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We consider a threshold-type algorithm for curvature-dependent motions of hypersurfaces. This
algorithm was numerically studied by [27], [9] and [35], where they used the signed distance
function. It is also regarded as a variant of the Bence—Merriman—Osher algorithm for the mean
curvature flow ( [4]). In this paper we prove the convergence of our algorithm under the nonfattening
condition, applying the method of [30] which is based on the notion of the generalized flow due
to [3]. Then we derive the rate of convergence of our algorithm to the smooth and compact curvature-
dependent motions and show its optimality to the special case of a circle evolving by its curvature.
We also give a local estimate on the convergence to a regular portion of the generalized curvature-
dependent motion.
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1. Introduction

In this paper we are concerned with the convergence of a threshold-type algorithm for curvature-
dependent motions (CDM for short) of hypersurfaces. This was numerically studied by [27], [9]
and [35] and is also regarded as a variant of the so-called Bence—Merriman—Osher algorithm to the
mean curvature flow (MCF for short, cf. [4]).

Let {I"(t)}:e[0,7) be a family of compact hypersurfaces in RN . We say this family is a CDM if
I"(¢) moves by the following equation:

V=kx+{bn+g onl(t),te(0,T). (1.1)

Here T > 0, n = n(t, x) is the inner unit normal vector field on I'(z), V = V(¢, x) is the velocity
of I'(¢) in the direction of m, ¥k = k (¢, x)(:= —divn(z, x)) is the (N — 1)-times) mean curvature
of I'(t),b = b(t,x) = (b'(t,x),--- ,bY (¢, x)) denotes a given vector field in RV, g = g(z, x)
is a forcing term and (-, -) denotes the inner product in RY. As well known, the MCF is the case
of b = 0 and g = 0. The CDM arises in various fields such as two-phase Stefan problems, phase
transitions, image processing, two-phase fluid flows and so on.

The main feature of the CDM is the development of singularities in finite time even if b, g and
the initial hypersurface are sufficiently smooth. To interpret the evolution past the singularities, the
level set approach was introduced for numerical computations by [37] and was rigorously developed
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by [7] and independently by [11]. In these papers the authors proposed the notion of generalized
motion by (1.1) and proved the well-posedness of the level set equation to (1.1) in the sense of
viscosity solutions and the well-definedness of the generalized motion by (1.1). Since then many
people have developed the theory of the generalized motion and its applications. See [38], [24]
and [3] and the references therein. The book [15] provides a self-contained introduction to the level
set approach for various surface evolution equations.

From the viewpoints of the above applications, many people have studied numerical
computations for CDM. Among many numerical methods for CDM, we treat the following
algorithm: Let Cy be a compact set in RV and fix a time step # > 0. For k = 0,1,2,..., set
b (t,x) :=b(t + kh, x) and g¢ (¢, x) := g(t + kh, x). Let wg = wp (¢, x) be a unique solution of
the initial value problem for the linear parabolic equation with k& = 0:

w; — Aw + (bg, Dw) + gx =0 in (0,h] x R, (1.2)
w(0,x) = d(x,Cy) forx e RV, (1.3)

Here d(x, D) is the signed distance function to dD defined by

dist (x, 0D) forx € D,

d(x, D)=\ _jist(x.aD) forx ¢ D. 1.4
for each closed subset D(# @) of RY. We then set
Cy :={wo(h,-) = 0}. (1.5)

Let w be a unique solution of (1.2) - (1.3) with k = 1. Again we define C; as the set in (1.5) with
w; replacing wy. Repeating this process, we have a sequence {Cy };:;’% of compact subsets of RV .
We then set

Cht):=Cy fort e[kh,(k+ 1h), k=0,1,2,... (1.6)

Letting 1 — 0, we formally obtain a limit flow {C(¢)};>¢ of compact sets in R and observe that
dC(t) moves by (1.1) with the initial data dCj.

The above algorithm was numerically studied by [27] and [9]. In [27] Kimura and Notsu
proposed a fully discrete finite element scheme based on the above level set method of the signed
distance function. In [27, Section 4] they gave some numerical examples for MCF with a forcing
term. In [9] Esedoglu, Ruuth and Tsai considered various geometric motions with using the signed
distance function, including CDM, MCF with triple junctions and the motion by surface diffusion.
The extension of the signed distance approach to vector setting for numerical computation of
multiphase problems was addressed in [35]. This algorithm is regarded as a variant of the Bence—
Merriman—Osher (BMO for short) algorithm to MCF (cf. [4]), which utilizes the solutions of the
usual heat equation, continually reinitialized after short time steps. The BMO algorithm and its
generalizations are studied by many people. See [34], [10], [1], [18] and [25] etc. for the convergence
of the BMO algorithm and [20], [23], [39], [30] etc. for some generalizations. In particular, in [39]
and [30] Vivier and Leoni generalized the BMO algorithm with using the linear/semilinear parabolic
equations and proved the convergence of their scheme to the anisotropic CDM’s associated with
these equations. Our algorithm is quite similar to theirs on the point that we use the linear parabolic
equation (1.2) to construct the approximate sequence for CDM. However, the choice of the initial
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data of each time step is the main difference between the (generalized) BMO algorithm and ours. In
the (generalized) BMO algorithm they choose the initial data

{1 forx € Cx, *
wOx) =4 1 P (= st W@ G)

instead of (1.3), where sgn*(r) := 1 forr = 0, := —1 for r < 0. In addition, we refer to [6],
where Chambolle and Novaga considered an algorithm to the anisotropic mean curvature flow with
using a subdifferential inclusion and proved the convergence to a compact and smooth flow. Their
algorithm is also quite similar to ours, but several points are different, e.g., the approximate equation,
the choice of the initial data etc.

The purposes of this paper are to derive the convergence of the above algorithm to the
generalized CDM under the nonfattening condition, the optimal rate of convergence of this
algorithm to the smooth and compact one and a local estimate on the convergence to the generalized
CDM. Related to our results, [25] derived the optimal rate of convergence of the BMO algorithm
for MCF and [36] gave a local estimate on the convergence of a bilateral obstacle problem to the
generalized CDM.

The strategy in proving the convergence of the flow {C” ()} te[0,T),h>0 18 to apply the method
of [30], where she made use of the notion of the generalized flow by [3] and constructed suitable
sub- and super-solutions to her approximation scheme. We also use the arguments in [26] to show
the convergence of the sequences {w" -0, {d"}>0 of the functions given by w” (¢, x) := w (f —
kh,x) and d"(t,x) := d(x,Cy) for (t,x) € [kh,(k + 1)h) x RN and k = 0,1,2,....[T/h].
Hence we are able to prove that

}gim wh = }%im d" = d locally uniformly in [0, T') x RV,
—>0 —0

Jim du(C"(t),C(1)) =0 locally uniformly in [0, T),

C(t):={d(,) = 0},
d =d(t,x) : signed distance function to dC(¢),

and that {dC(t)};¢[o,T) is a generalized CDM. Here dg is the Hausdorft distance defined at the end
of this introduction. In order to derive the rate of convergence to the smooth and compact CDM, we
directly calculate the distance between CDM and the approximate motion along the characteristics.
For this purpose the estimate of Dwy from below plays an important role. Consequently, we obtain
that for any ¢ > 0, there are constants L1, g > 0 such that

sup  du(Ch"(),C(t)) < Lih forall h € (0, hy). (1.7)
t€[0,T—¢]

The optimality of this estimate is obtained by precise calculations in the case of a circle evolving by
curvature. The ideas in considering a local estimate on the convergence to the generalized CDM are
to introduce the graph-like equation of (1.1) and to get a local regularity of the generalized CDM.
They are based on [13, Section 5].

This paper is organized as follows. In Section 2 we state our assumptions and recall the notion
and some results of the generalized CDM. As for the latter one, we briefly explain the notions of
the generalized CDM in the sense of [7], [11] and that of [3] in Section 2.3. Note that these two
notions are equivalent under the nonfattening condition. Section 3 is devoted to some estimates on
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solutions of (1.2) and {Ch(t)},e[o’r),;»o. In Section 4 we study semicontinuous limits of {w" 4~
and {d"}},~o and characterize those of {d”}},~o by means of the eikonal equations. Section 5 is
devoted to the convergence of our algorithm. In Section 6 we obtain (1.7) in the case of the smooth
and compact CDM and show its optimality. In Section 7 we treat the rate of convergence to a regular
portion of the generalized CDM. Section 8 is the appendix.

We do not precisely explain the definition and the theory of viscosity solutions of the level
set equation to (1.1). We refer to [8], [28] and [15] for them. Throughout this paper, we use the
following notations: For m € NU {0}, @ € (0,1), Q C [0.T) xRN, f : 0 — Rand f =
(fY N0 —RY,

Df = Dy f :=(df/0x1,---,0f/dxn), D: f := fr = df/0t,
DLy =Wl froxht . oxy 1) = 1y + -+ Iy for L = (I, , Iy) € (NU {0},
D? f = (8% f/0x;9x))1<i,j<n. DE = (3f"/9xj)1<i.j.<N .

[flo,0 := sup |f(t, %), (f)xe0 = sup | f(,x)— f(. )l

3

(t:)€0 woanee -yl
. | f(t.x) = f(s,x)]
(/2,0 = sup /2 ’
(t,%),(s,x)€Q |t —s|
+
IA1G* = > IDEDLflog+ D (DFDLf)rao
2k +|I|<m 2k+|l|=m
+ > ADFDLS)imta—2k—iin/2.0-

0<(m+a)—2k—|l|<2

N
. 2
1015+ = |3 (115+) I, =

i=1

N
D If2 o |Dflo0 =

i=1

Form e NU{0},2 CRY and f : 2 — R,

IA1SY = > sup | DL f(x)l.

lfj<m *€2
Foru :RY — R, v:[0,7) x RY — Rand u € R,

{uzp}={x eRY |ulx) = u,
{v=ph={0x) e0.T)xRY |v(r.x) = u}.
(t,) = pu):={x eRY | v(t,x) = u}, etc.

Let U be a metric space and V' a dense subset of U .
UC(U) = the set of all uniformly continuous functions.

Foru:V — Randx € U,

u*(x) ;= limsupu(y), u(x) := liminf u(y).
Voy—x Vay—x
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ForQ c[0,T) xRN, f: 0 — R(orRY, S andg,v: 0 — R,
flt,x) = O(g(t,x)) < | f(t,x)| < Kg(t,x) for some K > 0 independent of (¢, x) € Q,
Fo=folt,x) = f(t,x —v(t,x)Do(t, x)).
For Q' C (0,T) xR¥landv: Q' — R,

D'v = (v/dx1,---,00/dxN—1), D"*v 1= (0*v/0x;0X;)1<i j<N—1,
02 02

Av = —2+---+2—v.
0xy xy_,

Besides we use the following symbols.

(p,q) = the inner product between p, g € RV,
cl A = the closure of A, int A = the interior of A for at set A C RN,
x4 = the characteristic function for a set A C RN ,

N
P(x,0) := l_[(xi —8,x; +8) forx = (x1,--- ,xy) € RN and § > 0

i=1

= N-dimensional open cube centered at x,
07 :=(0,T)xRY, Qp:= (0,h)) xRN, Q((t,x),r) := (t —r,t + 1) x B(x,r),
0'((t,x),r) :=(t —r,t +r)x B'(x,r), B'(x,r) := B(x,r) N ({x} + R¥7!),
[r] = Gauss symbol for r € R,
S¥ = the set of all N x N-real symmetric matrices,
tr X = the trace of X € SN,
dr (A, B) := max {sup dist (x, B), sup dist (x, A)} for A, B c RY
xX€A xX€B

= Hausdorff distance between the sets A and B,
Ut,x) := (471t)_N/2 exp(—|x|2/4t).

2. Preliminaries
2.1  Assumptions

Fix T, h > 0. Throughout this paper we assume that the functions b and g are so smooth that for
some & € (0,1)
3+
LA 15a < 400 (f =h.g). 2.1)

Then for each k = 0,1,2,...,[T/h], there is a unique classical solution wy € C(clQp) N
CGHa/2.5%ea (0, of (1.2) - (1.3) satisfying

wi(f, x
sup o sp Dukllimioy = K1 < 400, (22)

(t.x)e 0, |x| + 1 k=0.1.2, [T/ K]
k=012 [T/h] 0<h<
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See, e.g., [29]. Note that the former bound may depend on z > 0.
For a given compact hypersurface I'y C RY, assume that

I e C>™ forsomea € (0,1). (2.3)

As will be seen in Appendix, there uniquely exists a smooth and compact CDM {I"(¢) };¢[0,7,,) With
I'(0) = I for some Ty > 0. Define the signed distance function p(z, x) to I'(¢) by

p(t,x) = d(x, D(t)) 2.4)

where D(t) denotes the compact set such that dD(¢) = I'(¢) and d(x, D(t)) is defined by (1.4)
with D = D(¢) foreach ¢ € [0, Tp). Then for each ¢ > 0 there exists § > 0 such that

1oI§ T2 < +00, Neros i={(t.x) € [0.Tg — ] x RY | |p(r. x)| < 108}.  (2.5)

This property will be used in section 5.

2.2 Signed distance function and CDM

Let {I"(t)}:e[0,7) be a smooth and compact CDM and let p be defined by (2.4) and satisfy (2.5). As
V =—ps;,n=Dpandk = —Apon I'(¢), (1.1) is equivalent to

pi—Ap+(b.Dp)+g=0 onl:= | J ({t}xI'Q). (2.6)
t€l0,T)

We show some inequalities and an equation which d satisfies in N, 195. For any (¢, x) € N 105 the
point y = x — p(¢, x) Dp(¢, x) is a unique minimizer of |y — x| among y € I'(¢). The eigenvalues
(A1 = 21(D?p(t,x))} N, of the matrix D2p at (¢, x) are
. 3
Mi=——?  fori=12,....N—1, A =o0. 2.7)
1-K,p

Here {k! = «'(t, y)}lN= ! denotes the principal curvatures of I'(¢) at y € I'(r) with respect to the
direction n(= Dp) (cf. [17, Section 14.6]). We get from (2.7)

i

D -
Kp_)kip—l

fori =1,2,...,N—1. (2.8)

N-1
Since (Ap) p=—Kp=— Z Tc”é, (2.6) is rewritten as

i=1
pi — (Ap)p + (b, Dp) + T, =0 in N, 105 (2.9)

because (pf\,_jp = p; andn, = (E)p = Dp on N, 9s. Hence it follows from [17, Section 14.6]
that

~

pe—Ap+ (0. Dp) +F, 20 in Neyos N {p = 0}, (2.10)
pr —Ap+ (bp, Dp) +€p <0 in N 105 N {p <0} 2.11)
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On the other hand, substituting (2.8) into (2.9) we have

pi = Fo(p. D?p) + (by. Dp) + T, =0 in N 5. (2.12)
N N
A (X)
F X) = _
o(r. X) Zl—/\’(X)r

i=1

for (r, X) e R x SV. (2.13)
Note by [12, p.323] that Fy is smooth and uniformly elliptic in a neighborhood of (0, O) in R x SV,

2.3 Level set equation and generalized CDM

In this subsection we collect the notions of the level-set flow and the generalized flow by (1.1) and
known results on them according to [7], [16], [24], [3] and [15].
The level set equation to (1.1) is given by

u; + F(t,x,Du,D*>u) =0 in Qr, (2.14)
(Xp, p)
Ip|?

