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Capturing nonclassical shocks in nonlinear elastodynamic with a
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For a model of nonlinear elastodynamics, we construct a finite volume scheme which is able to

capture nonclassical shocks (also called undercompressive shocks). Those shocks verify an entropy

inequality but are not admissible in the sense of Liu. They verify a kinetic relation which describes the

jump, and keeps an information on the equilibrium between a vanishing dispersion and a vanishing

diffusion. The scheme presented here is by construction exact when the initial data is an isolated

nonclassical shock. In general, it does not introduce any diffusion near shocks, and hence nonclassical

solutions are correctly approximated. The method is fully conservative and does not use any shock-

tracking mesh. This approach is tested and validated on several test cases. In particular, as the

nonclassical shocks are not diffused at all, it is possible to obtain large time asymptotics.
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Introduction

Hyperbolic systems of conservation laws often arise as limits of systems of partial differential

equations including small scales effects, like diffusion and dispersion, when the parameters driving

the small scales effects vanish. For example, the compressible Euler equations are the (formal) limit

of the compressible Navier–Stokes equations, when the diffusion parameter tends to zero. However,

the solutions of the hyperbolic system do not inherit all the properties of the augmented system,

and it particular they are not always smooth. More importantly, in the class of weak solutions, the

Cauchy problem for the hyperbolic system may admit infinitely many solutions, plenty of them

being unrelevant toward the augmented system. Thus it is necessary to add some criterions that

select the solutions that are indeed limits, as the parameters vanish, of the solutions of the augmented

diffusive-dispersive system. One of this criterion yields to the selection of classical solutions, which

roughly speaking corresponds to the case where diffusion is dominant. But when two small scale

effects are of comparable strength nonclassical solutions appear. They contain shocks that do not

verify the classical criterion but do arise as limits of the diffusive-dispersive system.

Let us sketch a general framework for nonclassical solutions of hyperbolic systems. Consider

the Cauchy problem for a system of conservation laws

(

@t U.t; x/ C @xf .U.t; x// D 0; t > 0; x 2 R

U.t D 0; x/ D U 0.x/; x 2 R;
(1)
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where U is the vector regrouping the N > 1 unknowns belonging to a open convex set ˝ of RN , and

f D R
N ! R

N is the flux function, which we assume to be smooth. We suppose that System (1)

is strictly hyperbolic, i.e. that the Jacobian matrix of f is diagonalizable with simple eigenvalues

�1.U / < � � � < �n.U /. We denote by ri .U / a right eigenvector associated to the eigenvalue �i .U /.

Solutions of hyperbolic systems are in general not smooth, even when the initial data is smooth.

Discontinuities appear in finite time and it is necessary to consider weak solutions. Doing so,

uniqueness is lost, and an additional criterion has to be imposed to select a unique solution. For

example, the vector of unknown U is asked to verify, in addition to the initial System (1), a so

called entropy inequality

@t U.U / C @xW.U / 6 0: (2)

The entropy U and the entropy flux W usually come from considerations on an augmented

version of the system under study, where small physical terms like diffusion and dispersion are

not neglected. Such an augmented system has additional properties, for example the total energy

is conserved. Inequality (2) states that at the limit, this energy is dissipated. In general, from the

augmented system only one entropy inequality is deduced, thus the solutions of (1) are not expected

to verify other entropy inequalities than (2). When the system is genuinely nonlinear, i.e. when

8i 2 f1; � � � ; ng; 8U 2 ˝; r�i .U / � ri .U / ¤ 0; (3)

and when the entropy U is stricly convex, the entropy inequality (2) contains enough information

to select a unique weak solution of (1). In the sequel we suppose that the entropy U is strictly

convex. In the general case where (3) does not hold, the addition of a single entropy inequality is

not sufficient to select a unique weak solution.

The question of uniqueness of the weak solution is strongly related to the choice of a criterion

to decide wether a shock is admissible or not. Two states UL and UR of ˝ are linked by a shock if

there exists a real s, called the speed of the shock, so that the Rankine–Hugoniot relations

s.UL � UR/ D f .UL/ � f .UR/ (4)

hold. The shock is entropy satisfying if it verifies (2) in a weak sense, i.e. if

s
�

U.UL/ � U.UR/
�

�
�

W.UL/ � W.UR/
�

6 0: (5)

When the system is genuinely nonlinear (i.e. when (3) holds), (5) is equivalent to the Lax

inequalities [15]

9i 2 f1; � � � ; ng W �i .UR/ < s < �i .UL/; s < �iC1.UR/ and s > �i�1.UL/; (6)

which themselves are an extension to systems (N > 1) of Oleinik’s criterion [24].

In [22], Liu generalized this criterion to the nongenuinely nonlinear case where r�i � ri may

vanish. Liu proved that his criterion selects a unique selfsimilar solution to the Riemann problem (1–

2). We recall that a Riemann problem is the case of a piecewise constant initial data

U 0.x/ D UL1x<0 C UR1x>0; .UL; UR/ 2 ˝2:

For systems that are not genuinely nonlinear, the Liu criterion is stronger than (5) (whereas it

is equivalent for genuinely nonlinear systems). An admissible shock in the sense Liu always
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verifies (5), but some shocks may verify (5) without satisfying the Liu criterion. These shocks

are called nonclassical. Moreover, unlike in the genuinely nonlinear case, the addition of the

sole entropy inequality (2) is not enough to regain uniqueness of the weak solution, because too

many shocks are allowed. In other words, the inequality entropy (2) does not contain enough

information on the small scale effects in the augmented system. Uniqueness can be regain by

strongly constraining the nonclassical shocks to verify an algebraic relation of the form

UL D ˚[.UR/:

The function ˚[ is called a kinetic relation.

It has been proved that the addition of such a kinetic relation selects a unique weak solution to

the Riemann problem for several models, including models of phase transitions in solids in [1], [20]

and [21] or in liquids [19], [12], [26] and a model of magnetohydrodynamics [12]. The link between

kinetic relations and augmented diffusive dispersive equations is explored in [13], [16] and [10] in

the scalar case and in [27] for gas dynamics with a Van der Waals pressure law. The literature on

the subject is so wide that we only cited a few key references. The interested reader will find a more

comprehensive bibliography on this topic in [16].

