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Shape optimization for surface functionals in Navier-Stokes flow
using a phase field approach
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We consider shape and topology optimization of an object in fluid flow governed by the Navier–
Stokes equations. Shapes are modelled with the help of a phase field approach and the solid body is
relaxed to be a porous medium. The phase field method uses a Ginzburg–Landau functional in order
to approximate a perimeter penalization. We focus on surface functionals and carefully introduce
a new modelling variant, show existence of minimizers and derive first order necessary conditions.
These conditions are related to classical shape derivatives by identifying the sharp interface limit with
the help of formally matched asymptotic expansions. Finally, we present numerical computations
based on a Cahn–Hilliard type gradient descent which demonstrate that the method can be used to
solve shape optimization problems for fluids with the help of the new approach.
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1. Introduction

Shape optimization problems are a very challenging field in mathematical analysis and has attracted
more and more attention in the last decade. One of the most discussed and oldest problems is
certainly the task of finding the shape of a body inside a fluid having the least resistance. This
problem dates back at least to Newton, who proposed this topic in a rotationally symmetric setting.
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Nowadays, there are a lot of important industrial applications leading to this kind of questions.
Among others we mention in particular the problem of optimizing the shape of airplanes, cars and
wind turbine blades in order to have the least resistance or biomechanical applications like bypass
constructions. The wide fields of applications may be one of the reasons that shape optimization
problems in fluids received growing attention recently. Nevertheless, those problems turn out to be
very challenging and so far no overall mathematical concept has been successful in a general sense.

One of the main difficulties certainly is that shape optimization problems are often not well-
posed, i.e., no minimizer exists, compare for instance [20, 23, 28]. There are some contributions
leading to mathematically well-posed problem formulations, see for instance [25], but the geometric
restrictions are difficult to handle numerically. The most common approaches used in practice
parametrize the boundary of the unknown optimal shape by functions, see for instance [6, 24].
However, those formulations do not inherit a minimizer in general. For numerical simulations
typically shape sensitivity analysis is used. Here, one uses local boundary variations in order to
find a gradient of the cost function with respect to the design variable, which is in this case the
shape of the body. The necessary calculations are carried out without considering the existence or
regularity of a minimizer. But in the end one obtains a mathematical structure that can be used for
numerical implementations.

In [14], a phase field approach was introduced for minimizing general volume functionals in
a Navier–Stokes flow. For this purpose, the porous medium approach proposed by Borrvall and
Petersson [4] and a Ginzburg–Landau regularization as in the work of Bourdin and Chambolle [5]
were combined. The latter is a diffuse interface approximation of a perimeter regularization. This
leads to a model where existence of a minimizer can be guaranteed, and at the same time necessary
optimality conditions can be derived and used for numerical simulations, see [15]. In particular, this
approach replaces the free boundary Γ of the body B by a diffuse interface. Hence, it is a priori not
clear how to deal with objective functionals that are defined on the free boundary Γ.

In this work, we study the following boundary objective functional:

∫
Γ

h(x,∇uuu, p,ννν)dHd−1 , (1.1)

where h is a given function, uuu denotes the velocity field of the fluid, p denotes the pressure, ννν is
the inner unit normal of the fluid region, i.e., pointing from the body B into the complementary
fluid region E =Bc. The velocity uuu and pressure p are assumed to obey the stationary Navier–Stokes
equations inside the fluid region E, and the no-slip condition on Γ, namely,

−divσσσ +(uuu ⋅∇)uuu = fff in E, (1.2a)
divuuu = 0 in E, (1.2b)

uuu = 000 on Γ, (1.2c)

where σσσ ∶= µ (∇uuu+(∇uuu)T )− pI denotes the stress tensor of the velocity field uuu, µ > 0 denotes the
viscosity of the fluid, fff denotes an external body force, and I denotes the identity tensor.

An important example of h is the hydrodynamic force component acting on Γ with the force
direction defined by the unit vector aaa:

h(x,∇uuu, p,ννν) = aaa ⋅(σσσννν) = aaa ⋅(µ(∇uuu+(∇uuu)T )− pI)ννν , (1.3)
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and so (1.1) becomes

∫
Γ

aaa ⋅(σσσννν)dHd−1
= aaa ⋅(∫

Γ

σσσννν dHd−1
). (1.4)

If aaa is parallel to the direction of the flow, then (1.4) represents the drag of the object B. If aaa is
perpendicular to the direction of the flow, then (1.4) represents the lift of the object.

In the work at hand we propose an approach on how to deal with boundary objective
functionals in the phase field setting. To be precise, we aim to minimize an appropriate phase field
approximation of the functional (1.1), and also the functional (1.4), which can be considered as one
of the most important objectives in the field of shape optimization in fluids. The fluid is assumed to
be an incompressible, Newtonian fluid described by the stationary Navier–Stokes equations (1.2).

For this purpose, we first discuss how we model the integral over the free boundary Γ if it is
replaced by a diffuse interface and how the normal ννν can be defined in this setting, see Section 3.
Afterwards, we analyze the phase field problem for both (1.1) and (1.4) and discuss the existence of
a minimizer and optimality conditions, see Section 4. In Section 5, we focus on the hydrodynamic
force functional (1.4) and the corresponding phase field problem is then related to the sharp interface
free boundary problem with a perimeter regularization by the method of matched formal asymptotic
expansions. We find that the formal sharp interface limit of the optimality system gives the same
results as can be found in the shape sensitivity literature.

We then solve the phase field problem numerically, see Section 6. For this purpose, we derive
a gradient flow equation for the reduced objective functional and arrive at a Cahn–Hilliard type
system. After time discretization, this system is treated in every time step by a Newton method. We
numerically solve shape optimization problems involving drag and the lift-to-drag ratio.

2. Notation and problem formulation

Let us assume that Ω ⊂Rd , d ∈ {2,3}, is a fixed domain with Lipschitz boundary. Inside this fixed
domain Ω we may have certain parts filled with fluid, denoted by E, and the complement B ∶=Ω∖E
is some non-permeable medium. In the following we will denote by ννν the outer unit normal of B,
i.e., the inner unit normal of the fluid region. The aim is to minimize the functional, given by (1.1),
where Γ ∶= ∂B∩Ω, subject to the Navier–Stokes equations (1.2). We additionally impose a volume
constraint on the amount of fluid. For this purpose we choose β ∈ (−1,1) and only use fluid regions
E ⊂Ω fulfilling the constraint ∣E ∣ =

(β+1)
2 ∣Ω∣.

We prescribe some inflow or outflow regions on the boundary of Ω and choose for this purpose
ggg ∈HHH

1
2 (∂Ω) such that ∫∂Ω

ggg ⋅ννν∂Ω dHd−1 = 0. Additionally, we may have some body force fff ∈LLL2
(Ω)

acting on the design domain. Note that throughout this paper we denote Rd-valued functions and
spaces consisting of Rd-valued functions in boldface.

As already mentioned in the introduction, problems like this are generally not well-posed in the
sense that the existence of a minimizer can not be guaranteed. Hence, we use an additional perimeter
regularization. For this purpose, we add a multiple of the perimeter of the obstacle to the cost
functional (1.1). In order to properly formulate the resulting problem we introduce a design function
ϕ ∶ Ω→ {±1}, where {ϕ = 1} = E describes the fluid region and {ϕ = −1} = B is its complement.
The volume constraint reads in this setting as ∫Ω ϕ dx = β ∣Ω∣.

The design functions are chosen to be functions of bounded variation, such that the fluid region
has finite perimeter, i.e., ϕ ∈ BV(Ω,{±1}). We shall write PΩ(E) for the perimeter of some set of
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bounded variation E ⊆ Ω in Ω. Besides, if ϕ is a function of bounded variation, its distributional
derivative Dϕ is a finite Radon measure and we can define the total variation by ∣Dϕ ∣(Ω). For
ϕ ∈ BV(Ω,{±1}), it holds that

∣Dϕ ∣(Ω) = 2PΩ({ϕ = 1}). (2.1)

For a more detailed introduction to the theory of sets of finite perimeter and functions of bounded
variation we refer to [11, 17]. We hence arrive in the following space of admissible design functions:

Φ
0
ad ∶= {ϕ ∈ BV(Ω,{±1}) ∣ ∫

Ω

ϕ dx = β ∣Ω∣}. (2.2)

Let γ > 0 denote the weighting factor for the perimeter regularization. Then, we arrive at
the following shape optimization problem for the functional (1.1) with additional perimeter
regularization:

min
(ϕ,uuu,p)

J0(ϕ,uuu, p) ∶= ∫
Ω

1
2

h(x,∇uuu, p,νννϕ)d ∣Dϕ ∣+
γ

2
∣Dϕ ∣(Ω), (2.3)

subject to ϕ ∈Φ
0
ad and (uuu, p) ∈HHH1

(E)×L2(E) fulfilling

−µ∆uuu+(uuu ⋅∇)uuu+∇p = fff in E = {ϕ = 1}, (2.4a)
divuuu = 0 in E, (2.4b)

uuu = ggg on ∂Ω∩∂E, (2.4c)
uuu = 000 on Γ =Ω∩∂E. (2.4d)

Here, we used the relation (2.1) to replace the perimeter of E with 1
2 ∣Dϕ ∣(Ω). Furthermore, by the

polar decomposition

Dϕ = νννϕ ∣Dϕ ∣ for ϕ ∈ BV(Ω,{±1}), (2.5)

of the Radon measure Dϕ into a positive measure ∣Dϕ ∣ and a Sd−1-valued function νννϕ ∈

L1 (Ω, ∣Dϕ ∣)
d , see for instance [1, Corollary 1.29], we replace the product of the normal and the

Hausdorff measure in (1.4) by 1
2 νννϕ d ∣Dϕ ∣. In particular, νννϕ can be considered as a generalised unit

normal on ∂E.
We remark that the shape optimization problem (2.3) for the hydrodynamic force component

(1.3) have been studied extensively in the literature. In the work of [2], the boundary integral (1.4)
is transformed into a volume integral. This is also done in [7, 25], but in the latter, the compressible
Navier–Stokes equations are considered. We also mention [21], which utilises the approach of
Borrvall and Petersson [4] and the volume integral formulation. The shape derivatives for general
volume and boundary objective functionals in Navier–Stokes flow have been derived in [26]. Finally,
we mention the work of [3], which bears the most similarity to our set-up. Under the assumption
that the set E = {ϕ = 1} is C2 and that there is a unique, sufficiently regular solution uuu to (1.2), the
analysis of [3] obtained, via the speed method, that the shape derivative of

J(E) = ∫
Γ

aaa ⋅(µ(∇uuu+(∇uuu)T )− pIII)ννν dHd−1
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with respect to vector field V is given by (see [3, Theorem 4, Equation 39])1

DJ(E)[V ] = ∫
Γ

⟨V(0),ννν⟩( fff ⋅aaa+µ∂ννν qqq ⋅∂ννν uuu)dHd−1 , (2.6)

where qqq is the solution to the adjoint system (see [3, Equation 33.2]):

−µ∆qqq+(∇uuu)T qqq−(uuu ⋅∇)qqq+∇π = 000 in E, (2.7a)
divqqq = 0 in E, (2.7b)

qqq = aaa on Γ, (2.7c)
qqq = 000 on ∂Ω∩∂E. (2.7d)

Here, we denote the normal derivative of a scalar α and of a vector βββ as

∂ννν α ∶=∇ααα ⋅ννν , ∂ννν βββ ∶= (∇βββ)ννν . (2.8)

We note that as uuu satisfies the no-slip boundary condition (2.4d), uuu has no tangential components on
Ω∩∂E. Thus, we obtain

∇uuu = ∂ννν uuu⊗ννν on Γ =Ω∩∂E. (2.9)

Using the divergence free condition (2.4b), and the no-slip condition (2.4d), we obtain on Γ:

0 = divuuu = tr(∇uuu) =
d

∑
i=1

∂ννν uiνi = ∂ννν uuu ⋅ννν Ô⇒ (∇uuu)T
ννν = (∂ννν uuu ⋅ννν)ννν = 000, (2.10)

which in turn implies that

J(E) = ∫
Γ

aaa ⋅(σσσννν)dHd−1
= ∫

Γ

aaa ⋅(µ∇uuu− pI)ννν dHd−1 . (2.11)

This is similar to the setting of [26, Remark 12] and by following the computations in [26] one
obtains (2.7) as the adjoint system and the shape derivative of (2.11) for a C2 domain in the direction
of V is2

DJ(E)[V ] = ∫
Γ

⟨V(0),ννν⟩(−µ∂ννν(∂ννν uuu) ⋅aaa+∂ννν p(aaa ⋅ννν)+µ∂ννν qqq ⋅∂ννν uuu) dHd−1

−∫
Γ

⟨V(0),ννν⟩divΓ (µ(∇uuu)T aaa− paaa) dHd−1 , (2.12)

where divΓ denotes the surface divergence. We introduce the surface gradient of f on Γ by ∇Γ f
with components (Dk f )1≤k≤d , and with this definition we obtain divΓvvv=∑d

k=1 Dkvk for a vector field
vvv. Moreover, in components, we have

∂ννν(∂ννν uuu) ⋅aaa =
d

∑
i, j,k=1

νi∂i(ν j∂ juk)ak.

1 We remark that in [3], the normal nnn is pointing from the fluid domain to the obstacle, i.e., in comparison with our set-up,
nnn = −ννν .

2 We remark that in [26, Remark 12] the term divΓ(µ(∇uuu)aaa) appears instead of divΓ(µ(∇uuu)T aaa), which we believe is
a typo.
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REMARK 2.1 In [26, Remark 12], the term µ∂ννν(∂ννν uuu) ⋅aaa appearing on the right hand side of (2.12)

is originally given as ∑d
i, j,k=1 νi

∂
2uk

∂xi∂x j
ν jak. This is related to ∂ννν(∂ννν uuu) ⋅aaa by the formula

d

∑
i, j,k=1

νi
∂

2uk

∂xi∂x j
ν jak = ∂ννν(∂ννν uuu) ⋅aaa−

d

∑
i, j,k=1

νi∂iν̃ j∂ jukak, (2.13)

where ν̃νν = (ν̃ j)1≤ j≤d denotes an extension of ννν off the boundary Γ to a neighborhood U ⊃ Γ with
∣ν̃νν ∣ = 1 near Γ and ν̃νν ∣Γ= ννν .

By (2.9), we see that ∂ juk = ∂ννν ukν j on Γ, and so

d

∑
i, j,k=1

νi∂iν̃ j∂ jukak =
d

∑
i, j,k=1

νi∂iν̃ jν j∂ννν ukak =
d

∑
i, j,k=1

1
2 νi∂i(∣ν̃ j∣

2
)∂ννν ukak = 0. (2.14)

Thus, the last term in (2.13) is zero and we have the relation

d

∑
i, j,k=1

νi
∂

2uk

∂xi∂x j
ν jak = ∂ννν(∂ννν uuu) ⋅aaa, (2.15)

when uuu = 000 on Γ.

Based on Remark 2.1, if (uuu, p) are sufficiently regular, then a short computation involving (2.15)
shows that on Γ,

−µ divΓ((∇uuu)T aaa)−µ∂ννν(∂ννν uuu) ⋅aaa+∂ννν p(aaa ⋅ννν)+ divΓ(paaa)

= −µ

d

∑
i=1

Di(∂iu j)a j −µ

d

∑
i, j,k=1

νi∂k(∂iu j)νka j +∇p ⋅aaa

= −µ∆uuu ⋅aaa+∇p ⋅aaa = fff ⋅aaa+(uuu ⋅∇)uuu ⋅aaa = fff ⋅aaa,

where we have used the no-slip condition (2.4d), and hence (2.12) is equivalent to (2.6).

3. Derivation of the phase field formulation

The problem derived in the previous section has several drawbacks. First, it is not clear if this is
well-posed, i.e., if for every ϕ ∈Φ

0
ad there is a solution of the state equations (2.4) and if there exists

a minimizer (ϕ,uuu, p) of the overall problem (2.3)–(2.4). Second, optimizing in the space BV(Ω)

is not very practical. Deriving optimality conditions is not easy and it is not clear how to perform
numerical simulations on this problem. Hence, we now want to approximate the complex shape
optimization problem (2.3)–(2.4) by a problem that can be treated by well-known approaches. To
this end we introduce a diffuse interface version of the free boundary problem by using a phase field
approach.