F(t,x,p,X) = —tuX + + (b(z.x). p) + g(1.x)| p|
for (¢, x), p, X) € Or x (RV\{0}) x SV.

See [7] and [15] for the derivation of this equation. The F' is degenerate elliptic, that is, for each

((r,x), p) € Or x (RV\{0})
F(t.x,p.X)< F(t,x,p.Y) forall X,Y e SV satisfying X = Y.
In addition, it satisfies the property called geometric:
F@t,x,Ap,AX + up ® p) = AF(t,x, p, X)

forall A > 0, 1 € R, (t,x) € Or, p € R¥\{0} and X e SV. Since (2.14) has a singularity at
p = 0, we adopt the notion of viscosity solutions to consider weak solutions of (2.14).

DEFINITION 2.1 Letu be alocally bounded function in Q7. We say that u is a viscosity subsolution
(resp., supersolution) of (2.14) provided that for any ¢ € C*°(Q7), if u* — ¢ (resp., ux — @) takes
a local maximum (resp., minimum) at (¢g, X¢), then

i (t0.x0) + Fx(to. X0, De(to, xo0), D*¢(t0. X0)) < 0
(resp., @1 (to. x0) + F*(to. X0, D@(to, xo), D*¢(to. X0)) = 0).

We say that u is a viscosity solution of (2.14) if u is a viscosity subsolution and a viscosity
supersolution of (2.14).

DEFINITION 2.2 Letu € C([0, T) x RY) be a viscosity solution of (2.14). Set
() == {u(t,”) =0}, ;@) == {u,") >0}, 7 (1) = {u(,) <0} (2.15)

foreach ¢t € [0, T'). We call the family (I (¢), .QZF (t), 27 (t))tefo,1) a level-set flow by (1.1).
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We recall the comparison principle and existence of viscosity solutions of (2.14) and the well-
definedness of the level-set flow by (1.1), according to [16], [24] and [15].

Theorem 2.3 Assume (2.1). Let u and v be, respectively, a viscosity subsolution and a viscosity
supersolution of (2.14). Ifu*(0,-) < v4(0,-) in RN, u*(t,x) < C(1+|x|), v«(t,x) = —C(1 +|x]|)
for all (t,x) € [0,T) x RN and some C > 0 and either u*(0,-) or v+(0,-) € UCRY), then
u* < vy in [0, T) x RN, Moreover, for any ug € UC(RYN) there is a unique viscosity solution
u e UC([0,T) x RN) of (2.14).

Theorem 2.4 Assume (2.1). Let (I'L(t), .QZ'(I),.QL_(I)),E[O’T) be defined by (2.15). Here u €
UC([0,T) x RN) is a unique viscosity solution of (2.14) with the initial data uy € UC(RN).
Then this family is determined independently of the choice of ug € UC(RN) satisfying I'z (0) =
{uo = 0}, 27 (0) = {uo > 0} and 2; (0) = {up < 0}.

REMARK 2.5 In the following of this paper, based on Theorems 2.3 and 2.4 we shall always
consider that the level-set flow (I(¢), .QZ’ (t), 827 (t))sefo,T) by (1.1) is given in the same way
as (2.15) by using a viscosity solution u € UC([0, T) x RY) satisfying u(0,-) € UCR"Y) and
IL(0) = {u(0,-) = 0}, 2, (0) = {u(0,-) > 0}, 2, (0) = {u(0,-) < 0}.

We assume that the level-set flow (FL(t),.QZ(t),.QL_(t)),E[O,T) by (1.1) satisfies the
nonfattening condition:

Ip(t) =02 (t) = 02, (t) forallt €[0,T). (2.16)
Then we have the uniqueness of viscosity solution of (2.14) with a discontinuous initial data.

Theorem 2.6 (cf. [2, Theorem 2.1], [3, Proposition 2.1]) Assume (2.1). Let (I'L(t), .Q{ (1),

27 (1)) tefo,1) be a level-set flow by (1.1).

(1) The condition (2.16) holds if and only if the initial value problem (2.14) with u(0,x) =
X+ ~ A2, © has a unique discontinuous viscosity solution.

(2) Assume that (2.16) fails. Then for any upper semicontinuous viscosity subsolution w = w(t, x)
of 214 with w(0,-) < X+ (oyur, o) ~ X2L ©) in RN, we have w < Xt @wur e ~— X2L®
in [0, T) x RN Similarly, for any lower semicontinuous viscosity supersolution w = w(t, x)
of (1.1) with w(0,-) = X (0) ~ AL OUIL(0) in R¥, we have w = Xt~ Xep@urLe in
[0,T) x RN,
In Section 4 we apply the notion of the generalized flow by (1.1). This notion is proposed in [3]

and is equivalent to the level-set flow under (2.16).

DEFINITION 2.7 Let {£2G(#)};c[o,7) be a family of open subsets of RY. We say {2 (¢)}e[0.7)
is a generalized superflow (resp., subflow) by (1.1) provided for any t > 0, xo € RY, r > 0 and
a > 0 and for any ¢ € C®(RY) such that {¢p > 0} C 2¢(t) N B(xo.7) (resp., {¢p < 0} C
(RN\cl£2(¢)) N B(xo, 7)) with |[D¢| # 0 on {¢ = 0}, there exists so > 0 depending only on «, ¢
and ||¢||g’()x0’r) such that for all s € (0, s9),

{¢ —s[F(t,-, D¢, D*¢) + o] > 0} Ncl B(xg,r) C Rg(t + 5)
(resp..{¢ — s[F(t,-, D$p, D*¢p) —a] < 0} Ncl B(xo,r) C R¥\clR26(t + 5).

We say {§26(t)}:e[o,T) is a generalized flow by (1.1) if it is both a generalized superflow and a
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generalized subflow by (1.1).

This definition is based on the avoidance/inclusion property of the evolution by (2.14), which is a
direct consequence of the comparison principle for (2.14). Let (I (), .QZ' (t), £27 (t))tefo,1) be the
level set flow by (1.1). Assume that ¢ € C®°(RY) and that E(0) := {¢ = 0} C .QZF (z) for some
fixedt € [0,T). Let ¢ = ¢(s, x) be a unique viscosity solution of

@s + F(t +s,x,Dp, D?¢) = —a|D¢| in(0,T —t) xRV,
©(0,x) = ¢(x) forx e RV,

with an arbitrary & > 0. For s > 0 set E*(s) := {¢(s,-) = O}. Then E*(s) C 2 (¢ + 5)
for all s > 0. Similarly, if E7(0) := {¢ < 0} C £, (¢) for some ¢t € [0,T) (or equivalently,
E*(0)D .QL+ (1)), we define the evolution £~ (s) by use of a unique viscosity solution of

@s + F(t +5.x, Do, D?¢p) = a|Dgp| in(0,T —t) x RV,
®(0,x) = ¢(x) forx € RV,

with an arbitrary o > 0. Then E~(s) C £ (¢ + s) for all s = 0. This property characterizes the
family (I'L (1), 27 (1), 27 (1) refo,r)-

From the above observations we expect that the surface d{¢ — h[F(t,-, D$, D*¢) + o] >
0} evolves in a weak sense with a normal velocity smaller than —F. This idea is justified by the
following lemma, which says that such sets are contained in some smooth and open sets evolving
with a normal velocity smaller than —F.

Lemma 2.8 (cf. [3, Lemma2.2]) Lett =0, xo € RV, r > 0and a > 0. Let ¢ € C®(RN) satisfy
{¢ = 0} C B(xo,7) and |D¢| # 0 on {¢p = 0}. Then there are a constant so > 0 depending
ont, a and ”d)”J(;()XO,r)’ a smooth function ¢q = @u(s,x) in [0,50) x RN with ¢(0,-) = ¢ and a
neighborhood V. C B(xq, r) of the set {¢p = 0} such that for all s € [0, s¢),

021(t +5) CV, 2,(t +5) := {@a(s,) > 0}, (2.17)
{¢ —h[F(t,-, D¢, D?*¢p) +a] > 0} Ncl B(xg,r) C 2:(t +5), (2.18)
|Dgo| #0, g5+ F(t +5,x,Dp, D?*¢0) <0 in (0,s0) x V. (2.19)

Similarly, lett =0, xg € RN, r > 0and o > 0 and let ¢ € C®(RN) satisfy {¢ < 0} C B(xo,r)
and |D@| # 0 on {¢p = 0}. Then there are a constant sy > 0 depending on t, a and ||¢||g33()x() ry
smooth function o = @u(s,x) in [0, s0) xRN with 94 (0,-) = ¢ and a neighborhood V- C B(xq,r)

of the set {¢p = 0} such that for all s € [0, s9),
0822(t +5) CV, £22(t +5) 1= {@a(s, ) <0},
{¢p —h[F(t,,D$, D*}) + &] < 0} Ncl B(xg,r) C 22(1 + ),
|D@e| # 0, @5+ F(t +5,x,Dp,D*@) =0 in(0,50) x V.

a

The following proposition shows the relation between the generalized flow and the level-set flow
by (1.1).

Proposition 2.9 (cf. [3, Theorem 2.4]) Assume (2.1). A family {$£26(t)}:c[o,T) of open subsets of
RN isa generalized superflow (resp., subflow) by (1.1) if and only if the function Y o (1)— XrN\2¢ (1)
is a viscosity supersolution (resp., subsolution) of (2.14).
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3. Some estimates

Let {wk}Lz(};] be the sequence of classical solutions of (1.2)—(1.3) and let C”(¢) be given by (1.6).

Define p = p(t, x) as (2.4) to the smooth and compact CDM {I"(¢)};¢[o,1). Foreach i > O and k =
0,1,2,..., set W as the solution of (1.2) satisfying Wy (0,-) = p(kh,-). In this section we derive
some estimates for {wy }Ef:/é’] {Ch(t)},e[o,T)Jpo and {W }Ef:/:] We assume (2.1) throughout this
section.

3.1  Estimates on {wk}g:/g] and {Ch(t)}te[O,T)’;»o
First, we show the uniform boundedness of {Ch(t)},e[o’r)’bo.

Proposition 3.1 Let Co C RN be compact and take Ry > 0 so that Cy C B(0, Ro). Then C* (1) C
cl B(0, Ro + K»t) forallt € [0,T) and h > 0. Here K> := |blo,0; + |glo,07-

Proof. For any xo € 0B(0,Rg) and k = 0,1,...,[T/h], set Dr(xo) := {x € RN | (x —
X0,X0/Ro) < Kzkh}. We remark that for each k = 0,1,...,[T/h], dDx(x¢) is a hyperplane
and Dy (xo) = {d(-, Dr—1(x0)) + K2h = 0}, where d (-, Dx_1(x¢)) be the signed distance function
given by (1.4) with D = Dy_1(xp).

Set wy = wo(t,x) := d(x, D(xp)) + K»t. Noting that Awy = Ad(-, Do(x)) = 0 in RV,
we easily see that Wy is a classical supersolution of (1.2) satisfying wo(0,-) = d(-, Cp) in RV,
Hence we use the maximum principle to have wo(t, x) < wo(z, x) for (t,x) € [0,h] x RY. Thus
C1 C D1(xp).

Let d(-, D1(xo)) be the signed distance function given by (1.4) with D = Dj(x¢) and
w; = wi(t,x) := d(x, Di(x9)) + Kyt. The same argument as above yields that w (¢, x) <
d(x, D1(x9)) + Kt and hence C; C D, (xg). Repeating these arguments, we get C, C Dy (xo)
fork =1,2,....[T/h].

Since d (-, Dg(x0)) = d(-, Do(x0)) + K2kh, we obtain

C"(t) = Cuyny € Dpymy(x0) C {d (-, Do(xo)) + Kot = 0}
forallt € [0,T) and & > 0. As x¢ € dB(0, Ry) is arbitrary, we conclude that

C"yc [ {d(.Do(xo)) + Kat =0} = cl B(0, Ro + Kat)
x0€dB(0,R()
forallt € [0,7T)and h > 0. O

We improve the estimates of (2.2).

Proposition 3.2 Forallh >0,k =0,1,2,...,[T/h] and (¢, x) € cl Qp, we get

—VIx|2+ 2Nt — Ro — Ka(kh + 1) < wi(t,x) < —|x| + Ro + Ka(kh + 1), 3.1
where Ry and K, are given in Proposition 3.1.
The (3.1) implies that the first bound of (2.2) is independent of 2 > 0.

Proof of Proposition 3.2. Fix h > 0and k = 0,1,2,...,[T/h]. As for the upper estimate, we see
from the proof of Proposition 3.1 that for all (¢, x) € cl O, and xo € 0B(0, Ryp),

wi (7, x) < d(x, Di(x0)) + Kot < d(x, Do(x0)) + Ka(kh +1).
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Taking the infimum with respect to xo € dB(0, Ry), we have the upper estimate of (3.1) for all
(t,x) eclQy

Next we show the lower estimate of (3.1). Set w, = wq (7, x) := —/|x|?> + 2Nt — Ro — K>t.
Noting that

-N — —(N = D|x|> +2N?t

N K Dwy = Aw, = ( 2)IXI +32 ’
VIx|> + 2Nt VIx[? 4+ 2Nt {|x]2 4+ 2N1}3/
we easily observe that w,, is a classical subsolution of (1.2) with k = 0. Moreover, we see that if
d(x,Cpy) < 0, then

Wy, = (3.2)

d(x,Co) = —|x —y| = —|x| —|y| forsomey € dCy.

