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A classical task in image processing is the following: Given two images, identify the structures
inside (for instance detect all image edges or all homogeneous regions; this is called segmentation)
and find a deformation which maps the structures in one image onto the corresponding ones in the
other image (called registration). In medical imaging, for instance, one might segment the organs in
two patient images and then identify corresponding organs in both images for automated comparison
purposes. The image segmentation is classically performed variationally using the Mumford–Shah
model, and the obtained structures are then mapped onto each other by minimizing a registration
energy in which the deformation is regularized via elasticity. Experimentally it often seems more
robust to perform segmentation and registration simultaneously so that both can benefit from each
other. The question to be examined here is how phase field approximations of the Mumford–Shah
model behave if used for the joint segmentation and registration problem. We mathematically analyze
corresponding generic phase field models and reveal interesting phenomena that rule out some of the
models. These phenomena are characteristic of coupling phase fields with deformations and thus
are interesting in their own right. In essence, region-based segmentation and registration problems
can well be approximated using phase fields, while edge-based approaches typically suffer from
different types of vanishing or newly appearing edges. We conjecture how the introduction of a
different scaling could remedy those shortcomings.
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1. Introduction

In various applications (most prominently computational anatomy [6, 17]), two given images
Oy0; Oy1 W ˝ ! R, ˝ � Rd , have to be registered, i.e. a deformation � W ˝ ! R

d is sought
such that the pullback Oy0 ı � looks like Oy1 or at least maps the structures visible in image Oy0 onto
the corresponding ones in image Oy1 (Fig. 1, cf. also Figs. 2, 3). To reduce the influence of noise in
the images and to facilitate the registration of the encoded structures, these structures (e.g. image
edges or homogeneous regions) can be extracted first (so-called image segmentation) so that the
registration deformation � only has to map the structures from one image onto the corresponding
ones of the other.

The most widely used model for variational segmentation of an image into edges and piecewise
smooth or constant regions dates back to the work of Mumford and Shah [30], and classical phase
field and level set approximations include the approaches by Ambrosio and Tortorelli [2] and
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FIG. 1. Joint edge segmentation and registration of two input images from the MPEG7 shape database (left) leads to detected
edge sets (middle) and a matching deformation (the rightmost image shows the registered image Oy0 ı �). Note that some
weak edges in the second image have been restored based on the edge information from the first image. Results have actually
been computed using an Ambrosio–Tortorelli phase field approximation.

by Chan and Vese [14]. Alternative variational approaches include active contour-type methods,
e.g. [9], which seek a closed curve coinciding with image edges, and graph cut-based ideas, e.g. [41],
in which the problem is typically reformulated as a segmentation of a discrete graph. More recently,
convex approximations to the Mumford–Shah segmentation problem became popular [13, 29],
where a solution to the original segmentation problem can be obtained from solving a convex
problem in a higher-dimensional space.

Image registration has an equally long history. Already in the 90’s, matching deformations
between images were sought by minimizing a data term and a regularizing deformation energy such
as linearized elasticity [18, 24, 27] or viscous fluid regularization [10, 15–17, 26]. Regularization
via optimal transport [37, 42] is also possible but much weaker, since it does not penalize higher
order norms of the deformation. A hyperelastic regularization is particularly appropriate for large
deformations [20, 21, 31, 34] and can also be used to encode additional nonlinear constraints such
as mass preservation [12].

It has often been observed and exploited that segmentation and registration can benefit from
each other if performed simultaneously [21, 23, 35, 36, 39, 40]: The registration becomes simpler
if applied to cleanly segmented regions, and conversely the segmentation can use information
from both images if they are already registered. Indeed, the latter is exploited in [25, 31, 32] to
achieve a registration-based segmentation via the transfer of edges from a template to a reference
image. Moreover, weak edges in one of the images can even be automatically restored based
on a registration (Fig. 1). As for the positive effect of segmentation on registration, clearly
outlined segmented structures can reliably drive the registration and thereby also provide good
deformation estimates in between those structures, a property important for atlas-based medical
image segmentation [4, 22]. To give an example from a slightly different context, a positive mutual
influence is also observed in joint image reconstruction and motion estimation [7]. Yet a different
approach, with a flavor similar to the models we shall consider, consists in a joint optical flow
estimation with phase field segmentation of the flow field [11].

This work is concerned with the class of methods from the previous paragraph, that aim at a
simultaneous image segmentation and registration. In particular, we will examine how phase field
approximations to the Mumford–Shah segmentation model behave in this context, where for the
registration part we use the strongest of the above-mentioned regularizations, a hyperelastic energy.
Our analysis for instance also covers the joint phase field segmentation and registration models
from [21, 23].

In detail, there are essentially two phase field approximations for the Mumford–Shah model:
The Modica–Mortola approximation [28], in which the phase field encodes the homogeneous image
regions, and the Ambrosio–Tortorelli approximation [2], in which the phase field encodes the image
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edges. If one combines the phase field segmentation functionals with an image registration term,
in which the matching deformation is regularized via a hyperelastic energy, then the following can
be observed: As the phase field parameter " tends to zero, the joint segmentation and registration
functional based on Modica–Mortola phase fields � -converges exactly against the expected sharp
interface limit and thus represents a feasible model (cf. Thm. 4.1). Using Ambrosio–Tortorelli phase
fields, however, we see three distinct effects, the first two already in 1D:
1. The phase field profile is squeezed by the matching deformation so that part of the phase field

will be ignored (cf. Thms. 4.3, 4.5, and 4.7).
2. Spurious ghost phase fields occur which in the � -limit change the originally intended weights

in the energy (cf. Thms. 4.5, 4.6, and 4.7).
3. In 2D, a string of phase field dots can be dilated tangentially to the phase field representation of

an edge, ultimately resulting in the lack of any registration in the � -limit (cf. Ex. 4.8).
As for the second item above we will argue that, though perhaps unexpected at first glance, this
behavior is desirable and in fact is a manifestation of the edge restoration property that joint
segmentation and registration methods possess (cf. Fig. 1). We will also put forward suggestions
how the first and last item can be remedied by slight modifications of the joint segmentation and
registration functionals; the detailed analysis of these modifications will be reserved for future work.

Note that even though our presentation restricts to an image processing application, the
described phenomena are not limited to that application and are to be expected whenever phase
fields are composed with deformations.

The article is organized as follows. After some notations in Sec. 2, Sec. 3 briefly introduces
Mumford–Shah-type segmentation functionals and associated joint segmentation and registration
models. The corresponding phase field approximations are given in Sec. 4. This section also states
our main results, the � -limits of the respective energies for " ! 0, which formalize the above-
described phenomena. Furthermore, a discussion of improvements to the functionals is provided in
that section. The proofs of the limits are collected in Sec. 5.

2. Notations and assumptions

In the following,˝ � Rd (d D 1; 2; 3) denotes a bounded, connected, (strongly) Lipschitz domain.
We denote the Lebesgue space on˝ with exponent p by Lp.˝/ and the Sobolev space of functions
in Lp.˝/ with weak derivatives in Lp.˝/ by W 1;p.˝/. The prefix w�as in w�W 1;p.˝/ stands
for a Lebesgue or Sobolev space equipped with the weak topology, and pw�W 1;2.˝/ for ˝ � R1

shall be the space of functions on ˝ which are piecewise W 1;2. Also, we define W 1;p
id .˝/ D f� 2

.W 1;p.˝//d W �j@˝ D idg, where �j@˝ is the trace of � on @˝ and id is the identity function. For
a piecewise continuous image y W ˝ ! R, we denote by Sy � ˝ its discontinuity set. Finally, for
a matrix A 2 Rd�d , kAkF D

p
tr.ATA/ shall be its Frobenius norm and cofA its cofactor matrix

(cofA D detAA�T for invertible A).
For simplicity we will assume Oy0; Oy1 2 L1.˝/ for the given images Oy0; Oy1 to be matched.

For the regularization of the matching deformation inside the joint segmentation and registration
functionals we will consider the hyperelastic energy WŒ�� D

R
˝
W.D�/ dx, where D� W ˝ !

R
d�d denotes the (weak) derivative of �. We will assume the following classical conditions to hold

for its energy density W (cf. [33, Secs. 2.1 & 3.4]),
1. for all A 2 Rd�d and U;O 2 SO.d/ we have W.UAO/ D W.A/,
2. the set of global minimizers of W is given by SO.d/ with minimum value 0,
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3. W.A/ D1 for det.A/ 6 0 and W.A/!1 as detA! 0 or detA!1,
4. W is polyconvex,
5. for allA 2 Rd�d we haveW.A/ > C1.kAk

p
FCkcofAkqFCj detAj�s/�C2 for someC1; C2 > 0,

p; q > d , and s > .d�1/q
q�d

, and
6. for some C1; C2; r >0, W.A/6C1.kAkrFCj detAjrCj detAj�r /CC2 8A2Rd�d .
Condition 1 expresses the frame indifference or rigid body motion invariance of the deformation
energy as well as the assumption of an isotropic underlying material. Condition 2 means that
isometric deformations � cost no energy, and condition 3 implies infinite deformation energy for
self-penetration of the deformed material. Finally, condition 4 in combination with condition 5
ensures the sequential weak lower semi-continuity of W in W 1;p.˝/ (smaller exponents in
condition 5 would actually suffice [33, Thms. 3.5-3.6]), and condition 5 implies that deformations
� 2 W

1;p
id .˝/ with a finite energy are Hölder continuous homeomorphisms with Hölder continuous

inverse, as will briefly be derived below. Condition 6 just bounds the growth of the energy density
and can easily be replaced by different growth conditions, leading to corresponding small changes
of the results. Typical densities have the formW.A/ D ˛1kAk

p
F C˛2kcofAkqF C˛3j detAj�sC˛4.

Note that due to j detAj 6 dŠkAkdF condition 5 automatically implies W.A/ > C1j detAjp=d �
C2 so that a finite energy WŒ�� also implies a Sobolev bound for the determinant det D�. The fact
that, under condition 5, deformations � 2 W 1;p

id .˝/ with finite energy are Hölder continuous and
have a Hölder continuous inverse follows from the Sobolev embeddingsW 1;p.˝/ � C 0;1�d=p. N̋ /,
W 1; Qq.˝/ � C 0;1�d= Qq. N̋ / and the following result by Ball, applied for �0 D id and Qq D q 1Cs

qCs
.

Theorem 2.1 ( [5, Thm. 2]) Let ˝ � Rd be a nonempty bounded connected strongly Lipschitz
open set. Let �0 W N̋ ! R

d be continuous in N̋ and one-to-one in ˝ such that �0.˝/ satisfies the
cone condition. Let p > d and let � 2 W 1;p.˝/d satisfy �j@˝ D �0j@˝ and det D� > 0 almost
everywhere. Suppose that for some Qq > d ,

Z
˝

kD�.x/�1k QqF det D�.x/ dx <1 :

Then � is a homeomorphism of ˝ onto �0.˝/, and the inverse function x.�/ be-
longs to W 1; Qq.�0.˝//

d . The matrix of weak derivatives of x.�/ is given by Dx.v/ D
D�.x.v//�1 for almost every v 2 �0.˝/: If, further, �0.˝/ is strongly Lipschitz, then � is a
homeomorphism of N̋ onto �0. N̋ /.

Note that, denoting by j˝j the Lebesgue volume of ˝, the above integrability condition holds
due to

Z
˝

k.D�/�1k QqF det D� dx D
Z
˝

kcofD�k QqF .det D�/1�Qq dx

6
�Z

˝

kcofD�kqF dx
� Qq
q
�Z

˝

.det D�/q
1�Qq
q�Qq dx

� q�Qq
q

6
1

C1
.WŒ��C C2j˝j/

Qq
q .WŒ��C C2j˝j/

q�Qq
q <1 :
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3. Mumford–Shah-based image segmentation and registration

Here we introduce the binary as well as the original Mumford–Shah segmentation energy, together
with the joint segmentation and registration framework.