3.1 The state equations in the phase field setting

In this setting, the design variable ϕ ∶Ω→R is now allowed to have values in R, instead of only the
two discrete values ±1, and inherits H1(Ω) regularity. In addition to the two phases {ϕ = 1} (fluid
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region E) and {ϕ = −1} (solid region B), we also have an interfacial region {−1 < ϕ < 1} which is
related to a small parameter ε > 0. By [22], we know that the Ginzburg–Landau energy

Eε ∶H1
(Ω)→R, Eε(ϕ) ∶= ∫

Ω

ε

2
∣∇ϕ ∣

2
+

1
ε

ψ(ϕ)dx (3.1)

approximates ϕ ↦ c0 ∣Dϕ ∣(Ω) = 2c0PΩ({ϕ = 1}) in the sense of Γ-convergence. Here,

c0 ∶=
1
2 ∫

1

−1

√
2ψ(s)ds (3.2)

and ψ ∶R→R is a potential with two equal minima at ±1, and in this paper we focus on an arbitrary
double-well potential satisfying the assumption below:

ASSUMPTION 3.1 Let ψ ∈C1,1(R) be a non-negative function such that ψ(s) = 0 if and only if
s ∈ {±1}, and the following growth condition is fulfilled for some constants c1,c2,t0 > 0 and k ≥ 2:

c1tk
≤ψ(t) ≤ c2tk

∀ ∣t ∣ ≥ t0.

Additionally, we use the so-called porous medium approach for the state equations, see also
[14, 15]. This means that, we relax the non-permeability of the solid region B outside the fluid
by placing a porous medium of small permeability (αε)

−1 ≪ 1 outside the fluid region E. In the
interfacial region {−1 <ϕ < 1} we interpolate between the equations describing the flow through the
porous medium and the stationary Navier–Stokes equations by using an interpolation function αε

satisfying the following assumption:

ASSUMPTION 3.2 We assume that αε ∈C1,1(R) is non-negative, with αε(1) = 0, αε(−1) = αε > 0,
and there exist sa,sb ∈R with sa ≤ −1 and sb ≥ 1 such that

αε(s) = αε(sa) for s ≤ sa,

αε(s) = αε(sb) for s ≥ sb.
(3.3)

Moreover, we assume that the inverse permeability vanishes as ε ↘ 0, i.e., limε↘0 αε =∞.

In particular, we have that

0 ≤ αε(s) ≤ sup
t∈[sa,sb]

αε(t) <∞ ∀s ∈R,

i.e., αε ∈ L∞(R). The resulting state equations for the phase field problem are then given in the
strong form by the following system:

αε(ϕ)uuu−µ∆uuu+(uuu ⋅∇)uuu+∇p = fff in Ω, (3.4a)
divuuu = 0 in Ω, (3.4b)

uuu = ggg on ∂Ω. (3.4c)

Later we add ∫Ω
1
2 αε(ϕ)∣uuu∣2 dx to the objective functional and this ensures that in the limit ε ↘ 0,

the velocity uuu vanishes outside the fluid region, and hence the medium can really be considered as
non-permeable again. In the following, we will use the following function spaces:

HHH1
0,σ(Ω) ∶= {vvv ∈HHH1

0(Ω) ∣ divvvv = 0} , HHH1
ggg,σ(Ω) ∶= {vvv ∈HHH1

(Ω) ∣ vvv∣∂Ω = ggg, divvvv = 0} ,
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and for the pressure we use the space L2
0(Ω) ∶= {p ∈ L2(Ω) ∣ ∫Ω pdx = 0}. The function space of

admissible design functions for the phase field optimization problem will be given correspondingly
to (2.2) as

Φad ∶= {ϕ ∈H1
(Ω) ∣ ∫

Ω

ϕ dx = β ∣Ω∣} .

3.2 The cost functional in the phase field setting

We are now left to transfer the boundary integral in (2.3) to the diffuse interface setting where
the free boundary Γ is replaced by an interfacial region. To this end, we apply a result of [22]
and approximate the perimeter regularization term with 1

2c0
Eε(ϕ). Meanwhile, keeping in mind the

polar decomposition (2.5) and the relation (2.1), we consider the vector-valued measure with density
1
2∇ϕ as an approximation to ννν dHd−1 . Thus, for functions h that are positively one homogeneous
with respect to its last variable, we may approximate (2.3) with

∫
Ω

1
2

h(x,∇uuu, p,∇ϕ)dx +
γ

2c0
Eε(ϕ).

Alternatively, we may appeal to the property of equipartition for the Ginzburg–Landau energy, i.e.,
it holds asymptotically that (see for instance, (5.28) in Section 5, or [9, Section 5.1]):

∫
Ω

∣
1
ε

ψ(ϕε)−
ε

2
∣∇ϕε ∣

2
∣ dx ∼ 0 as ε ↘ 0.

Hence, together with (2.1), and the fact that Γ-limit of Eε(ϕ) is the functional c0 ∣Dϕ ∣(Ω), defined
for functions with values in {±1}, and +∞ otherwise, we have loosely speaking

2c0H
d−1

⌞Γ ∼ c0 ∣Dϕ ∣ ∼
ε

2
∣∇ϕ ∣

2
+

1
ε

ψ(ϕ) ∼
2
ε

ψ(ϕ), (3.5)

where ε

2 ∣∇ϕ ∣
2
+ 1

ε
ψ(ϕ) and 2

ε
ψ(ϕ) are interpreted as measures on Ω, by using their values as

densities. Here, we have identified Γ = ∂{ϕ = 1}∩Ω with its reduced boundary, then it holds that
1
2 ∣Dϕ ∣ = ∣Dχ{ϕ=1}∣ =H

d−1⌞Γ, see for instance [1, Theorem 3.59].
The generalised unit normal ννν can be approximated by ∇ϕ

∣∇ϕ ∣ . To rewrite this into a more
convenient form, which is in particular differentiable with respect to ϕ , we use equipartition of
energy and replace ∣∇ϕ ∣ by 1

ε

√
2ψ(ϕ), and obtain the approximation

c0νννdHd−1
∼ ε

∇ϕ
√

2ψ(ϕ)

1
ε

ψ(ϕ)dx =

√
ψ(ϕ)

2
∇ϕ dx . (3.6)

Hence, we may also approximate (2.3) with

1
c0
∫

Ω

√
ψ(ϕ)

2 h(x,∇uuu, p,∇ϕ)dx +
γ

2c0
Eε(ϕ), (3.7)

when we have again used that h is positively one homogeneous with respect to its last variable.
We note that in the bulk regions {ϕ = ±1}, we have ψ(ϕ) = 0 and hence the functional (3.7) is

not differentiable with respect to ϕ . Hence, we add a small positive constant δε to ψ in order to have
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ψ(s)+δε >0 for all s ∈R. However, we neglect the addition of this constant for the Ginzburg–Landau
regularization Eε(ϕ) in the objective functional because adding a constant to the cost functional will
not change the optimization problem.

In fact, for the analysis of the phase field problem, it is only important that δε > 0. In Section 5
where we perform a formal asymptotic analysis, we will require limε↘0 δε = 0 at a superlinear rate
(see Remark 5.1).

3.3 Optimization problem in the phase field setting

Combining the above ideas, we arrive in the following phase field approximation:

min
(ϕ,uuu,p)

Jh
ε (ϕ,uuu, p) ∶= ∫

Ω

1
2

αε(ϕ)∣uuu∣2+
γ

2c0
(

ε

2
∣∇ϕ ∣

2
+

1
ε

ψ(ϕ)) dx

+∫
Ω

M(ϕ)h(x,∇uuu, p,∇ϕ)dx , (3.8)

subject to ϕ ∈Φad and (uuu, p) ∈HHH1
ggg,σ(Ω)×L2

0(Ω) fulfilling

∫
Ω

αε(ϕ)uuu ⋅vvv+µ∇uuu ⋅∇vvv+(uuu ⋅∇)uuu ⋅vvv− pdivvvvdx = ∫
Ω

fff ⋅vvvdx ∀vvv ∈HHH1
0(Ω). (3.9)

Notice, that (3.9) is a weak formulation of the state equations (3.4). Moreover, based on the
discussions in Section 3.2, the functionM(ϕ) can be chosen to be

M(ϕ) =
1
2

orM(ϕ) =
1
c0

√
ψ(ϕ)+δε

2 . (3.10)

The phase field approximation for the shape optimization problem with the hydrodynamic force
(1.3) is obtained from (3.8) by substituting

h(x,∇uuu, p,∇ϕ) =∇ϕ ⋅(µ(∇uuu+(∇uuu)T
)− pI)aaa.

That is,

min
(ϕ,uuu,p)

Jε (ϕ,uuu, p) ∶= ∫
Ω

1
2

αε(ϕ)∣uuu∣2+
γ

2c0
(

ε

2
∣∇ϕ ∣

2
+

1
ε

ψ(ϕ)) dx

+∫
Ω

M(ϕ)∇ϕ ⋅(µ(∇uuu+(∇uuu)T
)− pI)aaadx , (3.11)

subject to ϕ ∈Φad and (uuu, p) ∈HHH1
ggg,σ(Ω)×L2

0(Ω) fulfilling (3.9).
Let us point out the main novel contributions of the present paper when compared to earlier

works of [14, 15]. We now consider surface functionals which are important for many applications.
This was not possible with the earlier set-up in [14, 15], and leads to severely new difficulties as we
first of all have to approximate surface integrals with the help of the phase field diffuse interfacial
layer. Secondly, we now also need to approximate the surface normal with the help of the gradient
of the phase field variable. The additional highly non-linear terms lead to serious new difficulties
with respect to the analysis, asymptotics and numerical simulations.
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3.4 Possible modifications

3.4.1 Double obstacle potential. We could also use a double obstacle potential ψ ∶R→R∪{+∞}

instead of the double-well potential in Assumption 3.1, i.e.,

ψ(ϕ) =

⎧⎪⎪
⎨
⎪⎪⎩

1
2(1−ϕ

2) if ϕ ∈ [−1,1],
+∞ if ∣ϕ ∣ > 1.

(3.12)

Then, one has to treat the constraint ∣ϕ ∣ ≤ 1 a.e. in the necessary optimality system either by
writing the gradient equation in form of a variational inequality or by including additional Lagrange
parameters. Numerical simulations could be implemented by a Moreau-Yosida relaxation as in [15].
A Moreau-Yosida relaxation also leads to a differentiable double-well potential, and here we
restrict ourselves to a differentiable potential where both settings can then be included in the above
mentioned way.

3.4.2 Inequality constraint for fluid volume. Another possible modification of the problem
setting would be to replace the equality constraint ∫Ω ϕ dx = β ∣Ω∣ by an inequality constraint
∫Ω ϕ dx ≤ β ∣Ω∣. This would make sense in certain settings, if a maximal amount of fluid that can be
used during the optimization process is prescribed and not the exact volume fraction. This would
not change anything in the analysis, only that the Lagrange multiplier for this constraint would have
a sign and an additional complementarity constraint appears in the optimality system.

3.4.3 Objective functionals with no dependency on the unit normal. We may also consider
objective functionals with no dependence on the normal, i.e., the boundary objective functional
(2.3) takes the form

∫
Γ

k(x,∇uuu, p)dHd−1 . (3.13)

An example of (3.13) is the best approximation to a target surface pressure distribution in the sense
of least squares:

k(x,∇uuu, p) =
1
2
∣p− pd ∣

2
,

where pd denotes the target surface pressure distribution. Then, using (3.5), we deduce that the
phase field approximation of (3.13) is given by

1
c0
∫

Ω

1
ε

ψ(ϕ)k(x,∇uuu, p)dx .

If k(⋅, ⋅, ⋅) satisfies similar assumptions to Assumptions 4.1 and 4.2 (see below), one can adapt the
proofs of Theorems 4.6 and 4.10 to obtain existence of a minimiser and the corresponding first order
necessary optimality conditions.

4. Analysis of the phase field problem

In this section we want to analyze the phase field problem (3.8)–(3.9) derived in the previous section
as a diffuse interface approximation of the shape optimization problem of minimizing (1.1) for
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a Navier–Stokes flow. For this purpose, we introduce some notation for the nonlinearity in the
stationary Navier–Stokes equations. We define the trilinear form

b ∶HHH1
(Ω)×HHH1

(Ω)×HHH1
(Ω)→R,

b(uuu,vvv,www) ∶= ∫
Ω

(uuu ⋅∇)vvv ⋅wwwdx =
d

∑
i, j=1
∫

Ω

ui∂iv jw j dx .

From this, we directly obtain the following properties, which are also used in [14].

Lemma 4.1 The form b is well-defined and continuous in the space HHH1
0(Ω)×HHH1

(Ω)×HHH1
0(Ω).

Moreover we have:

∣b(uuu,vvv,www)∣ ≤KΩ∥∇uuu∥LLL2(Ω)∥∇vvv∥LLL2(Ω)∥∇www∥LLL2(Ω) ∀uuu,www ∈HHH1
0(Ω),vvv ∈HHH1

(Ω), (4.1)

with

KΩ =

⎧⎪⎪
⎨
⎪⎪⎩

1
2 ∣Ω∣

1/2 if d = 2,
2
√

2
3 ∣Ω∣

1/6 if d = 3.
(4.2)

Additionally, the following properties are satisfied:

b(uuu,vvv,vvv) = 0 ∀uuu ∈HHH1
(Ω), divuuu = 0, vvv ∈HHH1

0(Ω), (4.3)

b(uuu,vvv,www) = −b(uuu,www,vvv) ∀uuu ∈HHH1
(Ω), divuuu = 0, vvv,www ∈HHH1

0(Ω). (4.4)

Proof. The stated continuity and estimate (4.1) can be found in [13, Lemma IX.1.1] and (4.3)–(4.4)
are considered in [13, Lemma IX.2.1].

Next, we have the following important continuity property.

Lemma 4.2 Let (uuun)n∈N,(vvvn)n∈N,(wwwn)n∈N ⊂ HHH1
(Ω), uuu,vvv,www ∈ HHH1

(Ω) be such that uuun ⇀ uuu, vvvn ⇀ vvv
and wwwn⇀www in HHH1

(Ω) where vvvn∣∂Ω = vvv∣∂Ω for all n ∈N. Then

lim
n→∞

b(uuun,vvvn,w̃ww) = b(uuu,vvv,w̃ww) ∀w̃ww ∈HHH1
(Ω). (4.5)

Moreover, one can show that

HHH1
(Ω)×HHH1

(Ω) ∋ (uuu,vvv)↦ b(uuu, ⋅,vvv) ∈HHH−1
(Ω) (4.6)

is strongly continuous, and thus

lim
n→∞

b(uuun,vvvn,wwwn) = b(uuu,vvv,www). (4.7)

Proof. We apply the idea of [32, Lemma 72.5] and make in particular use of the compact
embedding HHH1

(Ω)↪LLL3
(Ω) and the continuous embedding HHH1

(Ω)↪LLL6
(Ω). The strong continuity

of (4.6) follows from [32, Lemma 72.5]. In addition, from the boundedness of the sequences
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(uuun)n∈N,(vvvn)n∈N,(wwwn)n∈N, and (4.6), we have

∣b(uuun,vvvn,wwwn)−b(uuu,vvv,www)∣

= ∣b(uuun−uuu,vvvn,wwwn)∣+ ∣b(uuu,vvvn,wwwn−www)∣+ ∣b(uuu,vvvn−vvv,www)∣

≤ ∥uuun−uuu∥LLL3(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n→∞
ÐÐÐ→0

∥∇vvvn∥LLL2(Ω)∥wwwn∥LLL6(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤C

+∥uuu∥LLL6(Ω)∥∇vvvn∥LLL2(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤C

∥wwwn−www∥LLL3(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n→∞
ÐÐÐ→0

+ ∣b(uuu,vvvn−vvv,www)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n→∞
ÐÐÐ→0 by (4.6)

.

4.1 Existence results

In this section, we want to analyze the solvability of the state equations (3.9). Afterwards, we will
show existence of a minimizer for the overall optimization problem (3.8)–(3.9).

Lemma 4.3 Let Assumption 3.2 hold. Then, for every ϕ ∈ L1(Ω) there exists at least one pair
(uuu, p) ∈ HHH1

ggg,σ(Ω)×L2
0(Ω) such that the state equations (3.4) are fulfilled in the sense of (3.9). This

solution (uuu, p) fulfils the estimate

∥uuu∥HHH1(Ω)+∥p∥L2(Ω) ≤C(µ,αε , fff ,ggg,Ω), (4.8)

with a constant C =C(µ,αε , fff ,ggg,Ω) independent of ϕ .