The numerical approximation of nonclassical solutions is challenging, because they are by

nature very sensitive to the equilibrium between the small scale effects. The stake is to preserve

this equilibrium at the numerical level. Roughly speaking, usual finite volume schemes introduce a

numerical viscosity which destroys the equilibrium between the small scales effects. The diffusion

becomes dominant and the schemes converge toward the classical solution, even though they are

based on nonclassical Riemann solvers.

To overcome this difficulty, two types of schemes have been proposed. On the one hand, it is

possible to use high order schemes consistent with the augmented system (see for example [8], [11],

[17], [18] and [14]). As outlined in [11], it is necessary to discretize the flux of the hyperbolic part

with a high enough order, once again to keep the exact balance between the small scales. On the

other hand, some schemes relies on the tracking of nonclassical shocks (see for example [7], [6],

[3], [25], [4] and [5] ). In that case the kinetic relation is taken into account the scheme, typically

through the use of an exact nonclassical Riemann solver.

The conservative finite volume scheme presented here belongs to this last category. It is built

to be exact when the initial data is a nonclassical shock. In general, it does not introduce any

numerical diffusion near nonclassical shocks (a particular class of nonclassical solutions) and turns

out to capture correctly nonclassical solutions. This scheme extends to hyperbolic systems the

discontinuous reconstruction scheme introduced in the scalar case in [3] and recently used in [5].

In the first section, we present the hyperbolic system admitting nonclassical solution for which

we construct the scheme, namely the model of nonlinear elasticity studied in [20] and [12]. The

second section is devoted to the construction of the scheme itself. We present a way to select cells

in which a nonclassical shock is reconstructed, explain how this shock is reconstructed and give the

numerical flux. Eventually, we prove that the scheme is exact when the initial data is a nonclassical

shock. In the third and last section, we propose several test cases involving nonclassical shocks. It

appears that the proposed scheme capture nonclassical shocks very sharply. Let us outline that the

scheme is fully conservative (unlike Glimm type schemes [7]) and uses a fixed grid, which allows

the computation of solutions containing several interacting nonclassical shocks.
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1. The Riemann problem for a nonlinear elasticity model

This paper is devoted to the numerical approximation of the solutions of the system of conservation

laws
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

@t v � @x�.w/ D 0;

@t w � @xv D 0;

v.t D 0; x/ D v0.x/;

w.t D 0; x/ D w0.x/;

(7)

where the stress � is twice differentiable, and verifies

w� 00.w/ > 0; � 0.w/ > 0 and lim
jw j!C1

� 0.w/ D C1: (8)

We are interested in weak solutions of (7) that are (formally) limits when � tends to 0C of the

augmented system
(

@t v
� � @x�.w�/ D �@xxv� C ˛�2@xxxw�;

@t w
� � @xv� D 0:

(9)

The parameter ˛ is positive. From (9) we deduce the following entropy inequality for System (7)

(see [16]):

@t

�

v2

2
C

Z w

0

�.z/dz

�

C @x .�v�.w// 6 0: (10)

In this section we briefly recall the results of Thanh and LeFloch [20] on the Riemann problem for

System (7), i.e. the case where

(

v0.x/ D vL1x<0 C vR1x>0;

w0.x/ D wL1x<0 C wR1x>0:
(11)

We adopt the notation of this paper. It is recalled on Figure 1.

w 7! �.w/

w
˚\.w/

˚[
1.w/

˚�\.w/

FIG. 1. Notations used for solving the Riemann problem. ˚�\.w/ is the first Liu shock reachable from w. The entropy

dissipation between w and ˚[
1 is zero. The states w0 6 ˚�natural.w/ or w0 > w can be linked to w by a Liu shock,

˚�natural.w/ 6 w0 6 ˚[
1.w/ by a nonclassical shock.
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If the left state .vL; wL/ and the right state .vR; wR/ are linked by a 1-shock, its speed is equal

to �s.wL; wR/, where

s.wL; wR/ D

s

�.wL/ � �.wR/

wL � wR

; (12)

and vR is given by

vR D vL C s.wL; wR/.wR � wL/ WD H1.wR; vL; wL/: (13)

If they are linked by a 2-shocks, its speed is Cs.wL; wR/, and

vL D vR � s.wL; wR/.wL � wR/ WD H2.wL; vR; wR/:

Graphically, the speed of a shock s.wL; wR/ corresponds to the slope of the segment joining

.wL; �.wL// to .wR; �.wR//.

Let us now focus on when a 1-shock is admissible or not, either in the sense of the entropy

dissipation (10) or in the sense of Liu. The results for 2-shocks are the same, with the roles of wL

and wR reversed in what follows. A careful study of Equation (10) applied to the shock yields that

it verifies the entropy inequality if and only if

w2
L 6 wLwR or wRwL 6 ˚[

1.wL/wL;

where ˚[
1.wL/ is the real having the opposite sign than wL for which the entropy dissipation (5)

vanishes. The function ˚[
1 is its own inverse.

For System (7), a shock verifies the Liu criterion if and only if for all w between wL and wR,

�.w/ � �.wR/

w � wR

>
�.wL/ � �.wR/

wL � wR

:

Geometrically, it means that the segment joining .wL; �.wL// to .wR; �.wR// is above the graph

of � if wR > wL, and below if wR < wL, see Figure 1. It follows that there exists an invertible

function ˚ \ such that a shock verifies the Liu criterion if and only if

w2
L 6 wLwR or wRwL 6 ˚�\.wL/wL:

The fact that System (7) is not genuinely nonlinear yields

wL˚�\.wL/ < wL˚[
1.wL/:

Thus, if wR lies in between ˚[
1.wL/ and ˚�\.wL/, the shock between .vL; wL/ and .vR; wR/

dissipates the entropy (10) but is not admissible in the sense of Liu. Such shocks are called

nonclassical shocks.

Many Riemann problems for System (7-10) admit an infinity of solutions (see [20], Section 3).

