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We introduce a level set based approach to Bayesian geometric inverse problems. In these problems
the interface between different domains is the key unknown, and is realized as the level set of a
function. This function itself becomes the object of the inference. Whilst the level set methodology
has been widely used for the solution of geometric inverse problems, the Bayesian formulation that
we develop here contains two significant advances: firstly it leads to a well-posed inverse problem in
which the posterior distribution is Lipschitz with respect to the observed data, and may be used
to not only estimate interface locations, but quantify uncertainty in them; and secondly it leads
to computationally expedient algorithms in which the level set itself is updated implicitly via the
MCMC methodology applied to the level set function – no explicit velocity field is required for the
level set interface. Applications are numerous and include medical imaging, modelling of subsurface
formations and the inverse source problem; our theory is illustrated with computational results
involving the last two applications.
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1. Introduction

Geometric inverse problems, in which the interfaces between different domains are the primary
unknown quantities, are ubiquitous in applications including medical imaging problems such as
EIT [10] and subsurface flow [6]; they also have an intrinsically interesting mathematical structure
[35]. In many such applications the data is sparse, so that the problem is severely under-determined,
and noisy. For both these reasons the Bayesian approach to the inverse problem is attractive as
the probabilistic formulation allows for regularization of the under-determined, and often ill-posed,
inversion via the introduction of priors, and simultaneously deals with the presence of noise in
the observations [37, 49]. The level set method has been a highly successful methodology for
the solution of classical, non-statistical, inverse problems for interfaces since the seminal paper of
Santosa [47]; see for example [3, 7, 14–16, 18, 23, 24, 34, 38, 39, 50–52] and for related Bayesian
level set approaches see [41, 42, 45, 53]. For interface problems, the phase field approach [16, 22]
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is sometimes used as an alternative to the level set method; in this approach the recovered interfaces
between different phases are smeared out. Also, recently the Bayesian framework of [49] is adopted
for the solution of inverse shape reconstruction in acoustic scattering problems [13].

In this paper we marry the level set approach with the Bayesian approach to geometric inverse
problems. This leads to two significant advances: firstly it leads to a well-posed inverse problem
in which the posterior distribution is Lipschitz with respect to the observed data, in the Hellinger
metric – there is no analogous well-posedness theory for classical level set inversion; and secondly
it leads to computationally expedient algorithms in which the interfaces are updated implicitly
via the Markov chain Monte Carlo (MCMC) methodology applied to the level set function – no
explicit velocity field is required for the level set interface. We highlight that the recent paper [52]
demonstrates the potential for working with regularized data misfit minimization in terms of a level
set function, but is non-Bayesian in its treatment of the problem, using instead simulated annealing
within an optimization framework. On the other hand the paper [53] adopts a Bayesian approach
and employs the level set method, but requires a velocity field for propagation of the interface and
does not have the conceptual and implementational simplicity, as well as the underlying theoretical
basis, of the method introduced here. The papers [41, 42, 45], whilst motivated by the Bayesian
approach, use the ensemble Kalman filter and are therefore not strictly Bayesian – the method does
not deliver a provably reliable approximation of the posterior distribution except for linear Gaussian
inverse problems.

The key idea which underpins our work is this. Both the theory and computational practice of
the level set method for geometric inverse problems is potentially hampered by the fact that the
mapping from the space of the level set function to the physical parameter space is discontinuous.
This discontinuity occurs when the level set function is flat at the critical levels, and in particular
where the desired level set has non-zero Lebesgue measure. This is dealt with in various ad hoc
ways in the applied literature. The beauty of the Bayesian approach is that, with the right choice
of prior in level set space, these discontinuities have probability zero. As a result a well-posedness
theory (the posterior is Lipschitz in the data) follows automatically, and computational algorithms
such as MCMC may be formulated in level set space. We thus have practical algorithms which are
simultaneously founded on a sound theoretical bedrock.

In Section 2 we aim to build up a mathematical framework for Bayesian level set inversion. To do
this, we first set up the inverse problem of interest in Section 2.1 where the unknown is an interface.
To describe the geometry of the interface, a level set map is introduced in Section 2.2, whereby
the inverse problem is reformulated in terms of a level set function which is thresholded to define
the interfaces. Section 2.3 concerns the Bayesian approach to the inverse problem. Under certain
assumptions on the negative log-likelihood function, it is shown that the posterior distribution exists
and is stable with respect to perturbation of data; see the statements in Theorem 2.3. Since the well-
posedness of the Bayesian inverse problem relies mostly on the almost sure continuity of the level
set map, we discuss this issue thoroughly in Section 2.4. To be specific, we provide a complete
characterization for the discontinuity set of the level set map (in Proposition 2.6) and demonstrate
the existence of Gaussian priors for which this discontinuity set is a probability zero event (in
Proposition 2.8). In Section 3 we describe two examples – inverse gravimetry and permeability
determination in groundwater flow – which can be shown to satisfy the theoretical framework of
the preceding section and hence for which there is a well-posed inverse problem for the level set
function. Section 4 contains numerical experiments for both of these examples, demonstrating the
potential of the methodology, and also highlighting important questions for future research. We
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conclude in Section 5, and then the two appendices contain various technical details and proofs
which have been deferred in order to maintain the flow of ideas in the main body of the article.

2. Bayesian level set inversion

2.1 The inverse problem

This paper is concerned with inverse problems of the following type: recover function � 2 X WD
Lq.DIR/, D a bounded open set in R2, from a finite set of noisily observed linear functionals
fOj gJ

j D1 of p 2 V , for some Banach space V , where p D G.�/ for nonlinear operator G 2
C.X; V /: Typically, for us, � will represent input data for a partial differential equation (PDE), p

the solution of the PDE and G the solution operator mapping the input � to the solution p. Collecting
the linear functionals into a single operator O W V ! RJ and assuming additive noise � 2 RJ we
obtain the inverse problem of finding � from y where

y D .O ı G/.�/ C �: (2.1)

Since the composite mapping O ı G is continuous from X to RJ , identifying � in the above under-
determined inverse problem is well-adapted to both the classical [25] and Bayesian [21] approaches
to regularized inversion. However interest is in geometric inverse problems using the level set
formulation. For such problems, the mapping from the level set function to the data is discontinuous.
Classical regularization methods have problems in this situation; Example 2.1 below is an example
of such a difficulty. However, we will demonstrate that formulating the inverse problem from the
Bayesian point of view alleviates these issues and leads to a well-posed inverse problem.

2.2 Level set parameterization

Assume that the physical parameter � of the inverse problem is known a priori to have the form

�.x/ D
nX

iD1

�iIDi
.x/I (2.2)

here ID denotes the indicator function of subset D � R2, fDign
iD1 are subsets of D such that

[n
iD1Di D D and Di \ Dj D ¿, and the f�ign

iD1 are known positive constants. Generalization to
the �i being unknown constants, or unknown smooth functions on each domain Di , are possible but
will not be considered explicitly in this paper. Our focus is on the geometry of the interfaces implied
by the Di : In this setting the Di become the primary unknowns and the level set method is natural.
Given integer n fix the constants ci 2 R for i D 0; � � � ; n with �1 D c0 < c1 < � � � < cn D 1
and consider a real-valued continuous level set function u W D ! R. We can then define the Di by

Di D fx 2 D j ci�1 6 u.x/ < ci g: (2.3)

It follows that Di \ Dj D ¿ for i; j > 1; i ¤ j . For later use define the i -th level set D0
i D

Di \ DiC1 D fx 2 D j u.x/ D ci g. Let U D C.DIR/ and, given the positive constants f�ign
iD1,

we define the level set map F W U ! X by

.F u/.x/ ! �.x/ D
nX

iD1

�i IDi
.x/: (2.4)
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We may now define G D O ı G ı F W U ! RJ and reformulate the inverse problem in terms of the
level set function u: find u from y where

y D G.u/ C �: (2.5)

However, because F W U ! X , and hence G W U ! RJ , is discontinuous, the classical
regularization theory for this form of inverse problem is problematic; this can be seen from the
following example.

EXAMPLE 2.1 Consider the inverse problem (2.5) where the level set map is given by the binary
cut-off, i.e.

.F u/.x/ D Iu>0.x/: (2.6)

Classical regularization methods seek the solution to the following minimization problem:

inf
u2E

I.u/ WD inf
u2E

jy � G.u/j2 C kukp
E ; (2.7)

where E is some Banach space and p > 1. For instance, E could be a Sobolev space and p D
2 (Tikhonov-Phillips regularization) or the space of functions of bounded variations and p D 1

(total variation regularization). In the case of a Gaussian prior and an appropriate Sobolev norm,
this variational problem will correspond to a maximum a posteriori (MAP) estimator [37] and the
analysis to follow shows a drawback of the MAP estimator in the context of level set thresholding.

Due to the discontinuity of F , we now show that the only possible minimizer of (2.7) is zero. In
fact, suppose that 0 ¤ u 2 E is a minimizer of I . We define u" D "u. Clearly u" and u have the
same zero level set when " > 0. Then if 0 < " < 1,

jy � G.u/j2 D jy � G.u"/j2 and ku"kE D "kukE ; (2.8)

which implies that I.u"/ < I.u/ and hence contradicts with the assumption that u is a minimizer.
From (2.6), we see that the upper level set of the zero function is the whole domain, which does not
provide any information about the geometry.

