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The level-set method is used in many different applications to describe the propagation of shapes and
domains. When scalar speed fields are used to encode the desired shape evolution, this leads to the
classical level-set equation. We present a concise Hopf–Lax representation formula that can be used
to characterise the evolved domains at arbitrary times. This result is also applicable for the case of
speed fields without a fixed sign, even though the level-set equation has a non-convex Hamiltonian
in these situations. The representation formula is based on the same idea that underpins the Fast-
Marching Method, and it provides a strong theoretical justification for a generalised Composite Fast-
Marching method.

Based on our Hopf–Lax formula, we are also able to present new theoretical results. In particular,
we show non-fattening of the zero level set in a measure-theoretic sense, derive a very general shape-
sensitivity calculus that does not require the usual regularity assumptions on the domains, prove
optimal Lipschitz constants for the evolved level-set function and discuss the effect of perturbations
in both the speed field and the initial geometry.
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1. Introduction

Many problem classes in applied mathematics require the manipulation of shapes and geometries
(shape optimisation being an obvious one, but also free-boundary problems fall into this category).
For this, it is necessary to “encode” the geometric information in a suitable way. Very thorough
general discussions of this topic can be found in the classical books [13], [23] and [39]. For this
paper, we focus on the level-set method. It was introduced in [30] by Osher and Sethian. Today,
there exists a vast literature about it, covering various aspects. A general introduction can be found
in [34]. For selected theoretical results, we would like to highlight [20] and [5]. Applications of the
level-set method to concrete problems can be found, for instance, in [9], [37], [14] and [6].

The basic idea in the level-set framework is to introduce an auxiliary level-set function � W Rn !
R to describe an open set ˝ � Rn. The domain

˝ D ��1
�
.�1; 0/

�
is given as the sub-zero level set of �. This set is obviously open if � is continuous. Of course,
many different level-set functions can describe a single open set. A possible choice for the level-set
function of some given˝ is its signed distance function (see Chapter 5 of [13]; also note [36], which
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FIG. 1: Illustration of the speed method. In the shown situation, F.a/ < 0 < F.b/ < F.c/.

formulates the shape-evolution problem in terms of the signed distance function). Since this works
for arbitrary open sets, we immediately see that even Lipschitz continuity of the level-set function
implies no regularity of ˝. (Throughout this work, we will concentrate on Lipschitz continuous
level-set functions. Note that higher-order regularity of a level-set function does, in fact, imply
boundary regularity of the described domain. See, for instance, Theorem 4.2 on page 77 of [13].)
The other way round, however, this also means that the level-set method is very flexible and can
describe a wide range of shapes.

In order to describe not only geometries themselves but also changes to them, let us consider
for the moment shape deformations by the classical speed method: Given a scalar speed field F W
Rn ! R, we move the boundary of ˝ in normal direction according to this speed field. Positive
speed corresponds to outward movement of the boundary (growth of˝), while negative speed leads
to local shrinking. This is illustrated in Figure 1. In terms of the level-set function, the corresponding
time evolution is described by the level-set equation

�t .x; t/C F.x/ jr�.x; t/j D 0 in Rn � .0;1/; �.x; 0/ D �0.x/ for x 2 Rn and t D 0 (1)

as introduced in [30]. Throughout this work we will assume that F is Lipschitz continuous with
Lipschitz constant LF and that it has compact support. Some of our results could be proven without
these assumptions, but we make them nevertheless for simplicity. They are easy to justify in many
concrete situations and necessary for the more interesting conclusions anyway. The function �0 shall
also be Lipschitz continuous, and we denote its Lipschitz constant by L�0 . As mentioned already, a
canonical choice of �0 is the signed distance function of an initial (bounded) open set˝0. With this
choice, L�0 D 1.

The main result of this paper will be a Hopf–Lax representation formula for the time evolution
of both �.�; t / itself and the corresponding evolving set˝t . Similar formulas were first investigated
in [2], and are derived, for instance, in [19]. In this paper, however, we also make use of our
representation formulas to derive new theoretical results useful for the analysis of shape evolutions
in the context of optimisation. Section 2 recalls and introduces some necessary properties of the
level-set equation (1) and its solution �. Section 3 discusses the Eikonal equation and shortest
paths induced by a speed field F . Based on these foundations, we can then introduce the Hopf–Lax
formula itself in Section 4. Theorem 5 and Corollary 1 are the main theorems. They allow us to
analyse the geometric evolution on a more abstract level, without the need to work with the level-set
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equation itself. This is a very useful simplification, and we will draw interesting further conclusions
from it in Section 5.

Note that this paper is largely based on the initial chapters of [27], where some additional details
can be found that fall outside of the scope of this work. Somewhat related to our results is the
Generalised Fast Marching Method described in [8]. However, note that [8] is focused solely on the
algorithmic analysis of the introduced numerical method. It does not state a general-purpose Hopf–
Lax formula for the time evolution. We, on the other hand, would like to focus on the representation
formula and the conclusions it enables from a theoretical point of view. Nevertheless, it is also
important to remark that our results give a theoretical justification for the Fast Marching Method
(see [33] and Chapter 8 of [34]), and also generalise it to our Composite Fast-Marching method that
is able to handle sign changes in the speed field. For an application of the latter to PDE-constrained
shape optimisation, see [25]. Our numerical implementation is available together with additional
tools for the level-set method as free software in the level-set package [26] for GNU Octave [15].

2. Preliminaries about the Level-Set Equation

Since the proper solution concept for the level-set equation (1) is that of viscosity solutions, we
quickly recall their definition. More details can be found, for instance, in [11] and [12].

DEFINITION 1 LetD D Rn � .0;1/ be the open space-time cylinder, � W D ! R and .x; t/ 2 D.
Then J 1C�.x; t/ is the set of all .p; a/ 2 Rn � R such that

�.y; s/ 6 �.x; t/C a.s � t /C p � .y � x/C o .js � t j C jy � xj/

as .y; s/! .x; t/ in D. Similarly, .p; a/ 2 J 1��.x; t/ if and only if

�.y; s/ > �.x; t/C a.s � t /C p � .y � x/C o .js � t j C jy � xj/

for .y; s/! .x; t/. J 1˙�.x; t/ are called the first-order parabolic semijets of � at .x; t/. Note that
J 1��.x; t/ is often also called subdifferential of � at .x; t/.

DEFINITION 2 Let F and �0 be given. We say that � W Rn � Œ0;1/! R is a viscosity subsolution
of (1) for the given data if � is upper semi-continuous, �.�; 0/ 6 �0 on Rn and

aC F.x/ jpj 6 0

for each .x; t/ 2 D and .p; a/ 2 J 1C�.x; t/. Similarly, � is a viscosity supersolution if � is lower
semi-continuous, �.�; 0/ > �0 and aC F.x/ jpj > 0 for all .p; a/ 2 J 1��.x; t/.

The function � solves (1) in the viscosity sense if it is both a viscosity sub- and supersolution.
Note that this implies, in particular, that � is continuous and that �.x; 0/ D �0.x/ for all x 2 Rn.

The following result, which states the existence of a unique viscosity solution to (1) as well as
the so-called comparison principle, is well-known:

Theorem 1 For given F and �0, there exists a unique viscosity solution � W Rn � Œ0;1/ ! R
of (1).

Furthermore, if �1 and �2 are viscosity sub- and supersolutions to (1), respectively, with
�1.x; 0/ 6 �2.x; 0/ for all x 2 Rn, then �1 6 �2 pointwise on Rn � Œ0;1/.
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See, for instance, [20] for a thorough treatment of this and related results. The second-order case
was first proven in [10] (Theorem 4.1) and [18] (Theorem 3.2).

We will now proceed to deduce several useful consequences of this solution concept for (1).
As our first result, we show an intuitively trivial but still important fact: If the speed vanishes
everywhere, then the solution of (1) is constant in time.

Lemma 1 Let � solve (1) for F D 0 and some initial function �0. Then �.x; t/ D �0.x/ for all
x 2 Rn and all times t > 0.

Proof. We have to show that �.x; t/ D �0.x/ is indeed a solution of (1) with F D 0. It is clear that
the initial condition is satisfied. Let .p; a/ 2 J 1C�.x; t/ for some .x; t/ 2 D. Then

�.y; s/ � �.x; t/ 6 a.s � t /C p � .y � x/C o .js � t j C jy � xj/ (2)

for all y 2 Rn and s > 0 by the definition of J 1C�.x; t/. Consider, in particular, y D x and a
sequence sk ! t . The left-hand side of (2) vanishes since � is constant in time, so that we can
re-arrange the relation to read

0 6 a �
sk � t

jsk � t j
C
o .jsk � t j/

jsk � t j
:

For sk converging to t from above, this gives 0 6 a in the limit. For sk ! t� from below, it
follows that 0 6 �a, thus a D 0 must necessarily hold. Hence a C F.x/ jpj D 0 6 0 is satisfied,
and � is indeed a viscosity subsolution of (1). In the same way, one can also show that it is a
supersolution.

The comparison principle (second part of Theorem 1) implies that the solution is monotone with
respect to the speed:

Lemma 2 Let F1 > F2 in Rn, and let �1 and �2 be solutions to (1) for F D F1 and F D F2,
respectively, with initial conditions �1.x; 0/ D �1;0.x/ and �2.x; 0/ D �2;0.x/. If �1;0 6 �2;0 on
Rn, then �1 6 �2 on the whole of Rn � Œ0;1/.

Proof. We shall show that �1 is a viscosity subsolution to (1) also with speed F D F2. Then
Theorem 1 implies the claim. Let .p; a/ 2 J 1C�1.x; t/ for some .x; t/ 2 D. Then

aC F2.x/ jpj 6 aC F1.x/ jpj 6 0

since �1 is a solution to the equation with F D F1. Thus it is, indeed, also a subsolution with
F D F2.

Lemma 3 Let F > 0 and � solve (1). Then for each x 2 Rn, �.x; �/ is decreasing on Œ0;1/. If
F 6 0 instead, then �.x; �/ is increasing in time.

Proof. Let F > 0 and s > 0 be given. We have to show �.x; s/ > �.x; t/ for all x 2 Rn and
t > s. If s > 0, we can shift the initial time to s and use �.�; s/ as initial data, so assume s D 0

without loss of generality. By Lemma 1, we know that Q�.x; t/ D �.x; 0/ solves (1) with QF D 0.
Since F > 0 D QF , Lemma 2 implies that �.x; t/ 6 Q�.x; t/ D �.x; 0/, which finishes the proof.
For the case F 6 0, a similar argument can be applied.
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Note that, due to the concept of viscosity solutions we use, (1) has no time-reversal symmetry.
However, there exists an important symmetry property with respect to sign changes in F and �,
which will be useful later:

Lemma 4 Let � be the solution of (1) for some F and �0. Then �� solves the equation for �F and
with initial data ��0.

Proof. The initial condition is obviously satisfied. Let .p; a/ 2 J 1C.��/.x; t/, and denote the
generic error term for simplicity by r D o .js � t j C jy � xj/. Then it holds that

.��/.y; s/ 6 .��/.x; t/C a.s � t /C p � .y � x/C r;

�.y; s/ > �.x; t/ � a.s � t / � p � .y � x/C r:

Hence, .�p;�a/ 2 J 1��.x; t/. Since � is a supersolution of (1), this implies that

�aC F.x/ j�pj D �aC F.x/ jpj > 0 , a � F.x/ jpj 6 0:

Thus �� is a subsolution when the speed is �F . By the same argument, one can show that �� is a
supersolution in this case as well.

We are now able to show an interesting result that allows us to reduce the general problem to
the case where F > 0 or F 6 0 throughout the domain. The latter case can be reduced itself to
F > 0 by Lemma 4. Hence, we can restrict ourselves to the consideration of F > 0 for most of the
remainder of the paper.

Theorem 2 For a general Lipschitz continuous F W Rn ! R, define

FC.x/ D max
�
F.x/; 0

�
; F �.x/ D min

�
F.x/; 0

�
together with the open sets ˝C D F �1 ..0;1// and ˝� D F �1 ..�1; 0//. Let �˙ be the
solutions of (1) for F˙ with initial data �0. Then

�.x; t/ D

8<: �C.x; t/ for x 2 ˝C;
��.x; t/ for x 2 ˝�;
�0.x/ if F.x/ D 0

(3)

solves (1) for F and with initial data �0.
Furthermore, �C 6 �0 6 �� throughout Rn � Œ0;1/, and �˙.x; t/ D �0.x/ for all x 62 ˝˙

and t > 0.

Proof. The relation �C 6 �0 6 �� follows immediately from Lemma 2 since F � 6 0 6 FC and
�0 is the solution for F D 0 by Lemma 1. It is clear that �, as defined in (3), satisfies the initial
condition �.x; 0/ D �0.x/, since this condition is imposed on both of �˙.