Uniqueness can be obtained by imposing a kinetic relation that strongly constrain the nonclassical

shocks by imposing
(

wL D ˚[;1.wR/ for a 1-nonclassical shock;

wR D ˚[;2.wL/ for a 2-nonclassical shock;
(14)

where ˚[;1 et ˚[;2 both verify

w˚[
1.w/ 6 w˚[;i .w/ 6 w˚ \.w/

but are not necessarily equal. We now state the main result of [20].
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Theorem 1.1 [Thanh, LeFloch] If the kinetic functions ˚[;1 and ˚[;2 are monotone decreasing,

the Riemann Problem (7-10-14) has a unique selfsimilar solution.

The exact Riemann solver associated to Theorem 1.1 is the foundation of the scheme presented

in the next section. Moreover, we will use the inner structure of the Riemann solution. Thus for the

sake of completeness, we describe below the forward 1-wave and the backward 2-wave.

Proposition 1.2 [Thanh, LeFloch] Let .vL; wL/ be a fixed left state, and .vM ; wM / be a state linked

to .vL; wL/ by a 1-wave. Then the nature of this 1-wave is the following:

� if wLwM > w2
L, it is a classical shock;

� if 0 6 wLwM 6 w2
L, it is a rarefaction wave;

� if wL'�[;1.wL/ < wLwM 6 0, it first contains a 1-rarefaction linking .vL; wL/ to the state

.H1.'[;1.w/; vM ; wM /; '[;1.wM //, which is itself linked to .vM ; wM / by a 1-nonclassical shock;

� if wLwM < wL'�[;1.wL/, two cases arise:

– if �s.wL; '[;1.wM // < �s.'[;1.wM /; wM /, it first contains a 1-classical shock linking

.vL; wL/ to the state .H1.'[;1.w/; vM ; wM /; '[;1.wM //, which is itself linked to .vM ; wM /

by a 1-nonclassical shock;

– otherwise, it is just a 1-classical shock (in which w changes sign).

Proposition 1.3 [Thanh, LeFloch] Let .vR; wR/ be a fixed right state, and .vM ; wM / be a state

such that .vM ; wM / and .vR; wR/ are linked by a 2-wave. Then the nature of this 2-wave is the

following:

� if wRwM > w2
R, it is a classical shock;

� if 0 6 wRwM 6 w2
R, it is a rarefaction wave;

� if wR'�[;2.wR/ < wRwM 6 0, it first contains a 2-nonclassical shock linking .vM ; wM / to

the state .H2.'[;2.w/; vM ; wM /; '[;1.wM //, which is itself linked to .vR; wR/ by a 2-rarefaction

wave;

� if wRwM < wR'�[;2.wR/, two cases arise:

– if s.wM ; '[;2.wM // < s.'[;2.wM /; wR/, it first contains a 2-nonclassical shock linking

.vM ; wM / to the state .H2.'[;2.w/; vM ; wM /; '[;1.wM //, which is itself linked to .vR; wR/

by a 2-classical shock;

– otherwise, it is just a 2-classical shock (in which w changes sign).

The distinction between the last two cases in the last point of the enumerations of Proposition 1.2

and 1.3 can be reexpressed geometrically, as illustrated on Figure 2.

Proposition 1.4 The exists a function '] such that for i 2 f1; 2g, for all real w and for all real wM

such that wwM < w'�[;i .w/, the quantity js.w; '[;i .wM //j is larger than js.'[;1.wM //; wM /j if

and only if w'[;i.wM / is larger than w'].w; wM /. In particular if 0 > wwM > wM '].w; wM /,

the solution is a classical shock (in which w changes sign).

2. The scheme

We now describe the scheme. The time discretization is denoted by t0 D 0 < t1 < � � � < tn < � � � ,

and at each time tn, the space is discretized with cells having all the same size �x. We denote by

xn
j �1=2

their extremities and by xn
j there centers. The centers of the cells will move at each time step

but every cell will always be of size �x. The speed of the mesh is defined by V n
mesh D

x
nC1
j

�xn
j

tnC1�tn .
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wR

wM

˚[;2.wM /

˚].wR; wM /

wR

wM

˚[;2.wM /

˚].wR; wM /

FIG. 2. The solution contains a 2-nonclassical shock long segment followed by 2-classical shock short segment if their

speeds are correctly ordered, i.e if the slope of the long segment is smaller than the short one (right). This depends on the

relative position of ˚[;2.wM / and ˚].wM ; wL/.

Integrating the first line of (7) over the set

˚

.t; x/; tn
6 t < tnC1; xn

j �1=2 C V n
mesht < x < xn

j C1=2 C V n
mesht

	

we obtain the integral formula

Z xn
j C1=2

xn
j �1=2

v.tnC1; x/dx

D

Z xn
j C1=2

xn
j �1=2

v.tn; x/dx �

"

Z tnC1

tn

.��.w/ � V n
meshv/.s; xn

j C1=2 C V n
mesh.s � tn//ds

�

Z tnC1

tn

.��.w/ � V n
meshv/

�

s; xn
j �1=2 C V n

mesh.s � tn/
�

ds

#

: (15)

The formula is identical for the variable w with the flux .�v � V n
meshw/ instead of .��.w/ � V n

mesh.

The principle of finite volume methods is based on this integral formula. A finite volume scheme

writes
8

<

:

vnC1
j D vn

j � tnC1�tn

�x
.f

n;v
j C1=2

� f
n;v

j �1=2
/;

wnC1
j D wn

j � tnC1�tn

�x
.f

n;w
j C1=2

� f
n;w

j �1=2
/;

(16)

where vn
j plays the role of the mean value

1

�x

Z xn
j C1=2

xn
j �1=2

v.tn; x/dx

and f
n;v

j C1=2
plays the role of the flux on the edge x D xj �1=2 C V n

mesh.s � tn/

1

tnC1 � tn

Z tnC1

tn

�

� �.w/ � V n
meshv

��

s; xn
j C1=2 C V n

mesh.s � tn/
�

ds
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(and similarly for wn
j and f

n;w
j C1=2

). The scheme is initialized with the exact average of the initial

data

8j 2 Z; v0
j D

1

�x

Z x0
j C1=2

x0
j �1=2

v0.x/dx and w0
j D

1

�x

Z x0
j C1=2

x0
j �1=2

w0.x/dx: (17)

A particular finite volume scheme is characterized by a particular choice of a formula expressing the

numerical fluxes f
n;v

j C1=2
and f

n;w
j C1=2

in terms of the .vn
k
/k2Z and .wn

k
/k2Z. Our choice is described

in the next sections.