Whilst the current state of the art for Bayesian regularization assumes continuity of G for inverse
problems of the form (2.5), we will demonstrate that the Bayesian setting can be generalized to level
set inversion. This will be achieved by a careful understanding of the discontinuity set for F , and
an understanding of probability measures for which this set is a measure zero event.

2.3 Well-posed Bayesian inverse problem

We now formulate the Bayesian approach to finding u from y given by (2.5). All quantities are
treated as random variables and we seek to find the posterior probability distribution on u given y,
given a prior probability distribition on u and an independent probabilistic specification of the noise
�: Let U denote a separable Banach space and define a complete probability space .U; ˙; �0/ for
the unknown u. Here ˙ and �0 are the sigma algebra and prior probability measure, respectively.
(In our applications U will be the space C.DIR/ but we state our main theorem in more generality).
Assume that the noise � is a random draw from the centered Gaussian Q0 WD N.0; � /. Allowing
for non-Gaussian � is also possible, as is dependence between � and u; however we elect to keep the
presentation simple. We may now define the joint random variable .u; y/ 2 U � RJ . The posterior
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probability distribution �y on the random variable ujy describes our probabilistic knowledge about
u on the basis of the measurements y given by (2.5) and the prior information �0 on u. In the case
where the map G is continuous, one can apply an infinite dimensional version of Bayes theorem [49]
to show that the posterior �y exists and has the density with respect to the prior of the form

d�y

d�0

.u/ D 1

Z
exp.�˚.uI y//;

where Z is the normalization constant. To extend the theory to allowing discontinuous G, we now
state a set of assumptions for the potential ˚ , under which the posterior distribution is well-defined
via its density with respect to the prior distribution, and is Lipschitz in the Hellinger metric, with
respect to data y. These assumptions will be verified for the level set formulation of interest to us.

ASSUMPTIONS 2.2 The function ˚ W U � RJ ! R and probability measure �0 on the measure
space .U; ˙/ satisfy the following properties:
1. for every r > 0 there is a K D K.r/ such that, for all u 2 U and all y 2 RJ with jyj� < r ,

0 6 ˚.uI y/ 6 KI

2. for any fixed y 2 RJ , ˚.�I y/ W U ! R, is continuous �0-almost surely on the complete
probability space .U; ˙; �0/;

3. for y1; y2 2 RJ with maxfjy1j� ; jy2j� g < r , there exists a C D C.r/ such that, for all u 2 U ,

j˚.uI y1/ � ˚.uI y2/j 6 C jy1 � y2j� :

For our Bayesian level set inverse problem with finite observations and noise � � Q0, the
function ˚ W U � RJ ! RC has the least squares form

˚.uI y/ D 1

2
jy � G.u/j2� (2.9)

with j � j� WD j� � 1
2 � j and G D O ı G ı F: Clearly ˚ defined in (2.9) satisfies the first and the last

item of Assumption 2.2. We will show in the next section that for some model problems, the second
item of Assumption 2.2 will also be fulfilled by ˚ in (2.9).

Recall that the Hellinger distance between � and �0 is defined as

dHell.�; �0/ D
 

1

2

Z
U

�r d�

d�
�
r

d�0
d�

�2

d�

! 1
2

for any measure � with respect to which � and �0 are absolutely continuous; the Hellinger distance
is, however, independent of which reference measure � is chosen. We have the following:

Theorem 2.3 Assume that the least squares function ˚ W U � RJ ! R given by (2.9) and the
probability measure �0 on the measure space .U; ˙/ satisfy Assumptions 2.2. Then �y � �0 with
Radon-Nikodym derivative

d�y

d�0

D 1

Z
exp

� � ˚.uI y/
�

(2.10)
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where, for y almost surely,

Z WD
Z

U

exp
� � ˚.uI y/

�
�0.du/ > 0:

Furthermore �y is locally Lipschitz with respect to y, in the Hellinger distance: for all y; y0 with
maxfjyj� ; jy0j� g < r , there exists a C D C.r/ > 0 such that

dHell.�
y ; �y0

/ 6 C jy � y0j� :

This implies that, for all f 2 L2
�0

.U I S/ for separable Banach space S ,

kE�y

f .u/ � E�y0

f .u/kS 6 C jy � y0j: (2.11)

REMARKS 2.4 � The interpretation of this result is very natural, linking the Bayesian picture with
least squares minimization: the posterior measure is large on sets where the least squares function
is small, and vice-versa, all measured relative to the prior �0:

� The key technical advance in this theorem over existing theories overviewed in [21] is that ˚.�I y/

is only continuous �0�almost surely; existing theories typically use that ˚.�I y/ is continuous
everywhere on U and that �0.U / D 1; these existing theories cannot be used in the level set
inverse problem, because of discontinuities in the level set map. Once the technical Lemma
6.1 has been established, which uses �0�almost sure continuity to establish measurability, the
proof of the theorem is a straightforward application of existing theory; we therefore defer it to
Appendix 1.

� Stability estimates about the distance of level sets can be obtained by choosing f carefully in
(2.11). Indeed, consider f W U 7! L1.D/ given by

f .u/.x/ WD IDi
.x/ (2.12)

where Di is defined in terms of u as in (2.3). Obviously f 2 L2
�0

.U I L1.D// since the indicator
function is uniformly bounded. Then one can read from (2.11) that the L1-norm of mean indicator
function of the set Di under the posterior measure is Lipschitz continuous with respect to
the data. Note that this does not give exactly the symmetric difference of the two mean level
sets since indicator functions are averaged first. However, it does reflect stability of geometric
reconstructions in an averaged sense.

� What needs to be done to apply this theorem in our level set context is to identify the sets
of discontinuity for the map G, and hence ˚.�I y/, and then construct prior measures �0 for
which these sets have measure zero. We study these questions in general terms in the next two
subsections, and then, in the next section, demonstrate two test model PDE inverse problems
where the general theory applies.

� The consequences of this result are wide-ranging, and we name the two primary ones: firstly we
may apply the mesh-independent MCMC methods overviewed in [20] to sample the posterior
distribution efficiently; and secondly the well-posedness gives desirable robustness which may
be used to estimate the effect of other perturbations, such as approximating G by a numerical
method, on the posterior distribution [21].
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2.4 Discontinuity sets of F

We return to the specific setting of the level set inverse problem where U D C.DIR/. Consider
the level set map F W U ! Lq.DIR/ with 1 6 q 6 1. First we note that it is not suitable to
discuss the continuity of F by choosing L1.D;R/ as the range space, simply because F could be
discontinuous at very nice functions. We illustrate this point by means of the following elementary
example.

EXAMPLE 2.5 Let U D C.Œ�1; 1�IR/ and define the level set map F W U 7! L1.�1; 1/ by
setting F.u/.x/ D Ifu>0g.x/. Consider the linear function u.x/ D x and a sequence un.x/ D
u.x/ C 1=n for n 2 N. Clearly un ! u in C.Œ�1; 1�IR/. However, it is easy to see that kF.un/ �
F.u/kL1.�1;1/ D 1 ¹ 0.

However as a mapping F W U ! Lq.DIR/ for q < 1 the situation is much better. Denoting
by m.A/ the Lebesgue measure of a set A � R2, we have the following.

Proposition 2.6 For u 2 C.D/ and 1 6 q < 1, the level set map F W C.D/ ! Lq.D/ is
continuous at u if and only if m.D0

i / D 0 for all i D 1; � � � ; n � 1.

REMARK 2.7 The fact that the continuity of level set map is related to the Lebesgue measure of the
corresponding level sets has been observed already, see e.g. [27, Section 2.2]. However, we are not
aware of any formal proof in the literature. Therefore we provide the complete proof below.

Proof of Proposition 2.6. “(H.” Let fu"g denote any approximating family of level set functions
with limit u as " ! 0 in C.DIR/ W ku" � ukC.D/ < " ! 0. Let Di;"; D0

i;" be the sets defined
in (2.3) associated with the approximating level set function u" and define � D F.u/ by (2.4) and,
similarly, �" WD F.u"/. Let m.A/ denote the Lebesgue measure of the set A.

Suppose that m.D0
i / D 0; i D 1; � � � ; n � 1. Let fu"g be the above approximating functions. We

shall prove k�" � �kLq.D/ ! 0. In fact, we can write

�".x/ � �.x/ D
nX

iD1

nX
j D1

.�i � �j /IDi;"\Dj
.x/

D
nX

i;j D1;i¤j

.�i � �j /IDi;"\Dj
.x/:

By the definition of u", for any x 2 D

u.x/ � " < u".x/ < u.x/ C " (2.13)

Thus for jj � i j > 1 and " sufficiently small, Di;" \ Dj D ¿. For the case that ji � j j D 1, from
(2.13), it is easy to verify that

Di;" \ DiC1 � eDi;" WD fx 2 D j ci 6 u.x/ < ci C "g ! D0
i ; i D 1; � � � ; n � 1 (2.14)

Di;" \ Di�1 � bDi�1;" WD fx 2 D j ci�1 � " < u.x/ < ci�1g ! ¿; i D 2; � � � n (2.15)

as " ! 0. By this and the assumption that m.D0
i / D 0, we have that m.Di;" \ Dj / ! 0 if i ¤ j .