The next step is to show �C.x; t/ D �0.x/ for all x 62 ˝C and t > 0. For this, define

Q�.x; t/ D

�
�C.x; t/ for x 2 ˝C;
�0.x/ if F.x/ 6 0:

Take note that �C 6 Q� 6 �0 since �C 6 �0. Because ˝C D F �1 ..0;1// is open, it follows that
Q� is upper semi-continuous. To see this, let .x; t/ 2 Rn � Œ0;1/ be arbitrary and .xk ; tk/! .x; t/.
If x 2 ˝C, then xk 2 ˝C if k is large enough. Consequently,

lim sup
k!1

Q�.xk ; tk/ D lim sup
k!1

�C.xk ; tk/ D �
C.x; t/ D Q�.x; t/



322 D. KRAFT

by continuity of �C. If, on the other hand, x 62 ˝C, then

lim sup
k!1

Q�.xk ; tk/ 6 lim sup
k!1

�0.xk ; tk/ D �0.x; t/ D Q�.x; t/

since Q� 6 �0 is always the case and �0 is continuous.
We proceed to show that Q� is a subsolution of (1) with speed FC, which will then imply Q� 6 �C

by Theorem 1 and thus further �C D Q�. Let .x; t/ 2 D and .p; a/ 2 J 1C Q�.x; t/. If x 2 ˝C,
then note that Q� D �C in a neighbourhood of .x; t/ since ˝C is open. Thus .p; a/ is also in
J 1C�C.x; t/, which implies a C FC.x/ jpj D 0 6 0 since �C is the solution for FC. Assume
now x 2 Rn n˝C, i. e., F.x/ 6 0. This implies FC.x/ D 0 and also Q�.x; t/ D �0.x/ constantly
in time. In this case, we can show that a D 0 with the same argument as in the proof of Lemma 1.
Hence also aC FC.x/ jpj D 0 6 0, which shows that Q� is, indeed, a subsolution of (1) with speed
FC. Similarly, one can show that ��.x; t/ D �0.x/ for all x 62 ˝� and t > 0.

It remains to verify that � as defined in (3) is actually a solution of (1) with speed F . Take note
that the considerations above imply that �C.x; t/ D ��.x; t/ D �0.x/ whenever F.x/ D 0. Thus,
� is continuous since �˙ as well as �0 are continuous. With the same argument that was used above
for Q�, one can now also show that � itself is both a sub- and supersolution of (1).

3. Generalised distances

As a preparation for the following results, in this section we will investigate the Eikonal equation

F.x/
ˇ̌
rdy.x/

ˇ̌
D 1; dy.y/ D 0 (4)

for some fixed “source” y 2 Rn. For this stationary equation, viscosity solutions can be defined in
a similar way to Definition 2. As discussed above, we assume that F W Rn ! Œ0;1/ has compact
support and is Lipschitz continuous with constant LF . Consequently, it attains a maximal value, so
that we can find F 2 R with 0 6 F.x/ 6 F for all x 2 Rn. (Note that we always consider F > 0 in
this section.) Dropping the requirement that F has compact support for the moment and assuming
F D 1 on the whole space, one can show that dy.x/ D jx � yj solves (4). In this simplified case,
dy is just the usual geometric distance to y. (See Section 3.1 of [27] for a thorough discussion of
this case.) For more general F , the solution dy.x/ of (4) yields a generalised distance instead. As
we will see in Theorem 3, this distance corresponds to the shortest travel time from the source y
to some arbitrary target x, with F defining the allowed speed of movement at each point in space.
There exists a vast literature about (4), mainly for the case that F is uniformly bounded away from
zero. See, for instance, Theorem 5.3 on page 132 of [29]. We will, however, not use this assumption
here and deduce some relevant results for the more general case instead. As in the preceding section,
let us define ˝C D F �1 ..0;1// as the set where F is strictly positive. ˝C is clearly open and
bounded, and each connected component of ˝C is also open and thus even path-connected. This,
in particular, implies that the set Xad .x; y/ defined below is not empty.

DEFINITION 3 Let C � ˝C be a connected component and x; y 2 C . A path connecting x and
y is a function � 2 W 1;1.Œ0; 1�;Rn/ with �.0/ D x, �.1/ D y and �.t/ 2 C for all t 2 Œ0; 1�. We
write Xad .x; y/ for the set of all such paths from x to y.

For � 2 Xad .x; y/, the Euclidean arc length is defined as

j�j D

Z 1

0

ˇ̌
� 0.t/

ˇ̌
dt
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in the usual way. We can also define the corresponding F -induced length of � as

l.�/ D

Z 1

0

j� 0.t/j

F
�
�.t/

� dt: (5)

By the Sobolev embedding theorem (see, for instance, Theorem 6 on page 270 of [16]), each
path � 2 Xad .x; y/ is continuous. Furthermore, by the continuity of F also F ı � is continuous,
and thus this function attains a minimum on the compact interval Œ0; 1�. Since � maps into C , this
minimum must actually be strictly positive. Thus, (5) is well-defined with 0 6 l.�/ <1. Also note
that using the fundamental theorem of calculus, one can easily show that the straight line

Sxy.t/ D x C t .y � x/

between x and y has the shortest possible Euclidean arc length: Let � 2 Xad .x; y/, then

j�j D

Z 1

0

ˇ̌
� 0.t/

ˇ̌
dt >

ˇ̌̌̌Z 1

0

� 0.t/ dt

ˇ̌̌̌
D j�.1/ � �.0/j D jx � yj D

ˇ̌
Sxy

ˇ̌
:

Another key observation is that one can always reparametrise a given path � such that j� 0.t/j D
j�j is constant for all t 2 Œ0; 1�. This corresponds to a parametrisation by path length followed by a
rescaling of the time interval from Œ0; j�j� back to Œ0; 1�. It is easy to see that this operation does not
change any geometrical properties and leaves, in particular, j�j and l.�/ invariant. In the following,
we will most of the time assume, without loss of generality, that this is done for the considered
paths. With this assumption, the path length (5) becomes

l.�/ D

Z 1

0

j�j

F
�
�.t/

� dt: (6)

Finally, note that paths � 2 W 1;1.Œ0; 1�;Rn/ are Lipschitz continuous. We denote the optimal
Lipschitz constant by

Lip .�/ D sup
t¤s2Œ0;1�

ˇ̌̌̌
�.t/ � �.s/

t � s

ˇ̌̌̌
:

For paths reparametrised by arc length in the way described above, it follows easily that Lip .�/ D
j�j.

DEFINITION 4 For x 2 Rn, we set d .x; x/ D 0. For y ¤ x, if there exists a connected component
C � ˝C with x; y 2 C , we define

d .x; y/ D inf
�2Xad.x;y/

l.�/:

Otherwise, we set d .x; y/ D1.

This defines a generalised distance d .x; y/ 2 Œ0;1� between any two points x and y. This
distance corresponds to the “shortest travel time” between the points under the speed field F . If
the points are not in the same connected component of ˝C, then each path between them must
necessarily pass through intermediate points z with F.z/ D 0, which justifies the definition of
d .x; y/ D1 in this case. This will be further clarified by Lemma 5 below.
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Since the difference between our situation and the one handled commonly in the literature is that
we allow F.x/ ! 0 as x ! @˝C without a strictly positive lower bound, we have to pay special
attention to this case. It turns out, however, that Lipschitz continuity of F ensures that paths with
finite length can never actually reach @˝C:

Lemma 5 Let C � ˝C be a connected component, X � C be compact, and choose M > 0. Then
there exists F > 0 such that for all x 2 X , y 2 C and � 2 Xad .x; y/, the condition F.�.t// 6 F

for some t 2 Œ0; 1� necessarily implies l.�/ > M .

Proof. Let � 2 Xad .x; y/ and assume that F.�.t0// 6 F for some F > 0 and t0 2 Œ0; 1�. From
Lipschitz continuity, we get

F
�
�.t/

�
6 F C j�jLF jt � t0j :

But this also implies
j�j

F
�
�.t/

� >
j�j

F C j�jLF .t0 � t /

for all t 2 Œ0; t0�. Hence

l.�/ >
Z t0

0

j�j

F
�
�.t/

� dt > j�j
Z t0

0

1

F C j�jLF .t0 � t /
dt D

log
�
j�jLF t0 C F

�
� log.F /

LF
:

Now assume F.z/ > F0 > 0 for all z 2 X , which is possible by compactness of X , and pick
x 2 X . Again by Lipschitz continuity, we have

F0 6 F.x/ D F
�
�.0/

�
6 F C j�jLF t0 ) j�jLF t0 > F0 � F >

F0

2

if only F is chosen at most F0=2. In particular, j�jLF t0 is bounded away from zero with a constant
depending only on X . But this gives further

l.�/ >
log

�
j�jLF t0

�
� log.F /

LF
>

log.F0=2/ � log.F /
LF

;

which can be made arbitrarily large by choosing F small enough. The proof is now finished if we
note that the choice of F for the claim to be satisfied only depends onX and F but not the particular
x, y or � under consideration.

Lemma 5 can be interpreted as a coercivity result: Since path lengths become infinite when
approaching the boundary of˝C, such paths can never be relevant for the determination of shortest
paths and, consequently, the distance d .�; �/. This allows us to restrict ourselves to compact subsets
of ˝C in these situations. As a first application of this feature, let us show the existence of a path
with minimal length if x and y are in the same connected component (i. e., d .x; y/ <1). For this,
we make use of the theorem of Arzelà-Ascoli (see Appendix C.7 in [16]) to get compactness, and
use Lipschitz estimates to show lower semi-continuity. To be precise:

Lemma 6 Let x; y 2 Rn with d .x; y/ < 1. Let � 2 Xad .x; y/, .�k/ � Xad .x; y/ and L > 0 be
a uniform Lipschitz constant for all �k . Assume �k ! � uniformly and that all �k are parametrised
by arc length. (We do not assume this to be true for �.) Then also � is Lipschitz continuous and we
have

j�j D

Z 1

0

ˇ̌
� 0.t/

ˇ̌
dt 6 Lip .�/ 6 lim inf

k!1
Lip .�k/ 6 L:
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Proof. For simplicity, assume that limk!1 Lip .�k/ exists. (If that is not the case, choose a
subsequence that converges to the limit inferior.) Fix t ¤ s and note thatˇ̌̌̌

�.t/ � �.s/

t � s

ˇ̌̌̌
D lim
k!1

ˇ̌̌̌
�k.t/ � �k.s/

t � s

ˇ̌̌̌
6 lim
k!1

Lip .�k/ :

Since this is true for arbitrary t and s, it also holds in the supremum to give Lip .�/ 6
limk!1 Lip .�k/. The remaining estimates follow immediately.

Lemma 7 Let x; y 2 Rn and d .x; y/ <1. Then there exists � 2 Xad .x; y/ such that d .x; y/ D
l.�/.

Proof. By definition of d .x; y/, we can find a minimising sequence .�k/ with l.�k/ ! d .x; y/.
Assume that each �k is parametrised by arc length. This implies that there exists a uniform Lipschitz
constantL for all �k , since each has Lipschitz constant Lip .�k/ D j�kj. The arc lengths j�kj, in turn,
are bounded uniformly because the sequence minimises l.�k/ and

Lip .�k/

F
6
Z 1

0

j�kj

F
�
�k.t/

� dt D l.�k/:
By the theorem of Arzelà-Ascoli, there exists a continuous path � that is the uniform limit of a
subsequence of .�k/. Without loss of generality, assume that the subsequence is .�k/ itself, so
that �k ! � uniformly. Furthermore, also � is Lipschitz continuous with Lipschitz constant L
by Lemma 6. Thus � 2 Xad .x; y/. Note that, in particular, the image of � has to lie inside of
C � ˝C. If this were not the case, then Lemma 5 would imply that the sequence .�k/ has
unbounded path lengths. This would contradict the assumption that it is a minimising sequence. By
definition of d .x; y/, it is clear that l.�/ > d .x; y/. It remains to show that also l.�/ 6 d .x; y/ D

limk!1 l.�k/ holds.
For this, define g.�/ D 1=F.�.�//. Since the image of � lies inside of˝C, we know that F ı� is

bounded away from zero. Hence, g is Lipschitz continuous with some constant Lg . Assume that we
have some partition I of Œ0; 1� into intervals Ii D Œti ; tiC1� and that I has fineness h D supi .tiC1 �
ti /. Choose � > 0 arbitrary and pick K 2 N such that Lip .�I Ii / 6 Lip .�k I Ii /C � for all intervals
Ii 2 I and k > K. This is possible due to Lemma 6 (applied to the intervals Ii instead of Œ0; 1�).
Finally, since �k ! � uniformly, we also have the uniform convergence gk D 1=.F ı �k/ ! g.
Hence, we may assume g.�/ 6 gk.�/C � for all � 2 Œ0; 1� and k > K.

