u"j / 6 F .u/: (26)

Proof. (i) Clearly,
R
T n�.0;1/

ˇ̌ˇ̌
ru˙�

ˇ̌ˇ̌2 is uniformly bounded. This yields the desired compact-
ness.

(ii) If ŒŒu�� D g, the result is immediate from the definition of the energies. What remains to show, is
that the elastic energy necessarily blows up if the difference of the respective traces of u".x; "/
and u".x;�"/ does not converge to the function g. Note that, for all ", one can calculate

F".u"/ >
Z
T n

Z "

�"

1

2

ˇ̌̌̌ˇ̌̌̌
ru" �

1

"
�"g

ˇ̌̌̌ˇ̌̌̌2
>
Z
T n

Z "

�"

1

2

ˇ̌̌̌
@

@y
u" �

1

"
H
�
"g.x/ � y

�
C
1

"
H.�y/

ˇ̌̌̌2
>
1

2"

Z
T n

1

2

�Z "

�"

ˇ̌̌̌
@

@y
u" �

1

"
H
�
"g.x/ � y

�
C
1

"
H.�y/

ˇ̌̌̌�2
(27)

>
1

2"

Z
T n

1

2

ˇ̌̌̌Z "

�"

@

@y
u" �

1

"
H
�
"g.x/ � y

�
C
1

"
H.�y/

ˇ̌̌̌2
D

1

2"

�Z
T n

1

2

ˇ̌�
u".�; "/ � u".�;�"/

�
� g

ˇ̌�2
: (28)
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Jensen’s inequality was used to obtain (27). In (28), u".�; y/ denotes the trace of u" on .�; y/.
The equality holds, because u" is in H 1, and thus admits a representative that is absolutely
continuous on a.e. line [12]. This energy cannot be bounded, unless u".�; "˛/ � u".�;�"˛/
converges to g inL1, and thus the jump of u across fy D 0g equals g, since weak convergence
in H 1 implies weak convergence of the trace.

(iii) We first assume that the trace of u at y D 0 from below, denoted by T �u, is in H 1. Take

u".x; y/ D

8<: u.x; y C "/ for y 6 �",
T �u.x/C y

"
H
�
"g.x/ � y

�
for �" < y < ",

u.x; y � "/ for y > ":

(29)

Note that this function is in H 1
loc.˝/, since the traces at ˙" match, inside the strip the y-

derivative of u" is bounded by 1
"

, and the x-derivatives of u" are bounded by the sum of the
x-gradient of T �u and the x-gradient of g, both of which were assumed to be in L2.
The elastic energy F".u"/ outside the strip of thickness " remains exactly equal to F .u/. The
y-derivative of the function u" equals the n-component of �"g , and the x-derivative remains
bounded by the (absolute) sum of that of T �u and that of g. Thus the integral over the
vanishing domain T n � .�"; "/ goes to zero.
In order to obtain the result for arbitrary u 2 H 1

loc, one can employ the usual density argument.
Functions with H 1-trace are dense and one can approximate with the energy bounded by
F.u/.

The above theorem shows that for a nearly flat interface, the energy due to the shape of the phase
boundary itself is equal to the energy of a function with a jump of the appropriate height g. It is well
known [16], that the minimum attained at Qu of this energy is equal to one half the H 1=2 seminorm
squared of g, or,

min
u2H1.R˙�Tn/
ŒŒu��yD0Dg

F .u/ D
1

2
Œg�2

H1=2
: (30)

REMARK 2.2 Note that we have not proved the � -convergence result for the case that g is only in
H 1=2, since under this weaker assumption a recovery sequence can not be found. However, as we
will see in Section 3, solutions of the evolution problem considered will have the required regularity.