Furthermore, the Lebesgue’s dominated convergence theorem yields

k�" � �kq

Lq.D/
D

nX
i;j D1;i¤j

Z
Di;"\Dj

j�i � �j jq dx ! 0
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as " ! 0. Therefore, F is continuous at u.

“H).” We prove this by contradiction. Suppose that there exists i� such that m.D0
i�/ ¤ 0. We

define u" WD u � ", then it is clear that ku" � ukC.D/ ! 0 as " ! 0. By the same argument used in
proving the sufficiency,

k�" � �kq

Lq.D/
D

n�1X
iD1

Z
eDi;"[bDi;"

j�iC1 � �i jq dx !
n�1X
iD1

Z
D0

i

j�iC1 � �i jq dx

>

Z
D0

i�

j�i�C1 � �i� jq dx > 0

where we have used m.D0
i�/ ¤ 0 in the last inequality. However, this contradicts with the

assumption that F is continuous at u.

For the inverse gravimetry problem considered in the next section the space X is naturally
L2.DIR/ and we will be able to directly use the preceding proposition to establish almost sure
continuity of F and hence G. For the groundwater flow inverse problem the space X is naturally
L1.DIR/ and we will not be able to use the proposition in this space to establish almost sure
continuity of F . However, we employ recent Lipschitz continuity results [9] for G on Lq.DIR/,
q < 1 to establish the almost sure continuity of G.

2.5 Prior Gaussian measures

Let D denote a bounded open subset of R2. For our applications we will use the following two
constructions of Gaussian prior measures �0 which are Gaussian N.0; Ci/; i D 1; 2 on Hilbert
function space Hi ; i D 1; 2.
� N.0; C1/ on

H1 WD ˚
u W D ! R j u 2 L2.DIR/;

Z
D

u.x/ dx D 0
�
;

where
C1 D A�˛ with ˛ > 1 and A WD �� (2.16)

with domain

D.A/ WD ˚
u W D ! R j u 2 H 2.DIR/; ru � � D 0 on @D and

Z
D

u.x/ dx D 0
�
:

Here � denotes the outward normal.
� N.0; C2/ on H2 WD L2.DIR/ with C2 W H2 ! H2 being the integral operator

C2	.x/ D
Z

D

c.x; y/	.y/ dy with c.x; y/ D exp
�

�jx � yj2
L2

�
(2.17)

In fact, in the inverse model arising from groundwater flow studied in [31, 32], the Gaussian measure
N.0; C1/ was taken as the prior measure for the logarithm of the permeability. On the other hand the
Gaussian measure N.0; C2/ is widely used to model the earth’s subsurface [44] as draws from this
measure generate smooth random functions in which the parameter L sets the spatial correlation
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length. For both of these measures it is known that, under suitable conditions on the domain D,
draws are almost surely in C.DIR/; see [21], Theorems 2.16 and 2.18 for details.

Since ˛ > 1 in (2.16), the Gaussian random function with measure �0 defined in either case
above has the property that, for U WD C.DIR/, �0.U / D 1. Since U is a separable Banach space
�0 can be redefined as a Gaussian measure on U . Furthermore it is possible to define the appropriate

-algebra ˙ in such a way that .U; ˙; �0/ is a complete probability space; for details see Appendix
2. We have the following, which is a subset of what is proved in Proposition 7.2.

Proposition 2.8 Consider a random function u drawn from one of the Gaussian probability
measures �0 on U given above. Then m.D0

i / D 0; �0-almost surely, for i D 1; � � � ; n.

This, combined with Proposition 2.6, is the key to making a rigorous well-posed formulation of
Bayesian level set inversion. Together the results show that priors may be constructed for which the
problematic discontinuities in the level set map are probability zero events. In the next section we
demonstrate how the theory may be applied, by considering two examples.

3. Examples

3.1 Test model 1 (Inverse potential problem)

Let D � R2 be a bounded open set with Lipschitz boundary. Consider the PDE

�p D � in D; p D 0 on @D: (3.1)

If � 2 X WD L2.D/ it follows that there is a unique solution p 2 H 1
0 .D/. Furthermore �p 2

L2.D/, so that the Neumann trace can be defined in V WD H � 1
2 .@D/ by the following Green’s

formula: D@p
@�

; '
E
@D

D
Z

D

�p' dx C
Z

D

rpr' dx

for ' 2 H 1.D/. Here � is the unit outward normal vector on @D and h�; �i@D denotes the dual
pairing on the boundary. We can then define the bounded linear map G W X ! V by G.�/ D @p

@�
:

Now assume that the source term � has the form

�.x/ D ID1
.x/

for some D1 	 D. The inverse potential problem is to reconstruct the support D1 from
measurements of the Neumann data of p on @D. In the case where the Neumann data is measured
everywhere on the boundary @D, and where the domain D1 is assumed to be star-shaped with
respect to its center of gravity, the inverse problem has a unique solution; see [35, 36] for details of
this theory and see [16, 29] for discussion of numerical methods for this inverse problem. We will
study the underdetermined case where a finite set of bounded linear functionals Oj W V ! R are
measured, noisily, on @D:

yj D Oj

�@p

@�

�
C �j : (3.2)

Concatenating we have y D .O ı G/.�/ C �: Representing the boundary of D1 as the zero level set
of a function u 2 U WD C.DIR/ we write the inverse problem in the form (2.5):

y D .O ı G ı F /.u/ C �: (3.3)
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Since multiplicity and uncertainty of solutions are then natural, we will adopt a Bayesian approach.
Notice that the level set map F W U ! X is bounded: for all u 2 U we have kF.u/kX 6

Vol.D/ WD R
D

dx: Since G W X ! V and O W V ! RJ are bounded linear maps it follows
that G D O ı G ı F W U ! RJ is bounded: we have constant C C 2 RC such that, for all
u 2 U , jG.u/j 6 C C: From this fact Assumptions 2.2(1) and (3) follow automatically. Since both
G W X ! V and O W V ! RJ are bounded, and hence continuous, linear maps, the discontinuity
set of G is determined by the discontinuity set of F W U ! X: By Proposition 2.6 this is precisely
the set of functions for which the measure of the level set fu.x/ D 0g is zero. By Proposition 2.8 this
occurs with probability zero for both of the Gaussian priors specified there and hence Assumptions
2.2(2) holds with these priors. Thus Theorem 2.3 applies and we have a well-posed Bayesian inverse
problem for the level set function.

3.2 Test model 2 (Discontinuity detection in groundwater flow)

Consider the single-phase Darcy-flow model given by

�r � .�rp/ D f in D; p D 0 on @D: (3.4)

Here D is a bounded Lipschitz domain in R2, � the real-valued isotropic permeability function and
p the fluid pressure. The right hand side f accounts for the source of groundwater recharge. Let
V D H 1

0 .DIR/, X D L1.DIR/ and V � denote the dual space of V . If f 2 V � and XC WD f� 2
X W essinfx2D�.x/ > �min > 0g then G W XC 7! V defined by G.�/ D p is Lipschitz continuous
and

kG.�/kV D kpkV 6 kf kV �=�min: (3.5)

We consider the practically useful situation in which the permeability function � is modelled as
piecewise constant on different regions fDi gn

iD1 whose union comprise D; this is a natural way to
characterize heterogeneous subsurface structure in a physically meaningful way. We thus have

�.x/ D
nX

iD1

�i IDi
.x/

where fDign
iD1 are subsets of D such that [n

iD1Di D D and Di \ Dj D ¿, and where the f�ign
iD1

are positive constants. We let �min D mini �i .
Unique reconstruction of the permeability in some situations is possible if the pressure p is

measured everywhere [2, 46]. The inverse problem of interest to us is to locate the discontinuity set
of the permeability from a finite set of measurements of the pressure p. Such problems have also
been studied in the literature. For instance, the paper [50] considers the problem by using multiple
level set methods in the framework of optimization; and in [33], the authors adopt a Bayesian
approach to reconstruct the permeability function characterized by layered or channelized structures
whose geometry can be parameterized finite dimensionally. As we consider a finite set of noisy
measurements of the pressure p, in V �, and the problem is underdetermined and uncertain, the
Bayesian approach is again natural. We make the significant extension of [33] to consider arbitrary
interfaces, requiring infinite dimensional parameterization: we introduce a level set parameterization
of the domains Di , as in (2.3) and (2.4).