3.1 Region-based image segmentation and registration

Region-based image segmentation is classically performed by minimizing the binary Mumford–
Shah functional [14]

E OybMSŒ.c; c/;O� D ˛

Z
O
jc � Oyj2 dx C ˛

Z
˝nO
jc � Oyj2 dx C �Hd�1.@�O \˝/ ;

which segments a given image Oy into two regions O and ˝ n O with average gray values c; c 2 R
(˛; � > 0 are fixed weights, @�O denotes the essential boundary [1, Def. 3.62] and Hd�1 the .d�1/-
dimensional Hausdorff measure). The registration of segmented regions O0;O1 from two different
images can now be obtained by minimizing aFvolŒO0;O1; ��CWŒ�� for the matching deformation
�, where

FvolŒO0;O1; �� D vol.O1���1.O0// ;

represents a mismatch penalty (with � denoting the symmetric difference) which is weighted by
a > 0, and the nonlinear hyperelastic energy

WŒ�� D

Z
˝

W.D�/ dx

serves as a regularization of the deformation (cf. [12, 20, 21, 34]). The elastic energy densityW shall
satisfy the conditions from the previous section. The joint region- or volume-based segmentation
and registration functional for the two input images Oy0; Oy1 thus reads

JvolŒ.c0; c0/; .c1; c1/;O0;O1; ��

D E Oy0bMSŒ.c0; c0/;O0�C E Oy1bMSŒ.c1; c1/;O1�C aFvolŒO0;O1; ��CWŒ�� :

Fig. 2 shows an example of a region-based joint segmentation and registration. The result is well
acceptable, even though the hyperelastic energy density employed in the numerical calculation,
W.A/ D 1

2
kAk2F C

1
4
j detAj2 � 3

2
log detA � 5

4
, only satisfies weaker conditions than demanded

in Sec. 2. The discretization of � is here based on bilinear finite elements. By choosing quadrature
points at the mesh vertices, det D� > 0 is ensured everywhere, since a � with det D� 6 0 within
any element would yield infinite energy during the iterative optimization and is just discarded as an
optimization step.

3.2 Edge-based image segmentation and registration

As an alternative to using the homogeneous image regions one can identify and register all image
edges. The classical corresponding segmentation functional is given by the Mumford–Shah energy
[30]

E OyMSŒy;Sy � D

Z
˝nSy

jryj2 C ˛jy � Oyj2 dx C �Hd�1.Sy/ ;
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FIG. 2. Left: Two thorax CT-scans Oy0; Oy1 to be registered. Middle: Binary segmentation results O0;O1 for both CT-scans
(colored with the gray values obtained during segmentation). Right: Pullback Oy0 ı � as well as �, where the registration
deformation � is computed based on matching the segmentation regions. Results are actually obtained via simultaneous
variational segmentation and registration, using a Modica–Mortola phase field description of the regions O0;O1. These
phase fields (both middle images) can be thought of as a smoothed version of the characteristic functions of O0;O1 (which
is the reason why they are not exactly binary).

FIG. 3. Left: Two thorax CT-scans Oy0; Oy1 to be registered. Middle: Mumford–Shah segmentation results (piecewise smooth
approximations y0; y1 and edge sets Sy0 ;Sy1 ) for both CT-scans. Right: Pullback Oy0ı� as well as �, where the registration
deformation � is computed based on matching the image edge sets. Results are actually obtained via simultaneous variational
segmentation and registration, using an Ambrosio–Tortorelli phase field description of the edge sets Sy0 ;Sy1 (which is the
reason why both edge sets appear a little diffuse).

whose minimization yields a piecewise smooth approximation y to the given image Oy as well as the
corresponding edge set Sy . Using a mismatch penalty

FedgeŒSy0 ;Sy1 ; �� D Hd�1.Sy1��
�1.Sy0// ;

a joint edge-based segmentation and registration functional is obtained by

JedgeŒy0; y1;Sy0 ;Sy1 ; �� D E Oy0MSŒy0;Sy0 �C E Oy1MSŒy1;Sy1 �C aFedgeŒSy0 ;Sy1 ; ��CWŒ�� :

A computational example is provided in Fig. 3 (using the same numerics as in Fig. 3). A related,
alternative version of a joint edge segmentation and registration functional uses one single edge set
for both input images and thus does not require an explicit fitting term [19],

QJedgeŒy0; y1;Sy0 ; �� D E Oy0MSŒy0;Sy0 �C ˛

Z
˝

jy1 � Oy1j
2 dx C a

Z
˝n��1.Sy0 /

jry1j
2 dx CWŒ�� :

4. Phase field approximations of image segmentation and registration

The explicit treatment of sets such as image edges or homogeneous regions is difficult numerically
for which reason phase field approximations of the Mumford–Shah functional have been developed.
Those phase field approaches may also be adapted for joint image segmentation and registration.

The following paragraphs introduce the Modica–Mortola and the Ambrosio–Tortorelli
functionals along with the corresponding functionals for joint segmentation and registration.
Furthermore, Thms. 4.1 to 4.7 state the associated � -limits, the main results of this article.
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FIG. 4. 1D profiles of the optimal Modica–Mortola (bottom left, for	.u/ D .1�u2/2) and the Ambrosio–Tortorelli phase
field (bottom right), approximating a piecewise constant function �O��˝nO and 1��S D 1��fx0g, respectively (where
� denotes a characteristic function).

4.1 Modica–Mortola model for region-based segmentation and registration

The classical phase field approximation of the binary Mumford–Shah model is based on a Modica–
Mortola-type double-well phase field u W ˝ ! R [28]. The two disjoint segmentation regions are
described by fu > 0g and fu < 0g, and the approximation of E OybMS is given by

E Oy;"MMŒ.c; c/; u� D ˛

Z
˝

j1C uj

2
jc � Oyj2 C

j1 � uj

2
jc � Oyj2 dx C �L"MMŒu� ;

where

L"MMŒu� D
1

2

Z
˝

"jruj2 C
1

"
	.u/ dx :

Here, 	 W R ! R denotes a potential with global minimima 	.�1/ D 	.1/ D 0 andR 1
�1

p
	.s/ ds D 1, 	.s/ > c.jsj � 1/ for some c > 0. It is well-known that E Oy;"MM � -converges for

"! 0 against the binary Mumford–Shah segmentation functional with respect to theR2 �L1.˝/-
topology,

� � lim
"!0

E Oy;"MM D E OybMS for

E OybMSŒ.c; c/; u� D

(
E OybMSŒ.c; c/; fu > 0g� if u 2 f�1; 1g a. e.,
1 else,

where we reused the symbol E OybMS with a little abuse of notation. In particular, the term L"MM
converges against the perimeter of the segmented region and ensures that the phase field u takes
values close to 1 or �1 with a transition region of width " between both regions fu � 1g and
fu � �1g (Fig. 4, left). The term FvolŒO0;O1; �� can be replaced using the mismatch penalty for
the registration of two phase fields u0; u1,

F Œu0; u1; �� D

Z
˝

.u0 ı � � u1/
2 dx :
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Hence, a phase field version of the functional Jvol from Sec. 3.1 reads

J"volŒ.c0; c0/; .c1; c1/; u0; u1; ��

D E Oy0;"MM Œ.c0; c0/; u0�C E Oy1;"MM Œ.c1; c1/; u1�C
a

4
F Œu0; u1; ��CWŒ�� :

This functional indeed � -converges against the expected sharp interface limit Jvol, so a coupling of
Modica–Mortola phase fields with deformations is feasible.

Theorem 4.1 (� -limit of joint region segmentation and matching) With respect to convergence in
R
4 � .L1.˝//2 � w�W

1;p
id .˝/ we have

� � lim
"!0

J"vol D J0vol for

J0vol

�
.c0; c0/; .c1; c1/; u0; u1; �

�
D Jvol

�
.c0; c0/; .c1; c1/;O0;O1; �

�
if u0; u1 2 f�1; 1g a. e. and1 else, where Oi D fui D 1g.

Remark 4.2 The result and the proof can readily be adapted if the exponent 2 in the fitting term
F is replaced by any t 2 .0;1/. Also, the terms of the form jc � Oyj2 inside the Modica–Mortola
segmentation may obviously be replaced by different types of indicators for the two image regions.

4.2 Ambrosio–Tortorelli model for edge-based segmentation and registration

The classical phase field approximation to the Mumford–Shah functional E OyMS is due to Ambrosio
and Tortorelli [2] and encodes the edge set Sy as the zero-level set of a single-well phase field
u W ˝ ! R,

E Oy;"AT Œy; u� D

Z
˝

.u2 C k"/jryj
2
C ˛jy � Oyj2 dx C �L"ATŒu� ;

where

L"ATŒu� D
1

2

Z
˝

"jruj2 C
1

"
.1 � u/2 dx

and 0 < k" D o."/. For "! 0, E Oy;"AT indeed � -converges to E OyMS in the .L1.˝//2-topology [3],

� � lim
"!0

E Oy;"AT D E OyMS for

E OyMSŒy; u� D

(
E OyMSŒy;Sy � if u D 1 a. e.,
1 else,

where Sy denotes the discontinuity set of y (with a little abuse of notation we reused the symbol
E OyMS). Here, too, L"AT converges against the total length of the encoded edges and ensures that u
takes approximately a 1 � exp.�jxj="/ profile normal to the encoded edges (Fig. 4, right).

It turns out that the coupling of Ambrosio–Tortorelli phase fields with deformations produces
several interesting effects that can most clearly be presented and understood in 1D, so ˝ will
represent a real interval in the following. The subsequent theorems analyze several variants of joint
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segmentation and registration functionals, thereby illustrating different phenomena. In each case,
the matching term FedgeŒSy0 ;Sy1 ; �� is replaced by the phase field mismatch penalty F Œu0; u1; ��,
which has to be weighted with 1

"
since the diffuse edges in u0 and u1 have width � " (more

precisely,
R1
�1

exp.�2jxj="/ D "), i.e. 1
"
F Œu0; u1; �� should scale like FedgeŒSy0 ;Sy1 ; ��.

4.2.1 Consecutive edge segmentation and registration. We first consider the case of non-
simultaneous, consecutive segmentation and edge registration, in which already the first difference
to the volume matching case can be observed: While the fitting term is actually intended to measure
the symmetric difference between both image edge sets, only an asymmetric, one-directional
mismatch penalty survives in the � -limit.

Denote the set of minimizers of E Oy;"AT by m". Oy/ � W 1;2.˝/ �W 1;2.˝/. Likewise, let us define
m0. Oy/ � pw�W 1;2.˝/ to be that subset of the minimizers of E OyMS such that each element y 2 m0. Oy/
is the L1.˝/-limit of a sequence yj with yj 2 m"j . Oy/ for some sequence "j ! 0 (note that a
minimizing pair .y;Sy/ of E OyMS is already uniquely defined by its first component, y). The functional

J"Œ�� D inf
.y0;u0/2m

". Oy0/
.y1;u1/2m

". Oy1/

a

"
F Œu0; u1; ��CWŒ��

now serves for the registration of the Ambrosio–Tortorelli phase fields belonging to the input images
Oy0; Oy1.

Theorem 4.3 (� -limit of consecutive edge segmentation and matching) In 1D and with respect to
weak convergence in W 1;p

id .˝/ we have

� � lim
"!0

J" D J0 for

J0Œ�� D inf
y02m

0. Oy0/

y12m
0. Oy1/

aH0
�
Sy1 n �

�1.Sy0/
�
CWŒ�� ;

where Sy denotes the jump set of an image y 2 pw�W 1;2.˝/.

The reason for the asymmetric matching term in the limit is that the matching deformation � can
squeeze the phase field u0 in such a way that u0 ı � encodes fewer edges than u0. Fig. 5 illustrates
this phenomenon for a fixed " > 0. The smaller ", the stronger the phase field is squeezed, and in
the limit " ! 0 an edge can vanish completely. Note that this can happen despite the control on
the Jacobian determinant of the deformation in W, since the required blow-up of the determinant is
confined to an arbitrarily small set as "! 0.

Remark 4.4 By inspection of the proof, a possibility to also enforce penalization of ��1.Sy0/ 6�
Sy1 consists in weighting the mismatch term with 1

"t
instead of 1

"
for some t > 1C 1

p
(where p is

the exponent from condition 5 on the hyperelastic energy density). However, the mismatch penalty
then turns into a strict constraint: The � -limit will only be finite for ��1.Sy0/ D Sy1 .