Since Co C cl B(0, Ry), we get d(x, Co) = —|x| — Ro. Hence w(0,-) < d(-, Cp) in RY. We thus
obtain the lower estimate of (3.1) by the maximum principle. In the case of k > 1, it follows from

Proposition 3.1 and similar arguments to the above that —| - | — Ry — Kokh < d(-, Ct) in RY and
that w (7, x) := —+/|x|> + 2Nt — Ry — K»(kh + t) is a classical subsolution of (1.2) satisfying
wi(0,)) <d(-, Cy)in RN . Therefore we get the result. O

Proposition 3.3 We have |Dwi (¢, x)| < 1+ Kst forall (t,x) € c1Qp, k =0,1,2,...,[T/h],
h > 0 and some K3 > 0.
Proof. Fix h > 0,k = 0,1,2,...,[T/h] and any £ € RV, |£| = 1. Taking the derivative in the

direction of & to (1.2) and denoting by J¢ its symbol, we see that v := dgwy is a classical solution
of

— Av + (bg, Dv) + 0ggx + (9ebi, Dwi) =0 in Qp, 3.3)
v(0,x) = 0gd(x,Cy) <1 foralmostall x € RV .
Define w := 1 4 K3t and K3 := K1|Db|o,0, + |Dglo,0,, Where K; is the same constant as that

of (2.2). Then W is a classical supersolution of (3.3) satisfying w(0, -) = 1 in RY . Hence we obtain
v < w in cl Qj by the maximum principle . As £ is arbitrary, we have the desired estimate because

|p| = SupqeRN,\qu(p? q) forp € RN' U

3.2 Local estimates for {Wk}[T/h]

This subsection is devoted to some local estimates for {Wk}[ /M under (2.1) and (2.5).
Applying the regularity theory for parabolic equations, we get the following estimate.

5+
sup ||Wk||f0 hog{\p(kh yi<ssy =: Ka < +o0. (3.4)
k=0,l,}?,>.64[7"/

We need an estimate from below for {DWk}[T/ "

to a smooth and compact CDM.

to obtain the rate of convergence of our algorithm

Proposition 3.4 There are constants K5 > 0 and t; > 0 such that
(DWi. Dp(kh.)) = 1= Ksi(> 0) on [0.h] x {|o(kh.")| < 58} (3.5)
forallk =0,1,2,...,[T/h]and h € (0, t1).
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Proof. We consider only the case k = 0 since the other ones are similarly proved. Set f(z, x) :=

(bo(z, x), DWy(t,x)) + go(t,x). Recall that p(0,-) € C>*t¥({|p(0,-)] < 108}) by (2.5). The
solution W, of (1.2) satisfying Wy (0, -) = p(0, -) is represented as follows:

t
Wolt, x) = /R Ux = p(0. )dy + /0 /R UG s~ ) f(s. y)dyds.
Thus

WO,x,‘ ([7 X)

t
/ Uy, (t.x — y)p(0. y)dy + / / Uy, (t —5.x — ) f(s. v)dyds
RN 0 JRN
=L+

Set 8 := 58/+/N so that P(x,8') C {|p(0,-)] < 108} for all x € {|p(0,-)] < 58}. Then it is
observed by Green’s formula, (2.1) and Proposition 3.3 that

I = / Uty — x)px; (0. y)dy + 0(e= /8y =i 1,y + 0(e= /31,
P(x,8")

t
"o / / UGt =5,y = %) f (5, 0)dyds + O(te /8 =i [, 1 4 0@e™ /%),
0 JP(x,8)

Step 1. We estimate /1 ;.
We observe by the change of variables y — x + y and Taylor’s theorem that for some 6 € (0, 1)
and small ¢ > 0,

1
I = /P(O ” U(t, y)3px; (0, x) + (Dpx, (0, x), y) + E(szxi(O,X)y,w

3

1 (&L )
_ L) o (0.x + 6y) b ay.
+ 3 (;y 3xi) px; (0, x + 0y) ¢ dy

By virtue of
_ (82
/ U(t,y)yidy = / U(t,y)yiy;dy =0, / U(t,y)y?dy = 2t + O(e”)7/8")
P(0,6") P(0,8") P(0,8")

foralli,j =1,2,...,N (i # j), we get
‘11,1 - {,Oxi (0,x) +tA,0xi (0,X)}| < K5,1l‘3/2.

for all (¢, x) € [0, 1,1] x {|p(0,-)| < 58} and some K51, t1,1 > 0.

Step 2. We estimate /5 1.
We calculate similarly to the previous step with using (2.1) and (3.4) to yield that

12,1 — fx; (0, %)1| < Ksat3/?

forall (¢, x) € [0,21,2] x{|p(0,-)] < 58} and some K55, 1,2 > 0. Choosing K5 > K51 + K5 and
t1 < min{ty,1, t1 2}, we obtain the desired result. O
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REMARK 3.5 (1) Proposition 3.4 implies that
|DWi(t,x)| = 1 — Kst
forall (z, x) € [0, h] x {|p(kh,-)| <56}, k =0,1,2,...,[T/h]land h € (0, t1). Proposition 6.5
below shows that we cannot improve this estimate in the following sense: There is a nonnegative
and continuous function w(¢) satisfying w(0) = 0 for which

|[DWy(t,x)| = 1 —tw(t) forsmallt > 0andx € {|,o(0,-)| < 58}.

(2) In the case where b = 0 and g = 0, we are able to get the following estimate by calculating
I1,1 more precisely: For some K, 1, > 0,

|DWic(t,x) — (Dp(kh + t,x) + tDAp(kh + t,x))| < Ket?

for (1, x) € [0, 4] x {|p(kh, )| < 58},k =0,1,2...,[T/h] and h € (0, 12).

4. Semicontinuous limits of {wk}[T/ " and {d(, Ck)}[T/ h]

[T/h]

In this section we assume (2.1) and consider the semicontinuous limits of {wk} and
{d(-, C )}[T/h] as h — 0. These are based on [2, Section 5] and [26, Section 4].
For any compact set Co C RV let {Ch(t)},e[o,T)Jpo be defined by (1.6). Set
d"(t,x) == d(x,C"1))( = d(x,Ck)), wh(t,x) := wi(t —kh,x) (4.1)
for (¢, x) € [kh,(k + 1)) xRN,k =0,1,2,...,[T/h] and h > 0. Define
f@,x):= limsup fH(s,y), 4.2)
(h,s,y)—(0,t,x)
f@,x):= liminf fh(s,y) (fh =d" wh),
- (h,s,y)—(0,t,x)
QF(t):={dt,-) >0}, 27(t):={d(,-) <0} 4.3)
r@:=R"\(2t®ue 1) (={dt-)<0<d(t)}). (4.4)
REMARK 4.1 Tt follows from the fact | Vd" | oo (jo,T)xr~¥y = 1 and Proposition 3.3 that
| f(t,x)— f(t,y)| <|x—y| forallz €[0,T) andx,y e RN (f =d.d, w,w).
Besides (4.2) turns to
f(t,x):= limsup f (s,%), f(t,x):= hminf fh(s,x) (fh = dh,wh). 4.5)
(h,s)—(0,1) h,s)—(0,t)

We explain some properties of d,d, wand w.

Proposition4.2 d = Wandd = win [0,T) x RV.
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Proof. The solution wy, of (1.2)—(1.3) is given by
t
w(t,x) = / Ut,x—y)d(y,Cr)dy + / / Ut —s,x—y)fr(s,y)dyds,
RN 0 RN

where fi (¢, x) := (bg(¢,x), Dwg (¢, x)) + gk (¢, x). It follows from (2.1), the Lipschitz continuity
of d(-, Cy), Proposition 3.3 and (4.1) that for any small # > 0

sup wh(e,x)—d" e, x) = sup  |we(t,x) —d(x,Cp)| < K7V
(t,x)€[0,T)xRN t,x)€cdQp
k=0.1,..., [T/ h]
Here K7 > 0 is independent of # > 0. Taking such limits as (4.2), we have the result. O

Proposition 4.3 We have

w=d=0 on |J [(t}x02 0] w=d=0 on | [{t} x0R"©®)]

o<t<T o<t<T

Proof. We show only d = 0 on Ug<;<7[{t} X 3§27 (¢)] since the others can be similarly proved.
Note that d > 0 in Ug<,<7[{t} x 3827 (¢)], for each r € [0, T). Suppose d (to, xo) > 0 for
some (o, Xo) € Uos<T[{t} X 327 (1)]. By (4.5) there are sequences {h,},°, {tn}.F>5 such that
(hn,tn,d"n (th, x0)) — (O,IO,E(to,xo)) as n — +o0o. Hence we may consider d" (t,,x0) >
d (to, x0)/2 for all n € N. Since {d"(t, )} ee0,1),n>0 is equi-Lipschitz continuous, we observe that
there exists ro > 0 such that d’» (th,x) = g(to, x0)/4 > 0 for all x € B(xg,ro) and n € N. Take
x € B(xq,r9) N 27(¢). Letting n — +o00, we get d (to, x) > d (to, x0)/4 > 0. This contradicts to
d (9, x) < 0. Therefore we have d = 0 in Ug<;<7[{1} X 0527 (1)]. O

Proposition 4.4 w(0,-) = w(0,-) = d(0,-) = d(0,-) = d(-,Co) in RN.

Proof. We have only to prove the desired equalities in int Co since we have already shown in
Proposition 4.3 that W(0,-) = w(0,-) = d(0,-) = d(0,-) = 0 = d(-,Co) in dCy and we are
able to show by a similar way that w(0,-) = w(0,-) = d(0,-) = d(0,-) = d(-, Cy) in RN\ Co.

Fix x¢ € int Cy and set ro := d(xg, Co)(> 0). Define

Vo = Vo(t,x) :=ro + V|x —x0|2 + 2Nt + Kot for (¢,x) € cl Qp.

Here K> := |blo,0; + |glo,0,- Note that {vo(0,:) < 2ro} = B(xp.r9) C Cp. We observe
by similar calculations to (3.2) that vy is a classical supersolution of (1.2) with k¥ = 0 and that
00(0,-) = d(-, Co) in RN . Thus the inequality w” < T in [0, 4] x RN follows from the maximum
principle. Some calculations yield that

{o(h,-) < 2ro} C cl B(xg.r1) C Cy, r1:= /(ro — K2h)2 —2Nh.
By use of this inclusion we get
wh(h,) =d(-.C1) <2ro—r1 +|-—xo| inRV.

Next we define

U1 =01(t,x) :=2rg —r1 + V|x —x0|2 + 2Nt + Kyt for (¢, x) € cl Q.
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By a similar argument to the above we have w” (h + -,-) < v; oncl Oy, and

{U1(h.) < 2ro} C clB(xo.r2) C Ca, 12 := /(r1 — K2h)2 —2Nh.
Thus we inductively obtain
w'(kh +-,-) < oncl On,
UV =0p(t,x) :=2r9 —rr + m+ Kyt for (t,x) € cl Qy,

{vir(h,) < 2ro} CclB(xo.rk+1) C Cit1s Tk+1 := \/(rk — K>h)2 —2Nh,
wh((k + Dh.) = d(-.Cs1) < 2r0 — reg1 + |- —xo| in RV, (4.6)

We estimate {rk}EcTz/éZ]. Since /1 —s = 1 —s forall s € [0, 1/4], it is easy to see that there exists
t3 € (0,r9/(8N + K>3)) such that ry = ro — (K2 + 2N)h for any h € (0, t3). Moreover, we can
show by induction that

re =ro— (K +2N)kh forallk =0,1,...,[t3/h].
Combining (4.6) with the above estimate, we obtain
dh(t,xo) =d(kh,xo) = d(x9,Cx) <19+ (K2 +2N)kh

fort € [kh,(k + 1)h) and k = 0,1,2...,[ts/h]. Letting h — 0, kh — 0, we get d(0, xo) <
d(x9, Cp) in int Co. Since the inequality d(xo, Co) < d(0, xo) in int Co is proved by the same way,
we have the result from d (0, -) = d (0, -) = d(-, Cp) in RY and Proposition 4.4. O

For fixed h > O and ¢ € [0, T), the function d”(z, ) is a viscosity solution of
|IDd|—1=0 inintC"(t), =|Dd|+1=0 inRV\C"(r).
The semicontinuous envelopes d”* (¢, x) and d’ (¢, x) are given by, respectively,

d™ (1, x) := limsupd” (s, x), d"(t,x) := limiznfdh(s,x),

s—>t

since {d"(t, )} te0,1),h>0 s equi-Lipschitz continuous in R¥ . Therefore, we get

. _ | max{d"((k — )h,x),d"(kh,x)} fort =kh,
ar.x) = { " (kh, x) forkh <t <(k+Dn, 47D
: h _ h _
4" (k. x) = m;ln {d"((k = Dh,x),d"(kh,x)} fort =kh,
dh(kh, x) forkh <t < (k + 1)h,

forall ~ > 0 and k € N. Applying the stability for viscosity solutions, we are able to characterize
d and d as follows.

Theorem 4.5 Assume (2.1). Let d and d be defined by (4.2). Then d and d satisfy, respectively,

IDd|—1<0 in{d >0}, —|Dd|+1<0 in{d <0}, (4.8)
IDd|—1=0 in{d >0}, —|Dd|+1=0 in{d <0}, (4.9)

in the viscosity sense.
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Proof. We show only |Dd| —1 < 0in {d > 0} since the remaining inequalities are similarly
proved. Recall that C"(¢) = Cy, fort € [kh, (k + 1)h) and k = 0,1,2,...,[T/h].