Recall that our aim is to derive a scheme which is exact when the initial data is a nonclassical

shock. In that case, the initial sampling (17) introduces a small amount of dissipation (unless if by

miracle the shock initially falls on an interface). The numerical initial data contains an intermediate

value that does not correspond to any pointwise value of .v0; w0/. More generally, at the end of

every time step, finite volume schemes contains a L1-projection on the mesh. Details of the solution

are lost in that step, and intermediate values are created in the shocks profile. The main idea of the

discontinuous reconstruction scheme is to rebuilt, from the mean values .vn
j ; wn

j /j 2Z, an initial data

that contains more details. This idea is also the foundation of well-known other schemes, like the

MUSCL scheme [28] and its central version [23]. Our reconstruction consists in adding nonclassical

shocks in some cells in which we are able to detect that a nonclassical shock where lying inside the

cell before the L1-projection. Thus the reconstruction will be very precise near nonclassical shocks,

and not on the smooth parts of the solution, taking the opposite strategy of [28] and [23].

Following this idea, our scheme can be decomposed in three elementary steps.

� First, we detect the special cells which are associated with nonclassical shocks. This detection

step is described in Section 2.1.

� Then, we reconstruct nonclassical shocks inside those particular cells, in the sense that we replace

the mean values .vn
j ; wn

j / by piecewise constant functions having the form of a nonclassical

shock. This procedure is explained in Section 2.2.

� Eventually, the numerical fluxes are computed by letting the reconstructed nonclassical shocks

evolve during the time step tnC1 � tn. The use of a moving mesh makes this computation easy,

see Section 2.3.

In the last section, we extend the scheme to reconstruct classical shocks as well.

2.1 Detection of nonclassical shocks

The key idea of the scheme is to see, whenever it is possible, each mean value .vn
j ; wn

j / produced

by the finite volumes scheme as the average of some nonclassical shock located somewhere inside

the cell. Of course, where .vn
j �1; wn

j �1/ and .vn
j C1; wn

j C1/ are linked by a nonclassical shock, it is

the one that should be reconstructed. In general, .vn
j �1; wn

j �1/ and .vn
j C1; wn

j C1/ are not linked

by a single nonclassical shock, but by the full pattern of two waves, each of them likely to

contain a succession of a classical shock or a rarefaction followed by a nonclassical shock (see

Propositions 1.2 and 1.3). In that case, we reconstruct one of the nonclassical shock appearing in

the solution of the Riemann problem. It is chosen thanks to the following proposition.

Proposition 2.1 If the states .vL; wL/ and .vR; wR/ are linked by a 1-nonclassical shock, then

wLwR < 0 ; .wL � wR/.vL � vR/ > 0 and wLwR > wR'].wL; wR/: (18)
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If they are linked by a 2-nonclassical shock, then

wLwR < 0 .wL � wR/.vL � vR/ < 0 and wLwR > wL'].wL; wR/:

Proof. The condition wLwR < 0 always holds through a nonclassical shock. The second one

is a straightforward consequence of the Rankine–Hugoniot relations (4). In the case of nonlinear

elastodynamics (7), they write
(

.�1/is.wL; wR/.vL � vR/ D �.wR/ � �.wL/I

.�1/is.wL; wR/.wL � wR/ D vR � vL:
(19)

with i D 1 for 1-shocks and i D 2 for 2-shocks. The positive real s.wL; wR/ is defined in

Formula (12). Eventually, the last condition is a reminder of Proposition 1.4.

DEFINITION 2.2 For all integer j and all positive integer n, we denote by .vn
j;?; wn

j;?/ the

intermediate state appearing in the Riemann problem with left state .vn
j �1; wn

j �1/ and right state

.vn
j C1; wn

j C1/. The left and right desired reconstructed states, denoted respectively by . Nvn
j;L; Nwn

j;L/

and . Nvn
j;R; Nwn

j;R/, are defined as follows.

� If wn
j �1wn

j C1 < 0, .wn
j �1 � wn

j C1/.vn
j �1 � vn

j C1/ > 0, wn
j �1wn

j C1 > wn
j C1'].wn

j �1; wn
j C1/ and

wn
j �1wn

j;? < 0, the solution contains a 1-shock in which w changes sign.

– If this shock is nonclassical, it is preceded by a classical wave and we set
(

. Nvn
j;L; Nwn

j;L/ D .H1.˚[;1.wn
j;?/; vn

j;?; wn
j;?/; ˚[;1.wn

j;?//;

. Nvn
j;R; Nwn

j;R/ D .vn
j;?; wn

j;?/:

– If this shock is classical, it is the only contribution in the 1-wave and we set
(

. Nvn
j;L; Nwn

j;L/ D .vn
j �1; wn

j �1/;

. Nvn
j;R; Nwn

j;R/ D .vn
j;?; wn

j;?/:

� If wn
j �1wn

j C1 < 0, .wn
j �1 � wn

j C1/.vn
j �1 � vn

j C1/ < 0, wn
j �1wn

j C1 > wn
j �1'].wn

j �1; wn
j C1/ and

wn
j C1wn

j;? < 0, the solution contains a 2-shock in which w changes sign.

– If this shock is nonclassical, it is followed by a classical wave and we set
(

. Nvn
j;L; Nwn

j;L/ D .vn
j;?; wn

j;?/;

. Nvn
j;R; Nwn

j;R/ D .H2.˚[;2.wn
j;?/; vn

j;?; wn
j;?/; ˚[;2.wn

j;?//:

– If this shock is classical, it is the only contribution in the 2-wave and we set
(

. Nvn
j;L; Nwn

j;L/ D .vn
j;?; wn

j;?/;

. Nvn
j;R; Nwn

j;R/ D .vn
j C1; wn

j C1/:

� In the other cases, we do not detect any relevant nonclassical shock and we set
(

. Nvn
j;L; Nwn

j;L/ D .vn
j ; wn

j /;

. Nvn
j;R; Nwn

j;R/ D .vn
j ; wn

j /:

REMARK 2.3 If there is a nonclassical shock in the Riemann problem with left state .vn
j �1; wn

j �1/

and right state .vn
j C1; wn

j C1/, then the first two three conditions holds by Proposition 2.1. Note that

they are numerically very easy to check. The last condition insures that the Riemann problem indeed

contains the expected shock; we verify it only on the cells that passed the first three tests.