4.2.2 Joint edge segmentation and registration. For the purpose of simultaneous edge
segmentation and registration, the phase field version of the functional Jedge from Sec. 3.2 reads

J"edgeŒy0; y1; u0; u1; �� D E Oy0;"AT Œy0; u0�C E Oy1;"AT Œy1; u1�C
a
"
F Œu0; u1; ��CWŒ�� :
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FIG. 5. Schematic diagram of the recovery sequence for Thm. 4.3. From a sequence "j ! 0 we pick one element and
show the corresponding approximations �j and .yj

i
; u
j

i
/ 2 m"j . Oyi /, i D 0; 1, to a given deformation � and .yi ; ui / 2

m0. Oyi / (in this sketch, � is a simple translation). �j squeezes uj0 around points in ��1.Sy0 /nSy1 (case (a)) and maintains
the optimal profile (neither dilates nor compresses) around points in ��1.Sy0 /[ Sy1 ((b) and (c)).
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(a) (b) (c)

FIG. 6. Schematic diagram of the recovery sequence for Thm. 4.5. As in Fig. 5 we show for a fixed "j the approximations
�j and uj0 ; u

j
1 to a given deformation � and phase fields u0; u1 (in this sketch, � is a simple translation). In addition to

the squeezing effect from Fig. 6, uj0 has developed ghost edges around �.Sy1 / nSy0 which are further dilated by �j (case
(c)).

Here again the edges in the phase field u0 get squeezed where u1 has no edge. In addition, a new
effect occurs: In order to reduce the fitting term a

"
F Œu0; u1; ��, spurious ghost edges appear in the

phase field u0 at places where u1 exhibits an edge (Fig. 6). As a result, not only is the mismatch
penalty asymmetric, but also its weight is bounded above in the limit.

Theorem 4.5 (� -limit of joint edge segmentation and matching) In 1D and with respect to
convergence in .L1.˝//4 � w�W 1;p

id .˝/ we have

� � lim
"!0

J"edge D J0edge for

J0edgeŒy0; y1; u0; u1; �� D E Oy0MSŒy0; u0�C E Oy1MSŒy1; u1�C �Z
0;1.a

�
/H0.�.Sy1/ n Sy0/CWŒ�� ;

where Z0;1.a/ D minl2Œ0;1�
�
2
R l
0

p
.1 � z/2 C 2a.l � z/2 dz C 4

R 1
l

p
.1 � z/2 dz

�
� 1 is a

monotonous and concave function with Z0;1.0/ D 0, .Z0;1/0.0/ D 1, and lima!1Z
0;1.a/ D 1

(Fig. 7).
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FIG. 7. The functionZ0;1 W Œ0;1/! Œ0; 1�

The ghost edges are actually not so much of a surprise. In fact, they are expected and even
desired to segment an input image with very weak edges based on the edges from the other input
image (indeed, this is the benefit from joint segmentation and registration, cf. Fig. 1). The ghost
edges are the more pronounced the higher the matching weight a is.

The function Z0;1 expresses the balance between the fitting term a
"
F Œu0; u1; �� and the

penalization �L"ATŒu0� of ghost edges. For small weight a it is cheaper to allow a mismatch between
both phase fields, while for large a it is better to reduce the fitting term via developing a ghost edge
(which is only penalized with weight �). As a result, the weight of the mismatch penalty in the limit
is always smaller than min.a; �/.

While the mismatch penalty weight cannot be increased in the limit, a remedy for the asymmetric
matching can be obtained by scaling the term F Œu0; u1; �� differently,

Jt;"edgeŒy0; y1; u0; u1; �� D E Oy0;"AT Œy0; u0�C E Oy1;"AT Œy1; u1�C
a

"t
F Œu0; u1; ��CWŒ�� :

If for "! 0 the weight of F Œu0; u1; �� tends to infinity fast enough, then the squeezing mechanism
from Fig. 6 no longer suffices to annihilate the mismatch penalty, and both u0 and u1 are forced to
form fully developed ghost edge profiles.

Theorem 4.6 (Symmetric � -limit of joint edge segmentation and matching) Let t 2 .1; r
r�1

/ [

. p
p�1

;1/, where p and r are the exponents from conditions 5 and 6 on the hyperelastic energy

density. In 1D and with respect to convergence in .L1.˝//4�w�W 1;p
id .˝/ we have

� � lim
"!0

Jt;"edge D Jt;0edge for

Jt;0edgeŒy0; y1; u0; u1; �� D E Oy0MSŒy0; u0�C E Oy1MSŒy1; u1�C �FedgeŒSy0 ;Sy1 ; ��CWŒ��

if t > p
p�1

and otherwise

Jt;0edgeŒy0; y1; u0; u1; �� D E Oy0MSŒy0; u0�C E Oy1MSŒy1; u1�C �H0.�.Sy1/ n Sy0/CWŒ�� :

4.2.3 Joint segmentation and edge to image registration. As a final example for joint
segmentation and registration using Ambrosio–Tortorelli phase fields we consider the functional
employed in [21, 23],

QJ"edgeŒy0; y1; u0; �� D E Oy0;"AT Œy0; u0�C˛

Z
˝

jy1� Oy1j
2 dxCa

Z
˝

..u0ı�/
2
Ck"/jry1j

2 dxCWŒ�� ;

which only uses one single edge phase field for both images and thus represents a phase field version
of the functional QJedge from Sec. 3.2.
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Theorem 4.7 (� -limit of joint segmentation and edge to image matching) In 1D and with respect
to convergence in .L1.˝//3 � w�W 1;p

id .˝/ we have

� � lim
"!0

QJ"edge D
QJ0edge for

QJ0edgeŒy0; y1; u0; ��

D E Oy0MSŒy0; u0�C˛

Z
˝

jy1� Oy1j
2 dxCa

Z
˝nSy1

jry1j
2 dx C �H0.�.Sy1/ n Sy0/CWŒ�� :

Obviously, this model exhibits the same properties as the previous ones, i.e. the mismatch
penalty in the limit is asymmetric, and its weight equals the weight of the length regularization
inside the segmentation.

4.2.4 Joint edge segmentation and registration in higher dimensions. The previous paragraphs
have shown that – without additional symmetrization – simultaneous Ambrosio–Tortorelli
segmentation and registration of the edge phase fields in 1D generally results in an asymmetric,
partial mismatch penalty in the � -limit. In higher dimensions, the situation becomes worse: It may
happen that the registration fails to couple the segmentation of both images, also neglecting the
mismatch �.Sy1/ n Sy0 and thus leading to two completely independent segmentation problems
without any mismatch penalty. The following example uses the functional J"edge from Sec. 4.2.2.

Example 4.8 (A disturbing example) Let ˝ D .�1; 1/2, and let W.A/ D kAkpF C detAr C
detA�s � 2 � 2p=2 for A 2 R

2�2 with detA > 0, where the parameters and exponents
are chosen to satisfy conditions 1 to 6 on the hyperelastic energy density. Furthermore, define
Oy0; Oy1; y0; y1; u0; u1 W ˝ ! R, � W ˝ ! ˝ as � � id, u0 � u1 � 1, Oy0 � y0 � 0, and
Oy1.x1; x2/ D y1.x1; x2/ D sgn.x1/. Then with respect to convergence in .L1.˝//4�w�W 1;p

id .˝/

we have �
� � lim

"!0
J"edge

�
Œy0; y1; u0; u1; �� D J0;2Dedge Œy0; y1; u0; u1; �� for

J0;2Dedge Œy0; y1; u0; u1; �� D E Oy0MSŒy0; u0�C E Oy1MSŒy1; u1�CWŒ�� :

The above � -convergence of J"edge to J0;2Dedge is expected to hold generally in higher dimensions,
but a proof in the case of a non-smooth matching deformation � is still pending. The underlying
observation is the following: Wherever the image Oy0 exhibits an edge which Oy1 does not have, the
squeezing mechanism from Figs. 5 and 6 eliminates the mismatch penalty. Wherever Oy1 has an edge
but Oy0 does not, the phase field u0 will develop a sequence of short ghost edge profiles which are
separated by larger intermediate spaces (Fig. 8). Since the ghost edge segments are short, they do not
add much to the length penalization �L"ATŒu0�. Furthermore, in the pullback u0 ı � these segments
are elongated so that they almost generate a continuous ghost edge and the mismatch penalty gets
small. If for " ! 0 the length of the ghost edge segments goes to zero faster than the length of
the intermediate spaces, then in the limit both a

"
F Œu0; u1; �� and �L"ATŒu0� disappear. Also, the

deformation � only exhibits strong deformations and compressions in the immediate proximity of
the diffuse ghost edges so that the required additional deformation energy is small and vanishes in
the limit.

Remark 4.9 The decoupling of both segmentation problems does not only occur for the joint
segmentation and registration functional from Sec. 4.2.2. By a similar construction as in the proof of
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FIG. 8. Schematic diagram of the recovery sequence for Ex. 4.8. As in Fig. 6 we show for a fixed "j the approximations
u
j
0 ; u

j
1 , and uj0 ı �

j to given u0; u1, and u0 ı �. uj1 develops a full vertical edge, since the original image Oy1 exhibits

a vertical discontinuity. uj0 develops a sequence of short diffuse ghost edge segments which are elongated in the pullback

u
j
0 ı �

j .

the above example one observes that the mismatch term also vanishes in the limit for the functional
from Sec. 4.2.3.

4.2.5 Appropriate functional modifications. In summary, the introduced functionals for joint
Ambrosio–Tortorelli edge segmentation and registration exhibit the following deficiencies in the
limit "! 0.
� Instead of penalizing the symmetric difference Sy1��

�1.Sy0/, the � -limit ignores all edges in
��1.Sy0/nSy1 (Thms. 4.3, 4.5, and 4.7). This is caused by the deformation � squeezing the phase
field profile of u0 such that in the limit, edges in u0 ı � can become invisible.
� In 1D, the penalty weight a of the mismatch is strongly reduced and in fact can never exceed the

length parameter � (Thms. 4.5, 4.6, and 4.7). This effect is produced by spurious diffuse ghost
edges that occur in phase field u0 in order to make u0 ı � look more like u1.
� In higher dimensions, the mismatch penalty vanishes completely (Ex. 4.8). Again, this is due to

ghost edges in u0 ı �, but the mechanism of their emergence differs from 1D: Diffuse ghost
edges form from small, very localized seeds in u0 which are dilated by the deformation to fully
developed diffuse edges in u0 ı �.

Obviously, the reason why these functionals work satisfactorily in practice (as in Figs. 1 and 3) must
be the use of an " away from zero. We now briefly discuss the phenomena, including suggestions
for improvements of the joint segmentation and registration functionals.

The second effect described above is what distinguishes joint edge segmentation and registration
from the consecutive approach (cf. Thms. 4.3 and 4.5). In fact, this property is not a deficiency of
the Ambrosio–Tortorelli phase field approximation, but already holds for the sharp interface energy.
Indeed, the sharp interface functional Jedge is not well-posed for a > �, since then both y0 and y1
could develop a tiny edge in all places where the respective other image has one, thereby making the
fitting term Fedge vanish and only adding the edge length weighted by �. The well-posed relaxation
of that functional would have weight a replaced by �. Effectively, this effect represents one of
the strengths of joint segmentation and registration: Edges which are too weak in one image can
still be segmented based on the edge information in the other image, which is made available by
the registration. The weight � should be chosen so large that segmentation of irrelevant edges is
suppressed; this weight will then also be appropriate for the matching of the edges.

As for the first effect, the edge squeezing, an obvious remedy is to consider a more symmetric
matching term of the form a

"
.F Œu0; u1; �� C F Œu1; u0; ��1�/. However, this modification is
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most probably still too weak to avoid the third above-listed mechanism that occurs in higher
dimensions. To do away with both effects, one can replace the deformation energy WŒ�� by
WŒ�� C

R
˝
jD2�jp dx. The � -limit would then naturally be considered with respect to weak

convergence of deformations in W 2;p.˝/. If p > d , any weakly converging sequence of
deformations � with bounded energy would be uniformly bounded in C 1.˝/ so that a complete
squeezing of edges or a dilation of ghost edge segments can no longer occur and thus the � -limit
retains a term penalizing the mismatch between the edge sets. Note though that the edge phase
fields can still be squeezed or dilated by a finite amount so that the weight of the mismatch term will
depend on the elastic energy density W and the limit deformation �. A few additional comments in
this direction are provided later in Sec. 5.6.