For any ¢ € C((0,T) x RN) we assume that d — ¢ takes its strict maximum in {d > 0} at
(to,x0) € {d > 0}. Since {d > 0} is open in (0, T) x RV, we are able to find ro > 0 such that
O((to. x0). o) C {d > 0}. In view of d(fo,xo) > 0, we may assume that d” > d (fo, x0)/2 in
cl Q((to, x0), ro) for any small & > 0, replacing ro with a smaller one if necessary. This implies that

[T/h]

c1 0 ((t0.x0). ro) Cint [ _J [kh.(k + 1)h) x C¢ |~ for any small & > 0.
k=0

Besides there are sequences {/1,}72% and {(t,, x,) 733 C {d > 0}(C {d > 0}) satisfying

(hnvtns-xnvdhn*(tnvxn)) — (O,IO,XO,E(ZO, XO)) asn — +OO,

dh”*(t,,,x,,) —@(ty,xy) =  max (dhn* — ¢) foreachn € N.
((t0,x0),r0)

We take k, € N U {0} such that k,h, <1, < (k, + 1)hy,.
Case 1. t, # knh,,.
Since d"*(t,,, -)—@(ty . -) takes a maximum in B(xg, o)(C int C*(t,)) at x,, and d""* (1, ) =
d(-, Cx,), we have | Do(ty, xn)| — 1 < 0. Letting n — oo, we obtain | D¢(t, xo)| — 1 < 0.
Case 2. ty, = kphy,.
Note that B(xq, o) C C" ((kp — 1)hy) N C*7 (kyhy). It follows from (4.7) and the stability of

viscosity solutions that d"7*(z,, -) is a viscosity subsolution of |Dd| — 1 = 0 in B(xo, ro). Hence
we get | Dg(to, x0)| — 1 < 0in the same way as in Case 1. O

5. Convergence

In this section we present the convergence of {C” (t)}se[0,1),h>0 to the level-set flow by (1.1) under
(2.1) and (2.16). The following arguments are based on [30, Section 3], constructions of suitable
sub- and super-solution of (1.2) by applying the theory of viscosity solutions. At first we show the
following theorem.

Theorem 5.1 Assume (2.1). Lett = 0, xo € RY, r > 0, & > 0 and ¢ € C®RN) be such that
{¢ = 0} C B(xo,r) (resp., {¢p < 0} C B(xo,7)) with |D¢| # 0on {¢p = 0}. For h > 0 and
k € NU {0} let v = vi(t, x) be a classical solution of (1.2) satisfying vi(0,-) = d(-, Ex), where
Eo:={¢ =0} and Ey := {vir_1(h,-) = 0} (k € N). Then there exists s; > 0 depending only on t,
o and ||¢||g()x()’r) such that for all s € (0, s1)

(h’khl’i;?irg’s’x)d(x, Ey)>0 (resp., (h’kllli’ir;iu(g’s’x)d(x, Ep) < O) , 5.1
provided

x € cl B(xo,7) N {¢p — h[F*(t,-, D, D*¢) +a] > 0},

(resp.,x € cl B(xg,r) N {¢ — h[Fx(t,-, D$p, D*¢) — a] < 0}).
Here d(x, Ey) is the signed distance function defined by (1.4) with D = Ey.
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We prepare two lemmas to prove this theorem. Let V' and ¢, be given in Lemma 2.8 and for
small r = 0 let Dg r(s) := {@u(s,) = r}. Note that Dy (s) := Dg,o(s) = cl$2(¢t + s). Define
Payr = Pa,r(8,X) = d(x, Dgr(s)) asin (2.4) with D = Dy ,(s). We then observe by (2.17) and
(2.19) that

Pa,r 18 smooth in M := U {s} x {lpa,0(s. )] < 3ro}( C[0.50) x V),

s€[0,50)

|Dge| # 0, @5+ F(t +5,x, Do, D*¢) <0 in M, (5.2)

forall r € [0, rp), taking ro > 0 small and replacing 5o in Lemma 2.8 with a smaller one if necessary.
Furthermore, slightly modifying ¢, if necessary, we may consider that

@oa >0 in[0,50) X ({¢ > O}\V).

Let fho,r = HUa,r(s,Xx) be the sum of the squares of all the principal curvatures of 0D (s). We
assume (2.1) in the following lemmas.

Lemma 5.2 For fixed o = 0 and r € [0,19), set p = pa,r, f = Ha,r to simplify the notations.
Define

S
[
S

(s,x) := (1 —sw(s,x))p(s, x) — My (p(s,x))zs — M,s2,
(s,x) := (1 = sw(s,x))p(s, x) + My (,o(s,x))zs + Mys?,
(5,x) 1= Tp(s, x) + (Db(s, x) Dp(s, x), Dp(s, x)) + (Dg(s. x), Dp(s, x)),

g g
|
€ =g

For large M1, M3 > 0 depending on (2.1) and ||q0||£cl), the function w(= w, ) (resp., W(= Wq,r))
is a classical subsolution (resp., supersolution) of (1.2) in M.

Proof. We treat only the subsolution case since we are able to similarly handle the other case. We
assume ¢ = 0 in Lemma 2.8 because if otherwise, we have only to replace b(s, x) and g(s, x) with
b(t + s,x) and g(¢ + s, x), respectively.

Step 1. We derive from (5.2)
ps —Ap—wp + (b, Dp) + g < Myp*> inM forsome M; > 0. (5.3)
It follows from [17, Lemma 14.17] that
|(Ap)p — (Ap + Top)| < My1p> on M forsome My > 0. (5.4)

Here and in the sequel My ;’s (j € N) are constants depending on (2.1) and ||<p||5ét). Besides we
easily getin M

= o,s NN D\é
Ps = (ps)p = (?vi’)p, Dp = (D/O)p = (i;)p, (55)
[(D@a)pl [(D¢a),l
Gp)y = ————tr (1 _ D)y ® (D%)”) (B%p§ . (5.6)
[(D¢a)pl [(D@a)pl?
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We see from (5.2), (5.5) and (5.6) that

ps — (Ap)p + by, Dp) +F, <0 in M. (5.7)

~

Applying Taylor’s theorem to the term (b, Dp) + g, we get
|(b,. Dp) + %, — {(b. Dp) + g — p((DbDp. Dp) + (Dg. Dp)}| < M1.20%.

Hence combining (5.4), (5.7) with this, we have (5.3) with M := M1 + M 5.
Step 2. We show that w is a classical subsolution of (1.2) in M.
We calculate that
w, = ps —wp — Mip?> —s{(w + 2M15p)ps + pws + 2Mas},
Dw = Dp — s{(w + 2M1p) Dp + pDow},
Aw = Ap — s{(w + 2M1p)Ap + pAw + 2(Dw, Dp) + 2M; }.
We then observe by (5.3) that
w, — Aw + (b, Dw) + g = ps — Ap— wp + (b. Dp) + g — M1p”
— s{(a) + 2M1p)(ps — Ap + (b, Dp)) + p(ws — Aw + (b, Dw))

+2(Dw, Dp) — 2M, + 2M2}
< —S{2M2 - (2M1 + 1)M1’3 — 2M1}.
Hence choosing M, := (M; + 1)M; 3 + M, we get the result. O

Based on Lemma 5.2, we construct suitable subsolutions and supersolutions of (1.2). Hence we

obtain the following inclusions for { £ k},[f:/:

Lemma 5.3 Take r1 € (0,r9/10). For any h > 0 and k = 0,1,2,... let Ex and vk be defined
in Theorem 5.1. Set Ey := {@q(kh,-) = ur} for some small puy = 0. There exist M3 > 0 and
t4 € (0, s9) depending on (2.1), r1 and || ¢y ||Scl) such that for each h € (0,t4) andk =0,1,2,...if

Ek C Eg, then

] in Theorem 5.1.

M3h3/?

T (5.8)

Ext1 C Ext1, kg1 i= [
Similarly, set Ek = A@a(kh,") = —pi} for some small px = 0. For each h € (0,14) and k =
0,1,2,... if Ex C Eg, then

M3h3/?

Ext1 C Exs1s i1 i= g +
Proof. We prove only (5.8) since (5.9) is proved by a similar way. Recall that p(s, x) = pg,r (s, X) =
d(x, Dg,r(s)) and Dq ,(s) = {@u(s,:) = r} fors € [0,51) and r € [0, rp). For simplicity we
assume sg, ro < 1. Leth € (0,s1) andk = 0,1,2,... satisfy 0 < k& < s7.

Step 1. We modify w in Lemma 5.2 to obtain a classical subsolution of (1.2) in (0, k] x {|p(kh, )| <
61‘1 }
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We use all the notations in the proof of Lemma 5.2. Let 1,1 € C®(RY) be a cut-off function
by

0 if|p(kh,x)| <2r, .
M1 (X¥) = iflﬁgkh x%l>3ri Smer <1 inRY,

rill Dl Loo@ny + rE I D* i ll oo @nvy < Ma.
Define v = v} (s, x) by

g,lc(s,x) = w(s,x) — M3,2nk’1(x)\/§ — M3’3S3/2, M3’2 =2N + 4r1|a)|0,M.
Applying Lemma 5.2, we observe that
_ 3
= Au} + (0, D)+ < (M Maar (1 4 Iblog) = 3 M2 ) V5.
Taking M33 = M31M3,r7%(1 + |blo,@), we see that v, is a classical subsolution of (1.2) in

(0. h] x {[p(kh, )| < 6r1}.

Step 2. We construct a classical subsolution of (1.2) in (0, 2] x {2r; < p(kh,-) < 6r1} and that in
(0,h] x {p(kh,-) < —2r}.
Fix any y € {p(kh,-) = 4r1}. Choose a smooth cut-off function 1 » = 1 2(x; y) satisfying

.} 0 forx eclB(y,r),
205V =01 forx € 2 < p(kh,) < 6r1}\B(y.2ry), O S M2 <1

rillDne2llLoo@ny + ri I D* k2l oo @nvy < Maa

in RV,

Define v; = vi(s,x:y) by

vi(s,x;y) == 4r1 — /|x — y|2 + 2Ns — M3 55 — i 2 (x5 y) (M2 + M33) /5, (5.10)

where M, is the constant given in Lemma 5.2. Similar calculations to the proof of Proposition 3.2
and the above ones yield that

v s — Avg + (b, DuR) + g < —Ms 5+ [blo,o + [glo,0 + M3,177 > (1 + |blo,0) (M2 + M33) /5.
Taking
M35 = |blo,o + Iglo,o + M3 >(1 + [blo,o)(Ma + M33) + 2r1|w|om + 16M 177,

we see that gi is a classical subsolution of (1.2) in (0, h] x {2r; < p(kh,-) < 6r1}.
Fix any y € {p(kh,-) = —4r1}. Choose a smooth cut-off function 1 3 = 1, 3(x; y) satisfying

v._ )0 forxeclB(y,r),
M3 (X3 ) = 1 forx € {p(kh,) < =2r1}\B(y,2r1), 0<mes <1

rill DnesllLoo@ny + ri I D* sl oo @nvy < Maa

in RV,
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Define v} = v (s, x:y) by

V(8. x5p) i= —4r; — /|x — y|2 + 2Ns — M3 55 — i 3(x; y) (Mo + M3 3)s'/3,

Here M», M3 3 and M3 s are the same constants as above. We observe by similar calculations to the
above that gi is a classical subsolution of (1.2) in (0, 2] x {p(0,-) < —2r;}.

Step 3. We obtain a viscosity subsolution of (1.2) in (0, /) x R¥ for all 4 € (0,t3,;) and some
14,1 € (0,51).
Define K}z{ = K}z{ (s, x) and K,z = K?{ (s, x) by

Vi(s.x):=  sup  vp(s.x1y), Vi(s,x):= sup  vp(s.x5Y)
y€{p(0,-)=4r1} y€{p(0,)=—4r1}

Then K,% (resp., Kz) is a viscosity subsolution of (1.2) in (0, h) x {2ry < p(kh,-) < 6r1} (resp., in
(0,h) x {p(kh,:) < =2r1}).

We verify that
vl >VZ fors e (0,h)andx € {p(kh,-) =2r}, 5.11)
v, < Vi fors e (0,h)andx € {p(kh,-) = 4r}, '
vl >V} forse (0,h)andx € {p(kh,) = —4r}, (5.12)
v, < Vi fors e (0,h)andx € {p(kh,) = —6r1}. '

For any x € {p(kh,-) = 2r1}, there exists yx € {p(kh,-) = 4r1} such that |[x — y,| = 2r;. Then it
is observed by the choice of M3 5 in Step 2 that

vi(s,x) = 2r1(1 —sw(s, x)) — 4Mysri — Mas® — M3 3532
> 2r1 — s{lwlom + 4Myr} + My + M3 34/s)

> 2r1 — M3 55 = vi(s,X; yx) = V2(s, ).

On the other hand, we observe that there exists a 4 > € (0, s1) such that for any small s € (0,24,)
and x € {p(kh,-) = 4r1}

g,lc(s,x) <4ri(1 + slwlo,m) — M3,2\/E <4r; —V2Ns — M3 s

= vy (s, x;x) = V7(s.x).

Thus (5.11) is obtained for all & € (0, 74 2). We omit the proof of (5.12) because it is quite similar.
Consequently, set t4 1= min{t4,1, 242} and V; = V, (s, x) as

max {g}{(s,x),zlzc(s,x)} for (s, x) € [0, h] x {2r1 < p(kh,-) < 6r1},

v ) viGs.x) for (s, x) € [0,h] x {|p(kh,")| < 2r1},

Viels, x) := max {g}c (s,x),zi(s,x)} for (s, x) € [0, h] x { —6r1 < p(kh,-) < —2r1},
Ki(s,x) for (s, x) € [0, h] x {,o(kh, )< —6r1}.

Then for all & € (0,14), V, is a viscosity subsolution of (1.2) in (0, ) x {p(kh, ) < 671} satisfying
V4 (0,) = p(0,-) on {p(0,-) < 6r1}. In addition V. (s, x) = 4ry — Mz 55 — (M2 + M37)/s for
s €[0,h] and x € {p(kh,-) = 6r1}.
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Finally we extend V; to the set [0,/) x {p(kh,-) = 6ri}. For y € {p(kh,) > 4r}, let
Nk,4 = Nk,4(x; y) be a smooth cut-off function such that

0 forx eclB(y,r),
. . < <
Me.a (X ) : 1 forx € RM\B(y,2r), 0Smea sl

rill DngallLso@ny + ri1D* e all oo @ny < Maa.

in IRN,

Define

Vi = vi(s,x3y) == 4r1 — |x — y[2 + 2Ns — M3 55 — n,a(x; y)(Ma + M3 3) /5.

Then gi is a classical subsolution of (1.2). Set v, = v; (s, x) as

sup y,‘i(s,x;y) for (s, x) € [0,h) x {p(kh, )= 6r1},
ye{p(kh,)>4r}

max q V; (s, x), sup Q;(S,XJY)
ye{p(kh,~)>4r1}
for (s, x) € [0,h) x {4r1 < p(kh,-) < 6r1},

Qk(svx) =

Vi(s.x) for (s, x) € [0, h) x {p(kh,-) < 4r}.

Then vy, is a viscosity subsolution of (1.2) in (0, h] x R¥ for all & € (0, ¢3). Note that gz (s,x;y) =
v (s, x;y) fors € [0,h], x € {p(kh,) = 611}, y € {p(kh,-) = 4r1} and h € (0,13).