Proof. We refer to [14, Lemma 4], where the existence of the velocity field uuu is discussed. We point
out, that the restriction to functions ϕ ∈ L1(Ω) with ∣ϕ ∣ ≤ 1 a.e. in Ω used in [14] is only necessary
because the function αε in [14] is only defined on the interval [−1,1]. But of course, the same
arguments apply to our case where αε is bounded and ϕ ∈ L1(Ω).

Now for every ϕ ∈ L1(Ω), there exists a uuu ∈HHH1
ggg,σ(Ω) fulfilling

∫
Ω

αε(ϕ)uuu ⋅vvv+µ∇uuu ⋅∇vvv+(uuu ⋅∇)uuu ⋅vvvdx = ∫
Ω

fff ⋅vvvdx ∀vvv ∈HHH1
0,σ(Ω).

Since ggg ∈ HHH
1
2 (∂Ω) with ∫∂Ω

ggg ⋅ννν∂Ω dHd−1 = 0, by [13, Lemma IX.4.2] or [14, Lemma 3], for any
η > 0, there exists some δ = δ(η ,ggg,ννν ,Ω) > 0 and a vector field GGG = GGG(δ) such that GGG ∈ HHH1

ggg,σ(Ω)

and

∣∫
Ω

vvv ⋅∇GGG ⋅vvvdx ∣ ≤ η∥∇vvv∥2
LLL2(Ω) ∀vvv ∈HHH1

0(Ω). (4.9)

Then, www ∶= uuu−GGG ∈HHH1
0,σ(Ω) satisfies

∫
Ω

αε(ϕ)www ⋅vvv+µ∇www ⋅∇vvvdx +b(www,www,vvv)+b(www,GGG,vvv)+b(GGG,www,vvv)

= ∫
Ω

fff ⋅vvv−αε(ϕ)GGG ⋅vvv−µ∇GGG ⋅∇vvvdx −b(GGG,GGG,vvv) ∀vvv ∈HHH1
0,σ(Ω).
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Testing with vvv = www and using (4.3) so that b(www,www,www) = 0, b(GGG,www,www) = 0, and (4.9) with η =
µ

8 ,
vvv = www so that ∣b(www,GGG,www)∣ ≤

µ

8 ∥∇www∥2
LLL2(Ω), we obtain after applying Hölder’s inequality, Poincaré’s

inequality, and Young’s inequality

∫
Ω

αε(ϕ)

2
∣www∣

2 dx +
7
8

µ∥∇www∥
2
LLL2(Ω) ≤ ∫

Ω

αε(ϕ)

2
∣GGG∣

2 dx +2C2
p∥ fff ∥2

LLL2(Ω)+2µ∥∇GGG∥
2
LLL2(Ω)

+2(Cp+1)2
∥GGG ⋅∇GGG∥

2
HHH−1(Ω)+

3
8

µ∥∇www∥
2
LLL2(Ω).

Rearranging and applying the triangle inequality, we obtain that

∥∇uuu∥2
LLL2(Ω) ≤

4
µ
(( max

s∈[sa,sb]
αε(s)+2µ)∥GGG∥

2
HHH1(Ω)+2C2

p∥ fff ∥2
LLL2(Ω))

+
4
µ

(2(Cp+1)2
∥GGG ⋅∇GGG∥

2
HHH−1(Ω))+2∥∇GGG∥

2
LLL2(Ω). (4.10)

Furthermore, by [27, Lemma II.2.1.1] we find a unique p ∈ L2
0(Ω) such that (3.9) together with

∥p∥L2(Ω) ≤C(Ω)∥αε(ϕ)uuu−µ∆uuu+(uuu ⋅∇)uuu− fff ∥HHH−1(Ω)

is fulfilled. Combining this with (4.10) and the Poincaré inequality yields the estimate (4.8).

This motivates the definition of a set-valued solution operator

SSSε(ϕ) ∶= {(uuu, p) ∈HHH1
ggg,σ(Ω)×L2

0(Ω) ∣ (uuu, p) fulfil (3.9)} for ϕ ∈ L1
(Ω). (4.11)

REMARK 4.1 If there is some uuu ∈ SSSε(ϕ) with ∥∇uuu∥LLL2(Ω) <
µ

KΩ
, where KΩ is defined in (4.2). Then

SSSε(ϕ) = {(uuu, p)}. That is, there is exactly one solution of (3.9) corresponding to ϕ (see for instance
[18, Lemma 12.2] or [14, Lemma 5]). From (4.10), the condition ∥∇uuu∥LLL2(Ω) <

µ

KΩ
can be achieved

for sufficiently large viscosity µ or small data fff and ggg.

Lemma 4.4 Under Assumption 3.2, assume that for (ϕk)k∈N ⊂ L1(Ω), (uuuk)k∈N ⊂ LLL2
(Ω) and ϕ ∈

L1(Ω), uuu ∈ LLL2
(Ω),

lim
k→∞

∥ϕk −ϕ∥L1(Ω) = 0, ϕk → ϕ a.e. and lim
k→∞

∥uuuk −uuu∥LLL2(Ω) = 0.

Then it holds that

lim
k→∞∫Ω

αε(ϕk)∣uuuk∣
2 dx = ∫

Ω

αε(ϕ)∣uuu∣2 dx and lim
k→∞

∥αε(ϕk)uuuk −αε(ϕ)uuu∥LLL2(Ω) = 0.

Proof. Using the ideas of [18, Theorem 5.1] and [14, Theorem 1] we find that

∣∫
Ω

αε(ϕk)∣uuuk∣
2
−αε(ϕ)∣uuu∣2 dx ∣ = ∫

Ω

αε(ϕk)(∣uuuk∣
2
− ∣uuu∣2 )dx +∫

Ω

(αε(ϕk)−αε(ϕ))∣uuu∣2 dx ,

and from αε ∈ L∞(R) we obtain

∫
Ω

αε(ϕk)(∣uuuk∣
2
− ∣uuu∣2) dx ≤ ∥αε∥L∞(R)∥uuuk +uuu∥LLL2(Ω)∥uuuk −uuu∥LLL2(Ω)

k→∞
ÐÐÐ→ 0.
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Moreover, the uniform bound on αε yields by Lebesgue’s dominated convergence theorem

lim
k→∞∫Ω

(αε(ϕk)−αε(ϕ))∣uuu∣2 dx = 0,

which combined with the previous step yields the first assertion. Using a similar idea we find

∥αε(ϕk)uuuk −αε(ϕ)uuu∥LLL2(Ω) ≤ ∥αε(ϕk)(uuuk −uuu)∥LLL2(Ω)+∥(αε(ϕk)−αε(ϕ))uuu∥LLL2(Ω)

≤ ∥αε∥L∞(R)∥uuuk −uuu∥LLL2(Ω)+∥(αε(ϕk)−αε(ϕ))uuu∥LLL2(Ω)
k→∞
ÐÐÐ→ 0,

where we applied Lebesgue’s dominated convergence theorem in order to deduce from αε ∈ L∞(R)

that limk→∞ ∥(αε(ϕk)−αε(ϕ))uuu∥LLL2(Ω) = 0.

With the help of the above lemma, we show a certain continuity property of the solution operator.

Lemma 4.5 Under Assumption 3.2, assume (ϕk)k∈N ⊂ L1(Ω) converges strongly to ϕ ∈ L1(Ω) in
the L1-norm and (uuuk, pk)k∈N ⊂ HHH1

(Ω)×L2(Ω) are given such that (uuuk, pk) ∈ SSSε(ϕk) for all k ∈ N.
Then there is a subsequence, which will be denoted by the same, such that (uuuk, pk)k∈N converges
strongly in HHH1

(Ω)×L2(Ω) to some element (uuu, p) ∈ SSSε(ϕ).

Proof. Let (ϕk)k∈N and (uuuk, pk)k∈N be chosen as in the statement. By passing to another
subsequence, denoted the same, we can without loss of generality assume that ϕk → ϕ almost
everywhere. Invoking (4.8), we obtain a uniform bound on (uuuk, pk) in HHH1

(Ω)× L2(Ω) because
(uuuk, pk) ∈ SSSε(ϕk). And so there is a subsequence, which will be denoted by the same, such that
uuuk converges weakly in HHH1

(Ω) and strongly in LLL2
(Ω) to some limit element uuu ∈ HHH1

ggg,σ(Ω) and pk

converges weakly in L2(Ω) to some limit element p ∈ L2
0(Ω). We now aim to show that

Fk ∶HHH
1
ggg,σ(Ω)→R,

Fk(vvv) ∶= ∫
Ω

1
2

αε(ϕk)∣vvv∣
2
+

µ

2
∣∇vvv∣2+(uuuk ⋅∇)uuuk ⋅vvv− fff ⋅vvvdx ,

Γ-converges in HHH1
ggg,σ(Ω) equipped with the weak topology to

F∞ ∶HHH1
ggg,σ(Ω)→R,

F∞(vvv) ∶= ∫
Ω

1
2

αε(ϕ)∣vvv∣2+
µ

2
∣∇vvv∣2+(uuu ⋅∇)uuu ⋅vvv− fff ⋅vvvdx ,

as k→∞. To see this we first notice that for any sequence (vvvk)k∈N ⊆HHH1
ggg,σ(Ω) converging weakly in

HHH1
(Ω) to vvv ∈HHH1

ggg,σ(Ω), by Fatou’s lemma it holds that

∫
Ω

αε(ϕ)∣vvv∣2 dx ≤ liminf
k→∞ ∫Ω

αε(ϕk)∣vvvk∣
2 dx .

Applying the boundedness and continuity properties of the trilinear form b(⋅, ⋅, ⋅), see Lemma 4.1
and 4.2, we can deduce that limk→∞b(uuuk,uuuk,vvvk) = b(uuu,uuu,vvv). As the remaining terms of Fk are
weakly lower semicontinuous in HHH1

(Ω) and independent of ϕk, we directly obtain

F∞(vvv) ≤ liminf
k→∞

Fk(vvvk).
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Let vvv ∈ HHH1
ggg,σ(Ω) be chosen. We will show, that the constant sequence (vvv)k∈N defines a recovery

sequence. For this purpose, we notice that due to the boundedness and continuity of αε , we have
from Lebesgue’s dominated convergence theorem

lim
k→∞∫Ω

αε(ϕk)∣vvv∣
2 dx = ∫

Ω

αε(ϕ)∣vvv∣2 dx . (4.12)

Invoking (4.5) in Lemma 4.2, we deduce that

lim
k→∞

b(uuuk,uuuk,vvv) = b(uuu,uuu,vvv),

and thus, we obtain that limk→∞Fk(vvv) = F∞(vvv). This shows that the Γ-limit of (Fk)k∈N in HHH1
ggg,σ(Ω)

with respect to the weak topology equals F∞.
Now we notice, that uuuk is exactly the unique minimizer of Fk in HHH1

ggg,σ(Ω), as it fulfils per
definition the necessary and sufficient first order optimality conditions for the convex optimization
problem minuuu∈HHH1

ggg,σ (Ω)Fk(uuu). Hence, the weak HHH1
(Ω) limit of (uuuk)k∈N, which is uuu ∈HHH1

ggg,σ(Ω), is the

unique solution of minuuu∈HHH1
ggg,σ (Ω)F∞(uuu). Thus it holds that

∫
Ω

αε(ϕ)uuu ⋅vvv+µ∇uuu ⋅∇vvv+(uuu ⋅∇)uuu ⋅vvvdx = ∫
Ω

fff ⋅vvvdx ∀vvv ∈HHH1
0,σ(Ω). (4.13)

By [27, Lemma II.2.1.1] we can associate to (4.13) a unique p̃ ∈ L2
0(Ω) such that (3.9) is fulfilled,

and hence p̃ = p. Altogether we have shown (uuu, p) ∈ SSSε(ϕ).
To show the strong convergence in HHH1

(Ω)×L2(Ω), we note that from the Γ-convergence of
(Fk)k∈N to F∞ we obtain additionally that limk→∞Fk(uuuk) = F∞(uuu). Invoking Lemma 4.4 we find

lim
k→∞∫Ω

αε(ϕk)∣uuuk∣
2 dx = ∫

Ω

αε(ϕ)∣uuu∣2 dx .

In addition, by means of (4.7) from Lemma 4.2 we have

lim
k→∞

b(uuuk,uuuk,uuuk) = b(uuu,uuu,uuu).

These two results allow us to deduce from the convergence of the minimal functional values of
(Fk)k∈N that limk→∞ ∫Ω ∣∇uuuk∣

2 dx = ∫Ω ∣∇uuu∣2 dx. Then, together with uuuk ⇀ uuu in HHH1
(Ω) this yields

that limk→∞ ∥uuuk −uuu∥HHH1(Ω) = 0.
Subtracting the state equations (3.9) written for ϕ from the state equations (3.9) written for ϕk,

we find from Lemma 4.4 and (4.5) that

∫
Ω

(pk − p)divvvvdx = ∫
Ω

(αε(ϕk)uuuk −αε(ϕ)uuu) ⋅vvv+µ∇(uuuk −uuu) ⋅∇vvvdx +b(uuuk,uuuk,vvv)−b(uuu,uuu,vvv)

≤ ∥αε(ϕk)uuuk −αε(ϕ)uuu∥LLL2(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k→∞
ÐÐÐ→0

∥vvv∥LLL2(Ω)+µ ∥uuuk −uuu∥HHH1(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k→∞
ÐÐÐ→0

∥vvv∥HHH1(Ω)

+∥b(uuuk,uuuk, ⋅)−b(uuu,uuu, ⋅)∥HHH−1(Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k→∞
ÐÐÐ→0

∥vvv∥HHH1(Ω).



234 H. GARCKE, C. HECHT, M. HINZE, C. KAHLE AND K. F. LAM

Thus limk→∞ ∥∇(pk− p)∥HHH−1(Ω) = 0. Using now the pressure estimate, see for instance [27, Lemma
II.1.5.4], we find

∥pk − p∥L2(Ω) ≤ c∥∇(pk − p)∥HHH−1(Ω)
k→∞
ÐÐÐ→ 0.

Therefore, we deduce that (pk)k∈N converges strongly in L2(Ω) to p.

We make the following assumption regarding h.

ASSUMPTION 4.1 Let h ∶Ω×Rd×d ×R×Rd →R be a Carathéodory function, which fulfils
1. h(⋅,AAA,s,www) ∶Ω→R is measurable for each www ∈Rd ,s ∈R,AAA ∈Rd×d , and
2. h(x, ⋅, ⋅, ⋅) ∶Rd×d ×R×Rd →R is continuous for almost every x ∈Ω.
Moreover, there exist non-negative functions a ∈ L1(Ω), b1,b2,b3 ∈ L∞(Ω) such that for almost
every x ∈Ω it holds

∣h(x,AAA,s,www)∣ ≤ a(x)+b1(x)∣AAA∣
2
+b2(x)∣s∣2+b3(x)∣www∣

2
,

for all www ∈Rd ,s ∈R,AAA ∈Rd×d . Furthermore, the functionalH ∶HHH1
(Ω)×L2(Ω)×H1(Ω)→R defined

as
H(uuu, p,ϕ) ∶= ∫

Ω

M(ϕ)h(x,∇uuu, p,∇ϕ)dx ,

satisfy the following properties
(i) H ∣HHH1

ggg,σ (Ω)×L2
0(Ω)×Φad

is bounded from below, and

(ii) for all ϕn⇀ ϕ in H1(Ω), uuun→ uuu in HHH1
(Ω), pn→ p in L2(Ω), it holds that

H(uuu, p,ϕ) ≤ liminf
n→∞

H(uuun, pn,ϕn).

We then obtain the following existence result for (3.8)–(3.9).

Theorem 4.6 Under Assumptions 3.1, 3.2 and 4.1, there exists at least one minimizer of the optimal
control problem (3.8)–(3.9).