Finally, Remark 4.4 and Thm. 4.6 already suggest an alternative remedy: One could increase the
rate at which the weight of the mismatch term tends to infinity as "! 0. For a sufficiently large rate,
the mismatch term would begin to cost too much for edges that occur in Sy1 but not in Sy0 , despite
oscillating deformations as in Fig. 8. Therefore u0 will develop a full ghost phase field, resulting in
the mismatch penalty �Hd�1.�.Sy1/ n Sy0/. We may conjecture that for the functional Jt;"edge from
Sec. 4.2.2 and for any dimension d there exists indeed a t large enough such that

� � lim
"!0

Jt;"edge D Jt;0edge with

Jt;0edgeŒy0; y1; u0; u1; ��

D E Oy0MSŒy0; u0�C E Oy1MSŒy1; u1�C �Hd�1
��
��1.Sy0/ n Sy1

�
[
�
�.Sy1/ n Sy0

��
CWŒ��:

This would represent a satisfactory result since Jt;"edge approximates a functional that penalizes a bad
registration via a mismatch of edges and at the same time reconstructs edges based on information
from both input images. For practical purposes this would just imply that for a fixed chosen phase
field parameter one would have to choose a sufficiently large weight of the mismatch term. The
analysis of this limit problem promises to be much more involved than the 1D problems considered
here. In particular, as yet it is unclear how to treat the coupling of non-smooth deformations with
curved edge phase fields, a problem to be examined in future work.

5. Proofs

The following sections are devoted to the proofs of the � -convergence results from the previous
section. Furthermore, in Sec. 5.6 we include a brief discussion on the influence of tangential
deformations in edge-based segmentation and registration in higher dimensions.

5.1 Proof of Theorem 4.1

The treatment of all energy terms is standard except for the matching term F , whose sequential lower
semi-continuity represents the only technical difficulty and follows from the subsequent lemma.

Lemma 5.1 Let uj ! u in L1.˝/ as j ! 1, where u 2 BV.˝/ is a function of bounded
variation taking only values �1 and 1. Further let �j * � in W 1;p

id .˝/ as j ! 1 such that
WŒ�j � is uniformly bounded. Then uj ı �j ! u ı � in L1.˝/.

Proof. Let O D fx 2 ˝ W u.x/ D 1g. We show uj ı�j ! u ı� in L1.��1.O//; the convergence
in L1.��1.˝ n O// can be shown analogously.
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First note that, due to the conditions on W in Sec. 2, WŒ�� is bounded and the �j and �
are homeomorphisms with det D�j ; det D� > 0 almost everywhere. Furthermore, �j ! � in
C 0;!. N̋ / for any ! < 1 � d

p
due to the compact embedding W 1;p.˝/ � C 0;!. N̋ /. Finally, by the

calculation in Sec. 2 we have

k.�j /�1k
Qq

W 1; Qq.˝/
D

Z
˝

k.D�j /�1k QqF det D�j dx 6
1

C1
.WŒ�j �CC2j˝j/

Qq
q .WŒ�j �CC2j˝j/

q�Qq
q

so that any subsequence of .�j /�1 admits a weakly converging subsequence in W 1; Qq.˝/ and by
compact embedding a strongly converging subsequence inC 0; Q!. N̋ / for any Q! < 1� d

Qq
. The limit for

any such subsequence must necessarily be ��1 so that altogether .�j /�1 ! ��1 in C 0; Q!. N̋ /. Now
for any measurable set S � ˝ with Lebesgue measure vol.S/ 6 � we have vol.��1.S// 6 C�

s
1Cs

and vol.�j .S// 6 C�1�
d
p for some constant C and the exponents p; s from condition 5 on the

energy density W . Indeed,

Z
��1.S/

dx D
Z
S

1

det D� ı ��1
dx 6

�Z
S

dx
� s
1Cs

 Z
S

�
1

det D� ı ��1

�1Cs
dx

! 1
1Cs

6 �
s
1Cs

�Z
˝

.det D�/�s dx
� 1
1Cs

6 .WŒ��/
1
1Cs �

s
1Cs ;

where we have exploited the bijectivity of � W ˝ ! ˝ and the corresponding change of variables,
the boundedness of WŒ��, and Hölder’s inequality. Likewise,Z

�j .S/

dx D
Z
S

det D�j dx 6 dŠ

Z
S

kD�j kdF dx

6 dŠ

�Z
S

dx
�1�dp �Z

S

kD�j kpF dx
�d
p

6 dŠ.WŒ�j �/
d
p �1�

d
p :

Now, for any h > 0we can find an open setEh � ˝ with smooth boundary such that vol.Eh�O/ 6
h [1, Thm. 3.42], [8, Prop. A.17]. Hence,

vol
�
�j
�
��1.O/

�
�O

�
6 vol

�
�j
�
��1.O�Eh/

��
C vol

�
�j
�
��1.Eh/

�
�Eh

�
C vol.Eh�O/! h.1�

d
p /

s
1Cs C h

for j !1.1 By the arbitrariness of h, vol.�j .��1.O//�O/! 0.
Given � > 0, by Egorov’s theorem there is a set S� with Lebesgue measure vol.S�/ < � such

that uj ! u uniformly on ˝ n S� . Now choose k 2 N large enough so that for all j > k we have

1 Note that �j ı ��1! id in some Hölder space (cf. Sec. 2), and thus the Hausdorff distance dj between the compact
sets Eh and �j ı ��1.Eh/ converges to zero. Then, however, due to �j ı ��1.Eh/ � �j ı ��1.Eh/ � Bdj .Eh/
we have vol.�j ı ��1.Eh/�Eh/ 6 vol.Bdj .Eh/ n Eh/ 6 dj �Hd�1.@Eh/, where the constant � depends on the
maximum mean curvature of @Eh.
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vol.�j .��1.O//�O/ < � and uj jOnS� > 1 � �. Then

kuj ı �j � u ı �kL1.��1.O// D

Z
��1.O/

juj ı �j � 1j dx

D

Z
�j .��1.O//

juj � 1j
1

det D�j ı .�j /�1
dx

6
Z

OnS�

�

det D�j ı .�j /�1
dx

C

Z
S�

2

det D�j ı .�j /�1
dx

C

Z
�j .��1.O//�O

2

det D�j ı .�j /�1
dx :

These three terms scale like a positive power of � and can thus be made arbitrarily small, which was
to be shown.

The � -convergence result now is straightforward.

Proof of Thm. 4.1.. First note that for Oy 2 L1.˝/ the energy

Œ.c; c/; u� 7!

Z
˝

j1C uj

2
jc � Oyj2 C

j1 � uj

2
jc � Oyj2 dx

is (sequentially) continuous in R2 � L1.˝/. As a consequence, both terms of the above form may
be neglected during the following � -convergence analysis.

For the lim sup-inequality we require a recovery sequence. Assume c0; c0; c1; c1; u0; u1; � to
be given with J0volŒ.c0; c0/; .c1; c1/; u0; u1; �� < 1. Let u"0; u

"
1 W ˝ ! Œ�1; 1� with u"0 ! u0,

u"1 ! u1 inL1.˝/ be standard recovery sequences for the � -convergence of L"MM [28], [8, proof of
Thm. 6.4], and define the recovery sequences for c0; c0; c1; c1; � to be the constant sequences. Then
the convergence of all terms in J"volŒ.c

"
0; c

"
0/; .c

"
1; c

"
1/; u

"
0; u

"
1; �

"� against the corresponding terms in
J0volŒ.c0; c0/; .c1; c1/; u0; u1; �� is obvious except for the matching term. However,

R
˝
ju"0 ı �

" �

u"1j
2 dx�!"!0

R
˝
ju0 ı � � u1j

2 dx follows immediately by Lebesgue’s convergence theorem,
since the phase fields are bounded between �1 and 1 and converge pointwise.

Concerning the lim inf-inequality, for given "j ! 0 let .cj0 ; c
j
0 ; c

j
1 ; c

j
1 ; u

j
0 ; u

j
1 ; �

j / !

.c0; c0; c1; c1; u0; u1; �/ inR4�.L1.˝//2�w�W 1;p
id .˝/. Since lim infj!1L

"j
MMŒu

j
i � > L0MMŒui �,

i D 0; 1, is a standard result and since W is sequentially weakly lower semi-continuous, it remains
to prove the sequential lower semi-continuity of the matching term.

We first extract a subsequence, still indexed by j , which realizes the lim inf and for
which u

j
i ! ui pointwise almost everywhere for i D 0; 1. We may assume juji j 6 1

pointwise, since this makes the lim inf even smaller. Also, it is sufficient to consider the case
u0; u1 W ˝ ! f�1; 1g, since otherwise lim infj!1L

"j
MMŒu

j
i � D 1. Finally, we may assume

limj!1 J
"j
volŒ.c

j
0 ; c

j
0/; .c

j
1 ; c

j
1/; u

j
0 ; u

j
1 ; �

j � < 1 (otherwise there is nothing to prove) so that
WŒ�j � is uniformly bounded for j large enough. Lemma 5.1 now implies uj0 ı �

j ! u0 ı �

in L1.˝/ so that we have pointwise convergence for a subsequence and
R
˝
ju
j
0 ı �

j � u
j
1 j
2 dx !R

˝
ju0 ı � � u1j

2 dx follows by Lebesgue’s convergence theorem.
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5.2 Proof of Theorem 4.3

Unlike in the previous proof, the sequential lower semi-continuity of the fitting term no longer relies
on the convergence of compositions uj0 ı �

j as j ! 1, since any deviation of the uj0 from 1 will
not be visible in the � -limit anyway. Thus, in essence we may assume uj0 ı �

j ! 1. For the
other sequence of phase fields uj1 we can derive that it must approach a perfect Ambrosio–Tortorelli
profile, which then allows to estimate 1

"j

R
˝
.u
j
0 ı �

j � u
j
1/
2 dx from below (Lemma 5.2; unlike

in the usual lower estimate for the Ambrosio–Tortorelli energy, we here perform a lower estimate
only for a single-well type term under a constraint on the total Ambrosio–Tortorelli energy). Also
the recovery sequence is more complicated this time: Not only a squeezing as in Fig. 5 (a) has to
be implemented, but it also has to be ensured that potential slight deviations of uj0 from 1 are not
magnified by �j (Lemma 5.5).

To simplify the notation, let an index to an energy (as in W˝ Œ�� D
R
˝
W ŒD�� dx) denote the

corresponding integration domain. We start with three technical lemmata before proving the � -
convergence result. The following lemma will be needed to prove the lim inf-inequality. It basically
states that for functions u W Œ0;1/ ! R with u.0/ D 0 and bounded Ambrosio–Tortorelli length
energy L1ATŒu�, the energy ku � 1k2

L2.Œ0;1//
is bounded below. Even more, as u approximates the

optimal Ambrosio–Tortorelli profile (i.e. 2L1ATŒu� � 1), the lower bound converges to 1.

Lemma 5.2 Let ˝ D Œ0; T �, ı; � > 0, l 2 Œı; 1�, and define uı;�;T;l 2 W 1;2.˝/ to be the unique
minimizer of QF Œu� D

R
˝
.u � l/2 dx under the constraints u.0/ 6 ı and 2L1ATŒu� 6 1 C �. Then

QF Œuı;�;T;l �! 1
2

as ı; � ! 0, T !1, and l ! 1.

Proof. The above optimization problem is strictly convex with a closed convex domain and thus
indeed admits a unique minimizer Ou � uı;�;T;l . Its Lagrange functional is given by LŒu; �; �� D
QF Œu� C �.u.0/ � ı/ C �.2L1ATŒu� � 1 � �/ with Lagrange multipliers � and �. Since Slater’s
condition is fulfilled, there are O�; O� > 0 such that Ou; O�; O� satisfy the corresponding Karush–Kuhn–
Tucker conditions. In particular, f0g D @uLŒ Ou; O�; O��, from which we obtain the ordinary differential
equation Ou00 D O�C1

O�
Ou �

O�Cl
O�

as well as Ou0.T / D 0. Furthermore, since replacing Ou by maxfı; Oug

reduces QF Œu� as well as L1ATŒu�, we know Ou.0/ D ı. Altogether,

Ou.x/ D
O�C l

O�C 1
C

ı �
O�Cl
O�C1

1C exp

 
�2

r
O�C1
O�
T

! exp

0@�s O�C 1
O�

x

1A

C

ı �
O�Cl
O�C1

1C exp

 
2

r
O�C1
O�
T

! exp

0@s O�C 1
O�

x

1A :

Plugging Ou back into QF yields a value which continuously depends on ı; T; l , and O� and which

satisfies QF Œ Ou�! 1
2

r
O�
O�C1

for ı ! 0, T !1, and l ! 1. Furthermore, from 2L1ATŒ Ou� 6 1C � we

obtain the condition that O� ! 1 as ı; � ! 0, T ! 1, and l ! 1 from which we finally deduce
QF Œ Ou�! 1

2
.
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The next lemma will be employed in the lim sup-inequality and gives a simple condition under
which a sequence uj of phase fields with phase field parameters "j ! 0 indeed approximates the
optimal Ambrosio–Tortorelli profile.