Step 4. We derive (5.8). R

Fix h € (0,14). Fork = 0,1,2,...set px = pa,u, - Since we see by Ex C Ey that v, (0,-) <
ok (0,-) = vx(0,-) in RV, we get v, < vy in [0, 4] x RY by the comparison principle for viscosity
solutions. Thus {v; (s,-) = 0} C {vk(s,-) = 0} forall s € [0, A].

We estimate o (s, x) for x € {v;(s,-) = 0}. Note that {v, (s,) = 0} and {@y(kh +5,:) =1}
(r € [0, ro)) are smooth surfaces since | Dvy (s, )| = 1/2on {v; (s,-) = 0} and | D@y (kh+s, )| # 0
on {¢q(kh +s,-) =r} forall s € [0, h]. From the fact v (s, x) = 0 we easily get

3/2

M
pr(s,x) < 1 3,65 for some M36 = M1 + M3 .

—sw(s, x)
Hence recalling that pg (s, ) = pg,u, (5, ) is the signed distance function to {¢q(kh + 5,°) = i}
we observe that for some 6 € (0, 1),

¢ ((k + Dh, x) = @o((k + 1)h, x — p(h, x) Dpg (h, x))
+ pk(hv x)(D(pOI (ha X — epk(hv X)D/Ok (hv x))’ D/Ok(hv x))
M3h3/2
< —— M3:=|D M ,
T M | D¢ lo,mM3,6 + |w]o,m

since x — pg (h, x)Dpg (h, x) € {pa((k + 1)h,-) = ur}. As aresult, we have

M3h3/?
{v(h,) =0} C %((k+1)h,')s1_373h .
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Since {v; (s, ) = 0} and {¢q(kh +s,-) = r} (r € [0, rp)) are smooth surfaces as mentioned above,
we obtain the desired inclusion. O

Proof of Theorem 5.1. We prove only the case {¢p = 0} since the other case is completely analogous.
The strategy of the proof is similar to [30].

Let 59, 9o and V be given in Lemma 2.8. We give the proof under the situation mentioned before
the proof of Lemma 5.3. By (2.18) it suffices to show (5.1) for all s € (0, s71), x € {py(x,5) > 0}
and s1 = min{so, #4}.

Fix s € (0,51) and x € {@y(s,) > 0}. Then B(x,2r3) C {@a(s + s',-) > 0} forall s’ €
(—2r3,2r3) and some r3 > 0.

For any small 4 > O set kg := [s/h] and [y := [(s —r3)/h] sothat s —r3 < lgh < s —r3/2.
Then using Lemma 5.3 with k = [ and j1;, = 0, we have

M3h3/?

Ei41 C Ejyt1, =
lo+1 lo+1> Mig+1 1 — M3h

Inductively, we apply Lemma 5.3 with k = /o 4 [ and small j1;,4; > 0 to obtain

M3h3/?

Elgti+1 C Elgti+1, Rig+i+1 = Rig+l + T Moh

Setting /1 := [(s + r3)/ h] we get

M3(2r3 + h)vh

lh,-) > E;, =
{@a(lh,?) = un} C Er, pn T— Mah

foralll =ly,lo+1,---,1;.
Consequently, taking # > 0 small enough, we have B(x, r3) C {@a(s+1h,*) = pp} C Efs/n)+1
for] =0,+£1---,+ly. This implies that
r

d(y, Es/n+1) = p(s,y) = 53 for all (s, y) € and small 4 > 0.

Letting (&, lh, y) — (0,5, x), we obtain (5.1). O

Theorem 5.4 Assume (2.1). Let (I'L(), .QIT (t), 827 (t))iefo,r) be a level-set flow by (1.1) with the
initial data (Co,int Co, RN\ Cy). Let (I'(t), 27 (t), 27(¢))re[0.) be defined by (4.3) and (4.4).
Then for eacht € [0,T),

Qfc2T@)c2f)UTIL@), L) Cc 2 () C L) UTL{)

Proof. Step 1. From Theorem 2.6 and Proposition 2.9 we have only to show that {2 (¢)};e0.1)
and {RV\cl1 £27(¢)},[0.1) are, respectively, a generalized superflow and a generalized subflow by
(1.1).

Indeed, if we do so, then it follows from Proposition 2.9 that ¥ = u(t,x) 1= yg+)(x) —
Xe-mure(x) and u = u(t,x) := yry\ae-@)(X) — Xae2-(@)(x) are, respectively, a viscosity
supersolution and a viscosity subsolution of (2.14). Since

X2+©0) = XEN\d @—@) = XintCo» XEN\2+(0) = X2-(©0) = XeN\c, inRY
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by Proposition 4.4, we have from Theorem 2.6
U< XQZ‘(,)UpL(t) —Xp@) U = XQZ‘(,) —XQr@urp () M [0,T) x R™.

Therefore we obtain the desired inclusions.

Step 2. We show that {227 (t)},e[0,7) and (RN \cl£27(?)}seq0,1) are, respectively, a generalized
superflow and a generalized subflow by (1.1).

We prove only the superflow case since the other one is shown by the same way. Let z > 0,
xo € RV, r > 0,0 > 0and ¢ € C®(RY) be such that {¢p > 0} C int 27 (¢) N B(xo,r) with
|[D¢| # 0on {¢p = 0}. It follows from (4.3) that there exists 5 > 0 such that for any & € (0, t5),
| € N satistying |[lh —t| < t5, we get

wh(lh, )y =d(-,C;)) = d(-.Ey) inRN Eq:={¢ =0} (5.13)

We now apply our algorithm with the initial set £¢ and construct a sequence {vg }x>¢ of solutions
of (1.2) with vg(0,-) = d(-, Er). We repeatedly use the maximum principle for (1.2) to have E; C
Ci 4k and hence

wh((l +k)h,:) =d(-,Ciyx) = d(-, Ex) in RY  forall k,! € N such that |lh —t] < ts.

We see by Proposition 4.2, Lemma 5.3 and this inequality that there exists s, > 0 such that for any
s € (0,s0) and x € cl B(xo,7) N {¢p —s[F(t,-, Dp, D>*¢)] > 0}

d(t +5,x) = lim inf wh((I + k)h,y) =  liminf  d(y, Ex) > 0.
_( ) (h,lh,kh,y)—(0,t,5,x) (( ) y) (h,kh,y)—(0,5,x) (y k)

Hence cl B(xp,7) N {¢ — s[F(t,-, D¢, D?¢)] > 0} C 27 (¢t + ) for all s € (0,s1). Thus
{21 (1)} 1e(0.1) is a generalized superflow by (1.1). O
Let d = d(t, x) be the signed distance function to I (¢) defined by (1.4) with D = cl .QL+ ().

Then we have the convergences of {d"}~¢ and {w"}~¢ to d as h — 0.

Theorem 5.5 Assume (2.1) and let (FL(I),QZ_(I),Q[(t))ze[o,T) be a level-set flow by (1.1)
with the initial data (3Cy, int Co, RN \Cy) satisfying (2.16). The sequences {d"}~¢ and {w"}j~¢
converge to dr, locally uniformly in [0, T) x RN as h — 0.

Proof. It is observed by (2.16), (4.3), (4.4), Proposition 4.3 and Theorem 5.4 that

I(ty=r@) =1{d(.-) =d(t.-) =0}, (5.14)
f )= @) =1{dt,-) >0} =1{d{ ) >0}, (5.15)
Q)= (t)=1{d(t.-) <0} ={d(t.-) <0}, (5.16)

for all t € [0, T). Note that the map ¢ > cl .QZ' () is continuous in the sense that

lim dpy (c12f (1).c12] (s)) = 0. (5.17)

Indeed, we choose a unique viscosity solution u € UC([0, T) x RY) of (2.14) satisfying u(0, -) =
d(-,Cp) in RY and thus (2.15) holds (cf. Remark 2.5). Using the continuity of u and (2.16), we



502 K. ISHII AND M. KIMURA

get (5.17). Moreover we observe that d satisfies (4.8) and (4.9) in the viscosity sense and by
Propositions 4244 thatd = W = d = w = d on {Ureo.ry ({1} x TL(2))} U ({0} x RY).
Thus we use Theorem 4.5 and the comparison principle for eikonal equations (cf. [19], [21]) to
havew = d = w =d =d in Q. By [8, Remark 6.4], we have the desired result. O

Theorems 5.4 and 5.5 lead to the convergence of {Ch(t)}te[o,r)’;po to {cl .QZF ()} eef0,1)-
Theorem 5.6 Assume (2.1). Let (I'r(t), .QZ' (t), 27 (t)):efo,T) be the level-set flow by (1.1) with the
initial data (3Cy, int Co, RN\ Cy) satisfying (2.16). For any ¢ € (0, T)

lim sup dg(CH(r),c127 () =lim sup du(C"(t),cl12] (1)) =0, (5.18)
h—0tef0,7—s] h—0tef0,7—s]
Proof. By the continuity of d, (5.14), (5.15) and (5.16) turn to
IL() ={d(t.-) =0}, 2F (1) ={d(1.) > 0}, 2 (t) ={d(t.-) < 0}.
Thus we get (5.18) by applying Theorem 5.5 and [15, Lemma 4.6.5]. O

REMARK 5.7 (1) Since {Ch(t)}te[o,r)’;po and {cl £21.(?)}e[0,1) are bounded (cf. Proposition 3.1),

from [5, Appendix A], one can prove the uniform convergences of {d "y p=o and {w"}j~0 to d on
[0, T —¢] x RY foreach & > 0.

(2) We see from Theorem 4.5, [19] and [21] that the limit d of {d”}~¢ and {w"}4~ is a unique
viscosity solution of (4.8) and (4.9). In addition, d satisfies a weak form of (2.10) and (2.11):
min{d, 0} (resp., max{d, 0}) is a viscosity subsolution (resp., supersolution) of

u; + F(t,x —uDu, Du, D*u) =0 in or.
See [38, Theorem 11.1], [2, Theorem 3.1, Lemma 5.3] for the proof.

(3) Vivier [39] and Leoni [30] considered the approximation schemes for the anisotropic CDM
related to ours. The choice of the initial data is the main different point from our scheme. They
choose the initial data w(0, x) = x¢, (x) — xrn\¢, (x) for x € R¥ instead of (1.3). In addition,
Chambolle and Novaga also treated in [6] an algorithm to the anisotropic MCF. The differences
between [6] and our algorithm are the approximate equation and the choice of the initial data.
Theorem 5.6 is a similar result to those in [39], [30] and [6].

(4) From the viewpoint of numerical analysis we are able to replace the initial data (1.3) with

wi (0, x) = n(d(x,Cx)) forx e RV, (5.19)
in constructing {Ck}g:/: ] Here n is a Lipschitz continuous function defined by
=38 ifr < 44,
nry=4r if|[r] <28, n'(r)=0 forae.reR
36 ifr =48,

Forh > 0Oand k = 0,1,...,[T/h], let Wy be a solution of (1.2) - (5.19). Then we observe by
lengthy calculations that
~ _82
sup  [lwi — Wi llLoo @, (k) xdC.Cool<sy = O™ /M)
k=0,1,...,[T/h]
[T/h]
k_

for any small 2 > 0. Thus applying the results of this section, we have the convergence of {wy } 0

to d as h — O uniformly in U;e[o,7—¢[{t} X {|d(¢,-)| < &}] for each e > 0.
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6. Rate of convergence to smooth and compact CDM’s

This section is devoted to the rate of convergence to the smooth and compact CDM and to its
optimality in the case of a circle evolving by (1.1) withb = 0 and g = 0.

6.1  Rate of convergence

In order to derive the rate of convergence we reformulate our algorithm in the following way: Let
Co be a compact subset of RY whose boundary is of class C57%. For each & > 0 let {wk}gﬁ{)h] be
a sequence of solutions of (1.2) - (1.3) with setting Cy := {wg—1(h,-) =0} (k = 1,2,...,[To/ h)).

Define {w"};~¢ as in (4.1) and C*(z) as
ch@) .= {w"@,) =0} fort e[0,Ty) andh > 0 (6.1)

instead of (1.6). Notice that C*(kh) = Cy fork = 0,1,2,...,[To/h] and h > 0. We then obtain
the following theorem.

Theorem 6.1 Assume (2.1) and (2.3). Let {I"(t)}:c[0,Ty) be a smooth and compact CDM with
I'(0) = 0Cy and let p = p(t, x) be defined by (2.4). Set C*(t) as (6.1) and C(t) := {p(t,-) = 0}
foreacht € [0,Ty) and h > 0. For any ¢ > 0, there exist Ly and hg > 0 depending on (2.1) and
(2.5) such that
sup  dp (C"(1),C(t)) < Lih forallh € (0,ho).
t€[0,To—¢]

See Appendix for the existence and uniqueness of {I"(¢)};c[0,T,)- Since I"(¢) is a hypersurface for
every t € [0, Tp), Theorem 5.6 yields that for any ¢, no > 0, there exists &g,; > 0 such that

sup  dy(CH(1),C(1)) <no forall h € (0,ho1). (6.2)
t€[0,To—¢]
Hence the above theorem is deduced from the following lemma.

Lemma 6.2 Under the conditions in Theorem 6.1, if dg (C" (kh), C(kh)) < 1 for smally € [0, o),
then for some Kg > 0, ho» € (0, ho,1) depending on (2.1) and (2.5),

2
dH(Ch(kh +1),C(kh +7)) < % forallt € [0,h] and h € (0, ho2).
— K3
Proof. Assume that (0 <)dg(C"(kh),C(kh)) < 7. Let W be a solution of (1.2) satisfying
Wi(0,) = d(-,C(kh)) in RN and set DF(kh +7) := {Wi(1.) = +n} and QF(kh + 1) :=
{plkh +71,-) = £n}.