146 N. AGUILLON

2.2 Reconstruction

Once a nonclassical shock has been detected, it is placed inside its cell by conservation of the

variables v and w. We reverse the averaging step of finite volume schemes by replacing the mean

value vn
j by the piecewise constant function

vn
rec.x/ D Nvn

j;L1x<xn
j �1=2

Cd
n;v
j

C Nvn
j;R1x>xn

j �1=2
Cd

n;v
j

with

d
n;v
j D �x

vn
j � Nvn

j;R

Nvn
j;L � Nvn

j;R

: (20)

If d
n;v
j belongs to .0; �x/ we have

Z xn
j C1=2

xn
j �1=2

vn
rec.x/ dx D �xvn

j

and no mass is loss when replacing the mean value by vn
rec inside the j -th cell.

Reasoning similarly for the w variable, we replace wn
j by

wn
rec.x/ D Nwn

j;L1x<xn
j �1=2

Cd
n;w
j

C Nwn
j;R1x>xn

j �1=2
Cd

n;w
j

;

with

d
n;w
j D �x

wn
j � Nwn

j;R

Nwn
j;L � Nwn

j;R

: (21)

We now state one trivial but crucial property of this reconstruction procedure.

Proposition 2.4 If .vn
j �1; wn

j �1/ and .vn
j C1; wn

j C1/ are linked by a single nonclassical shock, and if

it exists ˛ in .0; 1/ such that

.vn
j ; wn

j / D ˛.vn
j �1; wn

j �1/ C .1 � ˛/.vn
j C1; wn

j C1/;

then

. Nvn
j;L; Nwn

j;L/ D .vn
j �1; wn

j �1/; . Nvn
j;R; Nwn

j;R/ D .vn
j C1; wn

j C1/ and d
n;v
j D d

n;w
j D ˛�x:

In particular if the initial data is a nonclassical shock, we have v0
rec D v0 and w0

rec D w0: the

numerical diffusion introduced by the initial sampling (17) is cancelled by the reconstruction.

In general the two distances d
n;v
j and d

n;w
j are different, and it is possible that at least one of

these distances does not belong to .0; �x/. In that case we cancel the reconstruction, considering

that seeing .vn
j ; wn

j / as the mean value of the detected nonclassical shock is not relevant.

DEFINITION 2.5 The left and right reconstructed states are defined by:

.vn
j;L; wn

j;L/ D

(

. Nvn
j;L; Nwn

j;L/ if d
n;v
j 2 .0; �x/ and d

n;w
j 2 .0; �x/;

.vn
j ; wn

j / otherwise,
(22)

.vn
j;R; wn

j;R/ D

(

. Nvn
j;R; Nwn

j;R/ if d
n;v
j 2 .0; �x/ and d

n;w
j 2 .0; �x/;

.vn
j ; wn

j / otherwise.
(23)
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According to the Rankine–Hugoniot relations (4), the nonclassical shock reconstructed in cell j

has velocity

sn
j D

vn
j;R � vn

j;L

wn
j;L � wn

j;R

and we set arbitrary sn
j to

p

� 0.wj / when no reconstruction is performed (which reads wn
j;L D

wn
j;R D wn

j ).

2.3 Advection of the reconstructed discontinuities

The fluxes are computed by letting the reconstructed nonclassical shocks evolve during the time

step and by computing exactly what goes through the interfaces. However, two discontinuities

reconstructed in adjacent cells can interact and the waves resulting from the interaction can meet

the line x D xn
j C1=2

within the time step. It follows that if we want to use a fixed grid (xnC1
j D xn

j ,

or equivalently V n
mesh D 0), the flux along the interface x D xn

j C1=2
cannot be computed without

resolving the wave interaction, which is obviously extremely costly.

This can been avoiding by using a moving mesh. Let us recall that by moving mesh, we mean

that the centers of the cells are moving from time to time, but that their size remains constant equals

to �x. Thus the numerical difficulties of handling cells with different and varying widths is avoided.

The mesh speed is chosen such that it is larger than the maximum of the waves speed:

jV n
meshj > V n

waves D max
j 2Z

q

� 0.wn
j /; (24)

and the time step such that a wave cannot cross more than an entire cell during the time step:

tnC1 � tn
6

�x

jV n
meshj C V n

waves

: (25)

These two hypothesis insure that any wave created at time tn inside the j -th cell can only cross

the right interface x D xn
j C1=2

C V n
mesh.t � tn/ if V n

mesh < 0 and the left interface x D xn
j �1=2

C

V n
mesh.t � tn/ if V n

mesh > 0. It also imply that if two waves interact inside the j -cell during the time

step, the waves resulting from their interaction will not have time to catch up the left or the right

interfaces. This is depicted on Figure 3. Thus, computing the flux along the j C 1=2-th interface

x D xn
j C1=2

C V n
mesh.t � tn/ boils down to compute the time at which the nonclassical shock

reconstructed in cell j crosses the interface if V n
mesh < 0 (in cell j C 1 otherwise). On Figure 3, we

also see that if no reconstruction is performed in cells j and j C 1, the flux is trivial to compute

and is given by a simple left or right decentering (depending on the sign of V n
mesh), which exactly

corresponds to the moving Lax–Friedrichs flux.

We now compute the flux in details, when V n
mesh is negative and verifies (24), like in Figure 3.

Then the nonclassical shock reconstructed in cell j may only cross the right interface x D xn
j C1=2

C

V n
mesh.t � tn/. The discontinuity is not located at the same place for the variables v and w, therefore

we compute two different crossing times

T
n;v

j C1=2
D

�x � d
n;v
j �1

sn
j � V n

mesh

and T
n;w

j C1=2
D

�x � d
n;w
j �1

sn
j � V n

mesh

if V n
mesh < 0:
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xn
j�1=2

xn
jC1=2

tn

tnC1

j � 1 j

T n
jC1=2

FIG. 3. Computing the flux through the dashed interfaces can be done without solving waves interactions (interface j C1=2),

and is trivial when no reconstruction is performed (cell j � 1).