2.4 Approximation of the interaction energy

We now turn to the scaled interaction energy

F "int D �

Z
Enfy6y0g

.ruP � �P / � �� dxdy C
Z
fy6y0g

�
ruP �

1

"
�"1=nP

�
� �� dxdy

C

Z
˝

1

2

ˇ̌̌̌ˇ̌̌̌
ruP �

1

"
�"1=nP

ˇ̌̌̌ˇ̌̌̌2
dxdy (31)

From the definition of uP in (9) and (11), it is clear that as long as the interface is disjoint from the
particles and does not cross them, ruP � 1

"
�"1=nP is independent of the position of the interface

and thus g. It follows then that the last two terms are independent of g under the assumption
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above. Further, it follows that ruP � 1
"
�"1=nP ! f .x; y/ where f is independent of g under

the assumption above. Therefore, we can write

lim
"!0

F "int D

Z
T n

Z g.x/

0

f .x; y/ dxdy C C (32)

for constant C under the assumptions above. Finally, when the interval crosses an interval, this form
is still true with a redefined f .

2.5 The approximate model

The previous sections show that the energy of an interface described by the graph of a function g
may be approximated as

E D
1

2
Œg�2

H1=2
C

Z
T n

Z g.x/

0

f .x; y/ dxdy: (33)

We postulate that the evolution of the interface is described as an L2 gradient flow of g with respect
to the energy. Since the variation of the H 1=2 seminorm yields the square root of the Laplacian, we
obtain

gt .x; t/ D �.��/
1=2g.x; t/C f

�
x; g.x; t/

�
: (34)

This equation may be compactly written by its Fourier series,

Ogt .k; t/ D � jkj Og.k; t/C
4f ��; g.�; t /�.k/: (35)

Note that the equation is still nonlinear, since the driving force f depends on g.
Finally, we assume that the distribution of precipitates is periodic in the direction of propagation

of the interface. Thus, the forcing can be split up into a periodic pinning potential '.x; g.x// with
zero average and a constant term F stemming from boundary conditions at˙1, so that

f .x; y/ D '.x; y/C F: (36)

This leads to the final model

gt .x; t/ D �.��/
1=2g.x; t/C '

�
x; g.x; t/

�
C F (37)

or
Ogt .k; t/ D � jkj Og.k; t/C5'.x; g.x; t/.k/C OF : (38)

for a given ' W RnC1 ! R with zero mean.

Two comments are in order. First, it is open whether the � -convergence of the energy implies
convergence of solutions to the gradient flow. Second, we assumed in approximating the interaction
energy that the interface is disjoint from any of the precipitates. This is important for obtaining a
local pinning potential. The pinning potential would be non-local in the absence of this assumption.
An approximate model that accounts for this remains an open issue for the future.
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3. Stick-slip behavior

In this section, we study the stationary equation

0 D �.��/1=2g C ' C F (39)

and the evolution equation
gt D �.��/

1=2g C ' C F; (40)

together with an initial condition, and denote them by (39)F and (40)F , respectively, indicating the
dependence on the behavior on the external force F > 0. Our strategy and results closely mirror
those of Dirr and Yip [9] who considered the Laplacian case. In this section we will make the
following assumption on the wiggly force 'WT n � R! R.

HYPOTHESIS 3.1 The interaction force '.x; y/ is periodic in y, i.e., '.x; y/ D '.x; y C 1/, has
vanishing average, i.e.,

R
T n�Œ0;1/

'.x; y/ D 0 and is Lipschitz continuous in both x and y.

3.1 Solutions of the evolution equation

In this section we collect some properties of solutions of the evolution problem (40)F .

Proposition 3.2 For any initial condition g.�; 0/ D g0 2 C 0, the quasistatic evolution
problem (40)F admits a unique global in time classical solution. Classical solutions to (40)F satisfy
a comparison principle. Furthermore, for g0 2 L2, a mild solution to the evolution problem exists
and is classical for any t > 0.

Proof. We first note that the evolution equation (40)F can be cast in the form of [11], equation (2),
by periodically extending ' to Rn. Since in our model the function ' is assumed to be Lipschitz,
it follows from [11], Theorem 5, that the problem admits a unique Lipschitz continuous viscosity
solution, and thus satisfies a comparison principle. We further remark that the fractional Laplacian
generates an analytic semigroup on the space of continuous functions on T n (for a reference see for
example [27], Chapter IX.11, and note that this property is well known for the ‘regular’ Laplacian),
and thus the problem also admits a classical solution that can be found via a variation of constants-
formula [24]. This also shows that the viscosity solution for the problem is periodic.