We easily get Wy —n < wx < Wi + non [0,h] x RY from the maximum principle since
Wi (0,-) —n < wi(0,7) < Wi(0,-) + nin RY. Hence we have D,‘;‘(kh +7) c CMkh +7) C
D, (kh +7) forall 7 € [0, k. Since 2,F (kh +7) C C(kh +7) C $2,f (kh 4 1), we obtain for all
t €[0,h]

_ _ o _ _ _ _
2 (kh +7) N D} (kh 4+ 1) C C(kh +7),C"(kh +1) C 82, (kh +1) U D, (kh +1).
Therefore we observe that for all 7 € [0, /],
du (C"(kh +7),C"(kh + 7)) < max {dg (2, (kh +7) N D} (kh +17), C"(kh + 7)),
dg (2, (kh +7) U D, (kh +1),C"(kh +1))}. (6.3)
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We estimate the right-hand side of (6.3). It is easily seen that
du (2,7 (kh +17) N D} (kh +7), C"(kh + 7))
< du(Dj(kh +7),C"(kh + 7)) + du (2, (kh +7), D} (kh + 7)),
du (2, (kh +1) U D, (kh + 1), C"(kh + 7))
<du(D, (kh +1), Chkh +71)) + du (.Q,,_(kh +1), D, (kh + 7)).
As Wy, satisfies Proposition 3.4, we get from some calculations

dia (D3 (kh +7).C"(kh +1) < < ”K? forall 7 € [0, 4] and h > 0.
- 5

Step 1. We derive an estimate for SUP e piF (kh+7) dist (x, .Q;r (kh +17)).

Fix 7 € [0,h] and x € D, (kh 4 7). We may assume that x € dD(kh + D)\, (kh + 7).
Set p(z, x) := p(kh + ¢, x). Notice that for s € [0, k] the point z(s, x) := x —p(s, x)Dp(s, x) €
082, (kh+s) satisfies [x—z(s, x)| = [p(s, x)| = dist (x, 92,7 (kh+s)). Set&(s) := Wi (s, z(s, x)).
By the facts W e COGF0/25%e([0 h] x {|p(kh,")| < 58)), W,(0,2(0,x)) = 7,(0,x),
DW;(0,z(0,x)) = Dp(0, x) and (Do, Dp;) = 0, we see that

£(0) = 51(0, %) — 31 (0, x)( D0, x), DF(0, x)) — 50, x)( DP(0, x), D1 (0, %)) = 0
};‘_//(S) = Wk,tl‘(ss Z(S, x)) + 2(DWk,t (S, Z(Ss x))v ZS(Sﬂ x))

+(D2Wk (S, Z(Ss x))ZS (S, x)s ZS(Ss x)) + (DWk (Ss Z(S, x))v ZSS(Ss x))v
ZS(Sv X) = —{7)-’[(.5', )C)D?)J(S, X) +’lbi(sv x)Dflbil(sv X)},
ZSS(svx) = _{flb/tl‘(sﬂx)Dflb’(svx) + 2’5t(ssx)Dflb’t(ssx) +’lb’(s’x)Dfl5lt(ssx)}'

Here we have used (2.5). Hence we have from £(0) = W (0, z(0, x)) = 0(0,x) = d(x,Cy) = 1,
Taylor’s theorem and these formulae

Wi (s, z(s,x)) = £(s) = n+ %E”(@s)sz for some 0 € (0, 1).

Thus it follows from (3.4) and (2.5) that

1
sup —&"(s)| < Ks.1. (6.4)
s€[0,h]l.x€dD(kh+s) 2
k=0.1...., [T/ h].h>0

Here and in the sequel K5 ; > 0 (j € N) is a constant depending on (2.5) and (3.4).
Furthermore we observe that for some 6 € (0, 1)

n=Wi(@ x) = Wi (@ z(7 x) + D x)DWi (7, 2° @ x)), DB, x))
=n+ %E”(@f}fz + (. x)(DWj (f,ze(f, x)). DB(7, x))

where z% (s, x) := x — 6p(s, x) DP(s, x). Setting s = 7 and combining (6.4) and Remark 3.5 with
this formula, we get

_I(S,lf2 - K&]Zz
(DWi(@.2° (7. %)), DP(E.z°@.x))| ~ 1 —Kst’

[p(t. x)| <
2
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Recalling p(7, x) = d(kh + ¢, x), we obtain

Kg >

sup  dist (x, .Q;r(kh +17)) < KT

xeD;f (kh+7)
Step 2. We estimate sup, o+ 5, 7 dist (x, Df(kh +1)).
n
The argument is similar to that in Step 1. Fix 7 € [0, /] and x € .Q;r (kh + 7). We may assume
that x € 32,7 (kh +1)\D,F (kh 4 7). Let p(Z, x) be the signed distance function given by (2.4) with
I'(kh 4 1) = aD,f (kh + 7). Then

5(0,) = p(kh,)—n on {|p(kh.")| < 56},
Wi ... DWi 3 [ DW
pr |DW|

= s :—’D = —
owe P T ow TP T W

) on [0, k] x {|p(kh.-)| < 58}

Here we have used (3.5).
For s € [0, h], the point Z(s, x) := x — p(s,x)Dp(s,x) € 8D,‘7'r(s) satisfies |[x — Z(s, x)| =
|p(s, x)| = dist (x, E)D;r (s)). Similar calculations to those in the previous step yield that

N -2
sup lp(kh +7,2(,x)) — 1| < Kzl

Tel0.h].x€dC (kh+s)

k=0.,1,..., [T/ h]l.h>0

n=pkh+7.x) = p(kh +1,2(,x)) + p.x)(Dp(kh +7,x — 0p(. x) Dp(. x)), DP(7. x)),

. - _ DW,
= p(kh +1.2(,x)) +p(t,x)<Dp(kh+t,x), k >
[DWy|

Therefore we have by using Propositions 3.3 and 3.4

_ |DWi@ )| |p(kh + 7.2 x)) — 1] _ (1 + Koh) Kol

0 ;9 ~ — < —
[P x)] (Dp(kh +1,x), DW)l. | — Kot
and consequently
Kg 3T~
sup  dist (x, D;F (kh +17)) < ———.
xe2;F (kh+7) 1 - Kst
Combining the estimates in Step 1, 2 and setting Kg := max{Ks, K3 1, Ks 3}, we obtain
du(2,f (kh +7), D;f (kh +17)) < Ks7>/(1 — Ks7). The remaining part can be estimated. O
Proof of Theorem 6.1. In the case k = 0, we apply Lemma 6.2 with  := 0 to have
_ Kgh?
sup du (CH(@),C() < ———.
7€[0,h] I — Kgh

In the case k = 1, it follows from Lemma 6.2 with n := Kgh?/(1 — Kgh) to obtain

_ _ Kgh? Kgh?
sup dp (C*(h +7),.C(h +7)) < .
?e[OI,Jh] H( ( ). ¢ )) (1—Kgh)2  1—Kgh
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Repeating this process, we see that for k = 2,3,...,[To/ h],

k+1

sup dp (C"(kh +7).C(kh +T)) < >
7e[0,h] =1

- Kgh?{1 — (1 — Kgh)~{To/m}
T (1-Ksh){1—(1—Kgh)™1}
- Kgh?(eXsTo — 1)

h Ksh

= (eXK8To — 1)h.

Kgh?
(1 — Kgh)!

Letting L := (eKSTO — 1) and ho = ho,2, we get the desired result. O

REMARK 6.3 Assume (2.1) and (2.5). From Theorem 6.1 we can replace the initial data (1.3) with

wi (0, x) = n(d(x, Ck)) for x € RV, (6.5)
in constructing {Ck},[cTz/é’ ] Here n is a Lipschitz continuous function defined by

—3h1/27B ifr < —4p'/27B,
nry:=14 r if |r| <20Y/27B, 9 (r)=0 forae.reR, B (0,1/2).
3p1/27F ifr > 4n1/2B,

Forh > 0andk = 0,1,...,[T/h], let Wy be a solution of (1.2) - (6.5). Then we observe by lengthy
calculations that

—p—B/2

)

sup lwk — Wkl 00 =0(e
k=0.1....[T/h] Lo ([kh,(k+1)h)x{|d(Cy)|<vh})

for any small 2 > 0. Combining (3.5) with this estimate, we can get the same estimate as in Theorem
6.1 with C"(¢) replacing {@ (0, -) = 0}.

6.2  Optimality

This subsection is devoted to the optimality of the estimate in Theorem 6.1. For simplicity, we set
N=2b=0,g=0,R(t) ;== 1-2t,Tp := 1/2and C(t) := {x € R? | |x| < R(¢)}. Since
it suffices to consider the radial solution, the initial value problem (1.2) - (1.3) and the definition of
{Ck}gg;/h] turn to

0
Wk, = Wk,rr + %, wr = wi(t,r) in (0, 400) x (0, +00), (6.6)
Wi, r(,0) =0 fort >0, (6.7)
w(0,7) = R —r forr € [0, +00), (6.8)

Cr := {x € R? | wi(h, |x]) = 0}, Co:=clB(0, 1),
Ry := radius of Cy, Rg := 1.
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Fort € [kh,(k + 1)h),k =0,1,2,...,[T/h] and h > 0, set
Ch(t) == {x e R? | we(t — kh,|x]) = 0}, R*(r) := radius of C" ().

The following proposition says that for each 4 > 0, C"(r) evolves faster than C(z).
Proposition 6.4 C"(t) c C(t) forallt € [0, Ty) and h > 0.

Proof. Let Vo = Vo(t,7) := 1 — +/r?2 +2¢. Then C(t) = {Vo(¢,|-|) = 0} fort € [0, /] and V;
is a classical supersolution of (6.6) satisfying (6.7) and (6.8). Hence it follows from the maximum
principle that wg < V, on [0, 4] x [0, +0c). This inequality yields that C”*(r) < C(r) for all
t €[0,h].Set Vi = Vi(t,r) := R(h) — ~/r2 +2t. Then C(¢t + h) = {V1(¢t,|-]) = 0} fort € [0, A]
and V is a classical supersolution of (6.6) satisfying (6.7) and w4 (0, -) < V;(0, ) on [0, +00). Thus
we get w; < V; on [0, 4] x [0, +00) by the maximum principle. Therefore C"(h +t) C C(h + 1)
for all t+ € [0, h]. Similarly, setting Vo(¢,7) := R(2h) — +/r2 + 2¢, we are able to show that
Ch@2h +1t) C C(2h + 1) forall t € [0, h]. Thus we have the result by induction. O

Proposition 6.5 Forany § € (0, 1/8), there are constants Ko > 0 and tg > 0 depending on § such

that
_ 2
w1+ 1)
r

Proof. Since | - | € C®(R?\{0}), Remark 3.5 (2) yields that

X - X
‘Dwk(;, |x]) — (—m 'Hw)

for small 7 > 0, x € R¥\ B(0, §) and some Ko > 0. Noting the formula Wk, = (Dwg, x/|x[), we
get the desired result. O

< Kot forallT €[0,h], r € [§,400) and h € (0,15).  (6.9)

< Kol (i =1,2)

Since we see by Proposition 6.4 and Theorem 6.1 that for any ¢ € (0, 1/4)
dy (C"(t),C(t)) = R(t) — R"(t) < Lih, R"(t) = ¢ (6.10)

forallt € [0,1/2—¢], h € (0,%7) and some #7 € (0, hg), we consider the lower bound of R(t) —
R’ (t) for small i > 0 to prove the optimality of Theorem 6.1. Hence our optimality result is stated
as follows.

Theorem 6.6 Ser C(1) := {|x| < R(t)} (R(t) = /1 —2t) and C"(t) = {wi(t — kh. |x|) = 0}.
Let R"(t) be the radius of C"(t). Then for any & € (0, 1/4) there exists hy > 0 such that for all
h € (0,h)

1[2 fort € [0, h],
R(1) — R"(r) =
Zth fort € [h,1/2—¢].

The strategy of the proof of Theorem 6.6 is similar to that of Theorem 6.1.
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Lemma 6.7 Fix ¢ € (0,1/4). If R(kh) — R"(kh) = n for small n = 0, then there exist K1g > 0
and tg > 0 such that

_2 —_
_ h - t - 2 t 2
R(k]’l+t)—R(kh+l)>(ﬂ+W—K10(l+h)l)(1+W—K101)

forallt € [0,h] and h € (0, 13).

Proof. Assume that R(kh) — R"(kh) = 7 for small n > 0. Let wi be a solution of (6.6) - (6.7) -
(6.8). Set £(f) := wi (¢, R(kh + 1)) forf € [0, h]. The argument is quite similar to that in the proof
of Theorem 6.1.

Taylor’s theorem yields that

-3
< Kyt

50~ (50 + €107 + 307

Here and hereafter K1¢,;’s (j € N) are positive constants depending on ¢. Then we observe by (6.6)
and the regularity of wy near r = R(kh) that

= Rh - R s - s / = N " pr— _——,
£0) = R (kh) = RUkR) < =, §(0) =0, £'(0) = ~ s

Hence we have for all 7 € [0, ] and small 2 > 0
37

~ sy Kioal. (6.11)

wi (f, R(kh +1)) < =1

On the other hand, we see by the mean value theorem that
wi @, R"(kh +7)) = wi (7, R(kh + 7)) 4+ wy (T, R(kh + 1) + 6) (R(kh +7) — R*(kh + 1))
= wy, (7, R(kh 4+ 7) + 0)(R"(kh +7) — R(kh + 7)),
where § := O(R"(kh 4+71) — R(kh +1))(< 0) and § € (0, 1). Hence we obtain

wi (¢, R(kh + 1))

Rkh+7)— R"kh +7) = —
( ) ( ) wi (&, RM(kh +7) + 0)

(6.12)
It follows from (6.9) that

Wi, (T, R(kh +7) +§) - (— 1+ ;) < Kool

(R(kh) + 0)2

Using (R(kh) — L1h)? < (R(kh) +fé/)2 < (R(kh))?, we have

wi, (F. R(kh +T) +8) — (—1 < Ki03( + )i

7
+ (R(kh))Z)

We obtain the desired result by applying (6.11), (6.12) and this estimate and taking fg > 0
sufficiently small. O
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Proof of Theorem 6.6. In the case k = 0, as R(0) = R"(0) = 1, we apply Lemma 6.7 with p = 0
to have

2
-2

3 I3 _ -
+W_K10Z ) = W—Kll(l-i-h)t

R@) — R () z( —K1o(f+h)?2)(l

_r
(R(0))?

for 7 € [0,h] and some K13 = Kiy1(¢) > 0. In the case k = 1, we use Lemma 6.7 with n =
h?/(R(0))*> — K19,1h> to obtain

) . 7 o P
R(h—l—ﬂ—R(h—i—ﬂ/(no—km—l(lo(t—i—h)t)(1+7(R(h))3 Ko”)

h2 s 7 L
z {(R(O)P —Kuh } T Ry~ Kn

for all 7 € [0, h]. Hence we are able to prove by induction that
k

o I 1 7 o
R(kh+t)—R(kh+t)>h;{W—Knh}+m—l<n(t+h)t

forallf € [0,h],k =0,1,2,...,[T/h]and h > 0.
For any ¢ € (0, T), choosing a small ; > 0 we get

1
- h .
R(kh+t)—R(kh+t)/—2 5 7

Xk: L 72 _ k4T (kh+T)h
o (RUM)* ~ (R(KkR)2| ™ -

forall7 € [0,h],k =1,2,...,[T/h] and h € (0, h1). Hence the proof is completed. O

7. Rate of convergence to a generalized CDM

In [36] Nochetto and Verdi gave a local estimate for the convergence of a bilateral obstacle problem
to a regular portion of a generalized CDM. In this section we derive a similar estimate in the case
of our algorithm.