Proof. We may restrict ourselves to considering ϕ ∈ Φad with ϕ ∈ [sa,sb] a.e. in Ω. In fact,
we define as in [22, Proof of Proposition 1] for arbitrary ϕ ∈ Φad the truncated functions ϕ̃ ∶=

max{sa,min{ϕ,sb}} and find Eε(ϕ̃) ≤ Eε(ϕ), where Eε is defined in (3.1). Moreover, by (3.3),
we have αε(ϕ) = αε(ϕ̃) and hence also SSSε(ϕ) = SSSε(ϕ̃). Therefore we obtain

Jh
ε (ϕ̃,uuu, p) ≤ Jh

ε (ϕ,uuu, p) for all (uuu, p) ∈ SSSε(ϕ) = SSSε(ϕ̃).

By Assumption 4.1, H ∣HHH1
ggg,σ (Ω)×L2

0(Ω)×Φad
is bounded below by a constant C0, and so Jh

ε ∶ Φad ×

HHH1
ggg,σ(Ω)×L2

0(Ω) is bounded from below by a constant C1. Thus, we can choose a minimizing
sequence (ϕn,uuun, pn)n∈N ⊂Φad ×HHH1

ggg,σ(Ω)×L2
0(Ω) with (uuun, pn) ∈ SSSε(ϕn) for all n and

lim
n→∞

Jh
ε (ϕn,uuun, pn) = inf

ϕ∈Φad ,(uuu,p)∈SSSε(ϕ)
Jh

ε (ϕ,uuu, p) > −∞.

In particular, from the non-negativity of ψ and αε , we see that for ρ > 0, there exists an N such that
n >N implies

C0+
γε

4c0
∥∇ϕn∥

2
LLL2(Ω) ≤ Jh

ε (ϕn,uuun, pn) ≤ inf
ϕ∈Φad ,(uuu,p)∈SSSε(ϕ)

Jh
ε (ϕ,uuu, p)+ρ.
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Thus, {∇ϕn}n∈N is bounded uniformly in LLL2
(Ω). Moreover, without loss of generality, we may

assume that ϕn(x) ∈ [sa,sb] for a.e. x ∈ Ω and every n ∈ N. And so, we deduce that {ϕn}n∈N is
bounded uniformly in H1(Ω)∩L∞(Ω), and we may choose a subsequence (ϕnk)k∈N that converges
strongly in L2(Ω) and pointwise almost everywhere in Ω to some limit element ϕ ∈Φad .

Using Lemma 4.5 we can deduce that there is a subsequence of (uuunk , pnk)k∈N, denoted by the
same index, such that

lim
k→∞

∥uuunk −uuu∥HHH1(Ω) = 0, lim
k→∞

∥pnk − p∥L2(Ω) = 0, (4.14)

and (uuu, p) ∈ SSSε(ϕ). From Lemma 4.4 we deduce additionally that

lim
k→∞∫Ω

αε(ϕnk)∣uuunk ∣
2

dx = ∫
Ω

αε(ϕ)∣uuu∣2 dx . (4.15)

As supk∈N ∥ψ(ϕnk)∥L∞(Ω) <∞ we can use Lebesgue’s dominated convergence theorem to deduce
limk→∞ ∫Ω ψ(ϕnk)dx = ∫Ω ψ(ϕ)dx. Finally, the weak lower semicontinuity of H1(Ω) ∋ ϕ ↦

∫Ω ∣∇ϕ ∣
2 dx yields

∫
Ω

ε

2
∣∇ϕ ∣

2
+

1
ε

ψ(ϕ)dx ≤ liminf
k→∞ ∫Ω

ε

2
∣∇ϕnk ∣

2
+

1
ε

ψ(ϕnk)dx . (4.16)

Together with the lower semicontinuity assumption onH from Assumption 4.1, we deduce that

Jh
ε (ϕ,uuu, p) ≤ liminf

k→∞
Jh

ε (ϕnk ,uuunk , pnk) = inf
ϕ∈Φad ,(uuu,p)∈SSSε(ϕ)

Jh
ε (ϕ,uuu, p),

and so (ϕ,uuu, p) is a minimizer of (3.8)–(3.9).

By the same arguments, one can show an analogous existence result for the optimal control
problem {(3.9),(3.11)} involving the hydrodynamic force (1.3).

Theorem 4.7 Under Assumptions 3.1 and 3.2, there exists at least one minimizer of the optimization
problem {(3.9),(3.11)} involving the hydrodynamic force (1.3).

Proof. We will prove the assertion for the choiceM(ϕ) =

√
ψ(ϕ)+δε

2 , and the analogous assertion
for the choiceM(ϕ) = 1

2 follows along the same lines.
We first show that {Jε(ϕ,uuu, p) ∣ϕ ∈Φad ,(uuu, p) ∈ SSSε(ϕ)} is bounded from below. We may restrict

ourselves to considering ϕ ∈Φad with ϕ ∈ [sa,sb] a.e. in Ω as in the proof of Theorem 4.6.
Now let ϕ ∈ Φad be arbitrarily chosen with ϕ ∈ [sa,sb] for a.e. x ∈ Ω and choose (uuu, p) ∈ SSSε(ϕ).

From (4.8), we find a constant C2 > 0 independent of ϕ such that

∥uuu∥HHH1(Ω)+∥p∥L2(Ω) <C2.

By construction, we have

ϕ ∈ [sa,sb]Ô⇒ ∥ψ(ϕ)∥L∞(Ω) <C3,

for some constant C3 > 0 independent of ϕ . Then, using the Cauchy–Schwarz inequality, and
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Young’s inequality we have

1
c0
∫

Ω

√
ψ(ϕ)+δε

2 ∇ϕ ⋅(µ (∇uuu+(∇uuu)T )− pI)aaadx

≥ −
1

c0
√

2
∥∇ϕ

√
ψ(ϕ)+δε∥L2(Ω)∥µ (∇uuu+(∇uuu)T )aaa− paaa∥LLL2(Ω)

≥ −
1
c0

√
C3+δε

2 ∥∇ϕ∥L2(Ω) (2µC2+C2) ≥ −
γε

8c0
∥∇ϕ∥

2
L2(Ω)−C4,

where C4 =
(2µ+1)2C2

2
γεc0

(C3+δε) > 0 is independent of ϕ . The non-negativity of αε and ψ yield that

Jε(ϕ,uuu, p) ≥ ∫
Ω

1
c0

√
ψ(ϕ)+δε

2 ∇ϕ ⋅(µ (∇uuu+(∇uuu)T )− pI)aaa+
γ

2c0

ε

2
∣∇ϕ ∣

2 dx

≥ −
γε

8c0
∥∇ϕ∥

2
L2(Ω)−C4+

γε

4c0
∥∇ϕ∥

2
L2(Ω) =

γε

8c0
∥∇ϕ∥

2
L2(Ω)−C4 ≥ −C4.

(4.17)

This shows that {Jε(ϕ,uuu, p) ∣ϕ ∈Φad ,(uuu, p) ∈SSSε(ϕ)} is bounded from below. Hence we may choose
a minimizing sequence (ϕn,uuun, pn)n∈N ⊂Φad ×HHH1

ggg,σ(Ω)×L2
0(Ω) with

lim
n→∞

Jε(ϕn,uuun, pn) = inf
ϕ∈Φad ,(uuu,p)∈SSSε(ϕ)

Jε(ϕ,uuu, p) > −∞.

As before, we deduce that {ϕn}n∈N is bounded uniformly in H1(Ω)∩L∞(Ω), together with Lemma
4.5, we have subsequences (ϕnk ,uuunk , pnk)k∈N that satisfy

lim
k→∞

∥ϕnk −ϕ∥L2(Ω) = 0, lim
k→∞

∥uuunk −uuu∥HHH1(Ω) = 0, lim
k→∞

∥pnk − p∥L2(Ω) = 0,

and (uuu, p) ∈ SSSε(ϕ). To deduce that (ϕ,uuu, p) is a minimizer of {(3.9),(3.11)}, we only need to show
that

liminf
k→∞ ∫Ω

√

ψ(ϕnk)+δε∇ϕnk ⋅(µ (∇uuunk +(∇uuunk)
T )− pnk I)aaadx

≥ ∫
Ω

√
ψ(ϕ)+δε∇ϕ ⋅(µ (∇uuu+(∇uuu)T )− pI)aaadx , (4.18)

as the other integrals in (3.11) are shown to be weakly lower semicontinuous in the proof of Theorem
4.6. We apply now an idea of [22] and define

φ(t) ∶= ∫
t

sa

√
ψ(s)+δε ds, wnk(x) ∶= φ(ϕnk(x)).

Then we see that

Dwnk(x) = φ
′(ϕnk(x))Dϕnk(x) = (

√

ψ(ϕnk(x))+δε)Dϕnk(x).

By the uniform boundedness of (ϕnk)k∈N in H1(Ω)∩L∞(Ω), we find that (ψ(ϕnk))k∈N is uniformly
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bounded in L∞(Ω), and so by the Cauchy–Schwarz inequality,

∥wnk∥
2
L2(Ω) ≤ ∫

Ω

(ϕnk − sa)(∫

ϕnk

sa
(ψ(s)+δε)ds) dx

≤ sup
s∈[sa,sb]

(ψ(s)+δε)∫
Ω

∣ϕnk − sa∣
2

dx ,

∥Dwnk∥
2
LLL2(Ω) ≤ sup

k∈N
(ψ(ϕnk)+δε)∥Dϕnk∥

2
LLL2(Ω).

Thus, we deduce that (wnk)k∈N is bounded uniformly in H1(Ω), and hence there is a subsequence,
denoted by the same index, that converges weakly in H1(Ω) and pointwise almost everywhere in Ω

to some limit element w ∈H1(Ω). Since φ is continuous and limk→∞ϕnk(x) =ϕ(x) for almost every
x ∈Ω, we know that w = φ(ϕ). In particular, the weak convergence of Dwnk to Dw implies that

√

ψ(ϕnk)+δε∇ϕnk ⇀
√

ψ(ϕ)+δε∇ϕ in LLL2
(Ω). (4.19)

Combining (4.14) and (4.19) we obtain from the product of weak-strong convergence:

lim
k→∞∫Ω

√

ψ(ϕnk)+δε∇ϕnk ⋅(µ (∇uuunk +(∇uuunk)
T )− pnk I)aaadx

= ∫
Ω

√
ψ(ϕ)+δε∇ϕ ⋅(µ (∇uuu+(∇uuu)T )− pI)aaadx . (4.20)

Using (4.20), (4.15) and (4.16), we deduce that

Jε(ϕ,uuu, p) ≤ liminf
k→∞

Jε(ϕnk ,uuunk , pnk) = inf
ϕ∈Φad ,(uuu,p)∈SSSε(ϕ)

Jε(ϕ,uuu, p),

and so (ϕ,uuu, p) is a minimizer of {(3.9),(3.11)}.

REMARK 4.2 Note that, for the choice M(ϕ) = 1
2 , the proof of Theorem 4.7 is completed once

we showed that Jε is bounded from below, which can be shown similarly as in (4.17), and (ii) in
Assumption 4.2 has been verified. This follows the product of weak-strong convergence:

lim
k→∞∫Ω

∇ϕnk ⋅(µ (∇uuunk +(∇uuunk)
T )− pnk I)aaadx = ∫

Ω

∇ϕ ⋅(µ (∇uuu+(∇uuu)T )− pI)aaadx . (4.21)

4.2 Optimality conditions

This section is devoted to the derivation of a first order necessary optimality system for the optimal
control problem (3.8)–(3.9). For this purpose, we first show Fréchet differentiability of the solution
operator. We will only be able to show differentiability at certain points where the solution to the
state equations is unique. Otherwise we cannot apply the implicit function theorem in order to
deduce the statement. In the following we will use Remark 4.1 and the condition ∥∇uuuε∥LLL2(Ω) <

µ

KΩ

to ensure the uniqueness of solutions to the state equations for a given ϕε ∈ H1(Ω)∩L∞(Ω). From
(4.10), this is achievable for large viscosities µ or small data fff and ggg. To be precise, we obtain the
following result.
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Lemma 4.8 Under Assumption 3.2, let ϕε ∈ H1(Ω)∩L∞(Ω) be given such that there is (uuuε , pε) ∈

SSSε(ϕε) with ∥∇uuuε∥LLL2(Ω) <
µ

KΩ
. Then there is a neighborhood N of ϕε in H1(Ω)∩L∞(Ω) such that

for every ϕ ∈ N the solution operator consists of exactly one pair, and hence we may write SSSε ∶ N ⊂

H1(Ω)∩L∞(Ω)→HHH1
(Ω)×L2(Ω). This mapping is then differentiable at ϕε with DSSSε(ϕε)(ϕ) =∶

(uuu, p) ∈HHH1
0(Ω)×L2

0(Ω) being the unique solution of the linearized state system

α
′
ε(ϕε)ϕuuuε +αε(ϕε)uuu−µ∆uuu+(uuu ⋅∇)uuuε +(uuuε ⋅∇)uuu+∇p = 000 in Ω, (4.22a)

divuuu = 0 in Ω, (4.22b)
uuu = 000 on ∂Ω. (4.22c)

Proof. As already mentioned, we want to apply the implicit function theorem to prove the
statements of the lemma. For this purpose, we first note that, by [13, Lemma IX.4.2], there exists a
GGG ∈HHH1

ggg,σ(Ω), i.e., GGG satisfies
divGGG = 0 in Ω, GGG ∣∂Ω= ggg.

We define

F ∶ (H1
(Ω)∩L∞(Ω))×HHH1

0(Ω)×L2
0(Ω)→HHH−1

(Ω)×L2
0(Ω), F = (F1,F2),

by

F1(ϕ,uuu, p)vvv ∶= ∫
Ω

αε(ϕ)uuu ⋅vvv+µ∇uuu ⋅∇vvv+(uuu ⋅∇)uuu ⋅vvv− pdivvvv− fff ⋅vvvdx

+∫
Ω

(uuu ⋅∇)GGG ⋅vvv+(GGG ⋅∇)uuu ⋅vvv+αε(ϕ)GGG ⋅vvv+µ∇GGG ⋅∇vvv+(GGG ⋅∇)GGG ⋅vvvdx ,

F2(ϕ,uuu, p) ∶= divuuu,

for all vvv ∈ HHH1
0(Ω). Hence, F(ϕ,uuu−GGG, p) = 0 if and only if (uuu, p) ∈ SSSε(ϕ). Thus in particular we

have F(ϕε ,uuuε −GGG, pε) = 0. Besides, we directly see that the Fréchet differential D(uuu,p)F exists and
is given at (ϕε ,uuuε −GGG, pε) as

D(uuu,p)F1(ϕε ,uuuε −GGG, pε)(uuu, p)vvv = ∫
Ω

αε(ϕε)uuu ⋅vvv+µ∇uuu ⋅∇vvv+(uuu ⋅∇)uuuε ⋅vvvdx

+∫
Ω

(uuuε ⋅∇)uuu ⋅vvv− pdivvvvdx ∀vvv ∈HHH1
0(Ω),

D(uuu,p)F2(ϕε ,uuuε −GGG, pε)(uuu, p) = divuuu.

The assumption ∥∇uuuε∥LLL2(Ω) <
µ

KΩ
, equations (4.1) and (4.3) ensure that, after taking divvvv = 0 into

account,

HHH1
0,σ(Ω)×HHH1

0,σ(Ω) ∋ (uuu,vvv)↦ ∫
Ω

αε(ϕε)uuu ⋅vvv+µ∇uuu ⋅∇vvv+(uuu ⋅∇)uuuε ⋅vvv+(uuuε ⋅∇)uuu ⋅vvvdx

defines a coercive, continuous bilinear form. Hence, we may use the Lax–Milgram theorem and
standard results for the solvability of the divergence operator, see for instance [27, Lemma II.2.1.1],
in order to obtain that D(uuu,p)F(ϕε ,uuuε −GGG, pε) is an isomorphism.

Next, we want to consider the differentiability of F with respect to its first argument. For this
purpose, we have to consider αε ∶ L6(Ω)→ L

3
2 (Ω) as a Nemytskii operator, making in particular
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use of the embedding H1(Ω)↪ L6(Ω). The results in [29, Section 4.3.3] ensure that αε ∶ L6(Ω)→

L
3
2 (Ω) defines a Fréchet-differentiable Nemytskii operator, which follows from the assumption

αε ∈ L∞(R)∩C1,1(R). We can then conclude directly that F is Fréchet differentiable with respect
to its first argument with

Dϕ F1(ϕ,uuu−GGG, p)(ϕ̃)vvv = ∫
Ω

α
′
ε(ϕ)ϕ̃uuu ⋅vvvdx , Dϕ F2(ϕ,uuu−GGG, p) = 0.