Now, using again the estimates in Lemma 6, we get:Z 1

0

g.�/
ˇ̌
� 0.�/

ˇ̌
d� 6

X
Ii2I

sup
�2Ii

g.�/ � .tiC1 � ti / � Lip .�I Ii /

6
X
Ii2I

sup
�2Ii

g.�/ �

�Z
Ii

ˇ̌
� 0k.�/

ˇ̌
d� C .tiC1 � ti /�

�
Since g is Lipschitz continuous, we also know that

sup
�2Ii

g.�/ 6 inf
�2Ii

g.�/C hLg :
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Furthermore, clearly

inf
�2Ii

g.�/

Z
Ii

ˇ̌
� 0k.�/

ˇ̌
d� 6

Z
Ii

g.�/
ˇ̌
� 0k.�/

ˇ̌
d� 6

Z
Ii

.gk.�/C �/
ˇ̌
� 0k.�/

ˇ̌
d�:

All that taken together yieldsZ 1

0

g.�/
ˇ̌
� 0.�/

ˇ̌
d�

6
X
Ii2I

�Z
Ii

.g.�/C �/
ˇ̌
� 0k.�/

ˇ̌
d� C hLg

Z
Ii

ˇ̌
� 0k.�/

ˇ̌
d� C .tiC1 � ti /� kgk1

�
D

Z 1

0

gk.�/
ˇ̌
� 0k.�/

ˇ̌
d� C .� C hLg/ j�kj C � kgk1 :

Recall that � and I were arbitrary. Thus, also h can be made small. Note that j�kj is bounded for
k !1. This now implies the claim, since

l.�/ D

Z 1

0

g.�/
ˇ̌
� 0.�/

ˇ̌
d� 6 lim inf

k!1

Z 1

0

gk.�/
ˇ̌
� 0k.�/

ˇ̌
d� D lim

k!1
l.�k/ D d .x; y/ :

We continue by deriving some fundamental properties of and estimates for the path lengths and
the distance function d .�; �/:

Lemma 8 Let x; y 2 Rn be arbitrary. Then

jx � yj 6 F � d .x; y/ :

Proof. For d .x; y/ D 1 and for x D y, the claim is obvious. Thus assume that x and y are in the
same connected component of ˝C, and let � 2 Xad .x; y/. Then

l.�/ D

Z 1

0

j�j

F
�
�.x/

� dt >
j�j

F
>
jx � yj

F
;

where we have used the assumption of a reparametrised � and (6).

This result gives an important estimate relating d .x; y/ and jx � yj. If we use Lipschitz
continuity of F in addition, also more precise estimates are possible especially for points close
to each other. In particular, we get the following localised version of Lemma 8:

Lemma 9 Let x 2 ˝C and y 2 Rn. Then we have:

jx � yj 6
F.x/

LF

�
eLF d.x;y/ � 1

�
If furthermore LF jx � yj < F.x/, then also

d .x; y/ 6 l.Sxy/ 6
1

LF
log

F.x/

F.x/ � LF jx � yj
;

jx � yj >
F.x/

LF

�
1 � e�LF d.x;y/

�
:

As before, Sxy 2 Xad .x; y/ denotes the straight line between x and y.
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Proof. If d .x; y/ D 1, the first claim is clear. For the remaining case, we choose � 2 Xad .x; y/

arbitrary. Let � be parametrised by its arc length j�j. Then j�j > jx � yj and Lipschitz continuity of
F implies

F
�
�.t/

�
6 F.x/C LF j�.t/ � xj D F.x/C LF

ˇ̌̌̌Z t

0

� 0.�/ d�

ˇ̌̌̌
6 F.x/C LF t j�j

for all t 2 Œ0; 1�. This yields

l.�/ D

Z 1

0

j�j

F.�.t//
dt >

Z 1

0

j�j

F.x/C LF t j�j
dt

D
1

LF
log

F.x/C j�jLF

F.x/
>

1

LF
log

�
1C
jx � yjLF

F.x/

�
;

which also holds in the infimum over all possible paths �. Thus

eLF d.x;y/ > 1C
jx � yjLF

F.x/
;

which further implies the first estimate.
For the second estimate, note that d .x; y/ 6 l.Sxy/ as well as

ˇ̌
Sxy

ˇ̌
D jx � yj. Lipschitz

continuity tells us that

F
�
Sxy.t/

�
> F.x/ � LF

ˇ̌
Sxy.t/ � x

ˇ̌
D F.x/ � LF t jx � yj ;

and by our assumption this expression is guaranteed to be positive for all t 2 Œ0; 1�. This implies
also, in particular, that Sxy lies entirely inside of ˝C. Thus we find

d .x; y/ 6 l.Sxy/ D

Z 1

0

ˇ̌
Sxy

ˇ̌
F
�
Sxy.t/

� dt 6
Z 1

0

jx � yj

F.x/ � LF t jx � yj
dt

D
1

LF
log

F.x/

F.x/ � LF jx � yj
:

The third estimate is just an equivalent reformulation of the second one.

The following is a variant of Theorem 5.1 on page 117 of [29], adapted for our problem (4):

Lemma 10 d .�; �/ defines a metric on each connected component of ˝C.

Proof. By Definition 4, d .x; x/ D 0 for each x 2 Rn. Let C � ˝C be a connected component,
x; y 2 C and x ¤ y. For each � 2 Xad .x; y/, we can define �c.t/ D �.1 � t /, which yields
�c 2 Xad .y; x/ with l.�/ D l.�c/. Hence d .x; y/ D d .y; x/ holds also in this case. Let now
z 2 C be given in addition. We use Lemma 7 to choose �1 2 Xad .x; z/ and �2 2 Xad .z; y/ with

l.�1/C l.�2/ D d .x; z/C d .z; y/ :

Let us define � as the concatenation of �1 and �2 with subsequent reparametrisation. Consequently,
� 2 Xad .x; y/ and

d .x; y/ 6 l.�/ D l.�1/C l.�1/ D d .x; z/C d .z; y/ :
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It remains to verify that we also have non-degeneracy in the form of

d .x; y/ D 0 ) x D y:

This, however, follows directly from Lemma 8.

Lemma 11 Let X � ˝C be compact and convex. Then

d .x; y/ 6 L jx � yj

for all x; y 2 X , where L D 1=F and F > 0 is the minimum of F over X .

Proof. Let F > 0 be the minimum of F on the compact set X and choose x; y 2 X . We consider
the straight line Sxy as particular path in Xad .x; y/. Convexity ensures that Sxy.t/ 2 X for all
t 2 Œ0; 1�. The claim now follows with

d .x; y/ 6 l.Sxy/ D

Z 1

0

ˇ̌
Sxy

ˇ̌
F
�
Sxy.t/

� dt 6
jx � yj

F
:

Lemma 12 d .�; �/ is continuous in both arguments on each connected component of ˝C.

Proof. LetC � ˝C be a connected component and x 2 C . By symmetry according to Lemma 10 it
is sufficient to show that dx.�/ D d .�; x/ is continuous on C . First, we show that dx is continuous at
x itself. For this, let .xk/ � C with xk ! x as k !1 and pick ı > 0 such that Bı .x/ � C . This
is possible since C is open. Assume for simplicity and without loss of generality that jxk � xj < ı
for all k 2 N. Since Bı .x/ is compact and convex, we can apply Lemma 11 in order to deduce

0 6 dx.xk/ D d .xk ; x/ 6 L jxk � xj

for some constant L. Since the right-hand side vanishes with xk ! x, we find that also the limit
dx.xk/! 0 D dx.x/ must hold. This shows continuity of dx at x.

Now let x; y 2 C be arbitrary. We will show that dy D d .�; y/ is continuous at x. For this,
choose � > 0. From the previous argument, we know that there exists ı > 0 such that d .x; x0/ <
� if only jx0 � xj < ı. Applying the triangle inequality and the reverse triangle inequality from
Lemma 10 for some intermediate point x0 2 Bı .x/, we get

d .x; y/ 6 d
�
x; x0

�
C d

�
x0; y

�
) d

�
x0; y

�
> d .x; y/ � d

�
x; x0

�
> d .x; y/ � �

and
d
�
x0; y

�
6 d

�
x0; x

�
C d .x; y/ 6 d .x; y/C �:

Hence we find jd .x0; y/ � d .x; y/j < � whenever jx0 � xj < ı, which is the claimed continuity.

After this quite general discussion, let us get back to the task of solving (4). For the case of a
strictly positive, uniform lower bound F > F > 0, this is well-understood. In order to reduce our
more general problem to the known results, we will make use of Lemma 5. As a first step, let us
introduce a sequence of cut-off speeds:
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DEFINITION 5 For given F > 0, we define QF .x/ D max .F.x/; F /. The notation lF .�/ and
dF .x; y/ will be used for path lengths and distances according to Definition 3 and Definition 4,
respectively, based on QF instead of the original F .

Note that QF has no longer compact support, but this is no problem since QF is still bounded
as long as the original speed field F is bounded. This guarantees that all arguments go through
nevertheless. The distance dF .x; y/ is equivalent to L.x; y/ given in (47) on page 116 of [29] when
using n.x/ D 1= QF .x/. Theorem 5.1 on page 117 of [29] will be the main tool on which we build
our results. There, it is shown that dF .�; y/ is a viscosity solution of (4) if the speed F is replaced
by QF . We will now work on reducing our situation to the case where the result of [29] is applicable.

Lemma 13 Let C � ˝C be a connected component and X � C be compact. Then there exists
F > 0 such that d .x; y/ D dF 0.x; y/ for all F 0 2 .0; F � and x; y 2 X .

Proof. Let QF be the cut-off speed for some F > 0. Then clearly F.x/ 6 QF .x/, which implies
lF .�/ 6 l.�/ for every path �. Hence also dF .x; y/ 6 d .x; y/. It remains to show that our
assumptions actually imply equality. Furthermore, if we show the result for a single F as cut-off
threshold, it must also hold for all smaller thresholds. This is the case because F 0 6 F implies
d .x; y/ D dF .x; y/ 6 dF 0.x; y/ 6 d .x; y/. Thus, it remains to show that d .x; y/ 6 dF .x; y/

holds for some threshold F > 0.
Set M D maxx;y2X d .x; y/, which is well-defined and finite because of Lemma 12 and since

X is compact. We now apply Lemma 5 for this M to get a corresponding positive threshold F .
We can assure F.x/ > F > 0 for all x 2 X by decreasing F further as necessary. Now, assume
that dF .x; y/ < d .x; y/ for some x; y 2 X . Choose a minimising path � 2 Xad .x; y/ with
lF .�/ D dF .x; y/. Consequently,

lF .�/ < d .x; y/ 6 l.�/:

This, however, implies that there exists t 2 Œ0; 1� with F.�.t// < F . If that would not be the case,
then F.�.t// D QF .�.t// for all t 2 Œ0; 1� and thus the lengths would have to coincide. Define now

t0 D inf
˚
t 2 Œ0; 1� j F

�
�.t/

�
6 F

	
D min

˚
t 2 Œ0; 1� j F

�
�.t/

�
6 F

	
;

which is well-defined because the set is non-empty and F ı � is continuous. Furthermore, for all
t 2 Œ0; t0� we have F.�.t// > F and consequently F.�.t// D QF .�.t//. Also, t0 > 0 because
x 2 X and thus F.�.0// D F.x/ > F . Now define a new path �1.t/ D �.t=t0/. We have �1 2
Xad .x; �.t0//, and since F equals QF along the path, also l.�1/ D lF .�1/. Since F.�1.1// D F , we
can apply Lemma 5 now to �1 to deduce l.�1/ > M . This is a contradiction, since

lF .�/ > lF .�1/ D l.�1/ > M

and we know lF .�/ < d .x; y/ 6 M .

Theorem 3 Let C � ˝C be a connected component and y 2 C be fixed. Then dy.�/ D d .�; y/ is
a viscosity solution of (4) in C n fyg.

Proof. Note that dy is continuous on C by Lemma 12, and that the boundary condition is trivially
satisfied because of dy.y/ D d .y; y/ D 0. It remains to show that dy satisfies F.x/

ˇ̌
rdy.x/

ˇ̌
D 1

in the viscosity sense. For this, let x 2 C n fyg be fixed and p 2 J 1Cdy.x/. Now choose
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Y � C compact, connected, with smooth boundary and such that x; y 2 Y ı. Choose F for Y
according to Lemma 13 and such that F 6 minz2Y F.z/ in addition. Then QF D F on Y and
dy.x

0/ D d .x0; y/ D dF .x
0; y/ for all x0 2 Y . The latter property holds, in particular, also in a

neighbourhood of x so that p 2 J 1CdF .x; y/ must be true. Since dF .�; y/ solves (4) with QF in
Y ı n fyg in the viscosity sense as noted above according to Theorem 5.1 on page 117 of [29], this
implies F.x/ jpj D QF .x/ jpj 6 0. This, however, is all we need to show that dy is a viscosity
subsolution of (4) on the whole of C n fyg. By a symmetric argument one can also show that it is a
viscosity supersolution.