Let (I'L(2), .QZ’ (t), 827 (t))efo,T) be a level-set flow by (I.1) satisfying (2.16). Then the
convergence of {Ch(t)},e[o,T)Jpo to {cl QZ_(I)}ze[o,T) follows from Theorem 5.6. Besides, we
have the following local estimate.

Theorem 7.1 Assume (2.1). Let {Ch(t)},e[o’r),;»o be defined by (6.1) and (FL(t),.QL+(Z),
27 (t))iefo,1) by the level-set flow by (1.1). Assume that for to € (0,T) and xo € Ip(t),
Du(to, x0)(# 0) exists and Du € C(cl Q((to, X0),r0)) for some small ro > 0. Then there exist
Ls, hy > 0 such that

sup d (C"(t) N B(xo.r0).c12] (1) N B(xo.70))

t€fto—ro,totrol

< Lz{a’H (C(knh) N B(xo. 70).c1 2] (kh) N B(xo. ro)) + h} (7.1)

forall h € (0, hy). Here ky, := [(to — ro)/ h].
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Before proving this theorem we apply the arguments in [13, Section 5] to obtain the local
regularity of the level-set flow by (1.1). At first, by Du € C(Q((?o, X0),70)) and | Du(to, x0)| # 0
we may assume that

1
§|Du(t0,xo)| < |Du(t, x)| < 2|Du(ty, xo)| forall (z,x) € Q((Zo,xo),ro). (7.2)

Then it follows from the implicit function theorem that for each t € (f9 — ro,%9 + to) the set
{u(t,-) = 0} N B(xo, 7o) is a portion of a C! hypersurface and there is a function v = v(z, x")
((t, x") € Q'((to, x0), ro) such that

{u(t,-) = 0} N B(xg,7r9) = {xN = v(t,x’)} N B(xo,r0), D'v(t,x) € C(Q’((to,xo),ro)).

In addition, o ©
0 / 0
0l o7 o.wor.ro) 1PV ler graguror.rey < 00 7.3
We choose an orthonormal basis {e,-}fv=1 for RN such that ey := —Du(tg, x0)/| Du(to, xo)|.
Lemma 7.2 Under the conditions of Theorem 7.1, v is a viscosity solution of
(D?vD'v, D'v)

v — Alv + D1 + (b, D'v) = b + ¢ VID'V[2+ 1 =0 in Q'((to,X0). 7o),

where W = b/(t,x") = (b (. x",v(t,x")), - BN, X' v(t. X)), BN = N (t, X)) =
BN (t,x',v(t,x") and g’ = g'(t.x) := g(t, x", v(t,x)).

Proof. We prove only the subsolution case because the supersolution case is similarly proved. The
proof follows from [ 13, Theorem 5.1].
For any ¥ € C*(Q’((t, x0),70)), assume that v — i takes its maximum at (¢, x]). We may
consider that
v(ty, x7) = ¥ (t1,x}) = 0. (7.4)

Hence v < ¢ in Q’((fo, xo0), ro). Note that
{u < 0} N Q((lo,Xo),Fo) D {(t,x) € Q((lo,Xo),ro) | XN > W(t,x/)}, (7.5)
{(t,x) € Q((to,xo),ro) | xy < 1//(t,x’)} C{u>0}nN Q((to,xo),ro).
Let ¢(z,x) := ¥ (¢, x') — xy and set
Eo:={(t.x") € Q'
Er:={(t.x)eQ’
Fi:={(.x)e Q'
Fo:={(t.x)eQ’

fork = 1,2,...Define

| 1< xy—y(r.x))}.

|27F <y — Y, x') <27F 1)

| —27F 1 < xy —yr(e,x') < =275,
| xy — ¥ (1, x") < —1}

(to, x0). 70
(to, x0). 7o
(to, x0). 70

(to, x0). 70

|
~_~ o~~~
S S S S

Qf 1= sup {u(t,x) ‘ (t,x) € U E;Nn{u< 0}},ﬁk 1= sup {u(t,x) ‘ (t,x) e U F,}

0<j<k 0< <k
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Then we easily see by (7.4) that

o <0, g <oy << <o+, lim o =0,
k——+o0

Bk >0, fo=p1=-=Pc=---, lim B =0.
k—+o0

We may assume that {oek};::% is strictly increasing and that {,Bk},j:% is strictly decreasing, by
reindexing if necessary.
We define a nondecreasing function @ : R — R by

D) == =275 o(B) :=27F, @(0):=0

@ linear on [, ot 1] and [Bx+1, Bkl
&(r) ;= 2forr <oy, =2forr = By

Then if (¢, x) € Ex N {u < 0}, then u(¢, x) < oy and hence
B(u(t, x)) < Plax) = =27 <y (1, x') —xn = ¢t x).
Thus

+o00
@ (u(t,x)) < ¢, x) on U ErN{u <0}
k=0

= {(t.x) € Q((t0.%0).70) | xn > Y(t.x)| N fu < 0},
Similarly, if (z, x) € F, then u(t, x) < Bx and hence
®(u(t,x)) < P(Br) =27F <Y, x) —xy = (. ).
Thus

+o00
@ (u(t.x)) <¢(t.x) on | F = {(z,x) € O((to. x0). 7o) | xn < 1//(t,x’)}.

k=0
In{u <0} N {xy <Y, x")} we get
@(u(t,x)) <0<y, x) —xy = o(t, x).

Therefore we observe from (7.4), (7.5) and this inequality that @(u) — ¢ takes a maximum in

Q((to, x0), ro) at (t1, (x7, v(t1, x}))).
Since @(u) is a viscosity subsolution of (2.14) by the relabeling property (cf. [15, Theorem
4.2.1]), we obtain

(D?¢D¢, Do)
|Dg|?

It directly follows from the definition of ¢ that at (¢, (x}, v(#1, x})))

Gt = Yr, Ox; = Yy, for 1 i <N =1, ¢pxy = —1,
bxix; = Yxx; for1 <i, j < N —1, = 0 otherwise.

b1 — A + + (b, D$) + g|DP| <0 at (tl,(x’l,v(tl,x’l))).

Therefore we have the result. o
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To consider the regularity of v, we treat the following initial-boundary value problem:

D?wDv, D
w,—Aw—i—%—i—(b,Dw)—bA’+g\/|Dv|2+l:O (7.6)
v
in Q((t()s xo)s rO)v
w(to —ro,x) = v(to —ro,x) forx € B(xg,79), (7.7)
w(t,x) = v(t,x) ford,Q((to.x0).r0). (7.8)

For the moment we drop the superscript ' for notational simplicity.

It follows from Lemma 7.2 that v is a viscosity solution of (7.6) satisfying (7.7) and (7.8). Note
that the principal part of (7.6) is uniformly elliptic because of (7.3)

We show the existence of a solution w € Wllo’cz’p(Q((to,xo),ro)) of (7.6) - (7.7) - (7.8).
To do so we approximate b, ¥ and g: For f = b, bV and g, choose a sequence { fi}e~o C

C®(cl Q((to, x0), o)) satisfying

(fe» Dfe) — (f. Df) uniformly on cl Q((to, Xo), ro) ase — 0,
{(fe. Dfe)},., © equi-continuous on cl Q ((to. Xo). o). (7.9)

Then for each ¢ > 0 there is a unique classical solution of w, of (7.6) - (7.7) - (7.8) with b = by,
N = bév and g = g.. We derive some uniform estimates for {w,}s>¢. In the following part of this
section we always assume (2.1) and (7.3).

First the L°°-bound readily follows from the maximum principle:

©)
SUP [1welle 0 g, x0).r0) < 0 (7.10)

Since {v, }e>0 is uniformly bounded on ¢l Q ((¢g, x¢), ro) and satisfies (7.9) with f; = v, we apply
the techniques of [17, Section 14.5] and [3 1, Section 2] to have the following.
Proposition 7.3 {w;}.>¢ is equi-continuous on 9, Q ((to, Xo), ro).

1,2,p

oc -estimate.

Furthermore, applying (7.9) and [32, Theorem 7.13], we obtain a uniform Wl

Proposition 7.4 sup,.q [|welly1.2.0(g) < +00 for each compact subset Q of Q((to, Xo), ro) and
p>N+2
Therefore we have the following result.

Theorem 7.5 Assume (2.1) and (7.3). There is a solution w € Wll’cz’p(Q((to,xo),ro)) N
C(cl Q((to, x0),70)) of (7.6) in the almost everywhere sense satisfying (7.7)—(7.8). In addition,
v = w on cl Q((to, X0), o).

Proof. From Proposition 7.3 we can use the Sobolev embedding to obtain

sup ((w8>y,Q + (DWS)%Q) < +0o0

e>0

for each compact set Q9 C Q((to,x0),70) and some y € (0,1). Thus we see by (7.10),
Proposition 7.3 and this estimate that {w.}s~¢ is uniformly bounded and equi-continuous on
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cl Q((to, x0), ro). Therefore we can extract a subsequence {&, },J[;’%, &n \\ 0 such that as n — +o00

We, —> w  uniformly on cl Q ((fo. Xo). ro).

n

Dw,,, —> Dw locally uniformly in Q ((to, Xo0), o).
) ) N2+1
(We, .1, D*we,) —> (wy, D*w) weakly in {L;’OC(Q((ZO,XO), ro))} for p > N + 2,

w satisfies (7.6) almost everywhere in Q ((to, xo), ro)-

Also w satisfies (7.7)—(7.8). The equality v = w follows from the uniqueness of solutions of (7.6)—
(7.7)—(7.8) due to [33, Remark I.16] and [22, Theorem III. 1]. O

For each compact set Q' C Q'((to. Xo).70), b/, bV, g’ € C”/Z’HV(Q’) since v, D'v €
C?/27(Q’) and (2.1). Hence v € C@+"/2:2+Y(Q'((ty, x0).70)). We use the regularity theory
for parabolic equations (cf. [29], [14] etc.) to obtain v € CCH)/2:5%Y (O ((ty, x0). ro)). Therefore
the signed distance function d to I'7 (¢) = {u(t,-) = 0} satisfies

d e C(5+7)/2’5+7(N), N = {(t,x) € Q((zo,xo),ro) | |d(t, x)| < 50} (7.11)

for some §¢ > 0.
Proof of Theorem 7.1. Fix any § € (0, §p). Applying Theorem 5.6, we get

sup  dp(C"(t),c12; (1)) <8 forall h € (0, ho) and some hg > 0.
t€l0,t0—ro/2]

Set ky, := [(to — ro)/ h] and o, := dH(Ch(khh) N B(xo, rg), cl .QZ'(khh) N B(xg, rg)) forall h €
(0, ho). Let C*(kyh) be compact sets in RV satisfying

{d(kph,) = ap} C C ™t (kph) C {d(kph,-) = 28},
{d(kph,) < =28} C C™(kph) C {d(kph. ) < —ap}.
C*(kyph) N B(xo,r0) = {d(knh,-) = an} N B(xo,ro),
C ™ (knh)\B(xo,2ro) = {d(kyh,-) = 28]\ B(xo,r0),
C ™ (knh) N B(xo,ro) = {d(kph,-) < —ap} N B(xo, o),
C ™ (kn)\ B(xo,2r0) = {d(kph.-) < =28\ B(xo, o).
Let d*(0, -) be the signed distance function to dC * (k3 /) and w¥ be a solution of (1.2) - (1.3) with

C*(kyh) replacing Ci. Set C*(kph + 1) := {w*(f,-) = 0} for 7 € [0, h]. The same arguments as
those in subsection 3.2 yields that

= e Bory < K12. [DWE| = 1= KiaT  on [0,4] x B(xo. o) (7.12)

for some K1, > 0. Hence applying (7.11), (7.12) and the proof of Lemma 6.2, we get
dg (C"(kph +7) N B(xo.70), C(knh + ) N B(xo,10))
< du (C*(knh +7) N B(xo,70), C(knh + 1) N B(xo, 7))
oy Ki3h?

< forall7 € [0, k] and Ki3 > 0.
1—K13h+2(1—K13h) ora [0, 2] and some K3
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The induction, similar to the proof of Theorem 6.1, gives
dy (Ch((kh +Dh+ ?) N B(xo, ro), C((kh +Dh + f) N B(xo, ro))

< dH(Ci((kh + 1)h +1) N B(xo, 7). C((kp, + Dh +7) N B(xo,ro))

I+1
op + K13h2

S T s G
(1= Kish)!+t = 2(1 = Ky3h)™

forallz € [0,h],] = 0,1,...,[2r¢o/h] and h € (0,19). Here K13, 9 > 0 are constants. Hence we
get

e?Kiarog,  (eKizro _1)p

1—Ki3h 2

forall t € [ty — ro,to + rol, h € (0,29) and some K14 > 0. Therefore we have (7.1) by choosing
L, sufficiently large and /1, = fo. O

dr (C"(t) N B(xo,10), C(t) N B(x0,70)) <

If ' (t) smoothly evolves by (1.1) in [0, #p), then the following estimate holds.

Corollary 7.6 Assume the same conditions in Theorem 7.1. If I'r (t) smoothly evolves by (1.1) in
[0, to) such that (2.5) is satisfied. Then there exist L3 > 0 and h3 > 0 such that
sup dH(Ch(l) n B(Xo,l‘o),Cl.QJr(l) N B(xo, ro)) < Lih  forallh € (0, h3).

t€[to—70,t0+70]

This corollary is a consequence from Theorem 6.1 and 7.1, so we omit the detail.

8. Appendix

In this section we establish the existence and uniqueness for a smooth and compact CDM locally in
time.

Theorem 8.1 Assume (2.1). Let Iy be a compact hypersurface satisfying (2.3). Then for some
To > 0, there uniquely exists a smooth and compact CDM {I"(t)}se[o0,1,) with I"(0) = Iy satisfying
(2.5).

We give only the outline of the proof of this theorem because it is similar to that in [12].