Lemma 5.3 Let Tj > 0 and uj W Œ�Tj ; Tj � ! Œ0; 1/ be given with Tj ! 1, uj .0/ ! 0,
uj .Tj /; uj .�Tj /! 1, and L1AT;Œ�Tj ;Tj �

Œuj � D
1
2

R Tj
�Tj
ju0j j

2 C .uj � 1/
2 dx ! 1 as j !1. Then

there are extensions Quj of uj toR such that Quj � Nu! 0 in W 1;2.R/, where Nu.x/ D 1� exp.�jxj/
describes the optimal Ambrosio–Tortorelli profile.

Proof. Define the extension of uj by

Quj .x/ D

8̂̂<̂
:̂
uj .x/; jxj 6 Tj ;

Nu
�
x � Tj � log

�
1 � uj .Tj /

��
; x > Tj ;

Nu
�
x � Tj C log

�
1 � uj .�Tj /

��
; x < �Tj

so that

lim
j!1

1

2

Z
R

j Qu0j j
2
C . Quj � 1/

2 dx

D lim
j!1

1

2

"Z Tj

�Tj

ju0j j
2
C .uj � 1/

2 dx C
�
1 � uj .Tj /

�
C
�
1 � uj .�Tj /

�#
D 1 :

Next, define

vj D 1 �
1 � Quj

1 � Quj .0/

so that vj .0/ D 0 for all j and 1
2
k1� vj k

2
W 1;2.R/

D j1� Quj .0/j
�2 1

2

R
R
j Qu0j j

2 C . Quj � 1/
2 dx ! 1.

For a subsequence we obtain 1�vj * 1�v inW 1;2.R/ for some v 2 W 1;2
loc .R/ with v.0/ D 0 and

1
2
k1 � vk2

W 1;2.R/
6 1 by the weak lower semi-continuity of the norm. However, 1 is the minimum

value of the strictly convex optimization problem

min
uWR!R
u.0/D0

1
2
k1 � uk2

W 1;2.R/
;

whose unique minimizer is Nu. Hence we must have v D Nu and therefore 1
2
k1 � vk2

W 1;2.R/
D 1 D

limj!1 1
2
k1�vj k

2
W 1;2.R/

, which together with the weak convergence of 1�vj yields 1�vj ! 1�v

in W 1;2.R/. (This holds for the complete sequence since otherwise there would be a subsequence
with kvj � NukW 1;2.R/ > ı for a ı > 0 and all j . Then we could repeat the above argument to obtain
the contradiction kvj � NukW 1;2.R/ ! 0.) Altogether,

k Quj � NukW 1;2.R/ 6 k Quj � vj kW 1;2.R/ C kvj � NukW 1;2.R/

D juj .0/jk1 � vj kW 1;2.R/ C kvj � vkW 1;2.R/ ! 0

for j !1.
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Remark 5.4 Inspection of the above proof shows that instead of the interval Œ�Tj ; Tj � we may
just as well consider unsymmetric intervals. Then the lemma can be applied in the following way:
Assume we are given a sequence uj 2 L1.˝/ of Ambrosio–Tortorelli phase fields with phase field
parameters "j ! 0 which approximate an edge set S. That is (cf. [8, proof of Thm. 8.1]),
1. uj ! 1 in L1.˝/,
2. for any xi 2 S there is a sequence xji ! xi in ˝ with uj .xji /! 0,
3. L

"j
AT;O Œu

j �! H0.S \O/ for any compact O with O \ S D int.O/ \ S.
Then, for any compact connected O with O \ S D int.O/ \ S D fxig, the function uj W x 7!
uj ."jx C x

j
i / satisfies the conditions of Lemma 5.3 with f�Tj ; Tj g replaced by 1

"j
.@O � x

j
i /.

Letting Qx D "jx C x
j
i the lemma thus impliesZ

O

"j
ˇ̌
.uj /0. Qx/ �

1

"j
Nu0.
Qx � x

j
i

"j
/
ˇ̌2
C
1

"j

�
uj . Qx/ � Nu.

Qx � x
j
i

"j
/
�2 d Qx

D

Z
O�x

j
i

"j

ˇ̌
u0j .x/ � Nu

0.x/
ˇ̌2
C
�
uj .x/ � Nu.x/

�2 dx 6 kuj � NukW 1;2.R/ �!
j!1

0 :

Finally, the third lemma helps to ensure the existence of a recovery sequence for the deformation
�. This recovery sequence has to be designed carefully so that the pullback uj ı �j does not blow
up spurious edges in the phase fields uj .

Lemma 5.5 For given "j ! 0 and bounded � 2 W 1;p.Œ0; 1�/ with WŒ�� < 1, let vj 2
W 1;2.Œ�.0/; �.1/�/ with 1

"j

R �.1/
�.0/

.vj /2 dx ! 0. Then there exists a sequence �j * � in

W 1;p.Œ0; 1�/ with �j .0/ D �.0/ and �j .1/ D �.1/ such that WŒ�j � ! WŒ�� and 1
"j

R 1
0
.vj ı

�j /2 dx ! 0.

Proof. Due to the conditions on the hyperelastic energy density W , � is absolutely continuous
and thus almost everywhere differentiable, and � is invertible with some absolutely continuous
 D ��1 W Œ�.0/; �.1/� ! Œ0; 1�. For a positive sequence ıj ! 0, let Ej D fx 2 Œ�.0/; �.1/� W
vj .x/ > ıj

p
"j g and Aj D fx 2 Ej W �0. .x// < 1g. Then, if ıj converges slowly enough,

vol.Ej / D
1

"j

Z
Ej

"j dx 6
1

"j

Z
Ej

�
vj

ıj

�2
dx 6

1

ı2j "j

Z �.1/

�.0/

.vj /2 dx ! 0 ;

and likewise vol. .Ej //! 0. Let 'j D
vol. .Aj //�vol.Aj /
vol.Œ�.0/;�.1/�nAj /

> 0 and define

�j D . j /�1 for  j .x/ D �.0/C
Z x

�.0/

gj .y/ dy with gj .x/ D

(
1 ; x 2 Aj ;

 0.x/C 'j ; x … Aj :

The deformation �j is well-defined since the absolutely continuous deformation  j has positive
derivative almost everywhere. Then �j .0/ D �.0/, �j .1/ D �.1/, as well as

1

"j

Z 1

0

.vj ı �j /2 dx 6
1

"j

Z
Œ0;1�n.�j /�1.Ej /

.ıj
p
"j /

2 dx C
1

"j

Z
.�j /�1.Ej /

.vj ı �j /2 dx

6 ı2j C
1

"j

Z
Ej

.vj /2 dx �!
j!1

0 :
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Also,

WŒ�j � D

Z �.1/

�.0/

W

�
1

gj

�
jgj j dx �!

j!1

Z �.1/

�.0/

W

�
1

 0

�
j 0j dx DWŒ�� ;

where we have applied Lebesgue’s theorem since the integrand converges pointwise (due to the
continuity of W ) and is bounded by a constant plus a factor times W.1= 0/j 0j.2 Finally, the �j

are uniformly bounded with �j ! � pointwise andZ 1

0

jD�j jp dx D
Z �.1/

�.0/

ˇ̌̌̌
1

gj

ˇ̌̌̌p�1
dx 6 jAj j C

Z
Œ�.0/;�.1/�nAj

ˇ̌̌̌
1

 0

ˇ̌̌̌p�1
dx ;

where the second term is bounded above by
R �.1/
�.0/

ˇ̌̌
1
 0

ˇ̌̌p�1
dx D

R 1
0
jD�jp dx so that we obtain

weak convergence of a subsequence �j * � (and since we can extract such a sequence from any
subsequence we obtain weak convergence of the complete sequence).

Now we are able to prove Thm. 4.3. The underlying idea of how the phase fields and the
deformation behave locally is illustrated in Fig. 5. Most work is caused by the separate treatment of
the different cases in Fig. 5 to construct a recovery sequence.

Proof of Thm. 4.3.. For the lim inf-inequality consider a sequence "j ! 0 as well as a sequence
�j * � in W 1;p

id .˝/. The lower semi-continuity lim infj!1WŒ�j � > WŒ�� follows from the
assumptions on the hyperelastic energy density W . We may assume lim infj!1WŒ�j � < 1

(otherwise the lim inf-inequality would be trivially fulfilled) so that WŒ�� < 1 and � is a
homeomorphism.

Define

h D lim inf
j!1

inf
.y0;u0/2m

"j . Oy0/

.y1;u1/2m
"j . Oy1/

1

"j

Z
˝

.u0 ı �
j
� u1/

2 dx :

Upon taking a subsequence (and after reindexing), we may assume that the lim inf can be replaced
by a lim. Let .yji ; u

j
i / 2 m"j . Oyi /, i D 0; 1, be sequences of images and phase fields such that the

inner infimum in the definition of h is realized up to 2�j so that finally

h D lim
j!1

1

"j

Z
˝

.u
j
0 ı �

j
� u

j
1/
2 dx :

By the � -convergence and equi-mild coercivity of E
Oyi ;"j
AT (cf. [8, Def. 1.19 to Thm. 1.21]), we

may (again after extracting a subsequence without reindexing) assume .yji ; u
j
i / ! .yi ; 1/ in

.L1.˝//2 and pointwise a. e. for i D 0; 1, where yi is a solution of the respective Mumford–
Shah problem. Even more, inspecting the proof for � -convergence of E

Oyi ;"j
AT (e.g. [8, Thm. 8.1]),

we have L
"j
ATŒu

j
i � ! H0.Syi / as j ! 1, and for every xm 2 Sy1 n �

�1.Sy0/ there exist a

sequence xjm ! xm and T <
OT
2

, where OT is the minimum distance between any two elements of

2 Note that 'j 6 1 and that s 7!W. 1
s
/s is non-negative and convex on .0;1/with minimum at s D 1. Thus, for 0 <

1 we haveW. 1
 0C'j

/j 0C 'j j 6 max.W. 1
 0
/j 0j;W. 1

2
/2/, and for  0 > 1 we may assumeW. 1

 0C'j
/j 0C 'j j

less than some constant timesW.1= 0/j 0j due to the growth conditions onW .
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Sy1 [ �
�1.Sy0/, such that uj1.x

j
m/! 0 and ess inf

x2�j .Œx
j
m�T;x

j
mCT �/

u
j
0.x/! 1 (where we have

exploited the convergence �j ! � in C 0.˝/).
We now introduce the rescaled functions

Qu
j
1.x/ D u

j
1.x

j
m C "jx/ ;

Qu
j
0.x/ D u

j
0.�

j .xjm/C "jx/ ;

Q�j .x/ D
1

"j
Œ�j .xjm C "jx/ � �

j .xjm/�

so that lim infj!1 1
"j

R xjmCT
x
j
m�T

.u
j
0 ı�

j �u
j
1/
2 dx D lim infj!1

R T
"j

� T"j

. Qu
j
0 ı
Q�j � Qu

j
1/
2 dx > 1, where

the inequality follows by Lemma 5.2. Hence,

h > lim inf
j!1

X
xm2Sy1n�

�1.Sy0 /

1

"j

Z x
j
mCT

x
j
m�T

.u
j
0 ı �

j
� u

j
1/
2 dx > H0

�
Sy1 n �

�1.Sy0/
�
;

which concludes the lim inf-inequality.
For the recovery sequence, assume � 2 W 1;p

id .˝/ and "j ! 0 to be given. Choose yi 2 m0. Oyi /,
i D 0; 1, such that the infimum in J0Œ�� is realized up to ı > 0. Then there are corresponding
.y
j
i ; u

j
i / 2 m"j . Oyi / with .yji ; u

j
i /! .yi ; 1/ in .L1.˝//2, i D 0; 1.