For an initial condition only in L2, note that the fractional Laplacian also generates a semigroup
on Lp , p > 2, with solutions in H 1;p , the domain of �.��/1=2 for values in Lp . We thus can
recursively find spaces of higher and higher integrability for our mild solution at positive time until
we obtain a Sobolev-embedding into the space of continuous functions.

The next proposition concerns an energy estimate of the solution to the evolution equation.

Proposition 3.3 (Energy estimate) Fix � > 0. Then there exists a constant C depending only on f
and � , such that for any solution of (40)F we have�

g.t/
�
H1=2

6 Ce�t jjg0jjL2 C C for t > �: (41)

Proof. First note that the mild solution of (40) is given by the variation of constants formula

Og.k; t/ D e�kt Og0.k/C

Z t

0

e�k.t�s/5f ��; g.�; s/�.k/ ds (42)
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for k 2 f0; 1; 2; : : : g.
We have, for t > 1, by Plancherel’s theorem,

�
g.t; k/

�2
H1=2

D

1X
kD1

k j Og.t; k/j
2 (43)

D

1X
kD1

k

ˇ̌̌̌
e�kt Og0.k/C

Z t

0

e�k.t�s/ 4f .�; g.�; s//.k/ ds
ˇ̌̌̌2

(44)

6
1X
kD1

2k
ˇ̌̌
e�kt Og0.k/

ˇ̌̌2
C

1X
kD1

2k

ˇ̌̌̌Z t�1

0

e�k.t�s/5f ��; g.�; s/�.k/ ds
ˇ̌̌̌2

(45)

C

1X
kD1

2k

ˇ̌̌̌Z t

t�1

e�k.t�s/5f ��; g.�; s/�.k/ ds
ˇ̌̌̌2

(46)

6 C1e
�t
jjg0jjL2 C C (47)

C

1X
kD1

k

ˇ̌̌̌
ˇ̌
sZ t

t�1

e�2k.t�s/ ds

sZ t

t�1

ˇ̌̌5f ��; g.�; s/�.k/ˇ̌̌2 ds

ˇ̌̌̌
ˇ̌
2

(48)

6 C1e
�t
jjg0jjL2 C C (49)

C C 0
1X
kD1

Z t

t�1

ˇ̌̌5f ��; g.�; s/�.k/ˇ̌̌2 ds (50)

6 C1e
�t
jjg0jjL2 C C2: (51)

If t 6 1, the integral from 0 to t � 1 can be disregarded and the integral from t � 1 to t runs from
0 to t , with no change in the estimates. In this calculation, we have used Hölder’s inequality in (48)
and the fact that

R t
t�1

e�k.t�s/ ds D 1�e�k

k
thereafter.

3.2 Existence of pinned and space-time periodic solutions

First we assert the existence of a stationary solution for zero external driving force.

Proposition 3.4 Under Hypothesis 3.1, equation (39)0 admits a weak solution in H 1=2.

Proof. Note first that H 1=2 is compactly embedded in L2, independent of dimension. One can thus
find a minimizer of the energy

E.g/ D
1

2
Œg�2

H1=2
�

Z
T n

Z g.x/

0

'.x; 
/ d
dx (52)

among functions in H 1=2
c D fu 2 H 1=2 W

R
T n
u D cg with average c. Now denote by

G.c/ WD min
g2H

1=2
c

E.g/ (53)

the energy depending on the fixed average c. Since ' has zero average, we have G.c C 1/ D G.c/.
Furthermore,G is Lipschitz by a simple comparison argument. Therefore,G admits a minimum for
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some c0 2 R. The function gc0 is a weak solution to (39)0, since it minimizes the corresponding
energy.

Proposition 3.5 Any weak solution to (39)F ,F > 0 is classical (and thus also a stationary viscosity
solution).

Proof. Plugging the weak solution g of the stationary equation into the variation of constants
formula for the mild solution of the evolution problem, we find that g is a stationary mild solution,
since

e�kt Og.k/C

Z t

0

e�k.t�s/ 3f ��; g.�/�.k/ ds D e�kt Og.k/C
Z t

0

e�k.t�s/k Og.k/ds D Og.k/

for k 2 f0; 1; 2; : : : g. From the regularity properties of mild solutions with initial conditions in L2,
we find that the stationary solution must be classical.