We conclude this section with a final auxiliary result that will be useful later:

Lemma 14 Let X � Rn be closed, x 2 X and assume that d .x; y/ > t for some t > 0 and all
y 2 @X . Then d .x; y/ > t for all y 62 X . More precisely: If y 62 X and ı > 0 are such that
Bı .y/ \X D ;, then d .x; y/ > t C ı=F .

Proof. Let y 62 X , then there exists ı > 0 such that Bı .y/ � Rn n X since Rn n X is open.
Consequently, jx0 � yj > ı > 0 for all x0 2 X . Clearly, y ¤ x and if x 62 ˝C, y 62 ˝C or they
are not in the same connected component of ˝C, then d .x; y/ D 1 > t holds. So assume that
x; y 2 ˝C are in the same connected component and choose � 2 Xad .x; y/. Since � is continuous,
the set ��1 .X/ � Œ0; 1� is closed and since it is also bounded, it is compact. Define thus

t0 D max ft 2 Œ0; 1� j �.t/ 2 Xg and y0 D �.t0/:

Then y0 2 X and furthermore y0 2 @X since every sequence .�.tk// with tk ! tC0 from above
is in Rn n X and converges to y0. Denote the two parts of � up to and starting at y0 by �1 and �2,
respectively. Then �1 2 Xad .x; y0/, �2 2 Xad .y0; y/ and l.�/ D l.�1/C l.�2/. Since y0 2 @X , we
know by our assumption that l.�1/ > d .x; y0/ > t . Furthermore, Lemma 8 implies that

l.�2/ > d .y0; y/ >
jy0 � yj

F
>
ı

F
:

Both estimates together imply l.�/ > t C ı=F . Since � was arbitrary, also d .x; y/ > t C ı=F > t

follows by taking the infimum over all possible paths.

Note that Lemma 14 can be interpreted as a variant of the classical minimum principle: If x 2 Rn
is fixed and Y � Rn open with x 62 Y , then d .x; �/ attains its minimum over Y at @Y . (The
complement Rn n Y takes the role of the closed set X in the lemma.) A corresponding maximum
principle does, however, not hold in general: If F.y/ is very small or even zero, then all paths
connecting x to y may have a larger length than paths “circling around” y. In this case, d .x; y/
can, indeed, have a local maximum at y. See also [3], where a more general result is derived for
viscosity solutions. The Eikonal equation, in particular, is covered by Example 5. A discussion of
the classical minimum and maximum principles for harmonic functions can be found in Section 2.5
of [22].

4. The Hopf–Lax formula

We now turn our attention from the stationary problem (4) considered in Section 3 back to the time-
dependent level-set equation (1). As before, we assume that F is Lipschitz continuous with constant
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LF and has compact support, and that also �0 is Lipschitz continuous with constant L�0 . Since we
are particularly interested in the evolving geometries described by the zero level set of �.�; t /, we
also introduce the notation

˝t D �.�; t /
�1
�
.�1; 0/

�
; �t D �.�; t /

�1 .f0g/ : (7)

Clearly, ˝t is open for all t > 0. Similarly, the set �t [˝t D �.�; t /�1 ..�1; 0�/ is closed since
� is continuous. Note, though, that �t need not be the topological boundary @˝t of ˝t . If � is
“degenerate”, �t may contain interior points. This effect is called fattening and will be discussed in
Subsection 5.1 below.

From classical optimal-control theory, it is well-known that the level-set equation (1) can be
related to a Mayer problem. For a thorough discussion, see Section III.3 of [1] or Section 3.3 of [27].
Below, we state the main arguments only briefly. For this, let us consider F > 0 for a moment. We
define

St .x/ D
˚
� 2 W 1;1

�
Œ0; t �;Rn

�
j �.0/ D x;

ˇ̌
� 0.�/

ˇ̌
6 F

�
�.�/

�
for all � 2 Œ0; t �

	
:

This is the set of paths starting in x with length at most t . While it is similar in spirit to the set
Xad .x; y/ of Definition 3 used above, there is a slight difference: Before, we fixed both end points
of the path and were interested in the path length. Now, we fix the starting point and the length, and
consider possible end points. These paths can be used to define the reachable set from x in time t
as

Rt .x/ D f�.t/ j � 2 St .x/g :

We are now interested in the following minimisation problem:

�.x; t/ D inf
�2St .x/

�0
�
�.t/

�
D inf
y2Rt .x/

�0.y/ (8)

Standard arguments show that the value function � of this problem is a viscosity solution of the
corresponding Hamilton-Jacobi-Bellman equation. This equation, in turn, is nothing else than the
level-set equation (1). Furthermore, one can also relate the reachable set to the distances discussed
in the previous Section 3. This yields

Rt .x/ D fy 2 Rn j d .x; y/ 6 tg :

Note that this set is compact, so that the infimum in (8) is actually a minimum. Thus, we have
established the following Hopf–Lax formula for the level-set equation:

Theorem 4 Let F > 0. The Hopf–Lax formula

�.x; t/ D min f�0.y/ j y 2 Rn; d .x; y/ 6 tg (9)

gives the viscosity solution of the level-set equation (1) in Rn � Œ0;1/.

This formula can also be derived for the case F > F > 0 from Theorem 3.1 on page 140
of [7]. To remove the required lower bound and show Theorem 4, one can then proceed with cut-off
arguments as in the proof of Theorem 3. However, we believe that the derivation based directly on
the Mayer problem is the most straight-forward argument. A similar derivation based on control
theory is also given in [19], leading to Theorem 3.1 in the paper.
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Based on this representation formula (9) shown for the level-set function �, we will now proceed
to derive corresponding formulas describing the evolving sets ˝t , �t and �t [˝t themselves. The
crucial ingredient in those formulas is the distance between a point x and the initial set (not just a
single point as given by d .x; �/). This distance corresponds to the time it takes the evolving front to
arrive at x:

DEFINITION 6 Let F > 0 and denote the distance of Definition 4 by d .�; �/. For x 2 Rn, we set

d0.x/ D inf
y2�0[˝0

d .x; y/ ; d 00.x/ D inf
y2˝0

d .x; y/ :

If C is a connected component of ˝C, then d0 is finite on the whole of C if and only if C
contains a part of the initial domain �0 [˝0. If this is not the case, then the distance is infinite on
the whole of C . For d 00, a corresponding statement is true.

Take note that it follows immediately from Definition 6 that d0.x/ 6 d 00.x/ must be true for all
x 2 Rn. We will show now that strict inequality can only hold if �0 has non-empty interior. This
is an unusual situation in applications, although we have not excluded it so far. Also note that the
infimum is actually a minimum if we take it over a closed set. (The range of potential minimisers y
is automatically bounded since we have jF j 6 F , which means that points too far away can never
minimise the distance. This follows from Lemma 8.)

Lemma 15 Let 0 6 F 6 F and x 2 Rn be arbitrary. Then there exist y 2 �0 [˝0 and y0 2 ˝0
with d0.x/ D d .x; y/ and d 00.x/ D d .x; y

0/.
Furthermore, if ˝0 D �0 [˝0 and either x 2 ˝C or x 62 �0, then d0.x/ D d 00.x/.

Proof. Let x 2 Rn be given. Consider the case x 62 ˝C first. If x 2 �0 [ ˝0, then d0.x/ D
d .x; x/ D 0 and the claim is true. If this is not the case, then d0.x/ D d .x; y/ D1 for all y ¤ x,
and the claim also holds. The same argument can be used for ˝0 and d 00. For the second statement,
we only have to consider x 62 �0 since x 62 ˝C by assumption. But then either d0.x/ D d 00.x/ D 0
if x 2 ˝0, or otherwise d0.x/ D d 00.x/ D1 since then x 62 �0 [˝0.

Now, assume that x 2 C where C � ˝C is a connected component. If d0.x/ D 1, then
also C \ .�0 [ ˝0/ D ; and we can choose y to be any element of �0 [ ˝0. The same applies
if d 00.x/ D 1. So assume from now on that d0.x/ and d 00.x/ are both finite. This together with
Lemma 5 implies that there exists a compact set X � C such that

d0.x/ D inf
y2X\.�0[˝0/

d .x; y/ ; d 00.x/ D inf
y2X\˝0

d .x; y/ : (10)

To see this, choose y 2 C arbitrarily for a moment. Then d .x; y/ < 1. According to Lemma 5,
there exists F > 0 such that d .x; Qy/ > d .x; y/ for all Qy with F. Qy/ < F . Thus, defining X D
F �1

��
F ;F

��
ensures (10). If this set is not bounded, we can, furthermore, choose some radius

R > 0 such that d .x; Qy/ > d .x; y/ for all Qy with jx � Qyj > R based on Lemma 8. This allows us
to use the compact set X \ BR .x/ instead of X itself.

Note that d .x; �/ is finite and continuous when restricted toX . By taking a minimising sequence
and using this continuity as well as compactness of the sets X \ .�0 [ ˝0/ and X \ ˝0, we see
that the infima in (10) are actually minima. If ˝0 D �0 [ ˝0 and y 2 �0 [ ˝0 is chosen with
d0.x/ D d .x; y/, then

d0.x/ D d .x; y/ > d 00.x/ > d0.x/;

showing equality between d0.x/ and d 00.x/.
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Theorem 5 Let F > 0. Then the evolving sets can be represented as

�t [˝t D fx 2 Rn j d0.x/ 6 tg ;

˝t D
˚
x 2 Rn j d 00.x/ < t

	
;

�t D
˚
x 2 Rn j d0.x/ 6 t 6 d 00.x/

	
for all t > 0. If ˝0 D �0 [˝0, then the last relation states that

�t D fx 2 Rn j d0.x/ D tg [ .�0 n˝C/: (11)

Proof. We use Theorem 4 to express � by (9). Let x 2 �t [˝t . By definition, this means �.x; t/ 6
0. Hence (9) implies that there exists y 2 �0 [˝0 with d .x; y/ 6 t . This, in turn, yields d0.x/ 6
d .x; y/ 6 t . The other way round, let d0.x/ 6 t . By Lemma 15, there exists y 2 �0 [ ˝0 with
d .x; y/ D d0.x/ 6 t , such that �.x; t/ 6 �0.y/ 6 0 by (9) and thus x 2 �t [˝t .

Now assume that d 00.x/ < t . Applying Lemma 15 again, we find that there exists y 2 ˝0 with
d .x; y/ D d 00.x/ < t . Thus, continuity of d .x; �/ implies that there also exists y0 2 ˝0 with
d .x; y0/ < t . Hence (9) yields �.x; t/ 6 �0.y

0/ < 0 and, consequently, x 2 ˝t . If, on the other
hand, x 2 ˝t and thus �.x; t/ < 0, there exists y 2 ˝0 with d .x; y/ 6 t . This implies at least
d 00.x/ 6 d .x; y/ 6 t . Let us for a moment assume that d 00.x/ D t . In this case, d .x; y/ D t

must hold, and also d .x; Qy/ > t must be the case for all Qy 2 ˝0. Since ˝0 is open, there exists a
small radius ı > 0 such that Bı .y/ � ˝0. Define X D Rn n Bı .y/, which is closed, and note that
x 2 X because otherwise x 2 ˝0 and this would lead to a contradiction with 0 D d .x; x/ > t > 0.
Since @X D @Bı .y/ � ˝0, we know that d .x; Qy/ > t for all Qy 2 @X . This, however, implies
d .x; y/ > t with Lemma 14, which is a contradiction. Thus we have shown that d 00.x/ < t must
be the case.

For the third equality, note that �t and ˝t are clearly disjoint, so that the relation

�t D .�t[˝t /n˝t D
˚
x 2 Rn j d0.x/ 6 t and not d 00.x/ < t

	
D
˚
x 2 Rn j d0.x/ 6 t 6 d 00.x/

	
holds. Finally, assume that we know˝0 D �0 [˝0 in addition. Consider x 2 Rn. If x 2 �0 n˝C,
then �.x; t/ D �0.x/ D 0 and thus x 2 �t by Theorem 2. This shows that �0 n ˝C is always a
subset of both sides of (11). Consider now the case x 62 �0 n˝C. For these x, Lemma 15 implies
that d0.x/ D d 00.x/, and thus (11) holds as well.

A part of the statement of Theorem 5 can be found already in Theorem 3.2 in [19]. Note,
however, that we are not aware of any actual further conclusions derived from such a Hopf–
Lax formula towards a framework for shape-sensitivity analysis or shape optimisation in general.
Drawing such conclusions to derive new results in this direction is one of our main contributions,
which we present in Section 5.