Since the .yji ; u
j
i / are a converging sequence of minimizers of the � -converging sequence of

Ambrosio–Tortorelli functionals, we have L
"j
ATŒu

j
i � ! H0.Syi /, and for each xi 2 Syi , i D 0; 1,

we know there is a sequence xji ! xi with uji .x
j
i / ! 0. Remark 5.4 then implies that the uji

approximate the optimal Ambrosio–Tortorelli profile on any compact O � ˝ containing only one
element of Syi .

Let T be half the minimum distance between any two points in Sy1 [ �
�1.Sy0/. We divide

the domain ˝ into four different types of regions: Intervals Œx1 � T; x1 C T � \ ˝ with x1 2
Sy1 n�

�1.Sy0/, intervals Œx0�T; x0CT �\˝ with x0 2 ��1.Sy0/nSy1 , intervals Œx�T; xCT �\˝
with x 2 ��1.Sy0/ \ Sy1 , and the remainder Q̋ , which itself is composed of a finite number
of intervals. For each type of interval we locally define a deformation �j and show convergence
�j * � and convergence of the deformation energy and the mismatch term separately:
� For each interval Œxl ; xr � � Q̋ Remark 5.4 implies

1

"j

Z xr

xl

.u
j
1 � 1/

2 dx ! 0 and
1

"j

Z �.xr /

�.xl /

.u
j
0 � 1/

2 dx ! 0 :

Lemma 5.5 then implies the existence of a sequence �j W Œxl ; xr �! Œ�.xl /; �.xr /� with �j * �

and WŒxl ;xr �Œ�
j �!WŒxl ;xr �Œ�� such that for j !1,s

1

"j

Z xr

xl

.u
j
0 ı �

j � u
j
1/
2 dx 6

s
1

"j

Z xr

xl

.u
j
0 ı �

j � 1/2 dx C

s
1

"j

Z xr

xl

.1 � u
j
1/
2 dx ! 0 :

� On any Œx1�T; x1CT � with x1 2 Sy1 n�
�1.Sy0/ we analogously define �j * � inW 1;p.Œx1�
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T; x1 C T �/ with WŒx1�T;x1CT �Œ�
j �!WŒx1�T;x1CT �Œ�� such thats

1

"j

Z x1CT

x1�T

.u
j
0 ı�

j�u
j
1/
2 dx 6

s
1

"j

Z x1CT

x1�T

.u
j
0 ı�

j�1/2 dx

C

s
1

"j

Z x1CT

x1�T

.1�u
j
1/
2 dx ! 0C 1

for j !1, where the convergence of the second term again follows from the convergence of uj1
against the optimal profile around x1 (Remark 5.4).
� For each interval O D Œx0 � T; x0 C T � with x0 2 ��1.Sy0/ n Sy1 we define �j .x/ D �.x0/C
"
�ˇ
j .x � x0/ for jx � x0j < "˛j , where 1 > ˛ > ˇ; rˇ > 0 (here, again, r is the exponent

from the growth conditions on W ). A slight modification of Lemma 5.5 then implies that �j

can be extended onto Oj D Œx0 � T; x0 C T � n Œx0 � "
˛
j ; x0 C "

˛
j � so that still �j * � and

WOj Œ�
j �!WO Œ�� (while WŒx0�"

˛
j
;x0C"

˛
j
�Œ�

j � 6 2"˛j .C1 C C2"
�rˇ
j /! 0) as well ass

1

"j

Z
O

.u
j
0 ı �

j � u
j
1/
2 dx

6

s
1

"j

Z
O

.u
j
0 ı �

j � 1/2 dx C

s
1

"j

Z
O

.1 � u
j
1/
2 dx

D

vuut"
ˇ
j

1

"j

Z �.x0/C"
˛�ˇ

j

�.x0/�"
˛�ˇ

j

.u
j
0 � 1/

2 dx C
1

"j

Z
Oj

.u
j
0 ı �

j � 1/2 dx

C

s
1

"j

Z
O

.1 � u
j
1/
2 dx ! 0 :

� Finally, for each interval O D Œx1 � T; x1 C T � with x1 2 ��1.Sy0/ \ Sy1 let xj0 ! �.x1/

and xj1 ! x1 be sequences such that uj0.x
j
0 / ! 0 and uj1.x

j
1 / ! 0. We define �j .x/ D

�.x
j
1 /C x � x

j
0 for jx � xj0 j < "

˛
j , where 1 > ˛ > 0. As in the previous case we can extend �j

onto Oj D Œx0 � T; x0 C T � n Œx
j
0 � "

˛
j ; x

j
0 C "

˛
j � so that �j * � and WO Œ�

j �!WO Œ�� and

1

"j

Z
O

.u
j
0 ı �

j
� u

j
1/
2 dx D

1

"j

Z x
j
0
C"˛
j

x
j
0
�"˛
j

.u
j
0 ı �

j
� u

j
1/
2 dx C

1

"j

Z
Oj

.u
j
0 ı �

j
� u

j
1/
2 dx ;

where the first term converges to zero since uj0.�.x
j
1 /C x � x

j
0 / and uj1.x/ approach the same

profile (Remark 5.4), and the second term can be shown to converge to zero as done before on the
intervals in Q̋ .

Altogether we obtain

lim sup
j!1

J"j Œ�j � 6 lim sup
j!1

WŒ�j �C
1

"j

Z
˝

.u
j
0 ı �

j
� u

j
1/
2 dx DWŒ��CHd�1

�
Sy1 n �

�1.Sy0/
�

6 J0Œ��C ı ;

which by the arbitrariness of ı concludes the proof.
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5.3 Proof of Theorem 4.5

The lim inf inequality is more or less standard except for the mismatch term F and the Ambrosio–
Tortorelli length terms L"AT in the vicinity of �.Sy1/ n Sy0 as in Fig. 6 (c). Here, the mismatch term
has to be viewed as a modification of the potential in L"AT, which results in a different lower bound
than for L"AT alone. This lower bound can be obtained quite explicitly by globally minimizing the
modified Ambrosio–Tortorelli length terms for the optimal profile (Lemmas 5.6 and 5.7).

As opposed to the previous section, the recovery sequence this time also has to provide the
phase fields. Again, while the phase field sequences uj0 ; u

j
1 are the standard Ambrosio–Tortorelli

recovery sequences for the cases in Fig. 6 (a),(b), both uj0 and uj1 are non-standard for the situation
in Fig. 6 (c). In that latter case they can be explicitly characterized as the above-mentioned optimal
profiles. The recovery sequence for the deformations is essentially the same as in the previous
section, only it can now easily be made very explicit since this time we are given the exact profiles
of the phase fields to be matched. Therefore we do not need to refer to Lemma 5.5 here.

First, we consider the functionZ0;1. Its well-definedness and its properties follow from the next
two lemmata.

Lemma 5.6 Let 1 > l > � > 0 and define

Y �;l D fu 2 W 1;2..0;1// W u.0/ D �; l 6 ess sup
x>0

u.x/g :

For u 2 Y �;l we introduce the abbreviation xlu D minfx > 0 W u.x/ D lg if l 2 u..0;1// and
xlu D 1 else (note that point values of u are well-defined due to the embedding W 1;2..0;1// ,!

C 0.Œ0;1//). Then for a > 0 the variational problem

min
u2Y �;l

U �;l;aŒu�; U �;l;aŒu� D

Z xlu

0

ju0j2 C .1 � u/2 C 2a.l � u/2 dx ;

admits minimizers. All minimizers u have the same xlu and coincide on Œ0; xlu� with a strictly
increasing, concave, and smooth function Nu. Finally, U �;l;aŒ Nu� D NU �;l;a for NU �;l;a D

2
R l
�

p
.1 � z/2 C 2a.l � z/2 dz.

Proof. To compute a lower bound on U �;l;a, consider an arbitrary function u 2 Y �;l . We may
assume u to be strictly increasing on .0; xlu/ since otherwise there would be 0 < x1 < x2 < xlu
with u.x1/ D u.x2/ so that we could replace u on Œx1;1/ by x 7! u.x�x1Cx2/, thereby reducing
U �;l;a. By the continuity and monotonicity of u W .0; xlu/! .�; l/, u is invertible so that the change
of variables z D u.x/ yields

U �;l;aŒu�D

Z l

�

u0 ı u�1.z/C
.1�z/2C2a.l�z/2

u0 ı u�1.z/
dz>2

Z l

�

p
.1�z/2C2a.l�z/2 dz D NU �;l;a ;

where equality holds if and only if u0 ı u�1.z/ D
p
.1 � z/2 C 2a.l � z/2 almost everywhere

on .�; l/, which is equivalent to u0 D
p
.1 � u/2 C 2a.l � u/2. Since the right hand side of this

ordinary differential equation is Lipschitz continuous, there is a unique solution Nu to it. This Nu is
obviously strictly increasing and concave.

By a change of variables we obtain xl
Nu D

R xl
Nu

0 dx D
R l
�

p
.1 � u/2 C 2a.l � u/2

�1
du, which

smoothly depends on �, l , and a. Likewise, NU �;l;a depends smoothly on �, l , and a with NU �;l;0 D
2.l � �/ � .l2 � �2/ and NU �;l;a �

p
2a.l � �/2 as a!1.
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Lemma 5.7 Given 0 6 � 6 � 6 1, the variational problem

min
l2Œ�;��

V �;�;aŒl �; V �;�;aŒl � D NU �;l;a C 4

Z �

l

1 � z dz � 1

has a unique solution Nl 2 Œ�; ��, which depends continuously on �, �, and a. The minimum value
Z�;�.a/ is also continuous in �, �, and a.

Proof. The derivative of NU �;l;a with respect to l is given by

@l NU
�;l;a
D 2 � 2l C 2

Z l

�

2a.l � z/p
.1 � z/2 C 2a.l � z/2

dz ;

where the integrand is increasing in l and thus the second derivative must be greater than �2. Since
the second derivative of 4

R �
l
1 � z dz is 4, the functional V �;�;a is strictly convex so that a unique

minimum Nl is attained on the compact interval Œ�; ��.
To show that Nl depends continuously on �, �, and a, note that the first derivative of V �;�;aŒl �

with respect to l is smooth in �, �, and a. If this derivative is zero at Nl , then by the implicit function
theorem, Nl is locally a smooth function of �, �, and a. Else, if Nl D � (meaning @lV �;�;aŒl � > 0 on
Œ�; ��), then a small perturbation of �, �, or a will preserve the positivity of @lV �;�;aŒl � and thus
Nl D �. Continuity of Nl at Nl D � is shown analogously.

The continuity of Z�;�.a/ follows from the continuity of V �;�;aŒl � in �, �, a, and l combined
with the continuity of Nl in �, �, and a.

For a D 0, it is easy to validate Nl D � and Z�;�.0/ D 2.� � �/ � .�2 � �2/ � 1, while for
a !1 a simple calculation shows Nl D � with Z�;�.1/ D 4.� � �/ � 2.�2 � �2/ � 1. To obtain
the derivative .Z0;1/0.0/, note

.Z0;1/0.a/ D @aV
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0;1;aŒ Nl �@a Nl

D 2
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dz C
�
2 Nl � 2C 2

Z Nl
0

2a. Nl � z/q
.1 � z/2 C 2a. Nl � z/2

dz
�
@a Nl ;

which for a D 0 and thus Nl D 1 becomes 1. The function is displayed in Fig. 7. We now successively
prove the lim inf- and the lim sup-inequality from Thm. 4.5.

Proof of Thm. 4.5, lim inf-inequality. The fidelity terms
R
˝
.yi � Oyi /

2 dx just represent continuous
perturbations of the functional and can thus be neglected.