The following theorem asserts the existence of a threshold force, up to which – but not above
which – a stationary solution exists.

Theorem 3.6 (Existence of a threshold force) There exists F � > 0 such that equation (39)F admits
a solution for all F 6 F �, while it has no solution for F > F �.

Proof. Consider
˚ D fF > 0 such that (39)F has a solutiong:

Clearly, because of Proposition 3.4, ˚ ¤ ;. Also, if F > sup', then (39)F has no solution. Define,
therefore, F � D supf˚g <1. Two things remain to be shown in order to establish the result:

(i) F � 2 ˚ .
(ii) There is a solution to (39)F for all F < F �.

Proof of (i): Consider a sequence Fj % F � and corresponding solutions gj of (39)Fj such
that 0 6

R
T n
gj 6 1. Such a sequence exists, otherwise F � could not be the supremum of ˚ .

Since fFng is bounded, we get uniform boundedness of fgng in H 1 from a simple Fourier series
argument. Therefore, there is a weakly converging subsequence (strongly in H 1=2) whose limit
again satisfies (39)F � in a weak sense.

Proof of (ii): Consider 0 < F < F �, and the solutions g� and g0 to the stationary equation
with external driving force F � and 0, respectively. By the periodicity of ', and the continuity of
the solutions we can assume g� > g0. These solutions are also super- and subsolutions to (39)F ,
respectively. Therefore, there exists a solution to (39)F .

The next theorem proves the existence of a space-time periodic solution to (40)F above the
critical force.

Theorem 3.7 (Existence of a space-time periodic solution) For each F > F �, there exists a unique
0 < T .F / <1 and a unique function g.x; t/ satisfying (40)F such that

g.x; t C T / D g.x; t/C 1: (54)

Proof. Proposition 3.2 shows global existence of a classical solution. We will split the solution up
into the evolution of the average and the evolution of the deviation of the average and use Schauder’s
fixed point theorem to prove the existence of a solution satisfying (54).
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Define p.t/ D �
R
g.x; t/ dx and �.x; t/ D g.x; t/ � p.t/. The functions p and � then satisfy

Pp.t/ D �

Z
fg.x; t/ dx; (55)

O�t .k; t/ D �k Og.k; t/C
4f ��; g.�; t /�.k/ for k > 1: (56)

Consider the initial condition �.x; 0/ D �0.x/ 2 L
2, and p.0/ D 0. Since F > F �, no stationary

solution exists. Set thus T .�0/ D infft > 0 W p.t/ > p.0/ C 1g. Note that there exists a constant
� , independent of �0, such that T .�0/ > � . This follows from the fact that j Ppj 6 jjf jjL1 . We also
have T .�0/ < 1 for all �0 2 L2, since otherwise one could find a stationary supersolution (and
thus a stationary solution) to the problem at F > F �, namely the pointwise limit for t !1 of the
solution to the evolution problem with initial condition �0.

Now consider the nonlinear operator that advances the solution � in time, such that

T .�0/ D �
�
�; T .�0/

�
: (57)

and we have

O�.k; T / D e�kT �0.k/C

Z T

0

e�k.t�s/5f ��; g.�; s/�.k/ ds k > 1: (58)

From a similar calculation as in the proof of Proposition 3.3 it is clear that jjT .�0/jjL2 6
e�� jj�0jjL2 C C , therefore, for A D C=.1 � e�� /, this operator maps the set jj�0jjL2 < A

onto itself. The regularity estimate in Proposition 3.3 also shows that �.T / is bounded in H 1=2

independent of �0, as long as jj�0jjL2 < A. The operator T is thus compact and an application of
Schauder’s fix point theorem yields the existence of a time-space periodic solution which is classical
by Proposition 3.2. Uniqueness of T and g follow from the Proposition 3.8 below.