Once again, Condition (24) insures that the flux passing through the j C 1=2 interface only comes

from waves arriving from the cell j . It can be clearly seen on Figure 3 that it is piecewise constant,

given by
8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

f
n;v

j C1=2
D

�

� �.wn
j;R/ � V n

meshv
n
j;R

�

min.�tn; T
n;v

j C1=2
/

C.��.wn
j;L/ � V n

meshvn
j;L/

�

�tn � min.�tn; T
n;v

j C1=2
/
�

f
n;w

j C1=2
D

�

� vn
j;R � V n

meshwn
j;R

�

min.�tn; T
n;w

j C1=2
/

C.�vn
j;L � V n

meshw
n
j;L/

�

�tn � min.�tn; T
n;w

j C1=2
/
�

if V n
mesh < 0 (26)

where we denote by �tn the n-th time step tnC1 � tn.

When V n
mesh is positive, the reasoning is the same but the shock reconstructed in the j -th cell

now crosses the left interface x D xn
j �1=2

C V n
mesh.t � tn/. The crossing times are given by

T
n;v

j �1=2
D

d
n;v
j

V n
mesh � sn

j

and T
w;n

j �1=2
D

d
n;w
j

V n
mesh � sn

j

if V n
mesh > 0:

and the fluxes are
8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

f
n;v

j �1=2
D

�

� �.wn
j;L/ � V n

meshvn
j;L

�

min.�tn; T
n;v

j �1=2
/

C.��.wn
j;R/ � V n

meshv
n
j;R/

�

�tn � min.�tn; T
n;v

j �1=2
/
�

f
n;w

j �1=2
D

�

� vn
j;L � V n

meshw
n
j;L

�

min.�tn; T
n;w

j �1=2
/

C.�vn
j;R � V n

meshwn
j;R/

�

�tn � min.�tn; T
n;w

j �1=2
/
�

if V n
mesh > 0 (27)

REMARK 2.6 When no reconstruction is performed, the fluxes (27) and (26) coincide with the

moving Lax–Friedrichs fluxes, i.e., to a simple left or right decentering depending on the sign of

V n
mesh. The values assigned to the distances d

n;v
j and d

n;w
j and to the speed sn

j (and thus to the

crossing times T
n;v

j C1=2
and T

n;w

j C1=2
) are of no importance.
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REMARK 2.7 The idea of using a moving mesh to simplify the computation of the fluxes goes

back to the Lax–Friedrichs scheme. The Rusanov scheme follows the same idea by using a local

mesh speed V
j C 1

2
;n

mesh to make the scheme less diffusive. Higher order extensions based on piecewise

polynomial reconstructions are possible, see for example [23].

2.4 Detection of classical shocks

It is also possible to detect and reconstruct shocks in which w does not change sign. Those shocks

are always classical. Their detection is based on the following proposition.

Proposition 2.8 If the states .vL; wL/ and .vR; wR/ are linked by a 1-shock in which w does not

change sign, then either

wR < wL 6 0 and vR < vL

or

0 6 wL < wR and vR > vL:

If they are linked by a 2-shock in which w does not change sign, then either

wL < wR 6 0 and vR < vL

or

0 6 wR < wL and vR > vL:

There is no conflict with the detection of nonclassical shocks of Proposition 2.1, and we can

straightforwardly extend Definitions 2.2 and 2.5 to take into account those shocks.

3. Exact approximation of isolated nonclassical shocks

The aim of this section is to prove that the scheme described above is exact when the initial data is

an isolated nonclassical shock, i.e. (11) with left state .vL; wL/ and right state .vR; wR/ verifying

the Rankine–Hugoniot relation (19) and constrained by the kinetic relation (14). We recall that in

that case the exact solution is

(

vexa.t; x/ D vL1x<.�1/i s.wL;wR/t C vR1x>.�1/i s.wL;wR/t

wexa.t; x/ D wL1x<.�1/i s.wL;wR/t C wR1x>.�1/i s.wL;wR/t

with i D 1 for a 1-shock and i D 2 for a 2-shock.

Theorem 3.1 The scheme described in the previous section is exact when the initial data is a single

nonclassical shock. In other words, the numerical solution is the projection on the mesh of the exact

solution at time tn: for all n > 0 and for all j 2 Z,

vn
j D

1

�x

Z xn
j C1=2

xn
j �1=2

vexa.tn; x/ dx and wn
j D

1

�x

Z xn
j C1=2

xn
j �1=2

wexa.tn; x/ dx:

Proof. We prove the result for a 1-nonclassical shock such that wL < 0 < wR, the other cases

being exactly similar. With the initial sampling (17), the property holds true at time t0. Suppose that
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wL

wL

wR
wn

0

wn
0

Nwn
�1;L

Nwn
�1;R

w D 0 w D 0

�1 0 1

FIG. 4. Structure of w when a 1-phase transition is detected in cell �1. In that case, the Riemann solution (on the right)

contains three shocks.

is holds true at some time tn. At this time, we renumbered the cells in a way that the discontinuity

lies inside the cell numbered 0, and we denote by ı its distance to xn
�1=2

. We have

vn
j D

8

ˆ

<

ˆ

:

vL if j < 0;
ı

�x
vL C �x�ı

�x
vR if j D 0;

vR if j > 0;

and wn
j D

8

ˆ

<

ˆ

:

wL if j < 0;
ı

�x
wL C �x�ı

�x
wR if j D 0;

wR if j > 0:

Note that as wL < wR and vR > vL, we have wn
�1 < wn

0 < wn
1 and vn

�1 < vn
0 < vn

1 . The

detection step of Proposition 2.1 detects a 1-nonclassical shock in cell 0. By Proposition 2.4, the

nonclassical shock is reconstructed in that cell, and it is be placed exactly at the right position in the

reconstruction step:

.vn
0;L; wn

0;L/ D .vL; wL/; .vn
0;R; wn

j;R/ D .vR; wR/ and d
0;v
j D d

0;w
j D ı:

If no reconstruction is performed in the other cells, our scheme gives the correct solution at time

tnC1 by construction. This is easy to check, but a little tedious, and we refer the reader to [2] for a

detailed proof.