Additionally, we need that F is Fréchet differentiable in a neighborhood of (ϕε ,uuuε , pε). To show
this, we will use [31, Proposition 4.14], i.e., we show that the partial derivatives are continuous in
order to conclude that F is Fréchet differentiable. Thus, let (ϕk,uuuk, pk)k∈N ⊂ (H1(Ω)∩L∞(Ω))×

HHH1
0(Ω)×L2

0(Ω) be sequences with

lim
k→∞

∥uuuk −uuu∥HHH1(Ω) = 0, lim
k→∞

∥pk − p∥L2(Ω) = 0, lim
k→∞

∥ϕk −ϕ∥H1(Ω)∩L∞(Ω) = 0.

As αε ∶ L6(Ω)→ L
3
2 (Ω) defines a continuous Nemytskii-operator, making additionally use of the

continuity properties of the trilinear form as stated in Lemma 4.2, we can deduce that

lim
k→∞

∥D(uuu,p)F(ϕk,uuuk, pk)−D(uuu,p)F(ϕ,uuu, p)∥L(HHH1
0(Ω)×L2

0(Ω),HHH−1(Ω)×L2
0(Ω)) = 0.

Moreover, from α
′
ε ∈ C0,1 and standard results for Nemytskii operators we find that L6(Ω) ∋

ϕ ↦ α
′
ε(ϕ) ∈ L6(Ω) is continuous. And thus we also find by direct calculations that

limk→∞ ∥Dϕ F(ϕk,uuuk, pk)−Dϕ F(ϕ,uuu, p)∥L(H1(Ω),HHH−1(Ω)×L2
0(Ω)) = 0. Therefore, we obtain that F

is Fréchet differentiable.
Finally, applying the implicit function theorem, we obtain for ∥ϕ −ϕε∥H1(Ω)∩L∞(Ω) ≪ 1 the

existence and uniqueness of a pair (uuu, p) such that F(ϕ,uuu−GGG, p) = 0, i.e., (uuu, p) ∈ SSSε(ϕ). This
implies the first part of the statement. The second part of the lemma is a consequence of the
differentiability statement of the implicit function theorem:

DSSSε(ϕε) = −(D(uuu,p)F(ϕε ,uuuε −GGG, pε))
−1
○Dϕ F(ϕε ,uuuε −GGG, pε),

which reads in our setting as divuuu = 0 and

∫
Ω

α
′
ε(ϕε)ϕuuuε ⋅vvv+αε(ϕε)uuu ⋅vvv+µ∇uuu ⋅∇vvvdx

+∫
Ω

(uuu ⋅∇)uuuε ⋅vvv+(uuuε ⋅∇)uuu ⋅vvv− pdivvvvdx = 0 ∀vvv ∈HHH1
0(Ω). (4.23)

We denote by Dih(x,AAA,s,www) for i ∈ {1,2,3,4} as the differential of

Ω×Rd×d
×R×Rd

∋ (x,AAA,s,www)↦ h(x,AAA,s,www)

with respect to the i-th variable, respectively.

ASSUMPTION 4.2 In addition to Assumption 4.1, assume further that x↦ h(x,AAA,s,www) is in W 1,1(Ω)

for all (AAA,s,www) ∈Rd×d ×R×Rd and the partial derivatives

D2h(x, ⋅,s,www), D3h(x,AAA, ⋅,www), D4h(x,AAA,s, ⋅)
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exist for all www ∈Rd , s ∈R, AAA ∈Rd×d , and almost all x ∈Ω. Moreover, we assume that

∣Dih(x,AAA,s,www)∣ ≤ ã(x)+ b̃1(x)∣AAA∣+ b̃2(x)∣s∣+ b̃3(x)∣www∣ , for i ∈ {2,3,4}, (4.24)

for some non-negative ã ∈ L2(Ω), b̃1, b̃2, b̃3 ∈ L∞(Ω).

From Assumption 4.2 we see that

(L2
(Ω))

d×d
∋ AAA↦D2h(⋅,AAA,s,www) ∈ L2

(Ω),

L2
(Ω) ∋ s↦D3h(⋅,AAA,s,www) ∈ L2

(Ω),

(L2
(Ω))

d
∋www↦D4h(⋅,AAA,s,www) ∈ L2

(Ω),

are well-defined Nemytskii operators for AAA ∈ (L2(Ω))d×d , s ∈ L2(Ω), and www ∈ (L2(Ω))d if and only
if (4.24) is fulfilled. Moreover, the operator

(L2
(Ω))

d×d
×L2

(Ω)×(L2
(Ω))

d
∋ (AAA,s,www)↦ h(⋅,AAA,s,www) ∈ L1

(Ω)

is continuously Fréchet differentiable.
Next, by Assumption 3.1, ψ ∈C1,1(R), we have that Dy(

√
ψ(y)+δε) is locally Lipschitz and

thus the Nemytskii operator

L∞(Ω) ∋ ϕ ↦
√

ψ(ϕ)+δε ∈ L∞(Ω)

is continuously Fréchet differentiable. Hence, we find that

H ∶HHH1
(Ω)×L2

(Ω)×(H1
(Ω)∩L∞(Ω)) ∋ (uuu, p,ϕ)↦ ∫

Ω

M(ϕ)h(x,∇uuu, p,∇ϕ)dx

is continuously Fréchet differentiable and its distributional derivative is given as

DH(uuu, p,ϕ)(vvv,s,η) = ∫
Ω

M(ϕ)(D2h,D3h,D4h) ∣(x,∇uuu,p,∇ϕ) ⋅(∇vvv,s,∇η)dx

+∫
Ω

h(x,∇uuu, p,∇ϕ)M
′
(ϕ)η dx . (4.25)

We note that for the choiceM(ϕ) = 1
2 , the second integral on the right hand side of (4.25) vanishes

as the Fréchet derivative of 1
2 is the zero functional. On the other hand, for the choice M(ϕ) =

1
c0

√
ψ(ϕ)+δε

2 , the Fréchet derivative is given as

M
′
(ϕ) =

1
c0

ψ
′(ϕ)

2
√

2(ψ(ϕ)+δε)
. (4.26)

Before formulating the optimality system we want to discuss the adjoint system. The pair of adjoint
variables (qqqε ,πε) ∈ HHH1

0(Ω)×L2(Ω) is the weak solution of the adjoint system, which is given as
follows: find (qqqε ,πε) ∈HHH1

0(Ω)×L2(Ω) such that

αε(ϕε)(qqqε −uuuε)−µ div(∇qqqε +(∇qqqε)
T
)+(∇uuuε)

T qqqε −(uuuε ⋅∇)qqqε +∇πε

= −div (M(ϕε)D2h) in Ω, (4.27a)
divqqqε = −M(ϕε)D3h+ϑε in Ω, (4.27b)

qqqε = 000 on ∂Ω, (4.27c)
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where D2h,D3h are evaluated at (x,∇uuuε , pε ,∇ϕε) and

ϑε ∶= ⨏
Ω

M(ϕε)D3h(x,∇uuuε , pε ,∇ϕε)dx . (4.28)

REMARK 4.3 The parameter ϑε ∈ R can be interpreted as a Lagrange multiplier for the constraint
∫Ω pdx = 0. By carrying out the formal Lagrange method as described for instance in [19, 29] and
appending the mean value condition on the pressure p with some Lagrange multiplier ϑε to the
Lagrangian, one obtains that ϑε appears in the adjoint system as in (4.27).

The next lemma shows that the system (4.27) is uniquely solvable.

Lemma 4.9 Let Assumptions 3.1, 3.2, and 4.2 hold, and let ϕε ∈H1(Ω)∩L∞(Ω) and uuuε ∈HHH1
ggg,σ(Ω)

such that ∥∇uuuε∥LLL2(Ω) <
µ

KΩ
be given. Then there exists a unique solution pair (qqqε ,πε) ∈ HHH1

0(Ω)×

L2(Ω) of the adjoint system (4.27).

Proof. First, we notice that by definition of ϑε (4.28), it holds that

∫
Ω

M(ϕε)D3h(x,∇uuuε , pε ,∇ϕε)−ϑε dx = 0.

As ϕε ∈ L∞(Ω), we haveM(ϕε) ∈ L∞(Ω) for either choices. Thus, by Assumption 4.2, we obtain
that M(ϕε)D3h ∈ L2(Ω). So, from standard results, see for instance [27, Lemma II.2.1.1], we
deduce the existence of some www ∈HHH1

0(Ω) such that

divwww = −M(ϕε)D3h+ϑε .

Note that, by the density of CCC∞
0,σ(Ω) ∶= {vvv ∈ (C∞

0 (Ω))d ∣divvvv = 0} in HHH1
0,σ(Ω) (see [27, Lemma

II.2.2.3]), for any vvv ∈HHH1
0,σ(Ω), there exists a sequence {vvvn}n∈N ⊂CCC∞

0,σ(Ω) such that

∥vvvn
−vvv∥HHH1(Ω)→ 0 as n→∞.

Thus, for any yyy ∈HHH1
0(Ω),vvv ∈HHH1

0,σ(Ω), we find that by the commutativity of second derivatives,

∫
Ω

∇yyy ⋅(∇vvv)T dx = lim
n→∞∫Ω

∇yyy ⋅(∇vvvn
)

T dx

= lim
n→∞

d

∑
i, j=1
∫

Ω

∂iy j∂ jvn
i dx

= lim
n→∞

d

∑
i, j=1

(∫
∂Ω

y j∂ jvn
i ν∂Ω,i dH

d−1
−∫

Ω

y j∂ j∂ivn
i dx)

= lim
n→∞∫∂Ω

(yyy ⋅∇)vvvn
⋅ννν∂Ω dHd−1

−∫
Ω

yyy ⋅∇(divvvvn
)dx = 0.

(4.29)

We define the bilinear form a ∶HHH1
0,σ(Ω)×HHH1

0,σ(Ω)→ (HHH1
0,σ(Ω))

′
by

a(uuu,vvv) ∶= ∫
Ω

αε(ϕε)uuu ⋅vvv+µ∇uuu ⋅(∇vvv+(∇vvv)T
)+(∇uuuε)

T uuu ⋅vvv−(uuuε ⋅∇)uuu ⋅vvvdx

= ∫
Ω

αε(ϕε)uuu ⋅vvv+µ∇uuu ⋅∇vvv+(∇uuuε)
T uuu ⋅vvv−(uuuε ⋅∇)uuu ⋅vvvdx ,

(4.30)
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where we have used (4.29) for uuu,vvv ∈ HHH1
0,σ(Ω). Making use of ∥∇uuuε∥LLL2(Ω) <

µ

KΩ
, (4.1), (4.3), and

the Poincaré inequality, we can establish that a(⋅, ⋅) is a coercive bilinear form, i.e., there exists a
constant c(µ, ∣Ω∣) > 0 such that,

a(uuu,uuu) = ∫
Ω

αε(ϕε)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

≥0

∣uuu∣2+µ ∣∇uuu∣2 dx +b(uuu,uuuε ,uuu)−b(uuuε ,uuu,uuu)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (4.3)

≥ µ∥∇uuu∥2
LLL2(Ω)−KΩ∥∇uuu∥2

LLL2(Ω)∥∇uuuε∥LLL2(Ω) ≥ c(µ, ∣Ω∣)∥uuu∥2
HHH1

0(Ω).

Meanwhile, the boundedness of the bilinear form a(⋅, ⋅) in HHH1
0,σ(Ω)×HHH1

0,σ(Ω) can be shown using
(4.1), the boundedness of αε , Hölder’s inequality and the assumption ∥∇uuuε∥LLL2(Ω) <

µ

KΩ
. Thus, by

the Lax–Milgram theorem, we obtain a unique q̂qq ∈HHH1
0,σ(Ω) such that

a(q̂qq,vvv) = ∫
Ω

αε(ϕε)uuuε ⋅vvv+M(ϕε)(D2h ⋅∇vvv)dx −a(www,vvv) ∀vvv ∈HHH1
0,σ(Ω). (4.31)

We note that the integral terms are well-defined due to Assumption 4.2 and the boundedness of αε .
We set qqqε ∶= q̂qq+www. The existence of πε ∈ L2(Ω) follows from standard results, see for instance [27,
Lemma II.2.2.1]. Thus, (qqqε ,πε) is the unique weak solution of the adjoint system (4.27).

Now we can formulate necessary optimality conditions for our optimal control problem.

Theorem 4.10 Let (ϕε ,uuuε , pε) ∈ (Φad ∩L∞(Ω))×HHH1
ggg,σ(Ω)×L2

0(Ω) be a minimizer of Jh
ε such that

∥∇uuuε∥LLL2(Ω) <
µ

KΩ
. Then, there exists a Lagrange multiplier λε ∈ R for the integral constraint such

that

(α
′
ε(ϕε)(

1
2
∣uuuε ∣

2
−uuuε ⋅qqqε)+

γ

2c0ε
ψ
′
(ϕε)+λε +M

′
(ϕε)h(x,∇uuuε , pε ,∇ϕε),ζ)

L2(Ω)

+(M(ϕε)D4h(x,∇uuuε , pε ,∇ϕε)+
γε

2c0
∇ϕε ,∇ζ)

LLL2(Ω)

= 0 ∀ζ ∈H1
(Ω)∩L∞(Ω). (4.32)

Here, (qqqε ,πε) ∈HHH1
0(Ω)×L2(Ω) is the unique weak solution of the adjoint system (4.27).

Proof. We rewrite the problem (3.8)–(3.9) as a minimizing problem for a reduced objective
functional defined on an open set in H1(Ω)∩L∞(Ω) by making use of Lemma 4.8. In particular, at
least in a neighborhood N ⊂ H1(Ω)∩L∞(Ω) of ϕε , the solution operator SSSε is not set-valued, but
for every ϕ ∈ N we have SSSε(ϕ) = {(uuu, p)}. Thus we may define the reduced functional jh

ε ∶ N → R
by

jh
ε(ϕ) ∶= Jh

ε (ϕ,SSSε(ϕ)).

Then, ϕε is also a local minimizer of jh
ε . Hence, the gradient equation

D jh
ε(ϕε)(ζ) = 0 ∀ζ ∈H1

(Ω)∩L∞(Ω), ∫
Ω

ζ dx = 0, (4.33)

would be fulfilled if jh
ε would be differentiable.
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We will show in the next step that jh
ε is differentiable at ϕε as a mapping from H1(Ω)∩L∞(Ω) to

R. Lemma 4.8 already ensures that the solution operator SSSε is differentiable from H1(Ω)∩L∞(Ω)

to HHH1
(Ω)×L2(Ω). Thus we now look at dependence of Jh

ε on the first variable. For this purpose we
find first as in the proof of Lemma 4.8 that αε ∶L6(Ω)→L

3
2 (Ω) is a Fréchet differentiable Nemytskii

operator, and hence

H1
(Ω) ∋ ϕ ↦ ∫

Ω

αε(ϕ)∣uuu∣2 dx

is Fréchet differentiable for any uuu ∈HHH1
(Ω). With similar results, i.e., by making use of [29, Section

4.3.3], we also find that

L∞(Ω) ∋ ϕ ↦ψ(ϕ) ∈ L∞(Ω), L∞(Ω) ∋ ϕ ↦ ∫
Ω

ψ(ϕ)dx ,

H1
(Ω) ∋ ϕ ↦∇ϕ ∈ LLL2

(Ω), H1
(Ω) ∋ ϕ ↦ ∫

Ω

∣∇ϕ ∣
2 dx

are differentiable. Combining these results and the Fréchet differentiability of H, we find that jh
ε ∶

N→R is differentiable. Hence we may conclude by the minimizing property of ϕε that the gradient
equation (4.33) is fulfilled. Then, from (4.33) we find that

0 =D jh
ε(ϕε)(ζ −⨏

Ω

ζ dx) =D jh
ε(ϕε)(ζ)+λε ∫

Ω

ζ dx ∀ζ ∈H1
(Ω)∩L∞(Ω), (4.34)

where we defined
λε ∶= − ∣Ω∣

−1 D jε(ϕε) ∈R. (4.35)

In particular, we interpret λε ∈R as a Lagrange multiplier for the integral constraint ∫Ω ϕ dx = β ∣Ω∣.
We now want to rewrite (4.34) into a more convenient form by using the adjoint variable qqqε ,

which is defined as the solution of (4.27). For this purpose we start calculating the derivative of jh
ε .