Proposition 3.8 (Uniqueness of the space-time periodic solution) The time-period T for a solution
to (40)F satisfying

g.x; t C T / D g.x; t/C 1 (59)

is unique. Also, the solution itself is unique up to a time-shift so that, given two solutions g1 and g2
there exists t0 such that g1.x; t/ D g2.x; t C t0/.

Proof. Assume that there exist two space-time periodic solutions g1 and g2, with time constants
0 < T2 < T1 < 1. Since the solutions are continuous and invariant under translations by an
integer, one can find N 2 N such that, for some time t0, one has g1.�; t0/ 6 g2.�; t0/ C N . But
since T2 < T1 there exists a time T after which the two solutions would have passed each other,
contradicting the comparison principle.

Now, consider a solution G1 with the initial condition g1.�; t0/ and a solution G2 with initial
condition g2.�; t0/. There have to exist a time T , an integer N , and a point x0 such that we have

G1.x0; T / D G2.x0; t0/CN and G1.�; T / 6 G2.�; t0/CN; (60)

i.e., the solutions have to touch at some time. Evolving both solutions in time from there on, one
can see that they touch again after one time period. This, however, contradicts the strict comparison
principle for classical solutions, unless G1.�; T C t / D G2.�; t /.
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4. Power laws near the depinning transition

In this section we investigate the effective interface velocity near the depinning transition.
Specifically, we show that a range of behaviors are possible depending on the nature of the critical
pinning point.

4.1 One dimensional ordinary differential equation setting

If ' depends only on the propagation direction, '.x; y/ D '.y/, then we expect our solution g to
be independent of x and satisfy the ordinary differential equation

Pg.t/ D '
�
g.t/

�
C F (61)

for a Lipschitz continuous, 1-periodic function 'WR ! R. This was studied earlier by Abeyaratne
et al. [1] (also [5]). It is easy to see that the interface is stationary if

F 6 F ? D �min'

and the effective velocity is

Nv D

�Z 1

0

dg
F C '.g/

��1
(62)

for F > F ?.
We now show through examples that a wide range of behaviors are possible near the depinning

transition.

Example 1: Sharp minimum and logarithmic law. Let

'.g/ D 2

ˇ̌̌̌
g �

1

2

ˇ̌̌̌
� 1;

for g 2 Œ0; 1� and extended periodically. Clearly F ? D 1. A short calculation based on (62) shows

Nv WD
1

T
D

1

log.F / � log.F � F ?/

for F > F ?. Thus,

Nv �
1

� log jF � F ?j
(63)

for F close to F ? D 1.

Example 2: Power law. We now show that it is possible to obtain any power law Nv � jF � F ?jˇ

for ˇ 2 .0; 1/ depending on the nature of jF � F ?jˇ near the pinning points. Let 1 < ˛ < 1,
c˛ D 2

˛.˛ C 1/ and

'.g/ D c˛

ˇ̌̌̌
g �

1

2

ˇ̌̌̌˛
� 1;



106 P. W. DONDL AND K. BHATTACHARYA

for g 2 Œ0; 1� and extended periodically. Clearly F ? D 1. So, for F > F ?,

Nv D

 Z 1

0

dg

c˛
ˇ̌
g � 1

2

ˇ̌˛
C .F � F ?/

!�1
D
c˛

2

 Z 1=2

0

dx

x˛ C d˛

!�1

where d D
�
F�F ?

c˛

�1=˛
. Now, since x; d > 0 and ˛ > 1,

.x C d/˛ > x˛ C d˛ >
1

2˛
.x C d/˛:

It follows,

c˛

2.˛ � 1/

 
d�˛C1 �

�
1

2
C d

��˛C1!�1
> Nv >

c˛

2˛C1.˛ � 1/

 
d�˛C1 �

�
1

2
C d

��˛C1!�1
:

Therefore for F � F ? or d small, we conclude that

Nv � jF � F ?jˇ (64)

where ˇ D ˛�1
˛
2 .0; 1/.

In particular, notice that for the smooth, but non-degenerate case of ˛ D 2, we obtain the square-
root law Nv � jF �F ?j1=2 for F near F ?. This is an illustration of the result of [1] who showed that
the square-root law holds whenever ' has isolated minima and the second-derivative is non-zero at
the minima.