Let O W V ! RJ denote the collection of J linear functionals on V which are our
measurements. Because of the estimate (3.5) it is straightforward to see that G D O ı G ı F is
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bounded as a mapping from U into RJ and hence that Assumptions 2.2(1) and (3) hold; it remains
to establish (2). To that end, from now on we need slightly higher regularity on f . In particular, we
assume that, for some q > 2, f 2 W �1.Lq.D//. Here the space W �1.Lq.D// WD .W

1;q�

0 .D//� �
V � for q� and q conjugate: 1=q C 1=q� D 1. It is shown in [9] that there exits q0 > 2 such that the
solution of (3.4) satisfies

krpkLq .D/ 6 C kf kW �1.Lq.D//

for some C < 1 provided 2 6 q < q0. We assume that such a q is chosen. It then follows that G

is Lipschitz continuous from Lr to V where r WD 2q=.q � 2/ 2 Œ2; 1/. To be precise, let pi be the
solution to the problem (3.4) with �i ; i D 1; 2. Then the following is proved in [9]: for any q > 2,

kp1 � p2kV 6 1

�min
krp1kLq.D/k�1 � �2kLr .D/

provided rp1 2 Lq.D/.
Hence G W Lr .D/ ! V is Lipschitz under our assumption that f 2 W �1.Lq.D// for some

q 2 .2; 1/: By viewing F W U ! Lr .D/, it follows from Proposition (2.6) and Proposition
(2.8) that Assumptions (2.2) (2) holds with both Gaussian priors defined in subsection 2.5. As a
consequence Theorem 2.3 also applies in the groundwater flow model.

4. Numerical experiments

Application of the theory developed in Section 2.3 ensures that, for the choices of Gaussian priors
discussed in Section 2.5, the posterior measure on the level set is well defined and thus suitable for
numerical interrogation. In this section we display numerical experiments where we characterize
the posterior measure by means of sampling with MCMC. In concrete we apply the preconditioned
Crank-Nicolson (pCN) MCMC method explained in [20]. We start by defining this algorithm.
Assume that we have a prior Gaussian measure N.0; C/ on the level set function u and a posterior
measure �y given by (2.10). Define

a.u; v/ D min
˚
1; exp

�
˚.u/ � ˚.v/

��
and generate fu.k/gk>0 as follows:

ALGORITHM 4.1 (pCN-MCMC)
Set k D 0 and pick u.0/ 2 X .

1. Propose v.k/ D p
.1 � ˇ2/u.k/ C ˇ�.k/; �.k/ � N.0; C/.

2. Set u.kC1/ D v.k/ with probability a.u.k/; v.k//, independently of .u.k/; �.k//.
3. Set u.kC1/ D u.k/ otherwise.
4. k ! k C 1 and return to 1. .

Then the resulting Markov chain is reversible with respect to �y and, provided it is ergodic,
satisfies

1

K

KX
kD0

'
�
u.k/

� ! E�y

'.u/

for any test function ' with suitable regularity. Furthermore a central limit theorem determines the
fluctuations around the limit, which are asymptotically of size K� 1

2 :
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4.1 Aim of the experiments

By means of the MCMC method described above we explore the Bayesian posterior of the level
set function that we use to parameterize unknown geometry (or discontinuous model parameters)
in the geometric inverse problems discussed in Section 3. The first experiment of this section
concerns the inverse potential problem defined in subsection 3.1. The second and third experiments
are concerned with the estimation of geologic facies for the groundwater flow model discussed in
subsection 3.2. The main objective of these experiments is to display the capabilities of the level set
Bayesian framework to provide an estimate, along with a measure of its uncertainty, of unknown
discontinuous model parameters in these test models. We recall that for the inverse potential problem
the aim is to estimate the support D1 of the indicator function �.x/ D ID1

.x/, that defines the
source term of the PDE (3.1), given data/observations from the solution of this PDE. Similarly,
given data/observations from the solution of the Darcy flow model (3.4), we wish to estimate the
interface between geologic facies fDi gn

iD1 corresponding to regions of different structural geology
and which leads to a discontinuous permeability �.x/ D Pn

iD1 �i IDi
.x/ in the flow model (3.4).

In both test models, we introduce the level set function merely as an artifact to parameterize the
unknown geometry (i.e. Di D fx 2 D j ci�1 6 u.x/ < ci g), or equivalently, the resulting
discontinuous field �.x/. The Bayesian framework applied to this level-set parameterization then
provides us with a posterior measure �y on the level set function u. The push-forward of �y under
the level set map F (2.4) results in a distribution on the discontinuous field of interest �. This push-
forward of the level set posterior F ��y WD �y ıF �1 comprises the statistical solution of the inverse
problem which may, in turn, be used for practical applications.

A secondary aim of the experiments is to explore the role of the choice of prior on the posterior.
Because the prior is placed on the level set function, and not on the model paramerers of direct
interest, this is a non-trivial question. To be concrete, the posterior depends on the Gaussian prior
that we put on the level set. While the prior may incorporate our a priori knowledge concerning
the regularity and the spatial correlation of the unknown geometry (or alternatively, the regions of
discontinuities in the fields of interest) it is clear that such selection of the prior on the level set may
have a strong effect on the resulting posterior �y and the corresponding push-forward F ��y . One
of the key aspects of the subsequent numerical study is to understand the role of the selection of the
prior on the level set functions in terms of the quality and efficiency of the solution to the Bayesian
inverse problem as expressed via the push-forward of the posterior F ��y .

4.2 Implementational aspects

For the numerical examples of this section we consider synthetic experiments. The PDEs that define
the forward models of subsection 3 (i.e. expressions (3.1) and (3.4)) are solved numerically, on the
unit-square, with cell-centered finite differences [5]. In order to avoid inverse crimes [37], for the
generation of synthetic data we use a much finer grid (size specified below) than the one of size
80 � 80 used for the inversion via the MCMC method displayed in Algorithm 4.1.

The Algorithm 4.1 requires, in step (i), sampling of the prior. This is accomplished by
parameterizing the level set function in terms of the Karhunen–Loeve (KL) expansion associated to
the prior covariance operator C (See Appendix 2, Equation (7.1)). For the purpose of numerics, the
infinite series of the KL expansion is truncated; theoretical results concerning the effect of this finite
dimensional approximation on the posterior can be found in [19]. Upon discretization, the number of
eigenvectors of C equals the dimensions of the discretized physical domain of the model problems
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(i.e. N D 6400 in expression (7.2)). Once the eigendecomposition of C has been conducted, then
sampling from the prior can be done simply by sampling an i.i.d set of random variables f�kg with
�1 � N.0; 1/ and using it in (7.2). During the burn-in period (which here is taken to comprise
104 iterations) of the MCMC method, we find it advantageous to freeze the higher KL modes and
conduct the sampling only for the lower modes. After the aforementioned burn-in, the sampling
is then carried out on the full set of KL modes represented on the given computational mesh. This
freezing of modes udring the burn-in enables the MCMC method to quickly reach an “optimal” state
where the samples of the level set function provide fields �.x/ that are close to the truth. However,
once this optimal state has been reached, it is essential to conduct the sampling on the full spectrum
of KL modes to ensure that the MCMC chain mixes and properly represnts the posterior uncertainty.
More precisely, if only the lowest modes are retained for the full chain, the MCMC may collapse
into the optimal state but without mixing. Thus, while the lowest KL modes determine the main
geometric structure of the underlying discontinuous field, the highest modes are essential for the
proper mixing and thus the proper and efficient characterization of the posterior.

4.3 Inverse potential problem

In this experiment we generate synthetic data by solving (3.1), on a fine grid of size 240 � 240

with the “true” indicator function �� D I
D

�
1

displayed in Figure 1 (top). The observation operator

O D .O1; : : : ; O64/ is defined in terms of 64 mollified Dirac deltas fOj g64
j D1 centered at the

measurement locations display as white squares along the boundary of the domain in Figure 1 (top).
Each coordinate of the data is computed by means of (3.3) with p from the solution of the PDE
with the aforementioned true source term and by adding Gaussian noise �j with standard deviation
of 10% of the size of the noise-free measurements (i.e. of Oj . @p

@�
/). We reiterate that, in order to

avoid inverse crimes [37], we use a coarser grid of size 80 � 80 for the inversion via the MCMC
method (Algorithm 4.1). The parameterization of D1 in terms of the level set function is given by
D1 D fx 2 D ju.x/ < 0g (i.e. by simply choosing c0 D �1 and c1 D 0 in (2.3)).

For this example we consider a prior covariance C of the form presented in (2.17) for some
choices of L in the correlation function. We construct C directly from this correlation function and
then we conduct the eigendecomposition needed for the KL expansion and thus for sampling the
prior. In Figure 2 we display samples from the prior N.0; C/ on the level set function u (first, third
and fifth rows) and the corresponding indicator function � D ID1

(second, fourth and sixth rows)
for (from left to right) L D 0:1; 0:15; 0:2; 0:3; 0:4. Different values of L in (2.17) clearly result in
substantial differences in the spatial correlation of the zero level set associated to the samples of the
level set function. The spatial correlation of the zero level set funtion, under the prior, has significant
effect on ID1

which we use as the right-hand side (RHS) in problem (3.1) and whose solution, via
expression (3.3), determines the likelihood (2.9). It then comes as no surprise that the posterior
measure on the level set is also strong;y dependent on the choice of the prior via the parameter L.
We explore this effect in the following paragraphs.