Let "j ! 0 be given and consider a sequence .yj0 ; y
j
1 ; u

j
0 ; u

j
1 ; �

j / which converges against
.y0; y1; u0; u1; �/ in .L1.˝//4 � w�W 1;p

id .˝/. As usual, we may extract a subsequence, still
indexed by j , so that this convergence is also pointwise a. e. and the energy converges against the
lim inf, where this limit may be assumed finite (there is nothing to prove otherwise). Furthermore,
as before we may assume 0 6 u

j
0 ; u

j
1 6 1 pointwise, since this reduces the lim inf even further. By

the conditions on W we have lim infj!1WŒ�j � > WŒ��, and lim infj!1
R
˝
.u
j
i /
2jry

j
i j
2 dx >R

˝nSyi
jryi j

2 dx follows by the standard argument for the Ambrosio–Tortorelli segmentation.
Furthermore, by the properties of W, � is a homeomorphism. It remains to examine the behavior of
the length regularization and the matching term.



ON THE GAMMA-LIMIT 465

Due to the finiteness of Sy0 and Sy1 there exists � > 0 such that the open �-neighborhood
V� D B�.Sy1 n �

�1.Sy0// satisfies �.V�/ \ B�.Sy0/ D ; (note that ��1.Sy0/ is compact due to
the continuity of �). Again letting an index to an energy functional denote the integration domain,
by the standard Ambrosio–Tortorelli argument we have
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so it suffices to consider the remainder,
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For simplicity, let us assume that V� \ Sy1 only contains one single element xc (otherwise split V�
into several intervals and apply the following argument to all of them). As in the standard proof for
the � -convergence of the Ambrosio–Tortorelli energy [8, Thm. 8.1], we know there are sequences
x
j

l
< x

j
c < x

j
r in V� with xj

l
; x
j
c ; x

j
r ! xc and uj1.x

j

l
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j
1.x

j
r / ! 1, uj1.x

j
c / ! 0. Likewise

we know u
j
0 ! 1 almost everywhere so that there are xl ; xr 2 �.V�/ with xl < �.xc/ < xr and
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j
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j
0.xr /! 1. Denote the essential infimum of uj0 on .xl ; xr / by lj 2 Œ0; 1�. Obviously,
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We may assume uj1.x
j
c / to be the minimum of uj1 on V� and that lj > u

j
1.x

j
c / since otherwise we

could replace uj0 by maxfuj0 ; u
j
1.x

j
c /g so that Rj Œuj0 ; u

j
1 ; �

j � becomes even smaller. For a similar
reason we may assume uj1 to be monotonic left and right of xjc , and lj 6 u
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the well-known fact 1
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Furthermore, upon rescaling z D x
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1
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where the inequality follows from Lemma 5.6. Altogether, abbreviating �j D

minfuj1.x
j

l
/; u

j
1.x

j
r /; u

j
0.xl /; u

j
0.xr /g and �j D uj1.x

j
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where Z�
j ;�j is defined in Lemma 5.7. By Z�

j ;�j .a
�
/! Z0;1.a

�
/ for j !1, we obtain
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which concludes the proof.

Proof of Thm. 4.5, lim sup-inequality. As before, the fidelity terms can be neglected. Let "j ! 0

and .y0; y1; u0; u1; �/ 2 .L1.˝//4 � w�W 1;p.˝/ be given with finite energy J0edge, i.e. we can
assume u0; u1 D 1 almost everywhere, y0; y1 2 pw�W 1;2.˝/ with Sy0 ;Sy1 finite and � W ˝ !
˝ a homeomorphism. Hence there is � > 0 such that for each x 2 Sy1 [ �

�1.Sy0/ we have
Vx D Œx � �; x C �� � ˝ and Vx \

�
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as the following on each single connected component Vx of V ). Again, the same four cases as in the
previous section have to be considered.
� Outside V we define the recovery sequence for .y1; u1; �/ to be given by the constant sequence.

Likewise, outside the �.V /, we take the constant sequence for .y0; u0/. Then abbreviating
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.u2 C k"/jryj
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It remains to find a recovery sequence .yj1 ; u
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j / on Vx and .yj0 ; u
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0/ on �.Vx/ for each x 2

Sy1 [�
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�
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� Consider the case 0 2 ��1.Sy0/ \ Sy1 . It is well-known that for any ı > 0 there is a T > 0 and
a u 2 W 1;2..0; T // with u.0/ D 0 and u.T / D 1 such that

R T
0
ju0j2 C .1 � u/2 dx < 1C ı. Let
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FIG. 9. The deformations (dashed arrows) and phase fields for the cases 0 2 ��1.Sy0 / n Sy1 and 0 2 Sy1 n �
�1.Sy0 /


 > 1 > ˛ > 0 and define

u
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sgn.x/"˛j C Œ�.x/��.sgn.x/"˛j /�
�.sgn.x/�/�sgn.x/"˛

j

�.sgn.x/�/��.sgn.x/"˛
j
/
; "˛j 6 jxj 6 � ;

�.x/ ; � < jxj :

For yji we take the original image yi , just smoothed out within Œ�"
j ; "


j �. It is well-known that

for this recovery sequence,
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E
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and by the arbitrariness of ı we obtain the desired limit. It remains to show the convergence of
the matching and the deformation energy. We have
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where the first term is zero and the integrand of the second term becomes .1 � 1/2 D 0 for j
large enough (since then "˛j > "jT ). Also, �j * � in W 1;p.V0/ and

WV0 Œ�
j � D 2"˛jW.1/C

Z
V0nŒ�"

˛
j
;"˛
j
�

W

 
�.sgn.x/�/ � sgn.x/"˛j
�.sgn.x/�/ � �.sgn.x/"˛j /

D�

!
dx

of which the first term is zero and the second one converges to WV0 Œ�� since its integrand
converges pointwise to W.D�/ (due to the continuity of � and of W ) and is bounded by some
constant plus a multiple of W.D�/ (due to the growth condition on W ) so that Lebesgue’s
theorem can be applied.
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� In the case 0 2 ��1.Sy0/ n Sy1 we take uj0 and yj0 as before, but uj1 � 1 and yj1 D y1.
Furthermore, define (see Fig. 9 left)

�j .x/ D
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for some ˇ with 1 > ˛ > ˇ; rˇ > 0 (where r is the exponent from the growth condition on W ).
Here again, the correct convergence of the Ambrosio–Tortorelli energy terms is standard, and it
remains to show the convergence of the matching and the deformation energy. We have
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where for j large enough, the integrand of the second term becomes .1 � 1/2 D 0 and the first
term becomes (after the change of variables x ! "
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j x)
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of which the second term converges to WV0 Œ�� as before, and the first term is bounded by
2"˛j .C1.2"

�rˇ
j C "

rˇ
j /C C2/, which converges to zero due to ˛ > rˇ.

� Finally, if 0 2 Sy1 n �
�1.Sy0/, let Nl be the unique minimizer from Lemma 5.7 for � D 0, � D 1,

and Nu the unique minimizer of U 0; Nl;a from Lemma 5.6. We take 
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define (see Fig. 9 right)
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Furthermore, yj1 is defined as in the case 0 2 ��1.Sy0/ \ Sy1 , and for yj0 we take the constant
sequence y0. The convergence of
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2jry
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limit follows by Lebesgue’s theorem. The matching and length regularization terms can then be
written as
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Hence, up to O.ı/, the sum of the three terms converges to �Z0;1.a
�
/C � by Lemma 5.7, and by

the arbitrariness of ı we obtain the desired convergence. Concerning the deformation energy,
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where the first two terms converge to zero (due to the bound on W and 
 < 1C 1
r

) and the last
one converges to WV0 Œ�� as before.

Remark 5.8 Instead of requiring the upper bound W.A/ 6 C1.kAk
r C detAr C detA�r /C C2,

one can prove the result also for a more general (poly-)convex bound W.A/ 6 � .detA/CF.kAk/
by adapting the scales Œ�"˛; "˛� within which the deformation is changed.

5.4 Proof of Theorem 4.6

Due to the arguments from the previous sections, it seems reasonable to increase the rate at which
the weight of the fitting term tends to infinity as " ! 0. If this rate is large enough, the matching
deformation can no longer squeeze the phase field u0 to make the mismatch energy vanish. In the
limit this would forbid any mismatch between u0 ı � and u1 so that both develop full ghost phase
fields and thus encode the same edges. Thm. 4.6 provides information on the needed rate of increase.
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Since the proof employs exactly the same techniques as in the previous sections, we only provide
its outline, pointing out and explaining the small differences to the previous section along the way.

Outline of proof for Thm. 4.6.. For the lim inf-inequality, as usual let "j ! 0 and
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For simplicity we may assume U� to be a single interval with just one single element ��1.xc/ 2
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j
c /C

R jx�xjc j
0

q
QC=."j z/ dz,

which implies the desired statement.
3. Likewise, j�j .x/ � xjc j 6 j N�j .x/ � xjc j with

N�j .x/ D xjc C
QC sgn

�
x � .�j /�1.xjc /

�ˇ̌
x � .�j /�1.xjc /

ˇ̌1� 1p
for some QC > 0. Indeed, for any ı > 0 small enough we have

vol
�n
j.�j /0j >

1

ı

o�
6 ıp NCJ

t;"j
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j
1 ; u

j
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j
1 ; �

j
i

6 OCıp

for some NC ; OC > 0 so that the claim follows by the same argument as above.
4. We now show that the matching term in Ej is decreased if on I j D . Nuj /�1.Œ0; Nl �/ we replace
u
j
0 by Nuj0 and on .�j /�1.I j / we replace �j and uj1 by N�j and Nuj1 D Nl . This indeed follows from

u
j
0 ı �

j 6 Nuj0 ı �
j 6 Nuj0 ı N�

j 6 Nuj1 6 u
j
1

on .�j /�1.I j /, where the second inequality results from the monotonicity of Nuj0 on either side
of xjc .
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5. Finally, although the value of the matching term has been decreased, it still diverges to 1 as
j ! 1, contradicting the assumption of a uniformly bounded J

t;"j
edgeŒy

j
0 ; y

j
1 ; u

j
0 ; u

j
1 ; �

j � and
thus concluding the proof. Indeed,

a

"tj

Z
U�

.u
j
0 ı �

j
� u

j
1/
2 dx >

a

"tj

Z
.�j /�1.Ij /

. Nu
j
0 ı
N�j � Nu

j
1/
2 dx

> 2
a

"tj

Z �
Nl2"j

C2 QC

� p
p�1

0

�
C

q
QCx1�

1
p ="j � Nl

�2
dx

D 2a.C 2 QC/
p
p�1

.p � 1/2

.3p � 1/.2p � 1/
Nl
4p�2
p�1 "

p
p�1�t

j �!
j!1
1 :

Concerning the lim sup-inequality, for t > p
p�1

the proof proceeds exactly as in Thm. 4.5, only that
in the four different cases we this time take exactly the same recovery sequence, namely the one
which originally belonged to points in ��1.Sy0/ \ Sy1 . For t < r

r�1
we proceed as in Thm. 4.5

with only two differences: First, the recovery sequence around points in Sy1 n �
�1.Sy0/ is taken to

be the same as around points in ��1.Sy0/ \ Sy1 . Second, the recovery sequence around points in
��1.Sy0/ n Sy1 is a little bit more elaborate. yj0 ; y

j
1 ; u

j
0 ; u

j
1 are chosen as in Thm. 4.5, but �j on

the interval Œ�"˛j ; "
˛
j � shall be given by �j .x/ D xb for some b with t < 1

b
< r

r�1
. The desired

convergence of all terms can then readily be shown, in particular the mismatch term behaves for

large j like a

"t
j

"
1
b

j �!j!1 0.

5.5 Proof of Theorem 4.7

In contrast to the previous models, this model does not contain a phase field matching term and
thus does not exhibit an alteration of the phase field profile by the deformation. As a result, the
� -convergence proof is much simpler and does not require any essentially new ideas. Indeed,
both the lim inf- and lim sup-inequality are just slight adaptations of the standard argument for the
Ambrosio–Tortorelli functional in [8, Thm. 8.1].