Example 3: Flat minimum and linear law. Let

'.g/ D

8<: �4g for 0 6 g < 1=4;

�1 for 1=4 6 g < 3=4;

�1C 4.g � 3=4/ for 3=4 6 g < 1:

Again F ? D 1 and a calculation based on (62) shows

Nv D
2.F � 1/

1 � log.F /C F log.F /C log.F � 1/ � F log.F � 1/

so that
Nv D 2.F � 1/

for F near F ?.
In summary, a wide range of behavior is possible between the logarithmic and linear laws.

Further, it is clear that the asymptotic behavior depends on the behavior of ' near its minima.

REMARK 4.1 It is not necessary to assume that ' is Lipshitz. (61) has a solution as long as
.' C F /�1 is integrable. We can show that F ? D �ess inf ' and the asymptotic behavior near
F ? depends on the the behavior of the Young measure near F ?.
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4.2 Depinning in two dimensions

In this section we study some examples numerically in two dimensions, and show that a wide range
of behaviors are possible. Starting with an initial configuration g.0/ D 0 and a fixed applied load
F , we numerically integrate equation (35) using an explicit first-order Euler scheme. This explicit
scheme is appropriate since a very small time step has to be chosen in order not to ‘jump over’
critically pinned states near the depinning transition. This immediately renders implicit schemes
unnecessary. We also avoid using a higher-order scheme, since we want to sample the pinning force
at short intervals for the numerical integration and not approximate it by a higher-order polynomial.
The elastic force in our scheme, however, is calculated to high accuracy using discrete Fourier
transforms. Once the interface has traveled a certain length on average (and never got stuck on
the way), the final time is recorded. This way, a relation between the average velocity Nv and F
is obtained. The interface is considered stuck if the L2 norm of the driving force f drops below
a certain threshold. This ‘inner loop’ is repeated with F chosen each time through a bisection
algorithm, thus giving new upper and lower bounds for the critical F � at each run. The program
terminates after a certain accuracy for determining F � has been reached. In Table 1 the standard
parameters for the simulation can be found.

Example 4: Depinning behavior for smooth non-degenerate obstacles. The pinning potential '
used in this simulation is shown in Figure 3(a). It is smooth and contains isolated minima. To ensure
smoothness, the pinning potential is described using a cubic B-spline (C 2). The constants used for
this simulation are shown in Table 1. The evolution of the interface through one period is shown in
Figure 3(b), where one can see that the interface spends most of its time near the critical stuck state
depicted in Figure 3(c). In Figure 3(d), the relation between the average velocity and the force F
is shown and compared to a square-root power law for F close to F ?. The fit over almost seven
decades is excellent.

For very high applied force one can see that the velocity turns toward a linear dependence on
the applied force.

REMARK 4.2 As noted above, one obtains the square-root power-law ( Nv � .F � F ?/1=2 for F >

F ?, F near F ?/ for smooth pinning potentials in the one-dimensional ordinary differential equation
setting. Dirr and Yip [9] showed that square-root power-law also holds for non-degenerate smooth
pinning potential ' in the parabolic case (5) with the Laplace operator. Their proof relies solely on
the comparison principle for critically pinned solutions, i.e., solutions u� of the stationary equation

TABLE 1. Parameters used for the numerical examination of the depinning transition

Number of Fourier coefficients 1024
Length over which the interface velocity is averaged 4
Initial upper bound for F � in bisection 0.5
Initial lower bound for F � in bisection 0
Threshold for accuracy of F � 2 � 10�9

Coefficient of elastic force 0.1
Time step 1 � 10�3

Threshold for stuck interface 1 � 10�14
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(a) Force distribution used to examine the general
depinning behavior.
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(b) The evolution of the interface through one
period for F D 0:04. Snapshots were taken
at equal time intervals, so one can see that the
interface spends most of its time near the critical
pinned state (see Figure 3(c))
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(c) Interface stuck at the inclusions for F D 0:03
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(d) Power law of the depinning transition

FIG. 3. The depinning behavior for smooth non-degenerate obstacles (Example 4)

(39)F � at the critical force, and the spectral properties of the linearized operator

Lu�v D �.��/
1=2v C fu.x; u

�/v:

These properties as well as the comparison principle, however, remain unchanged even in our non-
local equation 37. Therefore, the same result holds under the same non-degeneracy condition.