We find for every ζ ∈H1(Ω)∩L∞(Ω) the following formula:

D jh
ε(ϕε)(ζ) = ∫

Ω

1
2

α
′
ε(ϕε)ζ ∣uuuε ∣

2
+αε(ϕε)uuuε ⋅uuudx

+
γ

2c0
∫

Ω

ε∇ϕε ⋅∇ζ +
1
ε

ψ
′
(ϕε)ζ dx

+∫
Ω

M(ϕε)(D2h,D3h,D4h) ∣(x,∇uuuε ,pε ,∇ϕε) ⋅(∇uuu, p,∇ζ)dx

+∫
Ω

h(x,∇uuuε , pε ,∇ϕε)M
′
(ϕε)ζ dx .

(4.36)

where SSSε(ϕε) = {(uuuε , pε)} and (uuu, p) ∶=DSSSε(ϕε)(ζ) is the solution of the linearized state equation
(4.22). Now we use the adjoint state qqqε as a test function in the linearized state equation (4.22) and
find that

∫
Ω

α
′
ε(ϕε)ϕuuuε ⋅qqqε +αε(ϕε)uuu ⋅qqqε +µ∇uuu ⋅∇qqqε dx

+∫
Ω

(uuu ⋅∇)uuuε ⋅qqqε +(uuuε ⋅∇)uuu ⋅qqqε + p(M(ϕε)D3h−ϑε)dx = 0, (4.37)
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where D3h is evaluated at (x,∇uuuε , pε ,∇ϕε). Then we use the linearized state uuu ∈ HHH1
0,σ(Ω) as a test

function in (4.31) and obtain

∫
Ω

αε(ϕε)qqqε ⋅uuu+µ∇qqqε ⋅∇uuu+(∇uuuε)
T qqqε ⋅uuu−(uuuε ⋅∇)qqqε ⋅uuudx

= ∫
Ω

αε(ϕε)uuuε ⋅uuu+M(ϕε)(D2h ⋅∇uuu) dx , (4.38)

where D2h is evaluated at (x,∇uuuε , pε ,∇ϕε). Comparing (4.37) and (4.38) yields the following
identity

∫
Ω

α
′
ε(ϕε)ϕuuuε ⋅qqqε +αε(ϕε)uuuε ⋅uuu+M(ϕε)(D2h ⋅∇uuu+ pD3h) dx = 0, (4.39)

where we have used that p ∈ L2
0(Ω), divuuuε = 0 in Ω, uuu = qqqε = 000 on ∂Ω, and thus

∫
Ω

pϑε dx = ϑε ∫
Ω

pdx = 0,

∫
Ω

(uuuε ⋅∇)qqqε ⋅uuu+(uuuε ⋅∇)uuu ⋅qqqε dx = ∫
Ω

uuuε ⋅∇(qqqε ⋅uuu)dx = 0.

Hence, by using (4.39), we can rewrite (4.36) as follows:

D jε(ϕε)(ζ) = ∫
Ω

α
′
ε(ϕε)ζ (

1
2
∣uuuε ∣

2
−uuuε ⋅qqqε)+

γε

2c0
∇ϕε ⋅∇ζ +

γ

2c0ε
ψ
′
(ϕε)ζ dx

+∫
Ω

M(ϕε)D4h(x,∇uuuε , pε ,∇ϕε) ⋅∇ζ +h(x,∇uuuε , pε ,∇ϕε)M
′
(ϕε)ζ dx . (4.40)

Together with (4.34), this yields the statement of the theorem.

The analogous optimality condition for the optimization problem {(3.9),(3.11)} involving the
hydrodynamic force (1.3) is given as follows.

Theorem 4.11 Let (ϕε ,uuuε , pε) ∈ (Φad∩L∞(Ω))×HHH1
ggg,σ(Ω)×L2

0(Ω) be a minimizer of optimization
problem {(3.9),(3.11)} involving the hydrodynamic force (1.3) with ∥∇uuuε∥LLL2(Ω) <

µ

KΩ
, thus in

particular, SSSε(ϕε) = {(uuuε , pε)}. Then, there exists a Lagrange multiplier λε ∈ R for the integral
constraint such that

(α
′
ε(ϕε)(

1
2
∣uuuε ∣

2
−uuuε ⋅qqqε)+

γ

2c0ε
ψ
′
(ϕε)+λε +M

′
(ϕε)∇ϕε ⋅(σσσ ε aaa) ,ζ)

L2(Ω)

+(M(ϕε)σσσ ε aaa+
γε

2c0
∇ϕε ,∇ζ)

LLL2(Ω)

= 0 ∀ζ ∈H1
(Ω)∩L∞(Ω), (4.41)

where σσσ ε ∶= µ (∇uuuε +(∇uuuε)
T ))− pε I , and (qqqε ,πε) ∈ HHH1

0(Ω)×L2(Ω) is the unique weak solution
of the adjoint system

αε(ϕε)(qqqε −uuuε)−µ∇⋅(∇qqqε +(∇qqqε)
T
)+(∇uuuε)

T qqqε −(uuuε ⋅∇)qqqε +∇πε

= −µ (div (M(ϕε)∇ϕε)aaa+∇(M(ϕε)∇ϕε)aaa) in Ω, (4.42a)

divqqqε =M(ϕε)∇ϕε ⋅aaa−⨏
Ω

M(ϕε)∇ϕε ⋅aaadx in Ω, (4.42b)

qqqε = 000 on ∂Ω. (4.42c)



SHAPE OPTIMIZATION FOR SURFACE FUNCTIONALS IN NAVIER-STOKES FLOW 245

Proof. Note that for the hydrodynamic force (1.3), we have

h(x,∇uuuε , pε ,∇ϕε) =∇ϕε ⋅(µ(∇uuuε +(∇uuuε)
T )− pε I)aaa,

and so we compute that

D2h = µ (∇ϕε ⊗aaa+aaa⊗∇ϕε) , D3h = −aaa ⋅∇ϕε ,

D4h = (µ(∇uuuε +(∇uuuε)
T
)− pε I)aaa.

As aaa is a constant vector, (4.24) in Assumption 4.2 is satisfied and the statements follow from the
application of Theorem 4.10.

REMARK 4.4 After using integration by parts, we find that we can rewrite the gradient equation
(4.41) for the hydrodynamic force formally in the strong form as

−
γ

2c0
(ε∆ϕε −

1
ε

ψ
′
(ϕε))+λε +α

′
ε(ϕε)(

1
2
∣uuuε ∣

2
−uuuε ⋅qqqε)−M(ϕε)div(σσσ ε aaa) = 0 in Ω, (4.43)

with the boundary condition

γε

2c0
∇ϕε ⋅ννν∂Ω+M(ϕε)ννν∂Ω ⋅(σσσ ε aaa) = 0 on ∂Ω. (4.44)

Moreover, with sufficiently smooth solutions, we can make use of the state equation (3.4a) to rewrite
(4.43) as:

−
γ

2c0
(ε∆ϕε −

1
ε

ψ
′
(ϕε))+λε +α

′
ε(ϕε)(

1
2
∣uuuε ∣

2
−uuuε ⋅qqqε)

+M(ϕε)( fff −αε(ϕε)uuuε −(uuuε ⋅∇)uuuε) ⋅aaa = 0. (4.45)

REMARK 4.5 We note that the above analysis of (3.8)–(3.9) can be modified to include a Dirichlet
condition for the design function ϕε on ∂Ω, for instance ϕε = 1 on ∂Ω. This amounts to changing
the space of admissible design functions to

Φad = {ϕ ∈H1
(Ω) ∣ ∫

Ω

ϕ dx = β ∣Ω∣ and ϕ = 1 on ∂Ω}.

Then, in the optimality conditions (4.32) and (4.41), and also in (4.33) and (4.34), we use test
functions ζ ∈H1

0 (Ω)∩L∞(Ω). Moreover, from Remark 4.4, the strong form of the resulting gradient
equation (4.41) remains as (4.43) (or (4.45)), but now with the boundary condition

ϕε = 1 on ∂Ω.

5. Sharp interface asymptotics for the hydrodynamic force

In Section 3, we introduced the diffuse interface problem (3.8)–(3.9) as an approximation of the
shape optimization problem (2.3)–(2.4) for a general functional h. In Section 4, the existence of a
minimizer (ϕε ,uuuε , pε) to (3.8)–(3.9) for every fixed ε > 0 is guaranteed by Theorem 4.6, and the
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first order necessary optimality condition is given in Theorem 4.10. The analogous results for the
hydrodynamic force problem {(3.9),(3.11)} are also presented in Theorem 4.7 and Theorem 4.11.

In this section, we focus only the hydrodynamic force problem {(3.9),(3.11)} and carry out
a sharp interface limit of the system {(3.4),(4.42),(4.45)} by the method of formally matched
asymptotic expansions. We hereby recover the optimality conditions expected from the classical
shape sensitivity analysis presented in Section 2 in the limit ε ↘ 0. For an introduction and more
detailed discussion of the techniques and basic assumptions used in the method of formally matched
asymptotic analysis we refer for instance to [12, 16].

In the asymptotic analysis, we assume there are sufficient smooth solutions to the system
{(3.4),(4.42),(4.43)}, and hence we consider (4.45) instead of (4.43) in the sequel as the analysis
is comparatively easier.

ASSUMPTION 5.1 We assume that for small ε , the domain Ω can be divided into two open
subdomains Ω

±(ε), separated by an interface Γ(ε). Furthermore, we assume that there is a family
(ϕε ,uuuε , pε ,qqqε ,πε ,λε ,ϑε)ε>0 of solutions to {(3.4),(4.42),(4.45)}, which are sufficiently smooth
and have an asymptotic expansion in ε in the bulk regions away from Γ(ε) (the outer expansion,
see Section 5.1), and another expansion in the interfacial region (inner expansions, see Section 5.2),
see also [12, 16] for a detailed formulation.

The general idea is to show that the leading order expansions (ϕ0,uuu0, p0,q0,π0,λ0,ϑ0) satisfy
(2.4), (2.7) and the strong form of (2.6) with additional perimeter regularization and volume
constraint. For the remainder of this section, we will make use of the following assumptions
extensively.

ASSUMPTION 5.2 The correction constant δε and the interpolation function αε fulfill

δε = ε
k, k > 1, αε(t) =

1
ε

α̂(t),

where α̂ ∈C1,1(R)∩L∞(R) satisfies

α̂(−1) > 0, α̂(1) = α̂
′
(1) = 0, α̂(t) ≠ 0 for t ≠ 1. (5.1)

Moreover, we assume that the potential ψ ∈C2(R) satisfies

ψ(±1) =ψ
′
(±1) = 0. (5.2)

For the terms involving the square root, we make use of the following expansion for a = a0 +

εa1+ε
2a2+ . . ., which holds due to Taylor’s theorem,

√
a+δε =

√
a0+εa1+ . . .+εk(ak +1)+ . . . =

√
a0+

1
2
√

a0
[εa1+ . . .+ε

k
(ak +1)+ . . .]

−
1

4
√

a3
0

[εa1+ . . .+ε
k
(ak +1)+ . . .]

2
+ . . . . (5.3)

5.1 Outer expansions

We assume that for vε ∈ {ϕε ,uuuε , pε ,λε ,ϑε ,qqqε ,πε}, the following outer expansions hold:

vε = v0+εv1+ . . . .
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Applying Taylor’s theorem and (5.3), for the choice M(ϕε) =
1√
2c0

√
ψ(ϕε)+δε , we obtain

following outer expansion

M(ϕε) =M(ϕ0+εϕ1+ . . .)

=
1

√
2c0

(

√

ψ(ϕ0)+ψ ′(ϕ0)(εϕ1+ . . .)+ . . .+ψ(k)(ϕ0)(εϕ1+ . . .)k + . . .)

=
1

√
2c0

(
√

ψ(ϕ0)+
εψ

′(ϕ0)ϕ1

2
√

ψ(ϕ0)
+O(ε

2
)) =∶M0(ϕ0)+εM1(ϕ0)ϕ1+ h.o.t..

(5.4)

We remark that, for the classical smooth double-well potential ψ(ϕ) = 1
4(1−ϕ

2)2, one can compute
that

lim
s↘−1

ψ
′(s)

√
ψ(s)

= 2, lim
s↗1

ψ
′(s)

√
ψ(s)

= −2,

and soM1(±1) is well-defined for the smooth double-well potential. We denote (⋅)
β

O to be the order
β outer expansions of equation (⋅). To leading order (3.4a)−1

O gives

α̂(ϕ0)uuu0 = 000. (5.5)

By (5.1), if ϕ0 ≠ 1, we then obtain uuu0 = 000. Similarly, to leading order (4.42a)−1
O gives

α̂(ϕ0)qqq0 = α̂(ϕ0)uuu0. (5.6)

Thus, if ϕ0 ≠ 1, then qqq0 = uuu0 = 000. Meanwhile, (3.4b)0
O, (3.4c)0

O, and (4.42c)0
O give

divuuu0 = 0 in Ω,

uuu0 = ggg, qqq0 = 000 on ∂Ω.

To order −1, (4.45)−1
O gives

α̂
′
(ϕ0)(

1
2
∣uuu0∣

2
−uuu0 ⋅qqq0) = −

γ

2c0
ψ
′
(ϕ0). (5.7)

If ϕ0 ≠ 1, then from (5.5), (5.6), and (5.1), we have that

−ψ
′
(ϕ0) = 0. (5.8)

Hence, ϕ0 must be a piecewise constant function that takes values equal to the roots of ψ
′(⋅). The

stable solutions to (5.8) are ϕ0 =±1. In particular, we can define the fluid region and the solid region
by

E ∶= {x ∈Ω ∣ ϕ0(x) = 1}, B ∶= {x ∈Ω ∣ ϕ0(x) = −1},

respectively. Moreover, from (5.5) and (5.6) we have

uuu0 = qqq0 = 000 in B. (5.9)

Furthermore, as ϕ0 = ±1, we have ∇ϕ0 = 000 in E and B, and so, ϑ0 = 0 by the definition (4.28). From
(4.42b)0

O we have
divqqq0 = 0 in E ∪B. (5.10)
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The next order (3.4a)0
O gives

α̂
′
(ϕ0)ϕ1uuu0+ α̂(ϕ0)uuu1−µ∆uuu0+(uuu0 ⋅∇)uuu0+∇p0 = fff . (5.11)

By (5.1), for ϕ0 = 1, we obtain

−µ∆uuu0+(uuu0 ⋅∇)uuu0+∇p0 = fff in E. (5.12)

Similarly, (4.42a)0
O gives

α̂
′
(ϕ0)ϕ1(qqq0−uuu0)+ α̂(ϕ0)(qqq1−uuu1)−µ div(∇qqq0+(∇qqq0)

T
)

+(∇uuu0)
T qqq0−(uuu0 ⋅∇)qqq0+∇π0 = 000. (5.13)

For ϕ0 = 1, we obtain

−µ∆qqq0+(∇uuu0)
T qqq0−(uuu0 ⋅∇)qqq0+∇π0 = 000 in E,

where we have used (5.10) to simplify the divergence term. Thus, we have recovered (2.4a), (2.4b),
(2.4c), (2.7a), (2.7b), and (2.7d).

5.2 Inner expansions and matching conditions

To recover the boundary conditions (2.4d), (2.7c) and the strong form of the shape derivative (2.6)
with additional perimeter regularization and volume constraint, we now consider the interfacial
region, i.e., near some free boundary Γ = ∂E ∩∂B which is assumed to be the limiting hypersurface
of the zero level sets of ϕε . For studying the limiting behaviour in these parts of Ω we introduce
new coordinates with the help of the signed distance function d(x) to Γ and set z = d

ε
as the rescaled

distance variable. Here we use the sign convention d(x) > 0 if x ∈ E and d(x) < 0 if x ∈ B.
Let γ(s) denote a parametrization of Γ by arc-length s, and let ννν denote the outward unit normal

of Γ. Then, in a tubular neighborhood of Γ, for sufficiently smooth function v(x), we have

v(x) = v(γ(s)+εzννν(γ(s))) =∶V(s,z).