In Figure 3 we present the numerical results from different MCMC chains computed with
different priors corresponding to the aforementioned choices of L. The MCMC mean of the level
set function is displayed in the top row of Figure 3 for the choices (from left to right) L D
0:1; 0:15; 0:2; 0:3; 0:4. We reiterate that although the MCMC method provides the characterization
of the posterior of the level set function, our primary aim is to identify the field �.x/ D ID1

.x/

that determines the RHS of (3.1) by means of conditioning the prior N.0; C/ to noisy data
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FIG. 1. Inverse Potential. Top: True source term �� D I
D

�
1

of eq. (3.1). Bottom-left: PSRF from multiple chains with

L D 0:3 in (2.17). The PSRF is computed from level-set samples (solid red line) as well as the corresponding � D ID1

(blue dotted line). Bottom-right: ACF of first KL mode of the level set function from single-chain MCMC with different
choices of L.

from (3.3). A straightforward estimate of such field can be obtained by mapping, via the level
set map (2.4), the posterior mean level set function denoted by u into the corresponding field
F.u.x// D �.x/ D ID1

.x/ where D1 D fx 2 D ju.x/ < 0g. We display �.x/ D ID1
.x/ in

the top-middle row of Figure 3 along with the plot of the true field �� D I
D

�
1

(right column) for
comparison.

As mentioned earlier, we are additionally interested in the push-forward of the posterior measure
of the level set function u under the level set map (i.e. .F ��y/.du/). We characterize F ��y by
mapping under F our MCMC samples from �y . In Figure 3 we present the mean (bottom-middle)
and the variance (bottom) of F ��y . Figure 4 shows some posterior (MCMC) samples u of the
level set function (first, third and fifth rows) and the corresponding level set map F.u/ D ID1

with
D1 D fx 2 D ju.x/ < 0g associated to these posterior samples (second, fourth and sixth rows).

The push-forward of the posterior measure under the level set map (i.e. F ��y) thus provides
a probabilistic description of the inverse problem of identifying the true �� D I

D
�
1

. We can see
from Figure 3 that, for some choices of L, the mean of F ��y provides reasonable estimates of the
truth. However, the main advantage of the Bayesian approach proposed here is that a measure of
the uncertainty of such estimate is also obtained from F ��y . The variance (Figure 3 bottom), for
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FIG. 2. Inverse Potential. Samples from the prior on the level set function u (first, third and fifth rows) for (from left to right)
L D 0:1; 0:15; 0:2; 0:3; 0:4. Corresponding ID1

with D1 D fx 2 D ju.x/ < 0g (second, fourth and sixth rows)
associated to each of these samples from the level set function.

example, is a measure of the uncertainty in the location of the interface between the two regions D

and D n D1.
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FIG. 3. Inverse Potential. MCMC results for (from left to right) L D 0:1; 0:15; 0:2; 0:3; 0:4 in the eq. (2.17). Top:
Posterior mean level set function u (computed via MCMC). Top-middle: Plot of ID1

with D1 D fx 2 D ju.x/ < 0g
(the truth I

D
�
1

is presented in the right column). Bottom-middle: Mean of ID1
where D1 D fx 2 D ju.x/ < 0g

and u’s are the posterior MCMC samples (the truth is presented in the right column). Bottom: Variance of ID1
where

D1 D fx 2 D ju.x/ < 0g and u’s are the posterior MCMC samples

The results displayed in Figure 3 show the strong effect that the selection of the prior has on
the posterior measure �y and the corresponding pushforward measure F ��y . In particular, there
seems to be a critical value L D 0:2 above of which the corresponding posterior mean on F ��y

provides a reasonable identification of the true I
D

�
1

with relatively small variance. This critical value
seems to be related to the size and the shape of the inclusions that determines the true region D

�
1

(Figure 1 (top)). It is intuitive that posterior samples that result from very small spatial correlation
cannot easily characterize these inclusions accurately unless the data is overwhelmingly informative.
The lack of a proper characterization of the geometry from priors associated with small L is also
reflected with larger variance around the interface. It is then clear that the capability of the proposed
level set Bayesian framework to properly identify a shape D

�
1 (or alternatively its indicator function

I
D

�
1

) depends on properly incorporating, via the prior measure, a priori information on the regularity
and spatial correlation of the unknown geometry of D

�
1 .

Since the selection of the prior has such a clear effect on the posterior, it comes as no surprise
that it also affects the efficiency of the MCMC method as we now discuss. In the bottom-right
panel of Figure 1 we show the autocorrelation function (ACF, see [12]) of the first KL mode of the
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FIG. 4. Inverse Potential. Samples from the posterior on the level set u (first, third and fifth rows) for (from left to right)
L D 0:1; 0:15; 0:2; 0:3; 0:4. Corresponding ID1

where D1 D fx 2 D ju.x/ < 0g (second, fourth and sixth rows)
associated to each of these samples from the level set function.

level set function from different MCMC chains with different priors corresponding to our different
choices of correlation length L in (2.17). The tunable parameters in the pCN-MCMC method are
fixed for these experiments. We recall from Figure 3 that larger values of L result in a mean level
set whose corresponding indicator function better captures the spatial structures form the truth and
with smaller variance around the interface. However, the larger the value of L the slower the decay
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FIG. 5. Inverse Potential. Densities of the prior and posterior of various DCT coefficients of the ID1
where D1 D fx 2

D ju.x/ < 0g obtained from MCMC samples on the level set u for L D 0:3 (vertical dotted line indicates the truth).

of the ACF. From these ACF plots, we note that even for the apparent optimal value of L D 0:3,
our MCMC method produces samples that are highly correlated and thus very long chains may
be needed in order to produce a reasonable number of uncorrelated samples needed for statistical
analysis. For this particular choice of L D 0:3 we have conducted 50 multiple MCMC chains
of length 106 (after burn-in period) initialized from random samples from the prior. In Figure 1
(bottom-left) we show the potential scale reduction factor (PSRF, see [11] for a defintion) computed
from MCMC samples of the level set function (red-solid line) and the corresponding samples under
F (i.e. the ID1

’s) (blue-dotted line) which corresponds to the RHS of (3.1). We observe that the
PSRF goes below 1.1 after (often taken as an approximate indication of convergence [11]); thus the
Gelman-Rubin diagnostic [11] based on the PSRF is passed for this selection of L. The generation
of multiple independent MCMC chains that are statistically consistent opens up the possibility of
using high-performance computing to enhance our capabilities of properly exploring the posterior.
While we use a relatively small number of chains as a proof-of-concept, the MCMC chains are fully
independent and so the computational cost of running multiple chains scales with the number of
available processors.

The 5 � 107 samples that we obtained from the 50 MCMC chains are combined to provide a
full characterization of the posterior �y on the level set and the corresponding push-forward F ��y

(i.e. The ID1
’s computed from D1 with posterior samples u). We reemphasize that our aim is the

statistical identification of I
D1

� . Therefore, in order to obtain a quantity from the true I
D

�
1

against
to which compare the computed push-forward of the level set posterior, we consider the Discrete
Cosine Transform (DCT) of the true field ID . Other representations/expansions of the true field
could be considered for the sake of assessing the uncertainty of our estimates with respect to the
truth. In Figure 5 we show the prior and posterior densities of the first DCT coefficients of ID1

where D1 D fx 2 D ju.x/ < 0g with u from our MCMC samples (the vertical dotted line
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FIG. 6. Inverse Potential. L1.D/ relative errors with respect to the truth for different choices of L. Left: EL1 .F .un//.
Middle: EL1 .�n/. Right: EL1 .F .un//

corresponds to the DCT coefficient of the true I
D

�
1

). We can observe how the push forward posterior
are concentrated around the true values. It is then clear how the data provide a strong conditioning
on the first DCT coefficients of the discontinuous field that we aim at obtaining with our Bayesian
level set approach.

While the main objective of our Bayesian methodology is to characterize the posterior, it
is relevant to assess the accuracy of this methodology at approximating the truth ��; doing so
measures, simultanesouly, the information content in the data and the efficacy of the algorithm.
To this end we define the following L1-relative error:

EL1 .�/ 
 k� � ��kL1.D/

k��kL1.D/

: (4.1)

In Figure 6 (left) we plot EL1.F.un// which corresponds to the relative error with respect to the
truth ��, at the nth MCMC iteration, of the MCMC sample mean un under the map F . Figure 6
(middle) displays EL1.�n/, i.e. the error of the sample mean of the pushforward samples under F

(i.e. the mean of the samples �n D F.un//. Finally, in Figure 6 (right) we show EL1 .F.un//, the
error of the pushforward under F of the nth MCMC sample. We can clearly appreciate that the
most accurate results corresponds to L D 0:3 and L D 0:4 which are, in turn, the cases with less
uncertainty in terms of the variance (see Figure 3 bottom row). The larger size of the errors in the
rightmost panel is a reflection of the uncertainty in the reconstruction, and the posterior variance in
the estimates.

4.4 Structural geology: Channel model

In this section we consider the inverse problem discussed in Section 3.2. We consider the Darcy
model (3.4) but with a more realistic set of boundary conditions that consist of a mixed Neumann
and Dirichlet conditions. For the concrete set of boundary conditions as well as the right-hand-side
we use for the present example we refer the reader to [31, Section 4]. This flow model, initially used
in the seminal paper of [17], has been used as a benchmark for inverse problems in [28, 30, 31].
While the mathematical analysis of subsection is 3.2 conducted on a model with Dirichlet boundary
conditions, in order to streamline the presentation, the corresponding extension to the case of mixed
boundary conditions can be carried out with similar techniques.