8.1  Aninitial-boundary value problem for (2.12)

Suppose that I'(0) C R¥ is a given compact hypersurface, which is the boundary of a compact
set D(0) and that there is a smooth and compact CDM {I"(¢)};¢[o,T) starting from I"(0). Let p =
p(t, x) be the signed distance function to I"(¢) defined by (2.4) with D = D(¢). Here D(t) is the
compact set enclosed by I"(z). As seen in Section 2.2, there exists a §; > 0 for which p satisfies
(2.12) and |Dp|* = 1 on N4, . Therefore, to obtain a smooth and compact CDM {I"(?)};[o.7,],
we solve the following initial-boundary value problem: Let pg be the signed distance function to
I'(0) defined by (2.4) with t = 0. Fix §; > 0 so that pg is smooth in V' := {|p(0,-)| < 6>}. Then
we construct a classical solution of

v, — Fo(v, D2v) + (by, D) + %, =0 in Q := (0,Ty) x V,

[Dv|? =1 on 9, Q :=[0.T}) x 3V, (8.1)

v(0, x) = po(x) for x € clV.



CONVERGENCE OF A THRESHOLD-TYPE ALGORITHM 515

8.2  Linearized problem for (8.1)
To construct a classical solution of (8.1) for small 8,, 71 > 0, we linearize (8.1). In the following
part of this section we use the usual summation convention on repeated indices.

First, we take 63 > 0 so small that

M43 < —, My := sup || D?po. (8.2)
xeV

N

Set G :={(r,X) e RxS||r| <83, || X|| <2M4}. Then
1 .
A (X)r| < || X||r] < 3 fori =1,2,...,N.
Hence the function Fy by (2.13) is smooth on G. We extend F on R x S¥ to be smooth, with | Fol,

|DFy|, | D? Fy| bounded. By [12, Lemma 2.1] Fy satisfies

aF" (r X)&E = 0l¢)> forall £ e RV (8.3)

for each (r, X) € G and some 6 > 0.
We look for the solution v of (8.1) in the form

v =po + th+w, h:= Fy(po, D>po) — (bpy(0,x), Dpo) — Zp (0, x). (8.4)

We substitute (8.4) into (8.1) to derive the equation for w. Then using Taylor’s theorem, we compute
that

Fo(po +th+r,D*p+rD*h + X)

(PO,DZPO)XU + A1t x, 1, X),

dFo dF,
= Fo(po. D? —(po, D?
0(po. D%po) + —-=(po. D"po)r + ax,,

0F 0Fy
Al(t7x7r7X) =1 {a—r()(po’szO)h-’_ (p07D [OO)Xl] (85)

Xi;

! 92 F,
+/ 1- 5)8—20([)0 + sth+ sr, D*pg + stD?h + sX)ds(th + r)?
2 / (1 =92

/ (1- BX” 8X —————(po + sth + sr, D?pg + stD*h + sX)ds
‘(thin + Xij)(thxkx/ + Xkl)'

po + sth +sr, D" po + st 4+ S
( h D? D?h + sX)d

(th + r)(thxl.xj + Xij)

Set

§:=(po+th+r)(Dpo + tDh + p) — poDpo = pop + réi + tés + 123,
§1 1= Dpo + p. & := h(Dpo + p) + (po + r)Dh. & := hDh.
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Taylor’s expansion around x — pg Dpyg yields that
(boo (1. x =€), Dpo + tDh + p) = (byy (0, x), Dpo) + (b, (0, x), p)
~Po((Db) o (0,x) p. Dpo) = ((Db) o (0, X) Dpo., Dpo)r + Az(t, x. 7. p).
Aa(t,x, 1, p) = —pg((D\b)pO(O,x)p, p) — r{((D\b)pO(O,x)ng, p) (8.6)
+{(Db) (0, x) p, Dpo)} — r{(Db) (0, x) p, p)

+13(5,0(0, x), DR) + (5 (0, %), £1) — ((DD) oo (0, X) (&1 + pop), Dh)

—{((DB) 5 (0, X)E2, £1)

1
—2/ (11— S)((Bvbz)po(é‘l,x —s€)€, Dpo + tDh + p)ds
0

—~— 1 —~—
+12 ((b,)pO(O, x), Dh) + / (1- s)((b,t)po(st,x —5§)), Dpo + tDh + p)ds
0

—((Db) o (0, X)E2, Dh) — ((Db) 5y (0, X)E3, £1)

1 —
+ </ (1 —5)(D?b), (st, x — sE)(E,£), Dpo + tDh + p>
0
~13((Db) (0. X)&3. Dh),
Too(t, X —£) = oo (0, ) — po((Dg) py (0, ), p) = (D) py (0, x), Dpo)r + As(t,x, 7, p),

Aa(t.x.7. p) i= ~((Dg) g (0.3). p)r + 1{(80)0 (0.3) = ((Dg)y (0.). £2)} ®.7)
—_— 1 —
2 { (D)o (0.2). ) + /0 (1= )@y (st — sé)ds}

1 . R
-2t / (1- s)((Dg,)pO(st,x —s§), E)ds + / ((ng)po(st,x —s§)§, E)ds,
0 0

where . —
(D*b)p (1. ¥)(q. q) == (((Dzb’)po(t,y)q,q))

1<i<N

Thus setting

JF, ~ —
aij = 5> (po. D*po). B := b (0.2) = po( (D), (0.) Dpo + Dg).
1
IFo 5 — —
¢ i= —=(po. D*po) — ((DB) 4 (0,-)Dpo. Dpo) — ((Dg) (0. ). Dpo),
A= A1 + Az + A3z, (8.8)

we have the equation for w:

W — Ajj Wy;x; + (B, Dw) + cw = A(t,x,w, Dw, D2w) in Q.
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We next derive the boundary condition for w. Let v = v(x) be the outer unit normal of dV.
Recalling that

v on {pg = 8>},

2 _ 2 _ —
|D,00+ch+Dw| —|DU| =1 Onasz DIOO_ —v 0n{p0:_82},

we have the boundary condition for w:
ad
M _ a(t,x,Dw) ondxQ,
v
1 oh
—3|tDh+ pI” =122 on{pg = &},

a(ts-xs p) = 1 8]/?‘) (89)
—|tDh + p|> —t—  on{py = —82}.
2 v
Therefore what we solve is the following initial-boundary value problem:
Wy — ajjwy;x; + (B, Dw) + cw = A(t,x,w, Dw, D*>w) in Q,
ad
8_w =al(t,x, Dw) on 9,0, (8.10)

v
w(,x) =0 forx e clV.

8.3 Solvability of (8.10)

Similar to [12], we solve (8.10) by the fixed point theorem of the mapping 7" defined by inserting a
given function into the nonlinear terms A and a and solving the resulting linear equation. In addition
to the notations at the end of section 1, we define

1715 = inf {17 5"

7 c C(1+Ct)/2,1+a(cl Q), ? — f on axQ} )
We consider the linear and uniformly parabolic equation:

W —ajjWy;x; + (B, Dw) +cw =B inQ,

ad

o _ on 9,0, (8.11)
v

w(0,x) =0 forx e clV.

Here B € C%/22(c1 Q) and b € C(1+)/21+¢ ([ ). Suppose that b = 0 on {0} x 3V for the
compatibility condition. Then we are able to verify that the result of [12, Lemma 2.2] holds for
(8.11). That is, there is a unique classical solution w € C @ta)/2.24a(g] Q) of (8.11) and it satisfies
the estimate

Iw$52 < C(IBISY, + 1615 57). (8.12)

Here and hereafter C denotes various constants depending only on known ones.
We introduce a Banach space:

X = {w e CCTO/22Te(c1 0) | w(0,-) = OonclV}.
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For a given W € X, we set
B = B(t,x) := By(t,x) + B2(t,x) + Bs(t,x), b(t,x) := a(t,x, DW(t,x)) (8.13)
By = Bi(t,x) := A(t. x, W(t, x), D>W(t, x)),
B = Bi(t,x) := A;(t.x,W(t,x), DW(t,x)) (i =2,3)

for A, a defined by (8.8), (8.9). Then we define T(w) = w as a solution of (8.11) with B, b as
above. We look for a fixed point of the mapping 7 : X — X. Given rp > 0, we set

24
Yi={weX||w|$s <r)

Lemma 8.2 For sufficiently small ro, T1 > 0, T maps from Y into Y.

Outline of the proof. Fix any W € Y. Define B and b by (8.13) and let w be a classical solution of

(8.11). We prove that the ||u)||(2+°‘) < ro implies ||u)||£I Ea) ro for sufficiently small rq, 77 > 0.
As for A; given by (8.5), we see by [12, Lemma 2.3] that || B; ||£‘11)Q <C@r2+ Tl1 a/z)‘ Lengthy

calculations with using (8.2) yield that ”BZHSIXZQ + || B3 ||£‘11)Q <C@Ug + Tll_a/z). Hence we get

1—a/2
IBISY < C(r2 + T,7°7).

We have the estimate for b in the proof of [12, Lemma 2.3]:
1+ 1—a)/2
161857 < € (2 + T77?).
Combining these estimates and (8.12) , we obtain

lwl$e? < C (3 + 1),

Thus taking a sufficiently small ro > 0 and then 7} > 0, we get the desired result. O

Lemma 8.3 For sufficiently small ro, Ty > 0, we have

IT@1) - T@2) 25" < ||w1 — o) $5Y forall By, € Y.

Outline of the proof. Fix any Wy, W, € Y. Fori = 1,2 set
w; := T(W;), Bi(t,x) := A(t,x, W;, DW;, D*W;), b;(t,x) := a(t,x, DW;).
Then it readily follows from (8.12) that

2+
lwi = w2l $5% < C(I1B1 = B2l + l1b1 — b2]1§7,)

First we estimate || B; — B> ||SX)Q Note that | D? Fy| is bounded and A4, A, and A3 are polynomials
of degree not less than two with respect to (¢, r, p, X) (cf. (8.5), (8.6) and (8.7)). We then observe
by tedious calculations that

1B — B2]|“), < C(ro + T2 1 — 02|25,

cQ ~ clQ
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We have the following estimate from the proof of [12, Lemma 2.4]:

16y = ball$ 50 < € (ro + T ™2) 11 — B2 § 5.

Thus we have from the above estimates

lwy — w2||£|25a) < C(ro + Tl(l_a)/2)||@1 — @2”2125“).

Choosing ro, T1 > 0 sufficiently small, we obtain the desired result. O

We now establish the existence and uniqueness of solutions of (8.11) by applying Banach’s fixed
point theorem. Moreover, applying the regularity theory for linear parabolic equations, we obtain
the following result.

Theorem 8.4 For ro, Ty > O sufficiently small, there is a unique classical solution w €
C(2+a)/2,2+oz(cl 0)N C(3+°‘)/2’3+°‘(Q) of (8.10).

Hence we have a classical solution v(= pg + th + w) € C@t®)/22+e (] 0) 0 CBG+a)/2.3+e ()
of (8.1) and (v, D?v) € G. The regularity results (cf. [32]) yields the following theorem.

Theorem 8.5 For ro, T1 > O sufficiently small, there is a unique classical solution v €
CG+0/25+a (] 0) of (8.1) satisfying (v, D?v) € G.

8.4  Motion of the zero level set of (8.1)
In this section we show that the level set I'(¢) := {v(¢,-) = 0} for ¢ € [0, T1] moves by (1.1).
Theorem 8.6 We obtain |Dv|?> = 1 0ncl Q, where Q = (0, T1) x {|p(0,)| < 82}
Proof. Setw := |Dv|? —1 € C@F0/24+2(()) Then
w=0 ondyQ, w0,)=0 onclV. (8.14)

We derive the equation for w. Differentiate (8.1) with respect to x; and multiply vy, (kK =
1,2,...,N). Then we get

ka ka,l‘ - 8—(07 DZU)Uxix]-xk ka - _(Uv Dzv)v)zck - (blv)x] (vxk vx]' + va]-xk)vxi ka
Xij ar
+ (bi;)xk U)zck - (gv)xi (ka Ux; + vaj-xk)vxk + (gv)xk Uxp = 0.
The same computations as in the proof of [12, Theorem 3.1], we have
d0Fy 1 d0Fy
0Xi; ) 0Xi;

oF, JoF,
(v, D)V, x; x; Vi — a—ro(v, D?v)v (v, D*v)wy,x, — a—ro(v, D2v)w.

Besides we observe that

—(b"v)x; (Vxy Vxj + VVx; )V Ve + (B 0)xg vik

= —((Db), Dv, Dv)w %v((D\b)va, Du)

. 1 —
—(Z)x; (Vxp Vx; + VVx; ) Vg + (€0)xy Vg = —((Dg)v, Dv)w — Ev((Dg)v, Dw).
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Hence we obtain

oF, — —
wy — Wﬁ(v, Dzv)wxixj —v{(Db)yDv + (Dg)y, Dw)
ij

F —_ —
-2 88—0(1), Dzv) + ((Db)va + (Dg)v, DU) w=0 in Q (8]5)
r

Combining (8.3), (8.14) and this equation, we obtain w = 0 on cl Q by the maximum principle. [

Proof of Theorem 8.1. The vector n = n(¢,x) := Duv(¢, x) is the inner unit normal to I"(¢) for
each t € [0,T1] and x € I'(¢t) by Theorem 8.6. Since k; = A; on I'(t), we get Fo(v, D?v) =
ZZNZ_II ki = k on I'(t). Hence v satisfies

v — Ky + bv,n))+§v =v,—k+(bn)+g=0 onl'(t).te(0,T]
Fix ¢t € [0, Ty) and xo € I'(¢). Let x(s) : (t, T1) — R be a solution of

x(s) = {—Tc’v(s,x(s)) + (l;v (s,x(s)),n(s,x(s))) +gy (s,x(s))}n(s,x(s)) fors > t,

x(t) = xo

Then we observe that

%v(s,x(s)) = v;(s.x(s)) + (Dv(s, x(5)), X (s))
= v, (5, x(5)) =Ko (s, x(s)) + (l;v (s.x(s)). (s, x(5))) + Zv (s, x(s))

Thus v(s, x(s)) = 0 fors > ¢. This implies that 71; = ffor f =«,b, f. Therefore {I'(¢)};e[0,7,]
is a smooth and compact CDM. Hence we take Ty > 0 as the maximal existence time of I"(¢). The
uniqueness of smooth and compact CDM’s follows from [15, Theorem 4.2.8]. o
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