To conclude this section, we will now combine Theorem 5 with Theorem 2 to give formulas for
the case of arbitrary signs of F . For this, we define ˝� D F �1 ..�1; 0// and ˝z D F �1 .f0g/.
We also introduce the notation

˝ 00 D Rn n .�0 [˝0/ D �0�1
�
.0;1/

�
and assume for simplicity that we are in the case ˝0 D �0 [ ˝0. Then Rn D ˝0 [ �0 [ ˝

0
0

is a disjoint decomposition of Rn into two open sets and the interface �0 between them, which
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has empty interior. Next, we define a modified version of d0 from Definition 6 for this extended
situation:

D.x/ D

�
infy2�0[˝0 d .x; y/ for x 2 ˝C;
� infy2�0[˝00 d .x; y/ for x 2 ˝� (12)

Here, d .�; �/ is defined according to the metric discussed in Section 3 for the speed chosen as jF j >
0. Since there is no meaningful way to define D on ˝z , we leave the distance undefined there. In
the following, we never need the values of D on this set. On ˝C, where F is positive, the front
moves outwards. In this case, D gives the time it takes the front to reach points outside the initial
geometry. For ˝� with negative F , the front moves inwards and D is negative inside the initial
geometry. There, �D is the time until an originally interior point is hit by the front and later no
longer part of ˝t at all. This convention for the sign of D gives it somewhat the characteristics
of a signed distance function of the initial geometry (although with respect to the metric d .�; �/
induced by jF j instead of the usual Euclidean distance). The composite distance D defined in this
way is depicted in Figure 2. Note that D blows up towards ˝z (the vertical line x D 0 in the
example), which is a consequence of Lemma 5. Since this corresponds to slow movement of the
evolving boundary, it does not create any numerical difficulties. Take note that D D d0 on ˝C by
its definition in (12). On ˝�, the function D is defined in a similar way. This implies that most of
the local properties of d0 that we will derive in the following (e. g., Lemma 16) carry over to D.

Corollary 1 Let F be Lipschitz continuous and have compact support. Assume that˝0 D �0[˝0
and use the notation above. Then

˝t D
˚
x 2 ˝C j D.x/ < t

	
[ .˝0 \˝

z/ [ fx 2 ˝� j D.x/ < �tg ;

�t D
˚
x 2 ˝C j D.x/ D t

	
[ .�0 \˝

z/ [ fx 2 ˝� j D.x/ D �tg ;

�t [˝t D
˚
x 2 ˝C j D.x/ 6 t

	
[
�
.�0 [˝0/ \˝

z
�
[ fx 2 ˝� j D.x/ 6 �tg

for all t > 0. Note that we no longer require that F > 0 or F 6 0 throughout Rn.

Proof. Since the level-set function �.x; �/ is constant in time for each x 2 ˝z according to
Theorem 2, it is clear that the formulas hold for those x and we only have to consider x 2 ˝˙.
Let x 2 ˝C. Then Theorem 2 tells us that �.x; t/ D �C.x; t/, where �C solves (1) with
FC D max.F; 0/ > 0. In particular, the evolving sets are the same as those generated by �C

when inside of ˝C. Take note that D.x/ D d0.x/ in this case, since d .x; �/ induced by jF j is the
same as d .x; �/ induced by FC using arguments based on Lemma 5. Hence,

˝t \˝
C
D
˚
x 2 ˝C j d0.x/ < t

	
D
˚
x 2 ˝C j D.x/ < t

	
follows by Theorem 5 applied to FC. The other relations follow in the same way.

It remains to consider the case x 2 ˝�. In this situation, Theorem 2 and Lemma 4 imply that
�.x; t/ D ���.x; t/, where �� solves (1) with F � D �min.F; 0/ > 0 and initial data ��0.
Since this initial level-set function corresponds to the initial geometry˝ 00, the distance for applying
Theorem 5 is �D.x/ in this case. This yields

x 62 ˝t , �.x; t/ > 0 , ��.x; t/ 6 0 , �D.x/ 6 t , D.x/ > �t:

In other words,
˝t \˝

�
D fx 2 ˝� j D.x/ < �tg

when taking the complement. The same can be done for the other sets as well.
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(a) The speed field, initial domain˝0 (white) and resulting shape evolution (black)
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(b) The composite distanceD of (12)

FIG. 2: Demonstration of the composite distance D of (12) and the representation formula of
Corollary 1 for an example with positive and negative speeds
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The Hopf–Lax formula derived above in Corollary 1 will be used in the following section to
draw some conclusions about the evolution of ˝0 in time. Besides these theoretical purposes, it
can also be employed directly for the numerical computation of evolved domains. The distance
functionD defined in (12) can be computed efficiently using a Fast-Marching Method (see [33] and
Chapter 8 of [34]). Since one has to apply Fast Marching twice to handle arbitrary signs of the speed
field, this yields a Composite Fast-Marching method. Once this is done, the evolved domains can
be assembled very cheaply for arbitrary times just by using Corollary 1. This property is useful, for
instance, in the context of shape optimisation with a line search strategy: With a single computation
ofD, the evolved domain can be computed for various “trial step lengths” t . We employ this strategy
successfully, for instance in [25]. See Section 3.5 of [27] for a more detailed description of this
numerical method. Our implementation is freely available in [26].

5. Applications

Let us now discuss some important conclusions from and applications of our main results shown
above in Theorem 5 and Corollary 1. Equipped with these powerful tools, we are now able to derive
new results about non-fattening, shape-sensitivity analysis, Lipschitz continuity of the evolved level-
set function � and the effect of perturbations in the speed field or initial domain. While we believe
that all of them are very interesting and important, particularly the shape calculus of Subsection 5.2
can be employed directly for level-set based shape optimisation. (See Chapter 6 of [27] for more
details.)

5.1 Measure-theoretic non-fattening

When the level-set approach is used to describe geometries, the set �t as given in (7) is usually
thought of as the “boundary” of the geometry one is interested in. With this interpretation, one
definitely does not want �t to become “fat” in any way (for instance, developing interior points, or
having non-zero measure). A classical result showing non-fattening in the former, topological sense
under certain conditions is presented in [4]. We are not aware of any results with respect to the latter,
measure-theoretic notion of non-fattening. Based on the representation of the evolving sets derived
in Theorem 5, the issue of non-fattening can now be investigated with relative ease.

Lemma 16 Let ˝C D F �1 ..0;1// as before, C � ˝C be a connected component and assume
that d0 is finite on C . Then d0 is locally Lipschitz continuous on C and, in particular, differentiable
almost everywhere in C . The same holds for d 00.

Proof. We can assume F > 0 throughout Rn without loss of generality, as we only consider ˝C

anyway. We also restrict ourselves to d0 here; the same arguments can be applied for d 00 as well.
Note that if local Lipschitz continuity is shown, differentiability almost everywhere follows by
Rademacher’s theorem (see Theorem 2 on page 81 of [17]).

Let X � C be compact and convex. Since F is continuous, we can introduce F > 0 as the
minimum of F over X . We will show now that d0 has the Lipschitz constant L D 1=F on X . For
this, let x; y 2 X be given. We can choose x0 2 �0 [ ˝0 with d0.x/ D d .x; x0/ by Lemma 15.
Note also d0.x/ < 1 according to our assumption, and that d .x; y/ 6 L jx � yj as shown in
Lemma 11. Thus, the triangle inequality implies

d0.y/ 6 d .y; x0/ 6 d .y; x/C d .x; x0/ 6 d0.x/C L jx � yj :
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If we exchange the roles of x and y, the same argument can be applied to derive an estimate the
other way round. Taking both inequalities together, we get jd0.x/ � d0.y/j 6 L jx � yj.

As a next step, we consider again the Eikonal equation

F.x/ jrd.x/j D 1 in C n .�0 [˝0/; d.x/ D 0 on �0 [˝0; (13)

where C � ˝C is a connected component on which d0 is finite. Intuitively, it makes sense that
the distance d0 of Definition 6 should solve (13) in some sense. This will be investigated in the
following, because it will be a useful tool for the proof of our non-fattening result Theorem 6. Of
course, corresponding properties always also hold for d 00 when the boundary values are prescribed
on ˝0 instead of �0 [˝0.

Lemma 17 The function d0 is a viscosity supersolution of (13).

Proof. Recall that
d0 D inf

y2�0[˝0
dy

is defined as pointwise infimum of a family of functions dy.�/ D d .�; y/. Each dy is a viscosity
solution of (4) according to Theorem 3. Thus their infimum is also at least a viscosity supersolution
of the equation. (See, for instance, Lemma 2.4.5 on page 101 of [20] for this well-known property
of viscosity solutions.) Since d0.x/ > 0 is fulfilled for all x 2 Rn, it holds, in particular, for
x 2 �0 [˝0. This shows that also the boundary condition is satisfied.

Lemma 18 The function d0 solves (13) almost everywhere. In particular, F.x/ jrd0.x/j D 1 for
all x 2 ˝C n .�0 [˝0/ at which d0 is differentiable.

Proof. Fix x 2 ˝C n .�0 [ ˝0/ such that d0.x/ < 1 and rd0.x/ exists. Note that
F.x/ jrd0.x/j > 1 according to Lemma 17 and thus also, in particular, rd0.x/ ¤ 0. We have to
show F.x/ jrd0.x/j 6 1. Define p0 D rd0.x/= jrd0.x/j and note that jrd0.x/j D rd0.x/ � p0,
which is the directional derivative of d0 in direction p0. For � > 0, consider B� .x/. If � is small
enough, this is a compact and convex subset of ˝C, so that Lemma 16 yields that d0 is Lipschitz
continuous on B� .x/. The Lipschitz constant is L� D 1=F � , where F � D miny2B�.x/ F.y/. By
continuity of F , L� ! 1=F.x/ as � ! 0C. Hence

jrd0.x/j D rd0.x/ � p0

D lim
�!0C

d0.x C �p0/ � d0.x/

�
6 lim
�!0C

jd0.x C �p0/ � d0.x/j

�
6 lim
�!0C

L�

D
1

F.x/
;

which completes the proof.

We now need a general lemma about the measure of level sets of Lipschitz continuous functions:

Lemma 19 Let ˝ � Rn and f W˝ ! R be Lipschitz continuous. Thenˇ̌
f �1 .f0g/

ˇ̌
D jfx 2 ˝ j f .x/ D 0 and f is differentiable at x and rf .x/ D 0gj ; (14)

where j�j denotes the n-dimensional Lebesgue measure of the preimage sets.
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Proof. This follows immediately from Lemma 7.7 on page 152 of [21].

Lemma 19 shows that if a level set of some Lipschitz continuous function “fattens” in measure,
then there must also exist a set of positive measure on which its gradient exists and vanishes. This
can not happen for our case of d0, since we know that it solves (13) almost everywhere. This is the
central argument in the proof of our main non-fattening result:

Theorem 6 Let F be Lipschitz continuous and have compact support. Then j�0j D 0 implies
j�t j D 0 for all t > 0.

Proof. Note first that j�0j D 0 implies, in particular, ˝0 D �0 [˝0. If this were not the case, then
�0 would have interior points and thus non-zero measure. We now apply Corollary 1 to express
�t and calculate its measure. Note that the part �t \ ˝z D �0 \ ˝

z can be ignored, since it
has zero measure by assumption. Thus, consider �t \ ˝C D D�1 .ftg/ first. Since D D d0 in
˝C, Lemma 16 and Lemma 18 apply. These results together imply that rD.x/ ¤ 0 for almost all
x 2 �t \˝

C. Consequently, it follows from Lemma 19 that
ˇ̌
�t \˝

C
ˇ̌
D 0. The same argument

can also be used for j�t \˝�j, so that we have finally shown j�t j D 0.

We conclude this subsection by using our representation formula to show non-fattening also
in a topological sense. This result is similar to the classical result of [4]. Note, however, that our
result concerns the sets for each instant in time separately, while the result of [4] considers the
topological properties of the evolving sets in space-time. The property that we show is strictly
stronger, although [4] considers a more general situation.

Theorem 7 Let F > 0 and assume that ˝0 D �0 [˝0. Then ˝t D �t [˝t for all t > 0.

Proof. Note that ˝t � �t [˝t follows immediately from (7) because � is continuous. Hence, we
only have to show �t [ ˝t � ˝t . Let us use Theorem 5 to express the evolving sets. The case
F.x/ D 0 is easy: If x 2 �t [˝t , then x 2 �0 [˝0 since these sets are stationary in time on ˝z .
Hence x 2 ˝0 � ˝t by assumption. (Recall that F > 0 implies monotonic growth of the domains
according to Lemma 3.)

For the remaining case, let x 2 .�t[˝t /\˝C. Since nothing is to be shown if x 2 ˝t , assume
that x 2 �t . Thus d0.x/ D t by Theorem 5. Lemma 15 implies that there exists x0 2 �0 [ ˝0
with d0.x/ D d .x0; x/ D t . Assume that x 62 ˝t , which means that there exists ı > 0 with
Bı .x/ � ˝C n ˝t . In other words, d0.y/ > t for all y 2 Bı .x/. Note that this also implies
d .x0; y/ > t for all those y, since d0.y/ 6 d .x0; y/. Consider now the closed setX D RnnBı .x/,
for which we know x0 2 X and d .x0; y/ > t for all y 2 @X D @Bı .x/. Thus Lemma 14 implies
d .x0; x/ > t , which is a contradiction. Hence we have shown x 2 ˝t .