We recall that the aim is to estimate the interface between regions Di of different structural
geology which result in a discontinuous permeability � of the form (2.2). In order to generate
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FIG. 7. Identification of structural geology (channel model). Top: True � in eq. (3.4). Bottom-left: PSRF from multiple
chains with L D 0:4 in (2.16). Bottom-right: ACF of first KL mode of the level set function from single-chain MCMC with
different choices of L.

synthetic data, we consider a true ��.x/ D P3
iD1 �iID�

i

with prescribed (known) values of �1 D 7,
�2 D 50 and �3 D 500. This permeability, whose plot is displayed in Figure 7 (top), is used in (3.4)
to generate synthetic data collected from interior measurement locations (white squares in Figure 7).
The estimation of � is conducted given observations of the solution of the Darcy model (3.4). To
be concrete, the observation operator O D .O1; : : : ; O25/ is defined in terms of 25 mollified Dirac
deltas fOj g25

j D1 centered at the aforementioned measurement locations and acting on the solution p

of the Darcy flow model. For the generation of synthetic data we use a grid of 160 � 160 which,
in order to avoid inverse crimes [37], is finer than the one used for the inversion (80 � 80). As
before, observations are corrupted with Gaussian noise proportional to the size of the noise-free
observations (Oj .p/ in this case).

For the estimation of � with the proposed Bayesian framework we assume that knowledge of
three nested regions is available with the permeability values f�ig3

iD1 that we use to define the true
��. Again, we are interested in the realistic case where the rock types of the formation are known
from geologic data but the location of the interface between these rocks is uncertain. In other words,
the unknowns are the geologic facies Di that we parameterize in terms of a level set function,
i.e. Di D fx 2 D jci�1 6 u.x/ < ci g with c0 D �1, c1 D 0, c2 D 1, c3 D 1. Similar
to the previous example, we use a prior of the form (2.17) for the level set function. In Figure 8
we display samples from the prior on the level set function (first, third and fifth rows) and the
corresponding permeability mapping under the level set map (2.4) F.u/.x/ D �.x/ D P3

iD1 �iIDi
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FIG. 8. Identification of structural geology (channel model). Samples from the prior on the level set (first, third and fifth
rows) for (from left to right) L D 0:2; 0:3; 0:35; 0:4; 0:5. Pushforward onto � (second, fourth and sixth rows) associated
to each of these samples from the level set function.

(second, fourth and sixth rows) for (from left to right) L D 0:2; 0:3; 0:35; 0:4; 0:5. As before, we
note that the spatial correlation of the covariance function has a significant effect on the spatial
correlation of the interface between the regions that define the interface between the geologic facies
(alternatively, the discontinuities of �). Longer values of L provide �’s that seem more visually
consistent with the truth. The results from Figure 9 show MCMC results from experiments with
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FIG. 9. Identification of structural geology (channel model). MCMC results for (from left to right) L D
0:2; 0:3; 0:35; 0:4; 0:5 in the eq. (2.16). Top: MCMC mean of the level set function. Top-middle: � associated to the
mean of the level set function (true � is displayed in the last column). Bottom-middle: Mean of the �. Bottom: Variance of �

different priors corresponding to the aforementioned choices of L. The posterior mean level set
function u is displayed in the top row of Figure 9. The corresponding mapping under the level set
function � 
 P3

iD1 �iIDi
(with Di D fx 2 D jci�1 6 u.x/ < cig) is shown in the top-middle.

Similar to our discussion of the preceding subsection, for the present example we are interested
in the push-forward of the posterior �y under the level set map F . More precisely, F ��y provides
a probability description of the solution to the inverse problem of finding the permeability given
observations from the Darcy flow model. In Figure 9 we present the mean (bottom-middle) and the
variance (bottom) of F.�y/ characterized by posterior samples on the level set function mapped
under F . In other words, these are the mean and variance from the �’s obtained from the MCMC
samples of the level/set function. As in the previous example, there is a critical value of L D 0:3

below of which the posterior estimates cannot accurately identify the main spatial features of ��.
Figure 10 shows posterior samples of the level set function (first, third and fifth rows) and the
corresponding � (second, fourth and sixth rows). The posterior samples, for values of L above the
critical value L D 0:3, capture the main spatial features from the truth. There is, however, substantial
uncertainty in the location of the interfaces. Our results offer evidence that this uncertainty can
be properly captured with our level set Bayesian framework. Statistical measures of F ��y (i.e.
the posterior permeability measure on �) is essential in practice. The proper quantification of the
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FIG. 10. Identification of structural geology (channel model). Samples from the posterior on the level set (first, third and
fifth rows) for (from left to right) L D 0:2; 0:3; 0:35; 0:4; 0:5. log.�/ (second, fourth and sixth rows) associated to each
of these samples from the level set function.

uncertainty in the unknown geologic facies is vital for the proper assessment of the environmental
impact in applications such as CO2 capture and storage, nuclear waste disposal and enhanced oil
recovery.

In Figure 7 (bottom-right) we show the ACF of the first KL mode of level set function from
different MCMC chains corresponding to different priors defined by the choices of L indicated
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FIG. 11. Identification of structural geology (channel model). Densities of the prior and posterior of some DCT coefficients
of the �’s obtained from MCMC samples on the level set for L D 0:4 (vertical dotted line indicates the truth).

previously. In contrast to the previous example, here we cannot appreciate substantial differences
in the efficiency of the chain with respect to the selected values of L. However, we note that ACF
exhibits a slow decay and thus long chains and/or multiple chains are need to properly explore
the posterior. For the choice of L D 0:4 we consider 50 multiple MCMC chains. Our MCMC
chains pass the Gelman-Rubin test [11] as we can note from Figure 7 (bottom-left) where we
show the PSRF computed from MCMC samples of the level set function u (red-solid line) and
the corresponding mapping, under the level set map, into the permeabilities � (blue-dotted line). As
indicated earlier, we may potentially increase the number of multiple chains and thus the number of
uncorrelated samples form the posterior.

Figure 11 shows the prior and posterior densities of the first DCT coefficients on the � obtained
from the MCMC samples of the level set function (the vertical dotted line corresponds to the DCT
coefficient of the truth ��). For some of these modes we clearly see that the posterior is concentrated
around the truth. However, for the mode �4;4 we note that the posterior is quite close to the prior
indicating that the data have not informed this mode in any significant way.

Finally, in Figure 12 we display relative errors EL1.F.un// (left), EL1.�n/ (middle) and
EL1 .F.un// (right) with EL1 as defined in (4.1). Accurate approximations are found for L D
0:3; 0:35; 0:4: As in Figure 6, the larger size of the errors in the rightmost panel is a reflection
of the uncertainty in the reconstruction, and the posterior variance in the estimates.

4.5 Structural geology: Layer model

In this experiment we consider the groundwater model (3.4) with the same domain and measurement
configurations from the preceding subsection. However, for this case we define the true permeability
�� displayed in Figure 13 (top). The permeability values are as before. The generation of synthetic
data is conducted as described in the preceding subsection. For this example we consider the
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FIG. 12. Identification of structural geology (channel model). L1.D/ relative errors with respect to the truth for different
choices of L. Left: EL1 .F .un//. Middle: EL1 .�n/. Right: EL1 .F .un//

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 

 

x 

y 

1

2

3

4

5

6

7

� � � � � � � 	 
 � ��

�

���

���

���

���

���

���

��	

��



�
��������������

�
�
�
�

�

�

����� ���

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lag

A
C

F

 

 

α=1.5
α=2.0
α=2.5
α=3.0
α=3.5

FIG. 13. Identification of structural geology (layer model). Top: True � in eq. (3.4). Bottom-left: PSRF from multiple chains
with ˛ D 2:5 in (2.17). Bottom-right: ACF of first KL mode of the level set function from single-chain single-chain MCMC
with different choices of ˛.

Gaussian prior on the level set defined by (2.16). Since for this case the operator C is diagonalisable
by cosine functions, we use the fast Fourier transform to sample from the corresponding Gaussian
measure N.0; C/ required by the pCN-MCMC algorithm.

The tunable parameter ˛ in the covariance operator (2.16) determines the regularity of the
corresponding samples of the Gaussian prior (see for example [49]). Indeed, in Figure 14 we show
samples from the prior on the level set function (first, third and fifth rows) and the corresponding �

(second, fourth and sixth rows) for (from left to right) ˛ D 1:5; 2:0; 2:5; 3:0; 3:5. Indeed, changes in
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FIG. 14. Identification of structural geology (layer model). Samples from the prior on the level set (first, third and fifth rows)
for (from left to right) ˛ D 1:5; 2:0; 2:5; 3:0; 3:5 in (2.17). � (second, fourth and sixth rows) associated to each of these
samples from the level set function.

˛ have a dramatic effect on the regularity of the interface between the different regions. We therefore
expect strong effect on the resulting posterior on the level set and thus on the permeability.