In this new (s,z)-coordinate system, the following change of variables apply, see [16]:

∇xv =
1
ε

∂zV ννν +∇ΓV + h.o.t.,

where ∇Γ f denotes the surface gradient of f on Γ with components (Dk f )1≤k≤d and h.o.t. denotes
higher order terms with respect to ε . Moreover, if vvv is a vector-valued function, then we obtain

div xvvv =
1
ε

∂zVVV ⋅ννν + divΓVVV + h.o.t.,

where divΓ denotes the surface divergence. In particular, using the fact that the normal ννν is
independent of z, we have

∆v = div x(∇xv) =
1
ε2 ∂zzV +

1
ε

divΓ(∂zV ννν)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−κ∂zV

+ h.o.t.,
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where κ = −divΓννν is the mean curvature.
We denote the variables ϕε , uuuε , pε , qqqε , πε in the new coordinate system by Φε , UUUε , Pε , QQQε , Πε .

We further assume that they have the following inner expansions:

Vε(s,z) =V0(s,z)+εV1(s,z)+ . . . ,

for Vε ∈ {Φε ,UUUε ,Pε ,QQQε ,Πε}. We then obtain,

M(Φε) =M0(Φ0)+εM1(Φ0)Φ1+ h.o.t.,

whereM0,M1 are as defined in (5.4) if we considerM(ϕ) = 1
c0

√
ψ(ϕ)+δε

2 . We remark that, for a
sufficiently smooth function fff independent of ε ,

fff (x) = fff (γ(s)+εzννν(s)) = fff (γ(s))+εz∇ fff (γ(s)) ⋅ννν + h.o.t.

=∶ FFF0(s)+εFFF1(s,z)+ h.o.t.,

for x in a neighborhood of Γ. As a consequence, we see that

∂zFFF0 = 000. (5.14)

As the Lagrange multipliers λε and ϑε are constants by definition, we assume that their inner
expansions are the same as their outer expansions. In particular, the leading order inner expansions
of the Lagrange multipliers do not depend on z, as in (5.14). Furthermore, the assumption that the
zero level set of ϕε converge to Γ implies that

Φ0(0) = 0. (5.15)

In a tubular neighborhood of Γ the solution (ϕε ,uuuε , pε ,qε ,πε ,λε ,ϑε) is represented by an outer
and an inner expansion. Thus, we require that these two expansions match. In order to match the
inner expansions valid in the interfacial region to the outer expansions of Section 5.1 we employ the
following matching conditions (for the derivation we refer to [16, Appendix D]),

lim
z→±∞

V0(s,z) = v±0 , (5.16)

lim
z→±∞

∂zV0(s,z) = 0, (5.17)

lim
z→±∞

∂zV1(s,z) =∇v±0 ⋅ννν , (5.18)

where v±0 ∶= limδ↘0 v0(p±δννν) for p ∈ Γ. For vector-valued functions (5.18) read as

lim
z→±∞

∂zVVV 1(s,z) = ∂ννν vvv±0 .

As divuuuε = 0, we can rewrite

∆uuuε = div(∇uuuε +(∇uuuε)
T
).

For a tensor AAA, let E(AAA) = 1
2(AAA+AAAT

). Then we can compute

∆uuuε =
2
ε2 ∂z(E(∂zUUUε ⊗ννν)ννν)+

2
ε

∂z(E(∇ΓUUUε)ννν)+
2
ε

divΓ(E(∂zUUUε ⊗ννν))+ . . .

=
1
ε2 ∂zzUUUε +

1
ε2 ∂z(∂zUUUε ⋅ννν)ννν +

2
ε

∂z(E(∇ΓUUUε)ννν)+
2
ε

divΓ(E(∂zUUUε ⊗ννν))+ . . . .
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We note that the same expansion holds for the divergence term in (4.42a). The goal in this section
is to deduce properties satisfied by the inner expansions and to relate these properties to boundary
conditions on Γ for the outer expansions on Γ by matching. As in Section 5.1, we will denote (⋅)

β

I
to be the order β inner expansions of equation (⋅).

5.2.1 Inner expansions of the state equations. To order −1, (3.4b)−1
I gives

∂zUUU0 ⋅ννν = ∂z(UUU0 ⋅ννν) = 0, (5.19)

while to leading order (3.4a)−2
I gives

−µ∂z(∂zUUU0+(∂zUUU0 ⋅ννν)ννν) = −µ∂zzUUU0 = 000, (5.20)

where we have used (5.19). Integrating with respect to z and applying the matching condition (5.17)
leads to

∂zUUU0(s,z) = 000, (5.21)

and so UUU0 is independent of z. Integrating once more with respect to z and by the matching condition
(5.16), we hence find that

UUU0(s,z) = uuu−0 = 000, (5.22)

where we made use of (5.9) for the second equality. This implies that

uuu+0 = uuu−0 = 000, (5.23)

which is the no-slip condition (2.4d). Since UUU0 = 000, to first order (3.4b)0
I gives

∂zUUU1 ⋅ννν + divΓUUU0 = ∂zUUU1 ⋅ννν = 0. (5.24)

Using (5.22) and (5.24), to first order (3.4a)−1
I gives

−µ∂zzUUU1+∂zP0ννν = 000. (5.25)

5.2.2 Phase field equation to leading order. To leading order (4.45)−1
I gives

−
γ

2c0
(∂zzΦ0−ψ

′
(Φ0))+ α̂

′
(Φ0)(

1
2 ∣UUU0∣

2
−UUU0 ⋅QQQ0)−M(Φ0)α(Φ0)UUU0 ⋅aaa = 0. (5.26)

Using (5.22), the above simplifies to

∂zzΦ0−ψ
′
(Φ0) = 0. (5.27)

Along with the following matching conditions (5.16) for Φ0,

Φ0(s,z = ±∞) = ±1,

we can choose Φ0 to be a function independent of s and as the unique monotone solution to
(5.27) satisfying Φ0(z = 0) = 0 (recall (5.15)). Moreover, taking the product of (5.27) with Φ

′
0(z),

integrating with respect to z and applying matching (5.16) and (5.17) leads to the so-called
equipartition of energy

1
2
∣Φ

′
0(z)∣

2
=ψ(Φ0(z)) for ∣z∣ <∞. (5.28)

Moreover, a short calculation using (5.28), the monotonicity of Φ0, and a change of variables s↦
Φ0(z) shows that

c0 =
1
2 ∫

1

−1

√
2ψ(s)ds =

1
2 ∫R

√
2ψ(Φ0(z))Φ

′
0(z)dz =

1
2 ∫R

∣Φ
′
0(z)∣

2
dz . (5.29)
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5.2.3 Inner expansions of the adjoint equation. Before we analyze the adjoint equation, we first
compute the following expansions

div(M(ϕε)∇ϕε) =
1
ε2 ∂z(M(Φε)∂zΦε)+ divΓ(M(Φε)(

1
ε

∂zΦε ννν +∇ΓΦε))

+ h.o.t.,
(5.30)

and for any 1 ≤ j ≤ d,

(∇(M(ϕε)∇ϕε)aaa) j =
d

∑
i=1

∂i(M(ϕε)∂ jϕε)ai

=
d

∑
i=1

1
ε

νi∂z(M(Φε)(
1
ε

∂zΦε ν j +D jΦε))ai

+Di(M(Φε)(
1
ε

∂zΦε ν j +D jΦε))ai+ h.o.t.,

so that

∇(M(ϕε)∇ϕε)aaa =
1
ε2 (ννν ⋅aaa)ννν∂z(M(Φε)∂zΦε)

+
1
ε
((ννν ⋅aaa)∂z(M(Φε)∇ΓΦε)+∇Γ(M(Φε)∂zΦε ννν)aaa)

+∇Γ(∇ΓΦε)aaa+ h.o.t.. (5.31)

To leading order (4.42b)−1
I gives

∂zQQQ0 ⋅ννν =M0(Φ0)Φ
′
0(ννν ⋅aaa), (5.32)

while to leading order (4.42a)−2
I gives

−µ∂zzQQQ0−µ∂z(∂zQQQ0 ⋅ννν)ννν = −µ∂z(M0(Φ0)Φ
′
0)((ννν ⋅aaa)ννν +aaa), (5.33)

where we have used (5.30), (5.31) and that ννν is independent of z. Integrating (5.33) with respect to
z and using the matching condition (5.17) leads to

∂zQQQ0+(∂zQQQ0 ⋅ννν)ννν =M0(Φ0)Φ
′
0((ννν ⋅aaa)ννν +aaa),

and upon adding the product of (5.32) with ννν leads to

∂zQQQ0(s,z) =M0(Φ0)Φ
′
0aaa. (5.34)

Then, integrating (5.34) with respect to z and using the matching condition (5.16) and qqq−0 = 000 (see
(5.9)) leads to

QQQ0(s,y) = (∫

y

−∞
M0(Φ0(z))Φ

′
0(z)dz)aaa ∀ ∣y∣ <∞. (5.35)

In particular, the right hand side is independent of s, and so we can deduce that QQQ0 is also
independent of s. Using the matching condition (5.16), we hence have

qqq+0 = (∫
R
M0(Φ0(z))Φ

′
0(z)dz)aaa. (5.36)
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For the choiceM(ϕ) = 1
2 , we see that

∫
R
M0(Φ0(z))Φ

′
0(z)dz =

1
2 ∫R

Φ
′
0(z)dz = 1, (5.37)

while for the choiceM(ϕ) = 1
c0

√
ψ(ϕ)+δε

2 , we see that by (5.4), (5.28), and (5.29),

∫
R
M0(Φ0(z))Φ

′
0(z)dz =

1
c0
∫
R

1
√

2

√

ψ(Φ0(z))Φ
′
0(z)dz =

1
c0
∫
R

1
2
∣Φ

′
0(z)∣

2
dz = 1.

Thus, in both cases, we obtain

qqq+0 = aaa, (5.38)

which is the boundary condition (2.7c). To the next order, we obtain from (4.42b)0
I

∂zQQQ1 ⋅ννν =M0(Φ0)∂zΦ1(ννν ⋅aaa)+M1(Φ0)Φ1Φ
′
0(ννν ⋅aaa), (5.39)

where we used that QQQ0 and Φ0 are functions of z only, and ϑ0 = 0 from the outer expansions.
Meanwhile, from (5.30) and (5.31), and the fact that UUU0 = 000, we obtain from (4.42a)−1

I

α̂(Φ0)QQQ0−µ∂zzQQQ1−µ∂z(∂zQQQ1 ⋅ννν)ννν −2µ divΓ(E(QQQ′
0⊗ννν))+∂zΠ0ν

= −µ(aaa+(ννν ⋅aaa)ννν)∂z(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0)

−µ divΓ(M0(Φ0)Φ
′
0ννν)aaa−µ∇Γ(M0(Φ0)Φ

′
0ννν)aaa. (5.40)

Moreover, applying the product rule, we have

2divΓ(E(QQQ′
0⊗ννν)) =∇Γ(QQQ′

0)ννν +(divΓννν)QQQ′
0+(∇Γννν)QQQ′

0+(divΓQQQ′
0)ννν

= −κQQQ′
0+(∇Γννν)QQQ′

0,

divΓ(M0(Φ0)Φ
′
0ννν) = −M0(Φ0)Φ

′
0κ,

∇Γ(M0(Φ0)Φ
′
0ννν) =M0(Φ0)Φ

′
0∇Γννν .

Then, using the relation (5.34) for QQQ′
0, we obtain from (5.40)

α̂(Φ0)QQQ0−µ∂zzQQQ1−µ∂z(∂zQQQ1 ⋅ννν)ννν +µκQQQ′
0−µ(∇Γννν)QQQ′

0+∂zΠ0ν

= −µ(aaa+(ννν ⋅aaa)ννν)∂z(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0)+µQQQ′

0κ −µ(∇Γννν)QQQ′
0, (5.41)

and thus, upon cancelling the common terms, we have

α̂(Φ0)QQQ0−µ∂zzQQQ1−µ∂z(∂zQQQ1 ⋅ννν)ννν +∂zΠ0ν

= −µ(aaa+(ννν ⋅aaa)ννν)∂z(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0). (5.42)

5.2.4 Phase field equation to first order. Using (5.22), we obtain from (4.45)0
I to first order:

γ

2c0
(−∂zzΦ1+κΦ

′
0+ψ

′′
(Φ0)Φ1)+λ0− α̂

′
(Φ0)UUU1 ⋅QQQ0+M0(Φ0)(FFF0− α̂(Φ0)UUU1) ⋅aaa = 0. (5.43)
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Making use of (5.34), after taking the product of (5.43) with Φ
′
0 we have

γ

2c0
(−∂zzΦ1Φ

′
0+Φ1(ψ

′
(Φ0))

′
+κ ∣Φ

′
0∣

2
)+λ0Φ

′
0−(α̂(Φ0))

′
UUU1 ⋅QQQ0+QQQ′

0 ⋅(FFF0− α̂(Φ0)UUU1) = 0.

(5.44)
Integrating by parts leads to

−∫
R
(α̂(Φ0))

′
UUU1 ⋅QQQ0 dz = ∫

R
α̂(Φ0)(UUU1 ⋅QQQ

′
0+∂zUUU1 ⋅QQQ0)dz − [α̂(Φ0)UUU1 ⋅QQQ0]

z=+∞
z=−∞.

We use that α̂(1) = 0, QQQ0(z = −∞) = qqq−0 = 000 to deduce that the jump term is zero. Hence,

−∫
R
(α̂(Φ0))

′
UUU1 ⋅QQQ0 dz = ∫

R
α̂(Φ0)(UUU1 ⋅QQQ

′
0+∂zUUU1 ⋅QQQ0)dz . (5.45)

So, from integrating (5.44) over R and using (5.45) we obtain

∫
R

γ

2c0
(−∂zzΦ1Φ

′
0+Φ1(ψ

′
(Φ0))

′
+κ ∣Φ

′
0∣

2
)+λ0Φ

′
0 dz +∫

R
α̂(Φ0)∂zUUU1 ⋅QQQ0+QQQ′

0 ⋅FFF0 dz = 0.

(5.46)
We find that, after integrating by parts and applying matching conditions (5.16) and (5.17) for Φ0,

∫
R

γ

2c0
(−∂zzΦ1Φ

′
0+Φ1(ψ

′
(Φ0))

′
+κ ∣Φ

′
0∣

2
)+λ0Φ

′
0 dz

=
γ

2c0
∫
R

∂zΦ1(Φ
′′
0 −ψ

′
(Φ0))+

γ

2c0
[ψ

′
(Φ0)Φ1−Φ

′
0∂zΦ1]

z=+∞
z=−∞

+κ
γ

2c0
∫
R
∣Φ

′
0∣

2
dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2c0

+λ0∫
R

Φ
′
0 dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2

= κγ +2λ0, (5.47)

where we made use of (5.27), the relation (5.29), and that κ is independent of z. Thus it remains to
identify

∫
R

FFF0 ⋅∂zQQQ0+ α̂(Φ0)∂zUUU1 ⋅QQQ0 dz . (5.48)

To this end, we take the scalar product of (5.42) with ∂zUUU1 and use (5.24) to obtain

α̂(Φ0)QQQ0 ⋅∂zUUU1−µ∂zzQQQ1 ⋅∂zUUU1 = −µ(∂zUUU1 ⋅aaa)∂z(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0). (5.49)

Integrating (5.49) over R with respect to z, and applying integration by parts leads to

∫
R

α̂(Φ0)QQQ0 ⋅∂zUUU1 dz = µ∫
R

∂zzQQQ1 ⋅∂zUUU1−(∂zUUU1 ⋅aaa)∂z(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0)dz

= µ[∂zQQQ1 ⋅∂zUUU1−(∂zUUU1 ⋅aaa)(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0)]

z=+∞

z=−∞

−µ∫
R

∂zzUUU1 ⋅(∂zQQQ1−aaa(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0))dz .

(5.50)
Using (5.2), the matching conditions (5.16), (5.17), and (5.18) for Φ0, and (5.18) for QQQ1 and UUU1, we
see that the jump term is

[∂zQQQ1 ⋅∂zUUU1−(∂zUUU1 ⋅aaa)(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0)]

z=+∞

z=−∞
= [∂ννν qqq0 ⋅∂ννν uuu0]

+
−, (5.51)
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since, in the caseM(ϕ) = 1
2 , we haveM0(Φ0) =

1
2 ,M1(Φ0)Φ1 = 0, and so [(∂zUUU1 ⋅aaa)∂zΦ1]

z=+∞
z=−∞ =

0. While for the case M(ϕ) = 1
c0

√
ψ(ϕ)+δε

2 , using (5.4), (5.28) and the matching conditions, we
have

[(∂zUUU1 ⋅aaa)(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0)]

z=+∞

z=−∞

=
1

√
2c0

⎡
⎢
⎢
⎢
⎢
⎣

(∂zUUU1 ⋅aaa)
⎛

⎝

√
ψ(Φ0)∂zΦ1+

ψ
′(Φ0)Φ1
√

2

Φ
′
0√

2ψ(Φ0)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

z=+∞

z=−∞

= 0.