For the case of F 6 0, a similar statement can be shown by applying Lemma 4 and taking
complements of all involved sets:

.�0 [˝0/
ı
D ˝0 ) .�t [˝t /

ı
D ˝t

It is, however, not possible to get both results at the same time, and also not to get one of them for
changing sign of F . This is demonstrated by the following example:

EXAMPLE 1 Let �0.x/ D jxj � 1, such that ˝0 D B1 .0/ and �0 D @˝0. Choose F 6 0 with
compact support and Lipschitz continuous such that F.x/ D �1 for all x 2 B1C� .0/ with some



HOPF-LAX FORMULA FOR THE LEVEL-SET EQUATION 339

� > 0. Then˝t D B1�t .0/ is a shrinking circle that disappears for t > 1 entirely. This implies that
we have, for t D 1, �1 [˝1 D f0g ¤ ˝1 D ;.

Similarly, if we choose ˝0 to be B2 .0/ n B1 .0/ and F > 0 with supp .F / � B2 .0/ and
F.x/ D 1 for all x 2 B1C� .0/, then ˝t D B2 .0/ n B1�t .0/ and the hole disappears at t D 1. In
this case, .�1 [˝1/ı D B2 .0/ ¤ ˝1 D B2 .0/ n f0g.

5.2 Shape sensitivity of domain functionals

If one considers a functional depending on the evolving sets, one is often also interested in its
derivative with respect to time in the shape propagation. This leads to shape derivatives, which
form the foundation for level-set based schemes for shape optimisation. In the applied literature
such as [14], [32] and [37], these shape-sensitivity formulas are not always rigorously justified or
rely on smoothness assumptions on the domain which may not be fulfilled in practice. Based on
our representation formula of Corollary 1, we are able to rigorously derive such a shape derivative
for an important class of domain functionals. This result can be applied to the mentioned and other
problems. In particular, our shape calculus requires no regularity assumptions on the domain ˝
besides being an open set and having a boundary with measure zero. We are not aware of any
other result that has this feature. Recall also that we use a scalar speed field, which defines the
direction of movement via the normal direction of the domain itself. Classical shape-sensitivity
analysis as discussed, for instance, in Chapter 9 of [13] usually requires a vector-valued velocity
field which is completely independent of the geometry. This is a much stronger assumption than
ours: Consider, for instance, the simple case F D 1 and some initial ˝0 that has a corner (e. g.,
a square). Our approach is perfectly able to handle this situation, since the scalar speed field
is obviously completely smooth in this situation. A corresponding velocity field describing the
same outward movement, however, must necessarily be discontinuous at the corner due to the
discontinuous normal direction there. Thus, standard shape calculus is not applicable for such a
propagating geometry.

In this subsection, we will always assume that j�t j D 0 holds for all times as per Theorem 6.
For f 2 L1loc.Rn/, we define the domain functional

j.t/ D

Z
˝t

f dx:

With the help of the co-area formula (Theorem 2 on page 117 of [17]) and Corollary 1, the functional
j.t/ can be expressed in terms of the composite distance D defined in (12):

Theorem 8 If Corollary 1 holds for ˝t , then

j.t/ D j.0/C

Z t

0

Z
˝C\D�1.fsg/

Ff d� ds C

Z t

0

Z
˝�\D�1.f�sg/

Ff d� ds (15)

for all t > 0. Based on (12), this expression can also be written more compactly as

j.t/ D j.0/C

Z t

�t

Z
D�1.fsg/

Ff d� ds:

Proof. For t D 0, the claim is clear. So assume t > 0 fixed now. We use the decomposition of ˝t



340 D. KRAFT

that is given in Corollary 1 as well as the representation

j.t/ D j.0/C

Z
˝tn˝0

f dx �

Z
˝0n˝t

f dx: (16)

Note further that
˝t n˝0 D ˝

C
\D�1

�
.0; t/

�
is the part of ˝t that an outward moving boundary has created over time, while

˝0 n˝t D ˝
�
\D�1

�
.�t; 0/

�
is the subset that an inward moving boundary has removed from ˝0.

Consider the first of these sets now and recall that D is locally Lipschitz continuous on ˝C \
D�1 ..0; t// according to Lemma 16. Furthermore, jrD.x/j D 1=F.x/ holds for almost all x 2
˝C \ D�1 ..0; t// because of Lemma 18. Let .Ak/ be a sequence of compact subsets of ˝C \
D�1 ..0; t// converging in measure to ˝C \ D�1 ..0; t// as k ! 1. Such a sequence exists by
regularity of the Lebesgue measure (Theorem 2.20 on page 50 of [31]). Since these sets are compact,
D is Lipschitz continuous when restricted to eachAk . We define �k to be the characteristic function
of Ak , � that of ˝C \D�1 ..0; t// and set gk D �kFf . Then gk 2 L1.Rn/ for each k 2 N since
F has compact support. Also, �k ! � as k !1 in L1.Rn/. Hence the co-area formula yieldsZ

Ak

f dx D

Z
Rn
jrDjgk dx D

Z
R

Z
D�1.fsg/

�kFf d� ds D

Z t

0

Z
Ak\D

�1.fsg/

Ff d� ds:

Using Lebesgue’s dominated convergence theorem, we can pass the limit k !1 to obtainZ
˝C\D�1..0;t//

f dx D

Z t

0

Z
˝C\D�1.fsg/

Ff d� ds:

For the set ˝� \ D�1 ..�t; 0//, basically the same argument can be applied when we take
the correct signs into account. As above, we proceed assuming that D is Lipschitz continuous
by using suitable compact cut-off sets and the dominated convergence theorem. Here, � is the
characteristic function of ˝� \ D�1 ..�t; 0// and we define g D � jF jf D ��Ff . Then
jrD.x/j D 1= jF.x/j D �1=F.x/ for almost all x 2 ˝� \ D�1 ..�t; 0//, since �D is the
solution for speed jF j D �F in this part of the domain according to (12). Hence, again using the
co-area formula, we get:Z

˝�\D�1..�t;0//

f dx D

Z
Rn
jrDjg dx D

Z
R

Z
D�1.fsg/

� jF jf d� ds

D �

Z 0

�t

Z
˝�\D�1.fsg/

Ff d� ds D �

Z t

0

Z
˝�\D�1.f�sg/

Ff d� ds

Using this now in (16) gives the correct term of (15).

As an immediate corollary of Theorem 8, the shape derivative of j can be calculated in direction
of a particular deformation described by a speed field F . This quantity is often called Eulerian
derivative in the literature (see Section 2.11 of [35]).



HOPF-LAX FORMULA FOR THE LEVEL-SET EQUATION 341

Corollary 2 The functional j is differentiable for almost all t > 0 and the derivative is given by

j 0.t/ D

Z
˝C\D�1.ftg/

Ff d� C

Z
˝�\D�1.f�tg/

Ff d�: (17)

Proof. This follows by using the Lebesgue differentiation theorem (Theorem 13.15 on page 278
of [38]) on j in the form of (15), where the dependence on t is only in the upper bound of the one-
dimensional outer integral. The co-area formula guarantees that the integrand is really a function in
L1.R/ as is required for the differentiation theorem.

Note that the argument employed by the proof of Corollary 2 unfortunately only implies
differentiability for almost all times and not full differentiability at every t . For this, one would
have to show in addition that the derivative given in (17) can be continuously extended to all t > 0.
We believe that this is, indeed, the case under reasonable assumptions. This question is the focus of
ongoing research at the moment, and we can only refer to [28] for a partial first result. For shape
optimisation based on a gradient-descent scheme, particularly j 0.0/ would be interesting. It is not
clear by Corollary 2 alone, though, that this derivative exists. Hence, our subsequent analysis will
be based on Theorem 8 instead of Corollary 2, so that we can formulate results that hold without
an “almost all” qualification. These results state absolute continuity of the shape functionals. This,
in turn, allows to deduce the existence of a weak almost-everywhere derivative in the same way as
done in the proof of Corollary 2.

For the remainder of this subsection, we assume for simplicity that F > 0 is non-negative. It
is straight-forward to apply the full statement of Theorem 8 in order to generalise the results to
arbitrary signs of F . For a fixed speed field F , let ˝t and �t describe the evolved domain as per
Theorem 5. We consider now a more general shape functional

J.t/ D J.˝t / D

Z
˝t

f .x;˝t / dx: (18)

The integrand f .�; ˝/ is assumed to be integrable for any fixed domain ˝. Furthermore, let us, for
now, assume that it has a weak shape derivative f 0 in the sense that

f .x;˝t / D f .x;˝0/C

Z t

0

f 0.x;˝s/ ds (19)

holds for all x 2 Rn and t > 0. The function f 0.�; ˝/ must also be integrable for all fixed domains
˝. Under these assumptions, we can derive a total shape differential:

Corollary 3 Let J and f be as above. Then J is absolutely continuous, i. e.,

J.t/ D J.0/C

Z t

0

J 0.s/ ds D J.0/C

Z t

0

�Z
�s

Ff .x;˝s/ d� C

Z
˝s

f 0.x;˝s/ dx

�
ds: (20)

Proof. By integrating (19) over ˝t , we find

J.˝t / D

Z
˝t

f .x;˝0/ dx C

Z
˝t

Z t

0

f 0.x;˝s/ ds dx:
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Applying Theorem 8 to the first term (where ˝0 is now fixed) and Fubini’s theorem to the second,
this further yields

J.˝t / D J.˝0/C

Z t

0

Z
�s

Ff .x;˝0/ d� ds C

Z t

0

Z
˝t

f 0.x;˝s/ dx ds:

Note that this result already looks almost like the claimed (20). However, it has˝0 instead of˝s in
the middle term and ˝t instead of ˝s in the last one. Consequently, it remains to show thatZ t

0

Z
�s

F .f .x;˝s/ � f .x;˝0// d� ds D

Z t

0

�Z
˝t

f 0.x;˝s/ dx �

Z
˝s

f 0.x;˝s/ dx

�
ds:

With the corresponding shape derivatives for the differences, we can turn this equation intoZ t

0

Z
�s

F

Z s

0

f 0.x;˝� / d� d� ds D

Z t

0

Z t

s

Z
��

Ff 0.x;˝s/ d� d� ds: (21)

Using Fubini’s theorem again on the left-hand side and renaming s and � on the right-hand side,
this is further equal toZ t

0

Z s

0

Z
�s

Ff 0.x;˝� / d� d� ds D

Z t

0

Z t

�

Z
�s

Ff 0.x;˝� / d� ds d�:

Since both sides of this equation only express different ways to integrate over the same right triangle
in the .s; �/-plane, this shows that (21) and thus the claim are true.

Our result (20) matches the classical formulas for shape derivatives. Compare it, for instance,
to (2.168) on page 113 of [35]. Note, however, that we were able to obtain it without employing
domain transformations and without requiring regularity of the domain! To conclude this section,
let us now investigate under which conditions (19) holds for a special class of shape-dependent
integrands. For this, we first need a general-purpose chain rule for absolutely continuous functions:

Lemma 20 Let f WRk ! R be continuously differentiable and g1; : : : ; gk WR ! R be absolutely
continuous. We consider

hWR! R; h.t/ D f
�
g1.t/; : : : ; gk.t/

�
:

Then h is also absolutely continuous and

h0.t/ D

kX
iD1

@if
�
g1.t/; : : : ; gk.t/

�
� g0i .t/: (22)

Proof. This follows from part (ii) of Theorem 4 on page 129 of [17].

In applications, it is common that the shape dependence of the integrand f is due to some
number of shape-dependent quantities. For instance, the integrand may depend on the volume j˝j
of the current domain or other, related values. For these integrands, we can use the results above to
derive their shape derivatives as well. In particular, we are interested in integrands of the form

f .x;˝/ D f
�
x;Q1.˝/; : : : ;Qk.˝/

�
: (23)
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If the Q’s have shape derivatives themselves, Lemma 20 can be used together with Corollary 3. In
this situation, J is again absolutely continuous with respect to t and we get

J.t/ D J.0/C

Z t

0

 Z
�s

Ff d� C

kX
iD1

Z
˝s

@if �Q
0
i dx

!
ds: (24)

Thus, if all the Q’s are domain functionals of the form (18), (23) themselves, we can recursively
apply (24) to find shape derivatives. As long as there are no circular dependencies among the various
shape-dependent quantities (i. e., the dependency graph is a tree), this process will work fine.