In Figure 15 we display numerical results from MCMC chains with different priors
corresponding to (from left to right) ˛ D 1:5; 2:0; 2:5; 3:0; 3:5. In Figure 15 we present the MCMC
mean of the level set function.The corresponding � is shown in the top-middle of Figure 15. In
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FIG. 15. Identification of structural geology (layer model). MCMC results for (from left to right) ˛ D
1:5; 2:0; 2:5; 3:0; 3:5 in the eq. (2.17). Top: MCMC mean of the level set function. Top-middle: � associated to the mean
of the level set function (true � is displayed in the last column). Bottom-middle: Mean of the �. Bottom: Variance of �

this figure we additionally display the mean (bottom-middle) and the variance (bottom) of the �’s
obtained from the MCMC samples of the level set function. Above a critical value ˛ D 2:5 we
obtain a reasonable identification of the layer permeability with a small uncertainty (quantified by
the variance). Figure 16 shows posterior (MCMC) samples of the level set function (first, third and
fifth rows) and the corresponding � (second, fourth and sixth rows) for the aforementioned choices
of ˛.

Figure 13 (bottom-right) shows the ACF of the first KL mode of level set function from MCMC
experiments with different priors with ˛’s as before. The efficiency of the MCMC chain does not
seem to vary significantly for the values above the critical value of ˛. However, as in the previous
examples a slow decay in the ACF is obtained. An experiment using 50 multiple MCMC chains
initialized randomly from the prior reveals that the Gelman-Rubin diagnostic test [11] is passed for
˛ D 2:5 as we can observe from Figure 13 (bottom-left) where we the display PSRF from MCMC
samples of the level set function (red-solid line) and the corresponding mapping into the � (blue-
dotted line). In Figure 17 we show the prior and posterior densities of the DCT coefficients on the �

obtained from the MCMC samples of the level set function (the vertical dotted line corresponds to
the truth DCT coefficient). We see clearly that the DCT coefficients are substantially informed by
the data although the spread around the truth confirms the variability in the location of the interface
between the layers that we can ascertain from the posterior samples (see Figure 16).
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FIG. 16. Identification of structural geology (layer model). Samples from the posterior on the level set (first, third and fifth
rows) for (from left to right) ˛ D 1:5; 2:0; 2:5; 3:0; 3:5 in the eq. (2.17). � (second, fourth and sixth rows) associated to
each of these samples from the level set function.

In Figure 18 we present the relative errors with respect to the truth EL1.F.un// (left), EL1.�n/

(middle) and EL1.F.un// (right). We note that ˛ D 3:5 provides the most accurate approximation
of the truth. As in Figure 6, the larger size of the errors in the rightmost panel is a reflection of the
uncertainty in the reconstruction, and the posterior variance in the estimates.
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FIG. 17. Identification of structural geology (layer model). Densities of the prior and posterior of some DCT coefficients of
the �’s obtained from MCMC samples on the level set for L D 0:4 (vertical dotted line indicates the truth).
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FIG. 18. Identification of structural geology (layer model). L1.D/ relative errors with respect to the truth for different
choices of ˛ in (2.17). Left: EL1 .F .un//. Middle: EL1 .�n/. Right: EL1 .F .un//

5. Conclusions

The primary contributions of this paper are:
� We have formulated inverse problems for interfaces, within the Bayesian framework, using a level

set approach.
� This framework leads to a well-posedness of the level set approach, something that is hard to

obtain in the context of classical regularization techniques for level set inversion of interfaces.
� The framework also leads to the use of state-of-the-art function-space MCMC methods for

sampling of the posterior distribution on the level set function. An explicit motion law for the
interfaces is not needed: the MCMC accept-reject mechanism implicitly moves them.

� We have studied two examples: inverse source reconstruction and an inverse conductivity
problem. In both cases we have demonstrated that, with appropriate choice of priors, the abstract
theory applies. We have also highlighted the behavior of the algorithms when applied to these
problems.
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� The fact that no explicit level set equation is required helps to reduce potential issues arising
in level set inversion, such as reinitialization. In most computational level set approaches [16],
the motion of the interface by means of the standard level set equation often produces level set
functions that are quite flat. For the mean curvature flow problem, such flattening phenomena
was observed early in the history of level set evolution in [26] where the surface evolution starts
from a “figure eight" shaped initial surface; in addition it has been shown to happen even if
the initial surface is smooth [4]. This causes stagnation as the interface then moves slowly. Ad-
hoc approaches, such as redistancing/reinitializing the level set function with a signed distance
function, are then employed to restore the motion of the interface. In the proposed computational
framework, not only does the MCMC accept-reject mechanism induce the motion of the interface,
but it does so in a way that avoids creating flat level set functions underlying the permeability.
Indeed, we note that the posterior samples of the level set function inherit the same properties
from the ones of the prior. In particular, the probability of obtaining a level set function which
takes any given value on a set of positive measure is zero under the posterior, as it is under the
prior. This fact promotes very desirable, and automatic, algorithmic robustness.

Natural directions for future research include the following:
� The numerical results for the two examples that we consider demonstrate the sensitive

dependence of the posterior distribution on the length-scale parameter of our Gaussian priors. It
would be natural to study automatic selection techniques for this parameter, including hierarchical
Bayesian modelling.

� We have assumed that the values of �i on each unknown domain Di are both known and constant.
It would be interesting, and possible, to relax either or both of these assumptions, as was done in
the finite geometric parameterizations considered in [33].

� The numerical results also indicate that initialization of the MCMC method for the level set
function can have significant impact on the performance of the inversion technique; it would be
interesting to study this issue more systematically.

� The level set formulation we use here, with a single level set function and possibly multiple level
set values ci has been used for modeling island dynamics [43] where a nested structure is assumed
for the regions fDi gn

iD1 see Figure 19(a). However, we comment that there exist objects with non-
nested regions, such as those depicted in Figure 19(b)–19(c), which can not be represented by a
single level set function. It would be of interest to extend this work to the consideration of vector-
valued level set functions. In the case of binary obstacles, it is enough to represent the shape via a
single level set function (cf. [47]). However, in the case of n-ary obstacles or even more complex
geometric objects, the representation is more complicated; see the review papers [23, 24, 50] for
more details.

� The Bayesian framework could be potentially combined with other parameterizations of unknown
geometries. For example, the pluri Gaussian approach has been used with EnKF in [40] to identify
geologic facies.

6. Appendix 1

Proof of Theorem 2.3. Notice that the random variable yju is distributed according to the measure
Qu, which is the translate of Q0 by G.u/, satisfying Qu � Q0 with Radon-Nikodym derivative

dQu

dQ0

.y/ / exp
� � ˚.uI y/

�I
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(a) Nested regions (b) Non-nested regions-I (c) Non-nested regions-II

FIG. 19. Nested regions and non-nested regions

where ˚ W U � RJ ! R is the least squares function given in (2.9). Thus for the given data y,
˚.uI y/ is up to a constant, the negative log likelihood. We denote by �0 the product measure

�0.du; dy/ D �0.du/Q0.dy/: (6.1)

Suppose that ˚.�; �/ is �0 measurable, then the random variable .u; y/ 2 U � Y is distributed
according to �.du; dy/ with

d�

d�0

.u; y/ / exp
� � ˚.uI y/

�
:

From Assumptions 2.2(2) and the continuity of ˚.uI y/ with respect to y, we know that ˚.�I �/ W
U � Y ! R is continuous �0�almost surely. Then it follows from Lemma 6.1 below that ˚.�I �/ is
�0-measurable. On the other hand, by Assumptions 2.2(1), for jyj� 6 r , we obtain the upper and
lower bound for Z,

0 < exp.�K.r; �min// 6 Z D
Z

U

exp
� � ˚.uI y/

�
�0.du/ 6 1

Thus the measure is normalizable and applying the Bayes’ Theorem 3.4 from [21] yields the
existence of �y .

Let Z D Z.y/ and Z0 D Z.y0/ be the normalization constants for �y and �y0

, i.e.

Z D
Z

U

exp
� � ˚.uI y/

�
�0.du/; Z0 D

Z
U

exp
� � ˚.uI y0/

�
�0.du/

We have seen above that
1 > Z; Z0 > exp

� � K.r; �min/
�

> 0:

From Assumptions 2.2(3),

jZ � Z0j 6
Z

j exp
�� ˚.uI y/

� � exp
� � ˚.uI y0/

�j�0. du/

6
Z

j˚.uI y/ � ˚.uI y0/j�0. du/

6 C.r/jy � y0j� :
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Thus, by the definition of Hellinger distance, we have

2dHell.�
y ; �y0

/2 D
Z  

Z�1=2 exp
�

� 1

2
˚.uI y/

�
� .Z0/�1=2 exp

�
� 1

2
˚.uI y0/

�!2

�0. du/

6 I1 C I2

where

I1 D 2

Z

Z  
exp

�
� 1

2
˚.uI y/

�
� exp

�
� 1

2
˚.uI y0/

�!2

�0. du/;

I2 D 2jZ�1=2 � .Z0/�1=2j2
Z

exp
� � ˚.uI y0/

�
�0. du/:

Applying (1) and (2) in Assumptions 2.2 again yields

Z

2
I1 6 C.r/jy � y0j2�

and

I2 6 C.r/jZ�1=2 � .Z0/�1=2j2 6 C.r/
�
Z�3 _ .Z0/�3

�jZ � Z0j2 6 C.r/jy � y0j2�
Therefore the proof that the measure is Lipschitz is completed by combining the preceding
estimates. The final statement follows as in [49], after noting that f 2 L2

�0
.U I S/ implies that

f 2 L2
�y .U I S/, since ˚.�I y/ > 0:

Lemma 6.1 Let U be a separable Banach space and .U; ˙; �/ be a complete probability space
with 
-algebra ˙ . If a functional F W U ! R is continuous �-almost surely, i.e. �.M / D 1 where
M denotes the set of the continuity points of F , then F is ˙-measurable.