Proof of Theorem 4.7. As in the earlier proofs, for the lim inf-inequality the fidelity terms
R
˝
.yi �

Oyi /
2 dx may be neglected as continuous perturbations, and we may restrict ourselves to sequences

"j ! 0 and .yj0 ; y
j
1 ; u

j
0 ; �

j /! .y0; y1; u0; �/ in .L1.˝//3�w�W 1;p
id .˝/ such that yj0 ; y

j
1 ; u

j
0 ; �

j

also converge pointwise and satisfy 0 6 u
j
0 6 1 and that the limit limj!1 QJ

"j
edgeŒy

j
0 ; y

j
1 ; u

j
0 ; �

j �

exists and is finite so that u0 D 1 a. e. and the �j as well as � are homeomorphisms.
By the conditions on W we have lim infj!1WŒ�j � > WŒ��. For the remaining terms we

follow the standard argument for the Ambrosio–Tortorelli segmentation [8, Thm. 8.1]: We may
assume the existence of a finite set S � ˝ such that on every open I �� ˝nS we have 1

2
< u

j
0 <

3
2

for j large enough, which implies yj0 * y0 in W 1;2.I / and yj1 * y1 in W 1;2.��1.I // (where we
have used the convergence �j ! � in C 0.˝/ due to Hölder embedding). Since I is arbitrary and
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� is homeomorphic, we obtain �.Sy1/ [ Sy0 � S and by the standard argument

lim inf
j!1

Z
˝

..u
j
0/
2
C k"j /jry

j
0 j
2 dx C a

Z
˝

..u
j
0 ı �

j /2 C k"j /jry
j
1 j
2 dx

>
Z
˝nS
jry0j

2 dx C a
Z
˝n��1.S/

jry1j
2 dx D

Z
˝nSy0

jry0j
2 dx C a

Z
˝nSy1

jry1j
2 dx :

Furthermore, the standard argument also implies that infx2U u
j
0.x/ tends to zero for any

neighborhood U of any point x 2 S, which in turn implies lim infj!1L
"j
ATŒu

j
0 � > Hd�1.Sy0 [

�.Sy1//. This completes the proof of the lim inf-inequality.
For the recovery sequence, as in the proof of Thm. 4.5 it suffices to consider the case ˝ D

.��; �/ for some � > 0 and Sy0 [ �.Sy1/ D f0g (where additionally we have to ensure that the
elements yj0 ; y

j
1 ; u

j
0 ; �

j of the recovery sequence are compatible with y0; y1; u0; � at f��; �g).
We may assume u0 � 1, since otherwise there is nothing to prove. Let �" D o."/ such that also

�.��1.0/C�"/��.�
�1.0/��"/ D o."/. As in the proof of Thm. 4.5 we use that for any ı > 0 there

is a T > 0 and a u 2 W 1;2..0; T // with u.0/ D 0 and u.T / D 1 such that
R T
0
ju0j2C .1�u/2 dx <

1C ı. We define

u
j
0.x/ D

8̂̂<̂
:̂
0 ; jxj < �"j ;

u
�
jxj��"j
"j

�
; �"j 6 jxj 6 "jT C �"j ;

1 ; "jT C �"j < jxj :

Furthermore, we choose �j D � and yji to equal yi , i D 0; 1, except on Œ��"j ; �"j �, where y0
is smoothed, and on Œ��1.0/ � �"j ; �

�1.0/ C �"j �, where y1 is smoothed. For this sequence, it is
well-known that

lim
j!1

QJ
"j
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j
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j
1 ; u

j
0 ; �

j
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6 ˛

Z
˝

jy0 � Oy0j
2 dx C
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˝nSy0

jry0j
2 dx C �.1C ı/

C ˛

Z
˝

jy1 � Oy1j
2 dx C a

Z
˝nSy1

jry1j
2 dx CWŒ��

which by the arbitrariness of ı concludes the proof.

5.6 The higher-dimensional case and why tangential displacements matter

In higher dimensions, the situation for joint edge segmentation and registration becomes more
complicated than in 1D, which is associated with the possibility of tangential deformations along
the image edges. For illustration, consider the functional J"edge from Thm. 4.5. Again, in the � -limit
we expect only to see a contribution to the mismatch energy from the edges Sy1 n�

�1.Sy0/ since the
phase fields belonging to edges ��1.Sy0/ n Sy1 will be compressed in normal direction so that they
vanish in the limit (cf. the proof of Thm. 4.5). As in 1D, the weight of the asymmetric mismatch in
the limit will be smaller than a due to the appearance of ghost edges in the phase field function u0
at places where the phase field u1 encodes an edge. These ghost edges reduce the mismatch energy,
but at the same time they contribute to the total energy with additional length energy �L"ATŒu0�.
Balancing both contributions results in optimal ghost field profiles and in 1D produces the mismatch
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weight �Z0;1.a
�
/. In higher dimensions, the mismatch weight should not only depend on � and a,

but also on the deformation tangential to the edges: If the edges Sy1 n�
�1.Sy0/ are shortened by the

deformation �, then the length energy �L"ATŒu0� plays a smaller role than if the edges are elongated
so that the optimal balance between length and mismatch energy (and thus the optimal ghost edge
profile) should depend on the local edge length change, jcof.D�/nSy1

j (where nSy1
is the normal to

the image edges Sy1 ). In more detail, if the ghost edges along �.Sy1/ n Sy0 are very long, then they
will be not very pronounced so as to keep �L"ATŒu0� small, whereas if the ghost edges are very short
so that �L"ATŒu0� is small anyway, then they will be very pronounced so as to make the mismatch
a
"
F Œu0; u1; �� small.

Recalling the proofs of Thm. 4.5 and the associated Lemma 5.7, the ghost edge length energy
L"ATŒu0� corresponds to half of the second term in the definition of V �;�;aŒl � in Lemma 5.7. Hence,
one might expect the weight of the mismatch penalty in the limit to be given locally by a function
of the form

�Z0;1.
a

�
; jcof.D�/nSy1

j/ D min
l2Œ0;1�

� NU 0;1;
a
� Œl �C �.2C 2jcof.D�/nSy1

j/

Z 1

l

1 � z dz � 1 :

Z0;1.a; b/ is obviously monotonically increasing in a and b with Z0;1.0; b/ D 0,
lima!1Z

0;1.a; b/ D b, Z0;1.a; 0/ D 0, Z0;1.a; 1/ D Z0;1.a/, and limb!1Z
0;1.a; b/ D a as

well as @
@a
Z0;1.a; b/jaD0 D 1 (which can be computed just as in Sec. 5.3). The expected mismatch

term in the � -limit would then be given by a term likeZ
Sy1n�

�1.Sy0 /
�Z0;1.

a

�
; jcof.D�/nSy1

j/ dHd�1 :

However, since Z0;1.a; b/ is concave in b, this term is not weakly lower semi-continuous in � 2
W 1;p.˝/ (and therefore cannot be the � -limit), and we thus expect oscillations of the deformation
tangentially to the edges. Indeed, this behavior is observed in the proof of Example 4.8 below.

Note that by modifying the functional and increasing the rate at which the weight of the
mismatch term tends to infinity as " ! 0, the mismatch term would at some point begin
to cost too much even with oscillating deformations so that u0 would develop a full ghost
phase field, resulting in the mismatch penalty �Hd�1.�.Sy1/ n Sy0/. This is consistent with
the observation that lima!1Z

0;1.a; �/ is convex so that the weak lower semi-continuity ofR
Sy1n�

�1.Sy0 /
�Z0;1.1; jcof.D�/nSy1

j/ dHd�1 D �Hd�1.�.Sy1/ n Sy0/ is satisfied.
If instead the deformation energy WŒ�� would be made to depend also on the Hessian or higher

derivatives of �, the � -limit would be considered using some weak W n;p.˝/-topology, and for
sufficiently large p and n one would obtain strong convergence in the dilation factor cofD� so that
the above-mentioned oscillation of tangential deformations is prohibited (n D 3 suffices to obtain
strong convergence of the trace of cofD� on the edge set Sy1 n �

�1.Sy0/; possibly even n D 2 is
sufficient to prevent oscillations). The concavity of Z0;1.a; �/ then no longer poses a problem to the
functional’s lower semi-continuity, and one can expect the above-proposed mismatch term to appear
in the limit.

Proof of Example 4.8. The lim inf-inequality is trivial due to the weak lower semi-continuity of
W and the classical result by Ambrosio and Tortorelli (note that the matching term is simply
disregarded for the lim inf-inequality).



474 B. WIRTH

For a recovery sequence (given a sequence "j ! 0), choose maxfp;r;sg
1Cmaxfp;r;sg < ˇ < ˛ < 1 as well

as 1 > ı > .1 � 1
p
/ˇ and ı C 1 � ˇ < 
 < ı C ˇ

maxfp;r;sg . For yj0 and yj1 we choose the constant
sequence. Furthermore, denoting the optimal Ambrosio–Tortorelli profile by u.t/ D 1� exp.�jt j/,
we define

u
j
1.x1; x2/ D u

�
jx1j="j

�
:

Now let us define the set Sj as shown in Fig. 10. It is the union of "
j long segments on the x2-axis
with distance "ıj to each other. We define

u
j
0.x/ D u

�
dSj .x/="j

�
;

where dSj denotes the distance function to Sj . Clearly, uj0 and uj1 converge to 1 D u0 D u1 in
L1.˝/. Finally, the deformation �j is defined as sketched in Fig. 10: For jx1j > "

ˇ
j we have �j D

id, and for jx1j < "
ˇ
j we have an alternation between uniform compression and uniform dilation

in x2-direction, while the x1 coordinate of each point stays unchanged during the deformation.
Obviously, �j weakly converges against the macroscopic displacement � D id.

Now let us consider the convergence of the single energy terms. The convergence of
E
Oy1;"j
AT Œy

j
1 ; u

j
1 � is the classical result by Ambrosio and Tortorelli, and the convergence of ˛
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˝
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Oy0/
2 dx C
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0 j
2 dx is also obvious. Furthermore,
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where "�ıj is (a little larger than) the number of segments of Sj and the integral in polar coordinates
is larger than the energy contribution around the ends of each segment. The matching energy only
has contributions outside fjx1j < "

ˇ
j g (which converge to zero due to ˇ < 1) and inside the regions

where �j is dilating (with a
"j

F Œuj0 ; u
j
1 ; �

j � 6 a
"j
"�ıj ."

ˇ
j "


j /! 0). Finally, the deformation gradient

x1

x2

x1

x2

˝ ˝

"˛
j

"
ˇ

j

"



j

"ı
j

"



j

"ı
j

�j- Sj

FIG. 10. Sketch of a deformation from the recovery sequence. The set Sj consists of the bold lines. The deformation is
visualized by the transformation of the dotted horizontal lines between the left and right graph.
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on fjx1j < "
ˇ
j g is given by

D�j D

�
1 0

@x1�
j
2 @x2�

j
2

�
;

where @x2�
j
2 is an x1-dependent convex combination between 1 and "˙.
�ı/j (the sign of the

exponent depends on whether we are in a compression or dilation region), and where j@x1�
j
2 j is

bounded by
"ı
j
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j

2."
ˇ

j
�"˛
j
/
. Hence the total deformation energy can be bounded by
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"ıj � "


j

2."
ˇ
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�ı/
j C"

�s.
�ı/
j C"
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/
j C"

�s.ı�
/
j

!
�!
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0 ;

where C is a constant.

Of course, the particular type of elastic energy density is not relevant to the phenomenon, and
we only chose a typical representative for simplicity. Hence, we may expect the � -limit of J"edge
for "! 0 to be just the sum of the elastic energy and the Mumford–Shah segmentation energy for
both images—the matching term will disappear. Consequently, in the � -limit, the segmentation and
deformation energies are completely decoupled, and the energy is no longer a registration energy.
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32. Ozeré, S. & Le Guyader, C., Nonlocal joint segmentation registration model. In J.-F. Aujol, M. Nikolova,
and N. Papadakis, editors, Scale Space and Variational Methods in Computer Vision, volume 9087 of
Lecture Notes in Computer Science, pages 348–359. Springer International Publishing, 2015. MR3394942

33. Pedregal, P., Variational Methods in Nonlinear Elasticity. SIAM, 2000. Zbl0941.74002 MR1741439
34. Rabbitt, R. D., Weiss, J. A., Christensen, G. E. & Miller, M. I., Mapping of hyperelastic deformable

templates using the finite element method. In Proc. of SPIE, volume 2573, pages 252–265, 1995.
35. Rumpf, M. & Wirth, B., A nonlinear elastic shape averaging approach. SIAM Journal on Imaging Sciences

2 (2009), 800–833. Zbl1219.49035 MR2540171
36. Unal, G., Slabaugh, G., Yezzi, A. & Tyan, J., Joint segmentation and non-rigid registration without shape

priors. Technical Report SCR-04-TR-7495, Siemens Corporate Research, 2004.
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