Suppose that wn
0 > 0. Then by Proposition 2.8, no classical shock is detected in cell 1, and by

Proposition 2.1, a 1-nonclassical shock is detected in cell �1. Let us focus on the solution Riemann

problem between the state .vL; wL/ in cell �2 and the state .vn
0 ; wn

0 / in cell 0. The notation are

recalled on Figure 4. If Nwn
�1;L > wL, both Nwn

�1;L and Nwn
�1;R are larger than wL. Thus it is be

impossible to have d
n;w
�1 2 .0; �x/ and no reconstruction occurs in cell �1. Suppose now that wL

is larger than Nwn
�1;L. Then wL and Nwn

�1;L are linked by a 1-classical shock, and Nwn
�1;L is linked

to Nwn
�1;R by a 1-nonclassical shock. It is is impossible to have d

n;v
�1 in .0; 1/. Indeed, the kinetic

function �[;1 decreases, thus

Nwn
�1;R D ��[;1. Nwn

�1;L/ > ��[;1.wL/ D wR

and there is a classical shock between . Nvn
�1;R; Nwn

�1;R/ and .vR; wR/. The states . Nvn
�1;R; Nwn

�1;R/ and

.vR; wR/ are both on the 1-wave curve W
F
1 .vL; wL/. Theorem 4:5 of [20] states that along this

curve, v is an increasing function of w. Therefore Nvn
�1;R is larger than vR. On the other hand, the

Rankine–Hugoniot relations applied to the 2-shock yields that Nvn
�1;R is smaller than vn

�1, which

contradicts the fact that vn
�1 < vR.
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The case where a 1-nonclassical shock is detected in cell 1 is simpler. We have wn
0 < 0 and

nothing is is detected on cell �1. Moreover, Nwn
1;L 6 Nwn

1;R, thus it is not possible to reconstruct w in

a conservative manner if Nwn
1;R 6 wR. On the other hand, if Nwn

1;R > wR, the solution contains a 2-

classical shock and (4) yields that Nvn
1;R 6 vR. The Rankine–Hugoniot applied to the 1-nonclassical

shock implies that Nvn
1;L 6 Nvn

1;R. Thus it is impossible that d
n;v
1 belongs to .0; �x/.

REMARK 3.2 It is crucial to require that both v and w are reconstructed in a conservative manner.

In the case where the nonclassical shock is detected on cell 1, it is clear that the proof collapses if

we authorize d
n;w
1 to take values outside of the interval .0; �x/. Moreover if we authorized d

n;v
1 to

be outside of .0; �x/, the solution of the Riemann problem between .vn
1 ; wn

1 / and .vR; wR/ might

contain a 1-classical shock, a 1-nonclassical shock and 2-rarefaction wave, in which case

Nvn
1;L 6 vR 6 Nvn

1;R

and a reconstruction is performed in cell 1.

4. Numerical Simulations

For all the numerical simulations presented below, the stress function is �.w/ D w3 C mw with

m > 0. In that case,

˚ \.w/ D �
1

2
w; ˚[

1.w/ D �w and ˚].w; w0/ D �w � w0:

For the kinetic functions we take ˚[;1.w/ D ˚[;2.w/ D �ˇw, where ˇ belongs to Œ�1=2; 1�. The

case ˇ D 1=2 corresponds to the classical solutions ; the choice ˇ D 1 corresponds to the case

where the entropy dissipation (10) is zero across nonclassical shock. It does not fall in the theory

of [16], but the Riemann problem can be solved (see [20]) and it is possible to explore that case

numerically.

Test 1: Isolated nonclassical shock

This test case illustrates Theorem 3.1. The initial data is the Riemann problem:

(

v0.x/ D �10 � 1x<0 C 110 � 1x>0;

w0.x/ D �6 � 1x<0 C 9 � 1x>0;

With m D 1 and ˇ D 2=3, the solution is an isolated nonclassical 1-shock. On the top of Figure 5,

we plot the exact nonclassical solution and the solution given by the reconstruction scheme. As

expected they are exactly the same: the approximate solution has only one intermediate point, which

corresponds to the mean value of the exact solution on the cell. On the bottom of Figure 5, we

plot the solution given by the Godunov scheme based on an exact nonclassical Riemann solver. It

does not capture the nonclassical solution but the classical one, which in that case in a rarefaction

followed by a shock. This is a general phenomenon: usual finite volume schemes are not able

to capture nonclassical solutions. Thus in the sequel we used the Glimm scheme to compare our

scheme with. The CFL number is set to 0:45, the final time is T D 0:038 and the space interval

Œ�0:5; 0:5� is discretized with 200 cells.
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FIG. 5. The nonclassical Godunov scheme is unable to capture nonclassical shocks. On the contrary, the reconstruction

scheme captures isolated nonclassical shocks exactly.

Interlude: The Glimm scheme

In the sequel we use the random sampling method of Glimm [9] to compute reference solution. The

Glimm scheme is built as follow. Let .rn/n2N be a sequence of i.i.d. random variables uniformly

distributed over Œ0; �x�. Suppose that at time tn a piecewise constant approximation of the solution

is given, and denote by .t; x/ 7! U n
exa.t; x/ the exact solution at time t > 0 for that initial data. The

numerical solution of Glimm at time tnC1 D tn C �tn is given by

8j 2 Z; U nC1
j D U n

exa.�tn; xn
j �1=2 C rn/:

It �tn is small enough, i.e. if it is smaller than the maximum of the waves speed appearing in the

Riemann problems multiplied by the cell size �x, U n
exa is just the juxtaposition of Riemann solutions

at each interface.

The main feature of the Glimm scheme is that is does not introduce any numerical diffusion,

in the sense that the shock profiles are not smeared out at all. This is why this scheme has been

used in [7] to approximate nonclassical solutions. The two drawbacks are that the scheme is not

conservative and that the exact computation of the solution is costly.