Proof. By the definition of measurability, it suffices to show that for any c > 0

S WD fu 2 U j F .u/ > cg 2 ˙:

One can write S as S D .S\M /[.SnM /. Since F is continuous �-almost surely, M is measurable
and �.M / D 1. It follows from the completeness of the measure � that S n M is measurable and
�.S n M / D 0. Now we claim that S \ M is also measurable. Denote Bı.u/ � U to be the ball of
radius ı centered at u 2 U . For each v 2 S \ M , as F is continuous at v, there exists ıv > 0 such
that if v0 2 Bıv

.v/, then F .v0/ > c. Therefore S \ M can be written as

S \ M D M
\ [

v2S\M

Bıv
.v/

that is the intersection of the measurable set M with the open set
S

v2S\M Bıv
.v/. So S \ M is

measurable. Then it follows that F is ˙-measurable.
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7. Appendix 2

Recall the Gaussian measure �0 D N.0; C/ on the function space H where C D Ci ; H D Hi ; i D
1; 2 given in subsection 2.5. These measures can be constructed as Gaussian random fields.

Let .˝; F ;P/ be a complete probability space, i.e. if A 2 F with P.A/ D 0, then P.B/ D 0

for B � A. A random field on D is a measurable mapping u W D � ˝ ! R. Thus, for any
x 2 D, u.xI �/ is a random variable in R; whilst for any ! 2 ˝ , u.�I !/ W D ! R is a vector field.
Denote by .RN; B.RN/;P/ the probability space of i.i.d standard Gaussian sequences equipped with
product 
-algebra and product measure. In this paper, we consider .˝; F ;P/ as the completion
of .RN; B.RN/;P/ in which case the 
-algebra F consists of all sets of the type A [ B , where
A 2 B.RN/ and B � N 2 B.RN/ with P.N / D 0. Let ! D f�kg1

kD1
2 ˝ D RN be an i.i.d

sequence with �1 � N.0; 1/, and consider the random function u 2 H defined via the Karhunen-
Loéve expansion

u.xI !/ D T .!/ WD
1X

kD1

p
�k�k	k.x/; (7.1)

where f�k; 	kg1
kD1

is the eigensystem of C. By the theory of Karhunen-Loéve expansions [8], the
law of the random function u is identical to �0. Recalling that ˛ > 1, the eigenvalues f�kg of C1

decay like k�˛ in two dimensions; whilst the eigenvalues of C2 will decay exponentially. Moreover,
we assume further that 	k 2 U and that supk k	kk1 < 1 which holds in simple geometries. Due
to the decaying properties of the eigenvalues of C, the truncated sum

TN .!/ D
NX

kD1

p
�k�k	k (7.2)

admits a limit T in L2
P
.˝I H/. By the Kolmogorov Continuity Theorem [21], T is in fact Hölder

continuous P�almost surely; in particular, T 2 U P-almost surely. Then by Theorem 3.1.2 in [1],
we have TN ! T in the uniform norm of U , P-almost surely. Since for any N 2 , TN W .˝; F / !
.U; B.U // is continuous and thus measurable, we know from the completeness of .˝; F ;P/ that
the limit T is also measurable from .˝; F / to .U; B.U // (see p30 in [48]). The measurability of
T enables us to define a new measure on .U; B.U // which we still denote by �0 by the following:

�0.A/ D P.T �1.A// D P
�f! 2 ˝ j u.�I !/ 2 Ag� for A 2 B.U /: (7.3)

Thus �0 is indeed the push-forward measure of P through T . By definition, it is not hard to verify
that �0 is the Gaussian measure N.0; C/ on .U; B.U //. In addition, suppose that B � N 2 B.U /

with �0.N / D 0; if we still define �0.B/ according to (7.3), then �0.B/ D P.T �1.B// D 0 by
the fact that T �1.B/ � T �1.N / and the completeness of .˝; F ;P/. Denote by ˙ the smallest 


algebra containing B.U / and all sets of zero measure under �0 so that any set E 2 ˙ is of the
form E D A [ B , where A 2 B.U / and B � N 2 B.U / with �0.N / D 0. Then .U; ˙; �0/ is
complete.

We comment that although a Gaussian measure is usually defined as a Borel measure in the
literature (see, e.g., [8]), it is more convenient to work with a complete Gaussian measure in
this paper; in particular, the completeness of �0 is employed to show the measurability of the
observational map in level set based inverse problems.
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Considering a Gaussian random function u.�I !/ with ! 2 ˝ , for any level constant c 2 R, we
define the random level set

D0
c D D0

c .u.�I !// D D0
c .!/ WD ˚

x j u.xI !/ D c
�
: (7.4)

Recall that the measure space .U; ˙; �0/ is the push-forward of .˝; F ;P/ under T . We define the
functional Mc W U ! R by

Mcu D m
�fx j u.x/ D cg�

and the composition Rc WD Mc ı T , as illustrated in the following commutative diagram:

.˝; F ;P/ .U; ˙; �0/

�
R; B.R/

�
T

RcDMcıT
Mc

Lemma 7.1 For any c 2 R, Mc is ˙-measurable and Rc is F -measurable so that m.D0
c / is a

random variable on both .U; ˙; �0/ and .˝; F ;P/.

Proof. To prove Mc is ˙-measurable, we only need to check the set At WD fu 2 U j Mcu > tg 2
˙ for any t 2 R. Since Mc is a non-negative map, for t 6 0, it is obvious that At D U and hence
measurable. Now we claim that At is closed in U for t > 0. To that end, let fung1

nD1 be a sequence of
functions in At such that kun � ukU ! 0 for some u 2 U as n ! 1. We prove that u 2 At . Since
kun �ukU ! 0, there exists a subsequence which is still denoted by un such that kun �ukU < 1=n.
By the definition of At , un 2 At means that m.fx 2 D j un.x/ D cg/ > t for all n. Moreover,
from the construction of un, fx 2 D j un.x/ D cg � Bn WD fx 2 D j ju.x/ � cj < 1=ng, which
implies that m.Bn/ > t . Noting that˚

x 2 D j u.x/ D c
� D \1

nD1Bn

and that Bn is decreasing, we can conclude that m.fx 2 D j u.x/ D 0g/ > t , i.e. u 2 At . So At is
closed for t > 0. Then it follows from the measurability of T that Rc is F -measurable. Therefore
m.D0

c / is a random variable on both .U; ˙; �0/ and .˝; F ;P/.

The following theorem demonstrates that m.D0
c / vanishes almost surely on both measure spaces

above.

Proposition 7.2 Consider a random function u drawn from one of the Gaussian probability
measures �0 on .U; ˙/ given in subsection 2.5. For c 2 R, the random level set D0

c of u is defined
by (7.4). Then

(i) m.D0
c / D 0;P-almost surely;

(ii) m.D0
c / D 0; �0-almost surely.

Proof. (i) For any fixed x 2 D, since the point evaluation u.x/ acts as a bounded linear functional
on U , u.xI �/ is a real valued Gaussian random variable, which implies P.f! j u.x; !/ D
cg/ D 0. Moreover, noting that the random field u W D � ˝ ! R is a measurable map, if we
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view m.D0
c / as a random variable on ˝ , then

EŒm.D0
c /� D

Z
˝

m
�
D0

c .!/
�

dP.!/ D
Z

˝

Z
Rd

Ifx j u.xI!/Dcg dx dP.!/

D
Z

˝

Z
Rd

If.x; !/ j u.xI!/Dcg dx dP.!/
FubiniD

Z
Rd

Z
˝

If.x; !/ j u.xI!/Dcg dP.!/ dx

D
Z
Rd

Z
˝

If! j u.xI!/Dcg dP.!/ dx D
Z
Rd

P.f! j u.xI !/ D cg/ dx D 0

Noting that m.D0
c / > 0, we obtain m.D0

c / D 0;P-almost surely.
(ii) Recall that At D fu 2 U j Mcu > tg defined in Lemma 7.1 is closed in U for any t > 0.

Thus the set A WD fu 2 U j m.fx j u.x/ D cg/ D 0g D .[1
kD1

A1=k/c D \1
kD1

Ac
1=k

is a
Borel set of U and measurable. Since �0 is the push-forward measure of P under T ,

�0.A/ D P
�
T �1.A/

� D P

�˚
! j m

�
D0

c .!/
� D 0

�� D 1

where the last equality follows from (i).
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