Meanwhile, using (5.39) and (5.25), the integral term is

∫
R

µ∂zzUUU1 ⋅(∂zQQQ1−aaa(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0))dz

= ∫
R
−∂zP0ννν ⋅(∂zQQQ1−aaa(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ

′
0))dz = 0. (5.52)

Together with (5.14), i.e., FFF0 is independent of z, we obtain from (5.51), (5.52) that (5.48) can be
expressed as

∫
R

FFF0 ⋅∂zQQQ0+ α̂(Φ0)∂zUUU1 ⋅QQQ0 dz = fff 0 ⋅ [qqq0]
+
−+µ[∂ννν qqq0 ⋅∂ννν uuu0]

+
−

= fff 0 ⋅aaa+µ∂ννν qqq+0 ⋅∂ννν uuu+0 ,
(5.53)

where we have used qqq−0 = uuu−0 = 000, and qqq+0 = aaa from (5.38). Thus, we obtain from (5.46)

2λ0+κγ + fff 0 ⋅aaa+µ∂ννν qqq+0 ⋅∂ννν uuu+0 = 000 on Γ, (5.54)

which is the strong form of (2.6) taking into account the volume constraint and the additional
perimeter regularization.

5.2.5 Sharp interface limit. In summary, we obtain the following sharp interface limit,

−µ∆uuu0+(uuu0 ⋅∇)uuu0+∇p0 = fff in E, (5.55a)

−µ∆qqq0+(∇uuu0)
T qqq0−(uuu0 ⋅∇)qqq0+∇π0 = 000 in E, (5.55b)

divuuu0 = 0, divqqq0 = 0 in E, (5.55c)
uuu0 = qqq0 = 000 in B, (5.55d)

uuu0 = ggg, qqq0 = 000 on ∂Ω∩E, (5.55e)
uuu0 = 000, qqq0 = aaa on Γ, (5.55f)

together with the gradient equation

κγ +2λ0+µ∂ννν qqq0 ⋅∂ννν uuu0+ fff ⋅aaa = 0 on Γ. (5.56)

REMARK 5.1 (Linear scaling for the correction constant δε ) Suppose δε = ε , then we observe from
(5.3) that

√
ψ(Φ)+ε =

√
ψ(Φ0)+ε

ψ
′(Φ0)Φ1+1

2
√

ψ(Φ0)
+h.o.t..
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That is,

M0(Φ0) =
1

√
2c0

√
ψ(Φ0), M1(Φ0)Φ1 =

1
√

2c0

ψ
′(Φ0)Φ1+1

2
√

ψ(Φ0)
.

The presence of this extra factor of 1
2
√

ψ(Φ0)
inM1(Φ0)Φ1 alters the jump term of (5.50) to

[∂zQQQ1 ⋅∂zUUU1−∂zUUU1 ⋅aaa(M0(Φ0)∂zΦ1+M1(Φ0)Φ1Φ
′
0)]

z=+∞

z=−∞

= [∂ννν qqq0 ⋅∂ννν uuu0]
+
−−

aaa
2c0

⋅[
Φ
′
0√

2ψ(Φ0)
∂zUUU1]

z=+∞

z=−∞
= ∂ννν qqq0 ⋅∂ννν uuu0−

aaa
2c0

⋅∂ννν uuu0,

where we have used (5.28). Thus, instead of (5.54), we obtain

κγ +2λ0+µ∂ννν qqq0 ⋅∂ννν uuu0+
µ

2c0
∂ννν uuu0 ⋅aaa+ fff ⋅aaa = 0 on Γ.

Thus, to formally recover the strong form of (2.6), we need to choose δε ∼O(ε
k) for k > 1.

6. Numerical computations

In this section we investigate the phase field approach numerically. We minimize the drag and
maximize the lift-to-drag ratio of an obstacle in outer flow and apply both phase field approximations
of the corresponding surface functionals. Concerning numerical results in the literature we refer
to the minimization of the drag functional in [6, 26], where a sharp interface approach is used.
In [21] the porous medium approach is used, where the authors argue, that the term αε uuuε is a valid
approximation for the hydrodynamic force.

Let us start with defining the free energy ψ . Here we use

ψ̃(y) =
s
2
(max2

(0,y−1)+min2
(0,y+1))+

1
2
(1−y2

),

ψ(y) = ψ̃ (
s

s−1
y)+

1
2(s−1)

.
(6.1)

Note that ψ̃ can be obtained by using a Moreau–Yosida relaxation of the double obstacle free energy
(3.12) with the relaxation (or penalization) parameter s≫ 1, and the scaling of the argument and the
shifting are chosen such that ψ has its minima at y = ±1 with ψ(±1) = 0. We further introduce the
convex–concave splitting

ψ =ψ++ψ−,

ψ+(y) =
s
2
(max2

(0,
s

s−1
y−1)+min2

(0,
s

s−1
y+1)) ,

ψ−(y) =
1
2
(1−(

s
s−1

y)
2
)+

1
2(s−1)

,
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where ψ+ is the convex part of ψ and ψ− is its concave part. Next we define the interpolation
function αε as

αε(y) =
α

ε

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if y ≥ 1,
1

(1−θ)(3+θ)(y−1)2 if 1 > y ≥ θ ,

min(1+ 2
3+θ

,1− 2
3+θ

(y+1)) if θ > y,

(6.2)

where α is a given constant, and we choose θ = 0.99. This function αε(y) describes a linear function
between y=−2 and y=θ and has a quadratic extension between y=θ and y= 1. We fulfil Assumption
3.2 with sa = −2 and sb = 1. Note that we do not fulfil the regularity αε ∈C1,1(R) at sa. But this is
not a severe violation since in practice it holds that −2 < ϕε and we can control the violation of the
bound −1 ≤ ϕε by choosing an appropriate relaxation parameter s.

For solving the optimization problem (3.8) one can use a gradient flow approach. Introducing
an artificial time variable t, the gradient flow of jh

ε(ϕ) =J h
ε (ϕ,SSSε(ϕ)) is given by

⟨∂tϕε ,ζ ⟩X = −D jh
ε(ϕε)(ζ)

for all ζ ∈ H1(Ω)∩ L∞(Ω) with ∫Ω ζ dx = 0 with an inner product ⟨⋅, ⋅⟩X . Due to the volume
constraint, we choose the mass conserving inner product

⟨ϕ,ζ ⟩X = ∫
Ω

((−∆)
−1

ϕ)η dx ,

which leads to the well-known H−1-gradient flow approach. In turn, we obtain the following system
from (4.32) (see also [15] for more details),

∂tϕε = ∆wε ,

wε = −γε∆ϕε +
γ

ε
ψ
′
(ϕε)+α

′
ε(ϕε)(

1
2
∣uuuε ∣

2
−uuuε ⋅qqqε)+Jϕ ,

Jϕ =M
′
(ϕε)h(x,∇uuuε , pε ,∇ϕε)− div(M(ϕε)D4h(x,∇uuuε , pε ,∇ϕε)),

(6.3)

where uuuε is obtained from (3.4), qqqε is obtained from (4.27) and Jϕ abbreviates the terms arising
from the differentiation of the functional h, as shown in Theorem 4.10. Note that we include the
factor 1

2c0
into the parameter γ . The gradient flow approach allows us to use nonlinear parts of the

gradient, for example the derivative of ψ+, implicitly in time in a time stepping scheme, which for
the chosen free energy is favorable in view of stability reasons.

After time discretization with variable time step size τ
k+1 we at each time instance solve the

following problem. Given ϕ
k
ε , find ϕ

k+1
ε , wk+1

ε , uuuε , pε , qqqε , and πε fulfilling the primal system

αε(ϕ
k
ε )uuuε −µ∆uuuε +(uuuε ⋅∇)uuuε +∇pε = fff in Ω,

divuuuε = 0 in Ω,

uuuε = ggg on ∂Ω,

(6.4)

the adjoint system

αε(ϕ
k
ε )qqqε −µ div (∇qqqε +(∇qqqε)

T )+(∇uuuε)
T qqqε −(uuuε ⋅∇)qqqε +∇πε

= αε(ϕ
k
ε )uuuε − div (M(ϕ

k
ε )D2h(x,∇uuuε , pε ,∇ϕ

k+1
ε )) in Ω,

divqqqε = −M(ϕ
k
ε )D3h(x,∇uuuε , pε ,∇ϕ

k+1
ε )+ϑε in Ω,

qqqε = 000 on ∂Ω,

(6.5)



SHAPE OPTIMIZATION FOR SURFACE FUNCTIONALS IN NAVIER-STOKES FLOW 257

and the Cahn–Hilliard system

ϕ
k+1
ε = τ

k+1
∆wk+1

ε +ϕ
k
ε in Ω,

wk+1
ε = −γε∆ϕ

k+1
ε +

γ

ε
(ψ

′
+(ϕ

k+1
ε )+ψ

′
−(ϕ

k
ε ))

+
1
2

α
′
ε(ϕ

k+1
ε )∣uuuε ∣

2
−α

′
ε(ϕ

k
ε )uuuε ⋅qqqε +Jϕ in Ω,

Jϕ =M
′
(ϕ

k
ε )h(x,∇uuuε , pε ,∇ϕ

k+1
ε )

− div (M(ϕ
k
ε )D4h(x,∇uuuε , pε ,∇ϕ

k+1
ε )) ,

0 = γε∇ϕ
k+1
ε ⋅ννν∂Ω+M(ϕ

k
ε )ννν∂Ω ⋅D4h(x,∇uuuε , pε ,∇ϕ

k+1
ε ) on ∂Ω,

0 =∇wk+1
ε ⋅ννν∂Ω on ∂Ω.

(6.6)

As noted above, we evaluate ψ
′
+ at the new time instance for stability reasons.

For the spatial discretization piecewise linear and globally continuous finite elements are used
for the variables ϕ

k+1
ε , wk+1

ε , pε , and πε , while piecewise quadratic and globally continuous elements
are used for uuuε and qqqε . The meshes are adapted using the jumps of the normal derivative of ϕ

k+1
ε

and wk+1
ε over edges of the underlying discretization mesh, see [8, 30], together with a Dörfler

marking [10].

6.1 Minimization of the hydrodynamic force of an obstacle

We investigate the minimization of the drag of an obstacle of fixed area in a channel flow with block
inflow profile.

The computational domain is Ω = (0,1.7)× (0,0.4). The initial phase field ϕ
0 is defined as a

circle of radius r = 0.05 with center at M = (0.5,0.2). The boundary velocity is set to ggg(x,y) =
(1,0)T . We fix δε = 0, s = 1×106, fff ≡ 000 and set

τ
k+1

∶= ξ min
T

(hT ∥∇wk
ε∥
−1
L2(T)),

where the minimization is carried out over all triangles T . Here, the diameter of triangle T is denoted
by hT , and ξ is a positive scaling parameter typically set to ξ = 5. This CFL-like condition prevents
the interfacial region from moving too fast for the adaptation process.

We restate the definition of the phase field approximation of the hydrodynamic force in a
direction aaa as

Faaa
∶= ∫

Ω

M(ϕε)∇ϕε ⋅(µ(∇uuuε +(∇uuuε)
T )− pε I)aaadx . (6.7)

When aaa is equal to the direction of the flow, i.e., aaa = (1,0)T , we denote the resulting approximation
as FD, which corresponds to the drag of the obstacle. Meanwhile, if aaa is perpendicular to the
direction of the flow, i.e., aaa = (0,1)T , then we denote the resulting approximation as FL, which
corresponds to the lift of the obstacle.
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FIG. 1. Result for minimizing the drag usingM(ϕε) = 1
c0

√
ψ(ϕε)

2 . In the left plot we show the obstacle (i.e., ϕε ≤ 0) and
streamlines of uuuε in black, and the pressure outside of the obstacle in gray. Darker gray means higher pressure. On the right
we show ∣uuuε ∣ in gray, where darker gray means lower velocity. The isoline ϕε ≡ 0 is shown in white and again streamlines
are displayed in black. The results forM(ϕε) = 1

2 are visually indistinguishable from these results. Note that we only show
the computational domain in the neighborhood of the obstacle.

From (4.42) and (4.45), the terms arising from the derivatives of h in systems (6.5) and (6.6) in
the present setting are given as

(−div (M(ϕ
k
ε )D2h) ,vvv) = µ∫

Ω

M(ϕ
k
ε )∇ϕ

k
ε ⋅(∇vvv+(∇vvv)T )aaadx ∀vvv ∈HHH1

0(Ω),

(−M(ϕ
k
ε )D3h+ϑε ,η) = ∫

Ω

(M(ϕ
k
ε )∇ϕ

k
ε ⋅aaa−⨏

Ω

M(ϕ
k
ε )∇ϕ

k
ε ⋅aaadx)η dx ∀η ∈ L2

0(Ω),

(Jϕ ,ζ) = ∫
Ω

M(ϕ
k
ε )(−αε(ϕ

k
ε )uuuε −(uuuε ⋅∇)uuuε) ⋅aaaζ dx ∀ζ ∈H1

(Ω).

Next, we report on the numerical results for the case of minimizing FD. The parameters are chosen
as ε = 0.00025, α = 0.03, µ = 0.001, and γ = 0.01. We note that we use path-following with respect
to the value of µ , starting from µ = 0.01, and also for the value of γ , starting from γ = 0.1. In Figure
1 we show the results obtained with our approach.

The drag for M(ϕε) =
1
c0

√
ψ(ϕε)

2 is given by FD = 3.9454× 10−2 (3.9492× 10−2), and for

M(ϕε) =
1
2 we have FD = 3.9117×10−2 (3.9499×10−2). In brackets we give the drag obtained by

evaluating the surface formulation (1.3) over the isoline ϕε ≡ 0. We see that both formulations give
very similar results.

6.2 Maximization of the lift-drag ratio of an obstacle

Based on the results of the previous section we now investigate the maximization of the lift-to-drag
ratio given by

R ∶= FL
/FD,

To this end, we consider replacing ∫ΩM(ϕε)h(x,∇uuuε , pε ,∇ϕε)dx in (3.8) with

−
∫ΩM(ϕε)∇ϕε ⋅(µ(∇uuuε +(∇uuuε)

T )− pε I)aaa⊥dx

∫ΩM(ϕε)∇ϕε ⋅(µ(∇uuuε +(∇uuuε)
T )− pε I)aaadx

,

where aaa = (1,0)T and aaa⊥ = (0,1)T .
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FIG. 2. Result for maximizing the lift-to-drag ratio usingM(ϕε) = 1
c0

√
ψ(ϕε)

2 (left) andM(ϕε) = 1
2 (right). The obstacle

(i.e., ϕε ≤ 0) and streamlines are shown in black and the velocity magnitude in gray. Darker gray means larger velocity. Note
that we only show the computational domain in the neighborhood of the obstacle.

The numerical set-up is the same as in the previous section and the parameters are chosen as
ε = 0.0005, α = 4, µ = 1/15, and γ = 0.3. In this example we fix the y-coordinate of the center of mass
of the obstacle by a Lagrange multiplier approach in order to keep it fixed at the initial position. We
define the center of mass of the obstacle as

com =
∫Ω

1−ϕε

2 xdx

∫Ω
1−ϕε

2 dx
.

In Figure 2 we show results for this parameter set. We observe the expected optimal shape for both

formulations, but forM(ϕε) =
1
c0

√
ψ(ϕε)

2 we obtain a longer and thinner obstacle. The lift-to-drag

ratio for M(ϕε) =
1
c0

√
ψ(ϕε)

2 is R = 1.1104, and for M(ϕε) =
1
2 it is R = 0.9885. We stress that,

here we calculate with a rather small value of viscosity µ = 1/15 and that the minimal magnitude
of velocity inside the obstacle is 4×10−2, which is rather large. However, we think that the results
serve as a promising starting point for further investigations.
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