CAPTURING NONCLASSICAL SHOCKS IN NONLINEAR ELASTODYNAMIC 153

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−10

−8

−6

−4

−2

0

2

4

6

8

 

 

Exact solution

Rec NC

Rec NC+C

X

X

V
W

FIG. 6. A Riemann problem with two nonclassical shocks at time 0:15

Test 2: A Riemann problem with two nonclassical shocks

The initial data is now
(

v0.x/ D 6 � 1x<0 � 10 � 1x>0;

w0.x/ D 1 � 1x<0 C 2 � 1x>0:

The exact solution consists in a 1-classical shock, a 1-nonclassical shock, a 2-nonclassical shock

and a 2-rarefaction wave. On Figure 6, we plot the exact and the numerical solutions given by

the reconstruction schemes. We compare the reconstruction scheme with detection of nonclassical

shocks only (cf Proposition 2.1), referred to in the legends as RecNC, and the reconstruction scheme

where the classical shocks are also detected (cf Proposition 2.8), referred to in the legends as

RecNC+C. Both of them capture very sharply the nonclassical shocks; the 1-classical shock is

much more diffused when it is not reconstructed, and both scheme behave in the same way in

the rarefaction wave. The CFL number is 0:45, the space interval Œ�1; 1� contains 200 cells.

Test 3: Perturbation of a classical shock

This test case is taken from [7]. We still have ˇ D 2=3 but now m D 2. The initial data is

(

v0.x/ D 1 � 1x<0 � 11 � 1x>0;

w0.x/ D .1 C �/ � 1x<0 � 3 � 1x>0:

with � 2 f0; 0:05; 0:1g When � D 0, the solution is a 1-classical shock. When � > 0, the classical

shock is split into a classical shock followed by a nonclassical shock. Their speeds are different but

close to each other. We plot the solutions at time T D 0:4 on Figure 7, using 600 cells per unit

interval and a CFL number of 0:45. The solutions are very well approximated when � > 0. When
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� D 0, a spike appears. This spike corresponds to the state linked to .vR; wR/ by a nonclassical

shock (on Figure 7 we see that it has the exact same height as the nonclassical shock appearing

for � > 0). Remark that � D 0 is exactly the limit between the two cases in the last point of the

enumeration of Proposition 1.2, for which the speed of the nonclassical and the classical shock

coincide (see also Figure 2).

Numerically the mechanism is the following. After one iteration in time, an intermediate value

.vi ; wi / D .˛vL C .1 � ˛/vR; ˛wL C .1 � ˛/wR/ is created. At the second iteration in time,

the classical shock (in which w changes sign), is perfectly reconstructed in the corresponding cell.

However, a 1-nonclassical shock is also detected in the cell just before by Proposition 2.1, and this

time the reconstruction succeeds. Thus the scheme is not exact in that case. Note that the proof

of Theorem 3.1 uses the kinetic relation and thus collapses when the reconstructed shock does not

verify the kinetic relation (and is hence classical).

This phenomena does not prevent the scheme from converging. The numerical solution has the

same shape than in the case � > 0: a classical shock followed by a nonclassical shock, but this time

they have the same speed, thus they remain at the same position. The spike is only two cells wide

when the classical shocks are reconstructed, and hence not diffused. If they are not reconstructed,

the spurious classical shock is diffused.

In conclusion, this test case shows a limitation of scheme, namely its incapability to approach

exactly classical shock in which w changes sign, but also shows its ability to capture finely

nonclassical solutions, the gap between the shocks being very thin here. In particular, the apparition

of the intermediate state is immediate, while it is linked to the ratio of the width of the gap at time

T and of the cell size �x when using a random sampling based method like the Glimm scheme.

Test 4: Apparition of nonclassical waves from a smooth initial data

We now focus on the case of a smooth initial data
(

v0.x/ D 3 sin.2�x/;

w0.x/ D 1 C 3 cos.8�x/;

with ˇ D 0:95 and m D 1 and periodic boundary condition. Nonclassical shocks appear around

time t D 0:011 and then propagate in the solution. On Figures 8, 9 and 10 we compare the solution

given by the reconstruction schemes (with or without reconstruction of classical shocks) at time

t D 0:015, t D 0:06 and t D 1. The space interval contains 1 000 cells per unit interval and CFL

number is set to 0:45. The reference solution is given by the Glimm scheme with 8 000 cells. We see

that the reconstruction schemes capture accurately the nonclassical shocks. The result are poorer in

smooth areas, because in those regions the reconstruction schemes behave as the Lax–Friedrichs

scheme which is quite diffusive. This can be improved by using another scheme on interfaces where

no reconstruction is performed. The use of a moving mesh encourages to chose a central scheme like

the Nessyahu and Tadmor scheme [23]. This scheme is second order accurate in smooth regions of

the solutions. It is both easy to implement and fast, as it does not use any information on the Riemann

problems.

Test 5: Long time simulation in the maximal dissipative case

We reproduce here the test case of [7] for which ˇ D 1 and the final time is large. The case ˇ D 1

corresponds to the case where the entropy dissipation is zero through nonclassical shocks. It is
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FIG. 7. Perturbations of an isolated classical shock, with, from top to bottom, � D 0, � D 0:05 and � D 0:1.

a limit case in the theoretical framework of [16]. As the Riemann solver is perfectly defined for

ˇ D 1, it can be explored numerically.
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FIG. 10. Solution of test 4 at time t D 0:1
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The initial data is 1-periodic with

.v0.x/; w0.x// D

8

ˆ

<

ˆ

:

.�0:3; 0:4/ if � 0:5 6 x < 0:3;

.0:15; �0:2/ if 0:3 6 x < �0:3 C 2=3;

.�0:3; 0:4/ if 0:3 C 2=3 6 x < 0:5:

Its mean value is null. The parameter m is fixed to 0:05. On Figure 11, we plot the solution at time

t D 40 with 2 000 and 8 000 points per unit interval. We can see that at that time w changes sign

three times, instead of two in the initial solution, and does not converge to zero. The position of

the nonclassical shocks are different with the two schemes. Let us recall that the Glimm scheme is
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FIG. 11. Solution of test 5 at time t D 40 (the shape of v is similar)
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FIG. 12. Solution of test 5 at time t D 40 (the shape of v is similar)

based on a random sampling of the solution, thus two realizations of the same test give different

results. On Figure 12, we plot the histogram of the first nonclassical shock position at time t D 20

for 100 independent realizations of the Glimm scheme with 2 000 cells (bottom) and the comparison

of the two schemes at the same time (with 8 000 points). Moreover, the structure with 2 nonclassical

shocks very close to each other only appears in 31 out of those 100 realizations. Its indicates that

the width of this structure is small (and probably smaller than the one appearing in the realization

of [7]).
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