Example 5: Depinning behavior for smooth non-degenerate obstacles with different length-scales.
We repeat the calculations in Example 4, but with pinning potential with five different characteristic
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(a) 1=8 (b) 1=32

(c) 1=64 (d) 1=128

(e) 1=16 and 1=128
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FIG. 4. The depinning behavior for smooth non-degenerate obstacles at various lengthscales (Example 5)
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TABLE 2. The critical applied force for cases in Example 5

Size of pinning sites Critical applied force F �

1=8 0:0204

1=16 0:0307

1=32 0:0150

1=64 0:0143

1=128 0:0119

length-scales as shown in Figure 4. All parameters are kept as in Example 4 with the exception
of the required accuracy for determining F � (set to 10�15 here) and the threshold to consider an
interface stuck (set to 10�17 here) for the simulation involving obstacles of size 1=128. We find
square-power law in all these cases as shown in Figure 4(f). This figure also indicates the error
bar in the calculation (visible only for the 1/64 case). The critical pinning force depends on case
as shown in Table 2. We also consider a simulation with a pinning potential with two different
length-scales as shown in Figure 4(e). We again obtain a square-root power law.

Example 6: Depinning behavior for sharp obstacles. We now consider a pinning potential with
sharp minima as shown in Figure 5(a). To ensure a sharp minima, we use a bilinear interpolation on
a square grid for the pinning potential. The obstacles are chosen to admit at their minima a piecewise
affine shape in x2-direction. All parameters are kept as in Experiment 1 except the accuracy for F �

and the “stuck threshold” which are set to 10�15 and 10�17, respectively. The depinning behavior
is shown in Figure 5(b) (again with error bars which are barely visible). The figure also shows the
logarithmic law 63 predicted for the one-dimensional situation. We see that our results are consistent
with this law.

Example 7: Depinning behavior for flat obstacles. We consider a pinning potential with flat
minima as shown in Figure 5(c). In this simulation we again use cubic splines to construct the
pinning potential. All parameters are kept as in Experiment 1. The depinning behavior is shown in
Figure 5(d). We see that they follow a linear law predicted for the one-dimensional situation.

Example 8: Pinning asymmetry. Pinning is the result of interrogating the pinning potential using
an elastic boundary. Therefore, it is non-local and depends on more than the local value of the
pinning potential. Therefore, the same pinning potential ' can lead to a very different critical pinning
force in the forward and the backward directions. This is illustrated in Figure 6. We consider the
pinning potential illustrated in Figures 6(a) and its mirror image in Figure 6(c) corresponding to the
forward and backward directions (positive and negative F ). We find that the critical pinning force
in the forward direction is F D 0:046, and that this is almost twice the the the critical pinning force
in the forward direction of F D 0:027. Further, the stuck interface in the forward direction shown
in Figure 6(b) is quite different from the mirror-image of the the stuck interface in the backward
direction shown in Figure 6(d). Recently, Xia et al. [25, 26] have demonstrated this phenomenon in
peeling of adhesive tape with patterned adhesive, a phenomenon also governed by our model (2).
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(a) Pinning potential for Example 6 (obstacles with sharp
minima)

(b) Depinning behavior for Example 6

(c) Pinning potential for Example 7 (obstacles with flat
minima)
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(d) Depinning behavior for Example 7

FIG. 5. Depinning behavior for pinning potential with sharp and flat minima (Examples 6 and 7 respectively). We obtain
logarithmic behavior in the former and a linear law in the latter.
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(a) Pinning potential for Example 8 in the forward
direction
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(c) Pinning potential for Example 8 in the back-
ward direction

x
1

0 0.5 1

x 2

0

0.2

0.4

0.6

0.8

1

(d) Stuck interface near the depinning threshold
Example 8 in the backward direction

FIG. 6. The forward and backward propagation with the same pinning potential can be quite different (Example 8)
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