5.3 Lipschitz continuity with optimal constants

It is a well-known fact that viscosity solutions of an initial-value problem (like the level-set equation
(1)) often preserve Lipschitz continuity of the initial function �0. Usually, this property is deduced
from the comparison principle. See, for instance, Theorem 3.5.1 on page 139 of [20] or the related
result in [24] for bounded domains. Following a slightly different route, we can also use our
representation formula (9) to show Lipschitz continuity of � both in time (see Theorem 9) and
spatially (in Theorem 11). Based on the construction given in Example 2, we can even demonstrate
that our results are sharp.

Before we can show Lipschitz continuity of � in time, we have to consider how admissible
points in the minimum of (9) change if the upper bound t is modified.

Lemma 21 Let F.x/ > 0 for some x 2 Rn. Assume that jF j 6 F , xt 2 Rn and s; t > 0 with
d
�
x; xt

�
6 t . Then there exists xs 2 Rn with d .x; xs/ 6 s and

ˇ̌
xs � xt

ˇ̌
6 F jt � sj.

Proof. Consider first the trivial case s D 0: We can pick xs D x and know by Lemma 8 thatˇ̌
xs � xt

ˇ̌
D
ˇ̌
x � xt

ˇ̌
6 F � d

�
x; xt

�
6 F t D F jt � 0j :

Thus, assume now s > 0. Similarly, also the case s > d
�
x; xt

�
is trivial, as one can choose xs D xt .

Consequently, we assume further s < d
�
x; xt

�
6 t from now on. Choose a minimising path � 2

Xad
�
x; xt

�
with l.�/ D d

�
x; xt

�
. Since � and d are continuous, we know that � 7! d .x; �.�// is

continuous as well and ranges from zero at � D 0 to d
�
x; xt

�
> s at � D 1. Thus, the intermediate-

value theorem implies the existence of �0 2 .0; 1/ and xs D �.�0/ with d .x; xs/ D s. Denote by Q�
the part of � between xs and xt , i. e., for times in Œ�0; 1�. Then we get

d .x; xs/C l. Q�/ D s C l. Q�/ 6 l.�/ 6 t

since d .x; xs/ is the shortest distance between x and xs , while the initial part of � is just a particular
path. Hence we get also

l. Q�/ 6 t � s D jt � sj ;

which further implies that ˇ̌
xs � xt

ˇ̌
6 F � l. Q�/ 6 F jt � sj :
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Theorem 9 Let jF j 6 F on Rn. Then

j�.x; s/ � �.x; t/j 6 L�0F � jt � sj

for all x 2 Rn and s; t > 0.

Proof. Let x 2 Rn and s; t > 0. If F.x/ D 0, then �.x; t/ D �.x; s/ D �0.x/, thus this case
is trivial. If F.x/ < 0, we can use Lemma 4 to reduce the situation to the case of F.x/ > 0.
Thus, assume F.x/ > 0 without loss of generality now. Pick xt as minimiser of (9), such that
�.x; t/ D �0

�
xt
�

and d
�
x; xt

�
6 t . Then, using Lemma 21 and the Lipschitz continuity of �0, we

get
�.x; s/ 6 �0 .x

s/ 6 �0
�
xt
�
C L�0

ˇ̌
xs � xt

ˇ̌
6 �.x; t/C L�0F � js � t j :

Using a symmetric argument with s and t exchanged completes the proof.

Next, we can show spatial Lipschitz continuity in terms of the distance d . This is a consequence
of (9) and Lipschitz continuity in time. Note that d is itself Lipschitz continuous whereF is bounded
away from zero (recall Lemma 11). Consequently, Theorem 10 actually gives a Lipschitz constant
that is uniform for all times in these cases. However, where F may become zero or change its sign,
this result makes no statement and the subsequent Theorem 11 must be applied instead.

Theorem 10 Let x; y 2 Rn, t > 0 and jF j 6 F . Denote by L D L�0F the temporal Lipschitz
constant of � according to Theorem 9. Then

j�.x; t/ � �.y; t/j 6 L � d .x; y/ :

Proof. The claim is trivial if x D y, so assume x ¤ y. Moreover, if F.x/ D 0, F.y/ D 0 or they
have differing signs, then d .x; y/ D 1 and nothing is to be shown. The case F.x/; F.y/ < 0 can
be reduced to F.x/; F.y/ > 0 with the help of Lemma 4, so assume F.x/; F.y/ > 0 from now on.
For the trivial case of t D 0, we get

j�.x; 0/ � �.y; 0/j D j�0.x/ � �0.y/j 6 L�0 jx � yj 6 L�0F � d .x; y/ ;

where the last estimate is due to Lemma 8.
Consider now t > 0 and note that � is given by (9). If we choose xt and yt as minimisers for

�.x; t/ and �.y; t/, respectively, we get

�.x; t/ D �0.x
t /; �.y; t/ D �0.y

t /; max
�
d .x; xt / ; d .y; yt /

�
6 t:

Define s D d
�
x; yt

�
and note that our assumption of Lipschitz continuity of � in time gives

�.x; t/ � L jt � sj 6 �.x; s/ 6 �0.y
t / D �.y; t/;

so that further
�.x; t/ 6 �.y; t/C L jt � d .x; yt /j :

Consider first the case d
�
x; yt

�
> t . Then

jt � d .x; yt /j D d .x; yt / � t 6 d .x; y/C d .y; yt / � t 6 d .x; y/ ;
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which gives
�.x; t/ 6 �.y; t/C L � d .x; y/ :

In the second case of d
�
x; yt

�
< t , we get

�.x; t/ 6 �0
�
yt
�
D �.y; t/ 6 �.y; t/C L � d .x; y/

since yt is admissible also for x in (9). If we repeat this argument now with x and y exchanged, the
claimed Lipschitz continuity follows.

Let us continue with the final goal of deriving a spatial Lipschitz constant with respect to the
usual Euclidean distance jx � yj. As a first step towards this result, we can show it in the case
that F.x/ D 0 holds at least for one of the two points involved. This is a very important piece of
information, as it complements the earlier result in Theorem 10, which handles the situation within
the support of F .

Lemma 22 Let x; y 2 Rn, t > 0 and assume that F.x/ D 0. If yt 2 Rn realises the minimum in
(9) for �.y; t/, then ˇ̌

yt � y
ˇ̌

6
�
eLF t � 1

�
jx � yj

and, furthermore,
j�.x; t/ � �.y; t/j 6 L�0e

LF t � jx � yj :

Proof. If F.y/ D 0, then yt D y is the minimiser of (9), which makes the first estimate trivial. The
same is true if t D 0. For F.y/ < 0, we can use Lemma 4 to convert the situation to the remaining
case of F.y/ > 0 as before. Note that F.y/ 6 F.x/C LF jx � yj D LF jx � yj. Combining this
with the first estimate of Lemma 9 yieldsˇ̌

y � yt
ˇ̌

6
F.y/

LF

�
eLF t � 1

�
6
�
eLF t � 1

�
jx � yj :

For the second part, we use this result in combination with (9) to get

j�.x; t/ � �.y; t/j D
ˇ̌
�0.x/ � �0

�
yt
�ˇ̌

6 L�0
�
jx � yj C

ˇ̌
y � yt

ˇ̌�
6 L�0

�
jx � yj C

�
eLF t � 1

�
jx � yj

�
D L�0e

LF t � jx � yj :

Lemma 23 Let x; y 2 ˝C and t > 0. Assume that �.y; t/ D �0
�
yt
�

with d
�
y; yt

�
6 t . Then

there exists x0 2 Rn with d .x; x0/ 6 t and
ˇ̌
x0 � yt

ˇ̌
6 eLF t jx � yj.

Proof. If d
�
x; yt

�
6 t , we can choose x0 D yt . Also, if F.y/ 6 LF jx � yj, we can use x0 D x.

In this situation, the first estimate in Lemma 9 givesˇ̌
x0 � yt

ˇ̌
6 jx � yj C

ˇ̌
y � yt

ˇ̌
6 jx � yj C

F.y/

LF

�
eLF t � 1

�
6 jx � yj �

�
1C eLF t � 1

�
D eLF t jx � yj :
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x

y

yt

x′

t ≤ t

s

s− t

(a) The case t < s

x

y

yt

x′

t

≤ t

s t− s ≤ s

(b) The case t > s

FIG. 3: Sketches for the situations in the proof of Lemma 23. Indicated is always the path length
according to l in Definition 3.

Thus consider now the case d
�
x; yt

�
> t and F.y/ > LF jx � yj. Let s D l.Sxy/ denote the path

length of the straight line Sxy from x to y. The third estimate in Lemma 9 implies

jx � yj >
F.y/

LF

�
1 � e�sLF

�
;

which is equivalent to �
1 � e�sLF

�
6
LF jx � yj

F.y/
: (25)

Apply Lemma 7 to choose �y 2 Xad
�
y; yt

�
with l.�y/ D d

�
y; yt

�
6 t . We will construct x0

on the path � that is formed by first following Sxy from x to y and then moving along �y from y to
yt . Note that Sxy is entirely inside of ˝C since F.y/ > LF jx � yj and

F
�
Sxy.�/

�
D F

�
x C �.y � x/

�
> F.y/ � LF .1 � �/ jx � yj > 0

for arbitrary � 2 Œ0; 1�. The path � can be expressed explicitly as

�.�/ D

�
Sxy.2�/ for � 2 Œ0; 1=2�;

�y.2� � 1/ for � 2 Œ1=2; 1�:

Denote for a moment the length of � restricted to Œ0; �� by �.�/ and note that � is continuous. Since
�.1/ D l.�/ > d

�
x; yt

�
> t and �.0/ D 0 < t , we can find �0 2 .0; 1/ with �.�0/ D t . Choose

x0 D �.�0/, so that d .x; x0/ 6 �.�0/ D t . It remains to show
ˇ̌
x0 � yt

ˇ̌
6 eLF t jx � yj. For this,

we have to consider two cases depending on which segment of � the point x0 comes to lie on. The
path � is sketched for both situations in Figure 3.

If �0 6 1=2, then x0 is still part of the straight initial piece of � as shown in Figure 3a. This
means that t 6 s D l.Sxy/ as well as jx � yj D jx � x0j C jx0 � yj. Equality holds here because
x, x0 and y are collinear. Since the path length from x0 to y on Sxy is the remaining s � t and thus
also, in particular, d .x0; y/ 6 s � t , we can again employ Lemma 9 to findˇ̌

x0 � y
ˇ̌

6
F.x0/

LF

�
eLF d.x

0;y/
� 1

�
6
F.x0/

LF

�
e.s�t/LF � 1

�
:
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Together with Lipschitz continuity, this yields

F.y/ 6 F.x0/C LF
ˇ̌
x0 � y

ˇ̌
6 F.x0/

�
1C e.s�t/LF � 1

�
D F.x0/e.s�t/LF (26)

and, consequently, F.x0/ > F.y/e.t�s/LF . Furthermore, since

F.x0/ > F.y/ � LF
ˇ̌
x0 � y

ˇ̌
> LF .jx � yj �

ˇ̌
x0 � y

ˇ̌
/ D LF

ˇ̌
x0 � x

ˇ̌
;

the third estimate of Lemma 9 is applicable again and givesˇ̌
x0 � x

ˇ̌
>
F.x0/

LF

�
1 � e�tLF

�
>
F.y/

LF

�
e.t�s/LF � e�sLF

�
D
F.y/

LF

�
eLF t � 1

�
e�sLF :

All together, we haveˇ̌
x0 � yt

ˇ̌
6
ˇ̌
x0 � y

ˇ̌
C
ˇ̌
y � yt

ˇ̌
D jx � yj C

ˇ̌
y � yt

ˇ̌
�
ˇ̌
x � x0

ˇ̌
6 jx � yj C

F.y/

LF

�
eLF t � 1

�
�
F.y/

LF

�
eLF t � 1

�
e�sLF

D jx � yj C
F.y/

LF

�
eLF t � 1

��
1 � e�sLF

�
6 jx � yj C

F.y/

LF

�
eLF t � 1

�LF jx � yj
F.y/

D eLF t jx � yj ;

which finishes the proof for this case. The last estimate is due to (25).
Now consider �0 > 1=2, which means that t > s and that x0 lies on �y between y and yt . Take

a look at Figure 3b. Consequently, if we consider the piece of �y between y and x0 (for times in
Œ1=2; �0�), its path length is t � s > 0. Since yt D �y.1/ and l.�y/ 6 t , we know that the length of
the remaining piece of �y between x0 and yt is at most s. Thusˇ̌

x0 � yt
ˇ̌

6
F.x0/

LF

�
eLF s � 1

�
D
F.x0/

LF
esLF

�
1 � e�sLF

�
by Lemma 9. Using (25), this yieldsˇ̌

x0 � yt
ˇ̌

6
F.x0/

LF
esLF

LF jx � yj

F.y/
D
F.x0/

F.y/
esLF jx � yj : (27)

Similarly to the last case and (26), we can combine Lemma 9 and the Lipschitz continuity of F to
obtain

F.x0/ 6 F.y/C LF
ˇ̌
x0 � y

ˇ̌
6 F.y/e.t�s/LF ;

which allows us to rewrite (27) to ˇ̌
x0 � yt

ˇ̌
6 etLF jx � yj :

Now we have everything together to show spatial Lipschitz continuity:
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Theorem 11 For all x; y 2 Rn and t > 0, we have the Lipschitz estimate

j�.x; t/ � �.y; t/j 6 L�0e
LF t � jx � yj :

Proof. If F.x/ D 0 or F.y/ D 0, the result follows from Lemma 22. If F.x/ and F.y/ have
different signs, we can split the straight line Sxy between x and y at some point z that has F.z/ D 0,
use Theorem 2 and apply Lemma 22 twice to get the claimed Lipschitz continuity. Also, if t D 0,
the result follows since �.�; 0/ D �0 is Lipschitz continuous. Thus it remains to consider, without
loss of generality, the case F.x/; F.y/ > 0 and t > 0. Let yt 2 Rn with d

�
y; yt

�
6 t and

�.y; t/ D �0
�
yt
�

be a minimiser of (9). Using Lemma 23, we get x0 2 Rn with d .x; x0/ 6 t andˇ̌
x0 � yt

ˇ̌
6 eLF t jx � yj. It follows that

�.x; t/ 6 �0
�
x0
�

6 �0
�
yt
�
C L�0

ˇ̌
x0 � yt

ˇ̌
6 �.y; t/C L�0e

LF t � jx � yj ;

which gives the claimed result when the same argument is applied again with x and y exchanged.

We will now conclude this subsection with an example that demonstrates that the constants
given in Theorem 9 and Theorem 11 are sharp:

EXAMPLE 2 Let L�0 ; LF ; a > 0 be given. We define �0WR! R by

�0.x/ D

8<: 0 if x 6 0;

�L�0x for x 2 Œ0; 2a�;
�2aL�0 if x > 2a

as well as F WR! R by

F.x/ D

8<: LF x for x 2 Œ0; a�;
LF .2a � x/ for x 2 Œa; 2a�;

0 else.

These functions are sketched in Figure 4. Note that �0 andF are Lipschitz continuous with Lipschitz
constantsL�0 andLF , respectively, F has compact support on Œ0; 2a� and that F > 0. Furthermore,

jF.x/j 6 F D aLF

for all x 2 R. This means that the parameter a can be used to choose the maximal value F of
F independently of the Lipschitz constants. Thus all quantities that appear in the proven Lipschitz
constants can be influenced by the parameters in this example. This situation fulfils all assumptions
we have made for the theoretical considerations above, so that our results apply here. If we denote
the solution of (1) by � as usual, Theorem 4 holds and thus � is given by (9).

If x or y are not in .0; 2a/, then clearly d .x; y/ D 1 if x ¤ y and d .x; y/ D 0 for x D y. In
the case x; y 2 .0; 2a/, we have

d .x; y/ D

ˇ̌̌̌Z y

x

1

F.�/
d�

ˇ̌̌̌
:

Note that there is no real choice for different paths in one dimension. The absolute value ensures
that the expression is correct even for y < x, when the integral itself is negative. Also note that



HOPF-LAX FORMULA FOR THE LEVEL-SET EQUATION 349

x
a 2a

aLF

−2aLφ0
φ0

F

FIG. 4: The situation of Example 2

d .x; y/ ! 1 for y ! 2a� and that �0 is strictly decreasing on Œ0; 2a�. This implies that for
x 2 .0; 2a/ and t > 0, the minimiser of (9) is always the unique xt 2 Œx; 2a/ with d

�
x; xt

�
D t .

Assume x 2 .0; a� and x0 2 Œx; a�. Then F.�/ D LF � for � 2 Œx; x0� and we can solve the integral
to get

d
�
x; x0

�
D

Z x0

x

1

LF �
d� D

log x0 � log x
LF

: (28)

Thus, if t 6 d .x; a/, we know that xt 2 Œx; a� can be found by solving d
�
x; xt

�
D t together with

(28) for the unknown xt . It is trivial to see that the result is xt D xeLF t . Therefore, we have shown
that for every x 2 .0; a/ and t > 0 small enough, the evolved level-set function is given by

�.x; t/ D �0
�
xt
�
D �0

�
xeLF t

�
D �L�0xe

LF t : (29)

We will now take derivatives of (29) in order to verify that this solution does, indeed, realise the
Lipschitz constants we have shown. Note that for arbitrarily large t , there always exists x 2 .0; a/
with t < d .x; a/ so that (29) can be applied. Taking the derivative with respect to x shows that the
maximum Lipschitz constant according to Theorem 11 is, indeed, tested with this example. For the
time derivative, we get ˇ̌̌̌

@�

@t
.x; t/

ˇ̌̌̌
D L�0LF xe

LF t

as lower bound on the Lipschitz constant, which is valid at least for every x 2 .0; a/ and 0 6 t 6
d .x; a/. Clearly the largest bound is achieved if x is as large as possible, which means just so large
that t D d .x; a/. By taking (28) into account, this is at x D ae�LF t . Consequently, the temporal
Lipschitz constant must be at least

L�0LF ae
�LF teLF t D aLFL�0 D FL�0 :

This matches the result from Theorem 9.

5.4 Propagation speed of perturbations

Since F in the level-set equation (1) describes a speed of movement, it is intuitive to assume that the
maximal speed F is also the maximal speed with which perturbations in the initial geometry and/or
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the speed field itself can propagate. With the help of the representation formula (9), this result can
be proven easily. We will assume here that a perturbation happens on some set A � Rn and that we
consider a point x 62 A with Euclidean distance ı > 0 to A, i. e.,

ı D inf
y2A
jx � yj > 0: (30)

The first result concerns perturbations in the initial geometry:

Lemma 24 Assume 0 6 F 6 F . Let �0 and Q�0 be two initial level-set functions and �, Q� the
corresponding solutions of (1) for the same F in both cases. Assume that �0.x/ D Q�0.x/ for all
x 62 A, and that x 2 Rn n A is given with ı > 0 defined according to (30). Then �.x; t/ D Q�.x; t/
for all t < ı=F .

Proof. We may assume that F.x/ > 0 because �.x; t/ D �0.x/ D Q�0.x/ D Q�.x; t/ otherwise,
which makes the statement trivial. From Lemma 8 we know that jx � yj 6 F � d .x; y/ for all
y 2 Rn. In particular, this implies for all y 2 A:

ı 6 jx � yj 6 F � d .x; y/ ) d .x; y/ >
ı

F

Choose now t < ı=F and z with d .x; z/ 6 t . It follows that z 62 A and thus �0.z/ D Q�0.z/. The
claim follows now using the form (9) for the solutions as implied by Theorem 4.

Next, we consider what happens when the same initial geometry propagates with two different
speed fields F and QF :

Lemma 25 Let 0 6 F; QF 6 F be two different speed fields. Assume furthermore thatF.x/ D QF .x/
for all x 62 A and let �0 describe some initial geometry. We denote by d and Qd the distances induced
by F and QF , respectively, and by � and Q� the solutions of (1) for both speed fields with the same
initial function �0. For x 2 Rn nA, let ı > 0 be as in (30). Then �.x; t/ D Q�.x; t/ for all t < ı=F .

Proof. The claim is clear if F.x/ D 0, so assume F.x/ > 0. Let t < ı=F be given. Since x 62 A,
this also implies QF .x/ D F.x/ > 0. We want to show that

fy 2 Rn j d .x; y/ 6 tg D
n
y 2 Rn j Qd.x; y/ 6 t

o
; (31)

which then implies the claim via (9) and Theorem 4. Choose y 2 Rn with d .x; y/ 6 t < ı=F .
Let � 2 Xad .x; y/ be some admissible path with l.�/ < ı=F . Assume there exists t0 2 Œ0; 1� with
z D �.t0/ 2 A. But then l.�/ > d .x; z/C d .z; y/ and

d .x; z/ >
jx � zj

F
>
ı

F

by Lemma 8, which is a contradiction. Thus � never touches A and, consequently, l.�/ D Ql.�/. This
implies that every (short enough) path contributing to the infimum for d .x; y/ is also admissible
for Qd.x; y/ with the same length. Hence Qd.x; y/ 6 d .x; y/, showing inclusion from left to right in
(31). The inclusion from right to left works just the same.

As a final result, let us combine Lemma 24 and Lemma 25 into a single theorem:
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Theorem 12 Let jF j ;
ˇ̌
QF
ˇ̌

6 F and �0, Q�0 be two initial level-set functions. Denote the
corresponding solutions of (1) by � and Q�, respectively. Assume that F.x/ D QF .x/ and �0.x/ D
Q�0.x/ for all x 62 A. Then for each x 2 Rn n A with ı > 0 defined as per (30), we have
�.x; t/ D Q�.x; t/ for all t 6 ı=F .

Proof. It is enough to consider x 2 Rn n A and t < ı=F since � and Q� are continuous. Thus, let
x 2 Rn n A and t < ı=F . Note that F.x/ D QF .x/ and that we can reduce the general case to that
of F; QF > 0 by using Theorem 2. We introduce an “intermediate solution” O� as the solution of (1)
with F and Q�0. Lemma 24 implies that O�.x; t/ D �.x; t/. Furthermore, Lemma 25 implies also
O�.x; t/ D Q�.x; t/, so that the claim is shown.

Note also that the upper bound ı=F can be further improved if necessary: Instead of estimating
F and QF very roughly by F , we can define

d .x;A/ D inf
y2A

d .x; y/ D inf
y2A

Qd.x; y/:

Equality between the definition with d and that with Qd is due to Lemma 14, which implies that the
shortest paths must be outside of A. Following the proof of Theorem 12 closely, one can see that it
remains true for all t 6 d.x;A/. Since d .x;A/ > ı=F in general, this leads to a stronger statement.

Acknowledgements. The author would like to thank Wolfgang Ring of the University of Graz
for fruitful discussions about this topic and thorough proof-reading of the manuscript. This work
is supported by the Austrian Science Fund (FWF) and the International Research Training Group
IGDK 1754.

References

1. BARDI, M., & CAPUZZO-DOLCETTA, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser, 1997. Zbl0890.49011
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35. SOKOLOWSKI, J. & ZOLÉSIO, J.-P., Introduction to Shape Optimization: Shape Sensitivity Analysis,
vol. 16 of Springer Series in Computational Mathematics. Springer, 1992. Zbl0761.73003 MR1215733

36. SONER, H. M., Motion of a Set by the Curvature of Its Boundary. Journal of Differential Equations 101
(1993), 313–372. Zbl0769.35070 MR1204331

37. VEMURI, B. C., YE, J., CHEN, Y. & LEONARD, C. M., Image Registration via Level-Set Motion:
Applications to Atlas-Based Segmentation. Medical Image Analysis 7 (2003), 1–20.

38. YEH, J., Real Analysis: Theory of Measure and Integration, second ed. World Scientific, 2006. Zbl1098.
28002 MR2250344

39. YOUNES, L., Shapes and Diffeomorphisms, vol. 171 of Applied Mathematical Sciences. Springer, 2010.
Zbl1205.68355 MR2656312

http://www.emis.de/MATH-item?0659.65132
Zbl 0659.65132
http://www.ams.org/mathscinet-getitem?mr=0965860
MR 0965860
http://www.emis.de/MATH-item?0925.00005
Zbl 0925.00005
http://www.ams.org/mathscinet-getitem?mr=1736644
MR 1736644
http://www.emis.de/MATH-item?0870.49016
Zbl 0870.49016
http://www.ams.org/mathscinet-getitem?mr=1382514
MR 1382514
http://www.emis.de/MATH-item?0852.65055
Zbl 0852.65055
http://www.ams.org/mathscinet-getitem?mr=1374010
MR 1374010
http://www.emis.de/MATH-item?0973.76003
Zbl 0973.76003
http://www.ams.org/mathscinet-getitem?mr=1700751
MR 1700751
http://www.emis.de/MATH-item?0761.73003
Zbl 0761.73003
http://www.ams.org/mathscinet-getitem?mr=1215733
MR 1215733
http://www.emis.de/MATH-item?0769.35070
Zbl 0769.35070
http://www.ams.org/mathscinet-getitem?mr=1204331
MR 1204331
http://www.emis.de/MATH-item?1098.28002
Zbl 1098.28002
http://www.emis.de/MATH-item?1098.28002
Zbl 1098.28002
http://www.ams.org/mathscinet-getitem?mr=2250344
MR 2250344
http://www.emis.de/MATH-item?1205.68355
Zbl 1205.68355
http://www.ams.org/mathscinet-getitem?mr=2656312
MR 2656312

	Introduction
	Preliminaries about the Level-Set Equation
	Generalised distances
	The Hopf–Lax formula
	Applications
	Measure-theoretic non-fattening
	Shape sensitivity of domain functionals
	Lipschitz continuity with optimal constants
	Propagation speed of perturbations


